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Abstract: The extraction of transverse momentum dependent distributions (TMDs) in

semi-inclusive deep inelastic scattering (SIDIS) is complicated by the presence of both

initial- and final-state nonperturbative physics. We recently proposed measuring jets (in-

stead of hadrons) as a solution, showing that for the Winner-Take-All jet axis the same

factorization formulae valid for hadrons applied to jets of arbitrary size. This amounts to

simply replacing TMD fragmentation functions by our TMD jet functions. In this paper

we present the calculation of these jet functions at one loop. We obtain phenomenological

results for e+e− → dijet (Belle II, LEP) and SIDIS (HERA, EIC) with a jet, building

on the arTeMiDe code. Surprisingly, we find that the limit of large jet radius describes

the full R results extremely well, and we extract the two-loop jet function in this limit

using Event2, allowing us to achieve N3LL accuracy. We demonstrate the perturbative

convergence of our predictions and explore the kinematic dependence of the cross section.

Finally, we investigate the sensitivity to nonperturbative physics, demonstrating that jets

are a promising probe of proton structure.
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1 Introduction

Since the early days of the parton model, the structure of the proton has been a major

focus of the nuclear and particle physics communities. In addition to being of intrinsic

interest, it is of direct relevance for describing the initial state at hadron colliders such

as the LHC, and therefore important in the search for new short-distance physics. The
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essential theoretical ingredient is factorization, which allows one to separate the cross

section into a hard scattering, that can be calculated in perturbation theory, and process-

independent parton distribution functions (PDFs). The PDFs parametrize the proton

structure, describing the momentum fraction of partons in the proton along the direction

of motion.

We will focus on transverse momentum dependent PDFs, where in addition the trans-

verse momentum of partons in the proton is probed. Since a transverse momentum mea-

surement can also be thought of as the measurement of an angle, it is natural that TMD

factorization theorems generically involve two TMD distributions. Traditionally, the rela-

tive transverse momentum of two hadrons in e+e−, the transverse momentum of a hadron

semi-inclusive deep-inelastic scattering (SIDIS), ep→ ehX, and the transverse momentum

of a γ∗/Z boson in pp collisions have been considered.

We recently proposed replacing individual final-state hadrons by jets in the above mea-

surements [1]. Jets are collimated sprays of hadrons, that appear in high-energy collisions

because of the collinear singularity of quantum chromodynamics (QCD). Practically they

are identified by clustering particles according to a specified algorithm. On the theoreti-

cal side, we demonstrated that one can simply replace the TMD fragmentation functions

entering factorization theorems with our TMD jet functions, for which the use of the

Winner-Take-All (WTA) recombination scheme [2] played a key role. The advantage of

our approach is that such functions are perturbatively calculable, thus removing an im-

portant source of uncertainty. Specifically, the intrinsically nonperturbative distribution of

the momentum fraction of individual hadrons is removed by using jets.

In the context of SIDIS experiments, replacing the nonperturbative TMD fragmen-

tation functions with calculable jet functions would allow one to increase the sensitivity

to initial-state nonperturbative physics. It will be interesting to see whether this can be

investigated with existing HERA data, and exciting to explore at the electron-ion collider

(EIC), which will enable the extraction of PDFs with unmatched precision, with SIDIS

experiments playing an important role [3]. Of course, for small transverse momenta, the

jet functions themselves will also receive nonperturbative corrections. However, this can be

addressed by exploiting the universality of the nonperturbative structure of the TMD jet

function, with e+e− → dijet providing a useful testing ground. Explicitly, data from e+e−

collisions could be used to fit a model for nonperturbative corrections to the jet function

to be later applied to SIDIS.

A number of other jet observables that account for transverse momentum dependence

have recently been considered. The main focus has been on the transverse momentum of

hadrons fragmenting in jets, in both inclusive [4] and semi-inclusive [5, 6] processes. In

the same context, refs. [7, 8] used soft-drop jet grooming [9] to reduce sensitivity to soft

radiation within the jet. These studies consider the transverse momentum with respect

to the standard jet axis (SJA); instead, as an alternative way to reduce sensitivity to soft

radiation, refs. [10, 11] performed a similar analysis for the transverse momentum with

respect to the Winner-Take-All (WTA) axis. The transverse momentum of the jet itself

was also recently considered in photon + jet production [12] and lepton-jet correlation in

deep-inelastic scattering [13].
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Figure 1. Geometry of the event for e+e− → dijet (left) and SIDIS (right). The horizontal

direction represents the beam axis. For dijets the relevant quantities q and θ are the transverse

momentum decorrelation and angular decorrelation of the system, defined with respect to the

relative orientation of the two jets. We consider almost back-to-back jets, θ � 1, and study different

hierarchies between θ and the jet radius R. In SIDIS q represents the transverse mometum of the

jet, and the corresponding angle is measured with respect to the beam axis. We work in the Breit

frame, where the jet recoils almost in the direction of the incoming proton, θ � 1.

Besides showing a full derivation of the results presented in ref. [1], the main purpose

of this paper is performing a numerical analysis of e+e− → dijet and semi-inclusive deep-

inelastic scattering (SIDIS) using arTeMiDe [14, 15], to study the phenomenology of TMDs

with jets.

In the case of e+e− → dijet, the main physical quantity we consider is the transverse

momentum decorrelation. It is defined as1

q =
p1

z1
+
p2

z2
, (e+e− → dijet) (1.1)

where pi are the jet transverse momenta measured with respect to a common direction

and zi = 2Ei/
√
s are their energy fractions,

√
s is the center-of-mass energy of the col-

lision. Since factorization requires a small transverse momentum decorrelation, we will

always assume

qT ≡ |q| �
√
s

2
. (1.2)

A related quantity is the angular decorrelation, shown in the left panel of figure 1,

θ = arctan

(
2qT√
s

)
≈ 2qT√

s
, (1.3)

where the final expression exploits eq. (1.2). This makes it explicit that we consider con-

figurations where jets are almost back to back.2 The angular decorrelation is similar to

the azimuthal decorrelation in hadronic collisions, calculated at next-to-leading logarithmic

accuracy in refs. [16–19].

In principle, the definitions in eqs. (1.1) and (1.3) depend on the choice of axis with

respect to which the jet transverse momenta are measured. However, differences induced

1In this paper, we reserve bold font for denoting transverse two-vector quantities.
2Another interesting small-angle configuration occurs for two jets moving in almost the same direction,

which we do not study in this paper.
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by this choice are suppressed by powers of q2
T /s. Of course, the definition is sensitive to

the details of the jet algorithm: our default throughout the paper will be the WTA axis

with anti-kT [20], but we will also consider the SJA and other clustering algorithms of the

kT family. We will also explore the dependence on the jet radius R.

In SIDIS, shown in the right panel of figure 1, we choose to work in the Breit frame

and define the transverse momentum as

q =
P J

z
+ qin , (SIDIS) (1.4)

where P J is the transverse momentum of the jet with respect to the beam axis, qin is the

transverse momentum of the initial-state quark in the proton, and z = 2EJ/Q is the jet

energy normalized to (minus) the virtuality of the photon Q2. In analogy with eq. (1.3)

we define a corresponding angle θ and require

θ = arctan

(
2qT
Q

)
' 2qT

Q
� 1 . (1.5)

We use the same symbols qT and θ for analog quantities in different processes since they play

the same role in factorization formulae, and their meaning should be clear from the context.

To summarize our main findings: when using the WTA axis, the same factorization

formulae valid for hadrons hold for jets, independently of the hierarchy between the angle θ

and the jet radius parameter R. Because the factorization theorem ensures that hadroniza-

tion effects in the jets are universal, they can be estimated in e+e− and then used in the

analysis of SIDIS experiments. We anticipate that the main nonperturbative effects come

from the evolution factor. These effects are universal (i.e. the same in e+e−, SIDIS, and

Drell-Yan experiments and independent of the polarization of the hadrons) and their esti-

mation is one of the major goals of TMD analyses. In this context we note the vital role

played by the ζ-prescription [15], which ensures that the nonperturbative contribution to

the evolution factor (that is responsible for the resummation) is uncorrelated with other

nonperturbative effects.

Another observation has lead us to focus on the large radius regime of the jets. In fact,

at one-loop order we notice that our jet function is well described by its large-R limit. In

this limit the jet functions simplify considerably, and are determined by renormalization

group evolution (RGE) up to a constant. We exploit this fact to numerically extract the

two-loop, large-radius jet function from Event2 and push the accuracy of the calculation

to N3LL in this case. Surprisingly, the validity of this regime extends down to fairly

small values of the jet radius, allowing us to get precise results across the whole range in

transverse momentum. This brings the perturbative precision of TMDs with jets on par

with TMDs with final-state hadrons.

The paper is structured as follows: in section 2 we discuss the factorization formulae,

considering different hierarchies between R and θ, illustrated in figure 1. We present

expressions for both the transverse momentum decorrelation in e+e− → dijet, as well as

the transverse momentum of the jet in SIDIS. In addition to our default choice of using

the WTA axis, we also consider the standard jet axis (SJA), for which we show that the

factorization is significantly more complicated when θ � R. In section 3 we explicitly
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compute the quark jet functions at one-loop order, performing the calculation in both

transverse-momentum and impact-parameter space. The renormalization and resummation

is discussed in section 4, and the two-loop jet function for θ � R is extracted from Event2

in section 5. In section 6 we present our numerical results for e+e− → dijet and SIDIS,

and we conclude in section 7. A summary of our conventions and perturbative ingredients

are collected in the appendix.

2 Factorization of the cross section and definition of the jet functions

The factorization of the cross section depends on the quantity

R ≡ 2 tan
R

2
. (2.1)

For small values, R is just the jet radius parameter R, but in general the parameterR allows

us to capture some power corrections. In the following we will use R when considering

transverse momenta, while we use R when considering angles. In this section we review

the factorization formulae of ref. [1] for all possible hierarchies, while in the remainder of

this paper we concentrate on the ones that play a role in our phenomenological results. We

start here by introducing the jet function, which is the main new ingredient of our analysis,

providing its definition and briefly discussing its renormalization.

Our factorization analysis is carried out using Soft-Collinear Effective Theory

(SCET) [21–24], in which the jets are described by collinear modes and the radiation

outside the jets is described by a soft mode. The typical momentum scaling of these modes

are summarized in table 1, in terms of light-cone coordinates

pµ = (p−, p+,p) = p−
nµ

2
+ p+ n̄

µ

2
+ pµ . (2.2)

Here nµ and n̄µ are light-like vectors along the directions of the jets, with n · n̄ = 2.

The jet function, that enters the factorization theorem for θ ∼ R, is written in b-space

as the following collinear matrix element

Jq(z, b, ER) =
z

2Nc
Tr

[
n̄/

2
〈0|
[
δ
(
2E/z − n̄·P

)
eib·Pχn(0)

]∑
X

|Jalg,RX〉〈Jalg,RX|χ̄n |0〉
]
.

(2.3)

Here, z is the light-cone momentum fraction of the jet with respect to the initiating quark,

E is the energy of the initiating quark, and P is the momentum operator. The trace in

eq. (2.3) is over Dirac indices, and χn(y) = W †n(y)ξn(y), where ξn is the collinear quark

field in the light-like direction nµ and Wn is a collinear Wilson line, ensuring collinear

gauge invariance. The subscript alg serves as a reminder that the jet function depends on

the clustering algorithm, which works as follows: as long as at least one pair of particles

exists whose angular distance is smaller than R, the two particles with the smallest distance

measure are selected and merged. The rule to merge two particles of four-momenta p1, p2

– 5 –
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into a new “particle” with momentum p(12) reads

SJA : E(12) = E1 + E2, ~p(12) = ~p1 + ~p2 ,

WTA : E(12) = E1 + E2, ~p(12) = E(12)

[
~p1

|~p1|
θ(E1 − E2) +

~p2

|~p2|
θ(E2 − E1)

]
, (2.4)

i.e. with the SJA the two four-momenta are added, while with the WTA the new pair

is massless by definition, and its direction coincides with the one of the most energetic

particle. The algorithm stops when the angular separation between each pair of remaining

particles exceeds R, in which case these “particles” are considered the final jets.

Gluon-initiated jets do not enter for e+e− and SIDIS, but we give the corresponding

definition for completeness,

Jg(z, b, ER) =
zE

N2
c −1

〈0|
[
δ
(
2E/z − n̄ · P

)
eib·P Bn⊥µ(0)

]
|Jalg,RX〉 〈Jalg,RX| Bn⊥µ(0) |0〉 ,

(2.5)

where

Bn⊥µ =
1

n̄ · P in̄αg⊥µβW
†
nF

αβ
n Wn (2.6)

is the collinear gluon field, with Fαβn the collinear field strength tensor. We will also perform

the calculation in momentum space, which simply involves replacing

eib·P →
∫

d2b

(2π)2
eib·(P−q) = δ2(q − P ) . (2.7)

The above definitions are for the bare jet functions, as indicated by the absence of

renormalization scales. A perturbative calculation shows that both ultraviolet (UV) and

rapidity divergences affect these distributions, so that one should consider the renormal-

ized quantities

Jq(z, b, ER, µ, ζ) = Zq(ζ, µ)Rq(ζ, µ)Jq(z, b, ER) (2.8)

and similarly for Jg. Here Zq is the UV renormalization factor, Rq is the rapidity renormal-

ization factor, and rapidity divergences are removed first, as in ref. [25]. A key observation

is that these renormalization factors are the same as in the case of TMDs, as we discuss in

section 4.

2.1 R ∼ θ � 1

We now turn to the factorization analysis, starting with dijet production in e+e− scattering

at a center-of-mass energy
√
s, where θ ≈ 2qT /

√
s ∼ R � 1. This is the simplest case

since there are only two scales,
√
s and qT . The cross section differential in the momentum

decorrelation q and the jet energy fractions zi = 2EJ,i/
√
s factorizes as3

dσe+e−→JJX
dz1 dz2 dq

= σe
+e−

0 (s)He+e−(s, µ) (2.9)

×
∫

db

(2π)2
e−ib·qJq

(
z1, b,

√
s

2
R, µ, ζ

)
Jq̄

(
z2, b,

√
s

2
R, µ, ζ

)[
1 +O

(
q2
T

s

)]
.

3In ref. [1], we denoted the e+e− center-of-mass energy by Q2, which we reserve for DIS in this paper.

Furthermore, the argument of the jet function was missing the factor of 1
2

in front of
√
sR.
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Mode R� θ � 1 θ ∼ R� 1 θ � R (WTA) θ � R� 1 (SJA) θ � R ∼ 1 (SJA)

hard (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1)

n-coll. (1,
√
θ, θ) (1,

√
θ, θ) (1,

√
θ, θ)

n̄-coll. (
√
θ, 1, θ) (

√
θ, 1, θ) (

√
θ, 1, θ)

n-coll2 (1,
√
R,R) (1,

√
R,R)

n̄-coll2 (
√
R, 1, R) (

√
R, 1, R)

n-csoft θ/R(1,
√
R,R)

n̄-csoft θ/R(
√
R, 1, R)

soft (θ, θ, θ) (θ, θ, θ) (θ, θ, θ) (θ, θ, θ) (θ, θ, θ)

Table 1. The parametric scaling of the momenta (p−, p+,p) corresponding to the modes in SCET,

for the various hierarchies between θ and R. For θ � R the modes differ between the Winner-Take-

All and standard jet axis.

The hard function He+e− encodes the hard scattering process, in which a quark-anti-quark

pair is produced. It contains virtual corrections, but no real radiation because that would

result in qT ∼
√
s. For convenience we have extracted the tree-level cross section σe

+e−
0 ,

which contains a sum over quark flavors. The jet functions describe the fraction zi of energy

of the initial (anti)-quark that goes into the jet, as well as their transverse momentum

through the impact parameter b (its Fourier conjugate). They depend on the jet algorithm,

as indicated by the argument
√
s

2 R, but this does not affect their anomalous dimension,

as required by RG consistency. Soft radiation does not resolve the jet because its typical

angle is order 1, whereas R� 1. Consequently, we do not have to consider clustering soft

radiation in the jet algorithm, and we can simply include its effect as an overall recoil of

the system, as indicated in eq. (2.9). The soft function has been absorbed into the jet

functions in the above expression, as we will discuss in section 4. There we will also show

that the RG evolution between the hard scale µH ∼
√
s and jet scale µJ ∼ qT in eq. (2.9)

resums invariant mass logarithms of µH/µJ ∼
√
s/qT , and similarly that ζ is related to the

resummation of invariant rapidity logarithms of
√
s/qT [14, 15], see also refs. [26–30].

The corresponding factorization theorem for the cross section of semi-inclusive deep-

inelastic scattering is given by

dσep→eJX
dQ2 dx dz dq

=
∑
q

σDIS
0,q (x,Q2)HDIS(Q2, µ)

×
∫

db

(2π)2
e−ib·qFq(x, b, µ, ζ) Jq

(
z, b,

QR
2
, µ, ζ

)[
1 +O

(
q2
T

Q2

)]
, (2.10)

which is differential in the di-lepton invariant mass Q2, Bjorken x, the energy fraction z

of the jet generated by the splitting of the quark, and the jet transverse momentum qT .

We work in the Breit frame, where z = 2EJ/Q, and apply an e+e− jet algorithm. The

modification to the factorization theorem compared to eq. (2.9) is fairly modest: the hard

function is replaced by the one for SIDIS, one of the jet functions is replaced by a TMD

PDF, and the sum over quark flavors must be explicitly included because both σDIS
0,q and Fq
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depend on it (Jq does not, as long as we can treat quarks as massless). The hard function

is slightly different,

He+e−(Q2, µ) = |CV (Q2, µ)|2 = 1 + 2asCF

(
−l2Q2 − 3lQ2 − 8 +

7π2

6

)
+O(a2

s),

HDIS(Q2, µ) = |CV (−Q2, µ)|2 = 1 + 2asCF

(
−l2Q2 − 3lQ2 − 8 +

π2

6

)
+O(a2

s) , (2.11)

where CV is the Wilson coefficient for the hard matching, lQ2 = ln(µ2/Q2) and as =

g2/(4π)2. The NNLO and NNNLO expression can be found in ref. [31], taking into account

that He+e−(Q2, µ) is the same as for the Drell-Yan process. The two loop expressions are

provided in eqs. (A.19), (A.20) of the appendix, to make the paper self-contained.

2.2 R � θ � 1

We now consider the case where we have an additional hierarchy due to the small size of the

jet radius, R � θ � 1. While this regime will be of limited phenomenological interest to

us, it allows us to make contact between our framework and TMD measurements with final

state hadrons, corresponding to the R → 0 limit. The modes are again listed in table 1,

and involve additional collinear modes whose scaling is set by R.

The factorization in this case is an extension of eqs. (2.9) and (2.10). The jet func-

tion contains two scales
√
sR � qT , which can be separated through a further collinear

factorization,

Ji(z, b, ER, µ, ζ) =
∑
j

∫
dz′

z′
[
(z′)2Ci→j(z′, b, µ, ζ)

]
Jj
(
z

z′
,

2z

z′
ER, µ

)[
1+O(b2TE

2R2)
]
.

(2.12)

Only collinear radiation at angular scales θ, encoded in Ci→j , can affect qT . However,

subsequent splittings down to angles of order R will change the parton j with momentum

fraction z′ into a jet with momentum fraction z. This is described by the semi-inclusive jet

function Jj , which has been calculated to O(αs) in refs. [32, 33] (our notation matches that

of ref. [32]). The distinction between WTA vs. standard jet axis is irrelevant, since θ � R.

The additional RG evolution between µJ ∼ qT and µJ ∼ ER sums single logarithms of

µJ/µJ ∼ qT /(ER) ∼ θ/R.

The (z′)2 in front of Ci→j was chosen to ensure that these matching coefficients coincide

with those for TMD fragmentation, given to O(α2
s) in refs. [25, 34]. That these same

matching coefficients enter here is not surprising, since for R → 0 the semi-inclusive jet

function becomes the fragmentation function (summed over hadron species) [35]. Thus

in this limit we reproduce the known results for TMD fragmentation to hadrons. For

convenience, we collect the relevant one-loop expressions for the matching coefficients and

semi-inclusive jet function in eqs. (A.31) and (A.32) of the appendix.

2.3 θ � R for the Winner-Take-All axis

We now consider θ � R for the Winner-Take-All axis. For R ∼ 1, the modes in table 1 are

expected and factorization takes on a rather simple form. Even if soft radiation sees the

– 8 –
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jet boundary, it does not affect the position of the jet axis, due to the WTA recombination

scheme. Specifically, the merging prescription in eq. (2.4) implies that soft radiation never

affects the direction of the jet (it always “loses” against collinear radiation), while its

contribution to the jet energy is power suppressed. The only effect of soft radiation, either

inside or outside the jet, is thus therefore a total recoil of the two collinear sectors, which

is therefore described by the standard TMD soft function. In particular, the observable

is insensitive to the distinction between soft radiation inside and outside the jet. Since

θ � R, the collinear modes do not resolve the jet boundary, so z = 1 and the ER
dependence drops out,

JWTA
i (z, b, ER, µ, ζ) = δ(1− z) J WTA

i (b, µ, ζ)

[
1 +O

(
1

b2TE
2R2

)]
. (2.13)

For completeness we also provide a definition of J WTA
q ,

J WTA
q (b) =

1

2Nc
Tr

[
n̄/

2
〈0|
(

1

n̄·P eib·Pχn(0)

)∑
X

|JWTA〉〈JWTA|χ̄n(0)|0〉
]
, (2.14)

and a similar formula can be written for the gluon case.

For θ � R � 1, one would expect the same modes as are listed for the standard jet

axis in table 1. In this case the soft function does not resolve the jet boundary, because

R� 1, but collinear-soft modes with scaling

(p−, p+,p) ∼ θ/R(1,
√
R,R) , θ/R(

√
R, 1, R) , (2.15)

resolve the jet boundary and contribute to qT . However, by the same reasoning as before,

their only effect is a total recoil on the system, independent of whether emissions are inside

or outside the jet. Consequently, these additional modes do not need to be considered,

since they will simply be removed by the zero-bin subtraction [36], due to their overlap

with the soft mode. This leads to the interesting conclusion that, for the WTA axis, the

cross section for θ � R is independent of R.

2.4 θ � R for the standard jet axis

For completeness we also discuss θ � R for the standard jet axis. We do not present any

numerical results for this case, and therefore limit our discussion to the dijet momentum

decorrelation in e+e− collisions. First we consider the case θ � R ∼ 1, for which the

modes are given in table 1. Energetic emissions outside the jet are not allowed because

these would lead to θ ∼ R. Because the standard jet axis is along the total momentum

of the jet, momentum conservation implies that qT is simply determined by the transverse

momentum of soft radiation outside the jets. In particular, the angle of energetic emissions

inside the jet is unrestricted. Since R ∼ 1, these emissions are hard, explaining the absence

of a collinear mode. Each of these hard emissions induces a soft Wilson line, implying

the presence of non-global logarithms (NGLs) [37] of
√
sR/qT . The corresponding cross

section can be described using the framework of refs. [38, 39] (see also refs. [40, 41])

dσSJA
e+e−→JJX

dq
=

∞∑
m=2

Trc[Hm({ni},
√
s,R)⊗ Sm({ni}, q,R)]

[
1 +O

(
q2
T

Q2

)]
. (2.16)
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We have eliminated the measurement of the momentum fractions of the jets, since zi = 1

in this limit. Hm denotes the hard function with m real emissions inside the jets, along the

light-like directions ni. The soft function Sm describes the transverse momentum qT of soft

radiation outside the jets, produced by the Wilson lines along the directions ni. The color

indices describing the representation of the hard emissions/Wilson lines connects the hard

and soft function, and Trc denotes the trace over these color indices. Finally, ⊗ denotes

integrals over the light-like directions ni.

Moving on to θ � R� 1, we have collinear modes whose angular size is set by R, and

additional collinear-soft modes with scaling

(p−, p+,p) ∼ θ/R(1,
√
R,R) , θ/R(

√
R, 1, R) , (2.17)

which are fixed by the requirement that they resolve the jet boundary and contribute to

qT . Because R � 1, no hard real emissions are allowed, and the soft function does not

resolve the jet. However, each collinear emission produces a collinear-soft Wilson line, in

direct analogy to the soft Wilson lines generated by hard emissions for R ∼ 1. Using again

the framework of refs. [38, 39], the corresponding cross section is given by

dσSJA
e+e−→JJX

dq
= σe

+e−
0 (s)He+e−(s, µ)

∫
db

(2π)2
e−ib·q S(b) (2.18)

×
[ ∞∑
m=2

Trc

[
Jm
(
{ni},

√
s

2
R
)
⊗ Um({ni}, b,R)

]]2[
1 +O

(
q2
T

Q2

)]
.

The hard and soft function are the same as for θ ∼ R. The jet function Jm describes m

collinear emissions inside a jet along light-like directions ni, and the collinear-soft function

Um describes the resulting qT from collinear-soft emissions of these Wilson lines.

3 Quark jet function at one loop

In this section we present a detailed calculation of the one-loop quark jet function that

enters the factorization formula in eqs. (2.9) and (2.10). We use dimensional regulariza-

tion with d = 4 − 2ε to handle UV divergences, and the modified δ-regulator for the

rapidity divergences [34, 42], The Feynman diagrams and measurement are discussed in

section 3.1. We present a detailed calculation in momentum space in section 3.2 and in

impact-parameter space in section 3.3, thus providing a cross check of our results. The ad-

vantage of performing the calculation in momentum space is that this is the space in which

the jet algorithm is defined. On the other hand, the renormalization and resummation are

simpler in impact-parameter space.

3.1 Feynman diagrams and measurement

The one-loop diagrams that contribute to the quark function are given in figure 2. This

leads to the following expression for the bare jet function up to one loop,

Jalg
q (z, q, ER) =

∑
n

ansJ
[n]
q (z, q, ER) (3.1)

=
1

π
δ(q2

T )δ(1− z) + g2
∑
cases

CF

(
µ2eγE

4π

)ε
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Figure 2. Cut diagrams that contribute to the one-loop quark jet function in SCET. Here ⊗
represents the collinear (anti-)quark field χn (χ̄n), which contains a collinear Wilson line that can

emit gluons. A sum over cuts is understood, where cuts through loops describe real emissions, while

only cutting the quark line corresponds to virtual corrections. The latter vanish for our choice of

regulators.

×
∫ ∞

0

d`+

2π`+

∫
ddk

(2π)d

[
2

2E−k−
k−−iδ−

+ (1−ε)
(

1− k
+

`+

)
+ h.c.

]
× (2π)δ+(k2) (2π)δ+

[
(`− k)2

]
Θcase

1

π
δ(q2

T−q2
T case) δ

(
z−EJ case

E

)
+O(a2

s).

Here E is the energy of the quark field initiating the jet, and its small light-cone component

`+ (and thus virtuality) is integrated over. The phase space of the outgoing gluon, with

momentum kµ, and quark, with momentum `µ − kµ is integrated over, subject to the qT
and z measurement. The δ+(k2) ≡ δ(k2)θ(k0) and δ+[(k − `)2] denote the corresponding

on-shell conditions. The coupling has been replaced by the renormalized one in the MS

scheme, leading to the prefactor (. . . )ε.

There are three different cases we need to consider:

(a) both partons are inside the jet,

(b) the gluon is outside the jet,

(c) the quark is outside the jet.

These cases are identified by Θcase, and the transverse momentum q2
T case and jet energy

EJ,case depend on the case and jet algorithm, and are given in table 2 in terms of the energy

fraction of the quark

x ≡ 1− k−

2E
(3.2)

and of the jet size R, defined in eq. (2.1).

At one loop, there are only two partons, so every distance measure gives the same

clustering condition (as we will see in section 5, this is no longer true at two loops). There

are differences between the standard and WTA recombination scheme that directly follow

from the different rules in eq. (2.4). This distinction is only relevant when both partons

are inside the jet, in which case the standard jet axis is along their total momentum while

the WTA axis is along the most energetic one.
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case algorithm Θcase EJ case q2T case

(a) both in
SJA

θ
(
x(1− x)ER− kT

)
E

0

WTA
k2T

max2(x, 1− x)

(b) gluon out SJA/WTA θ
(
kT − x(1− x)ER

)
Ex

k2T
x2

(c) quark out SJA/WTA θ
(
kT − x(1− x)ER

)
E(1− x)

k2T
(1− x)2

Table 2. The Θcase that encodes the various regions of phase space, and the corresponding jet

energy EJ case and transverse momentum q2T case. At this order the only difference between jet

algorithms is the recombination scheme, i.e. standard jet axis vs. Winner-Take-All.

Switching from k− to the quark energy fraction x, using the on-shell conditions, and

exploiting azimuthal symmetry, we rewrite the one-loop term of eq. (3.1) as

Jalg [1]
q (z, q, ER) =

∑
cases

4CF
π

(
µ2eγE

)ε
Γ(1− ε)

∫ 1

0
dx

∫ ∞
0

dkT

k1+2ε
T

Θcase δ(q
2
T − q2

T case) δ

(
z − EJ case

E

)
×
[

(1 + x2)(1− x)

(1− x)2 + (δ−E )2
− (1− x)ε

]
. (3.3)

Here we replaced the δ− regulator by its dimensionless counterpart

δ±E ≡
δ±

2E
. (3.4)

After similar manipulations, the corresponding one-loop gluon jet function is

Jalg [1]
g (z, q, ER) =

∑
cases

4

π

(
µ2eγE

)ε
Γ(1− ε)

∫ 1

0
dx

∫ ∞
0

dkT

k1+2ε
T

Θcase δ(q
2
T − q2

T case) δ

(
z − EJ case

E

)
×
{
CA(1− x)

[
x+

1

x
+

x

(1− x)2 + (δ−E )2

]
+ nfTF

[
1− 2x(1− x)

1− ε

]}
.

(3.5)

From this expression one can obtain the one-loop result for the gluon jet function presented

in ref. [1], following step by step the calculation of the quark function detailed below.

3.2 One loop results in momentum space

In order to perform the calculation in transverse momentum space we directly solve the

two integrals in eq. (3.3), inserting the measurements for the various cases in table 2. We

start with the case of both partons inside the jet.

In the case of the standard jet axis, the dependence on the transverse momentum is

trivial and the calculation reduces to the one performed in ref. [32] for the semi-inclusive

quark jet function. After integration over the transverse momentum,

J
SJA [1]
q(a) = −2CF

π

(
µ2

E2R2

)ε eεγE

εΓ(1− ε) δ(1− z) δ(q2
T )

∫ 1

0
dxx−2ε(1− x)1−2ε

[
1 + x2

(1− x)2
− ε
]
.

(3.6)
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Here we set the rapidity regulator δ−E to zero because the endpoint x = 1 is already

regulated by dimensional regularization. The remaining integral over the energy fraction

is a combination of Euler Beta functions, whose expansion up to O(ε0) yields

J
SJA [1]
q(a) =

2CF
π

δ(1− z) δ(q2
T )

[
1

ε2
+

1

ε

(
LR +

3

2

)
+

1

2
L2
R +

3

2
LR +

13

2
− 3π2

4

]
, (3.7)

where

LR = ln

(
µ2

E2R2

)
. (3.8)

For the WTA axis, the transverse momentum dependence becomes nontrivial. The

condition max(x, 1− x) reduces to x > 1
2 if we symmetrize the integrand,

J
WTA [1]
q(a) =

2CF
π

eεγE

Γ(1− ε)
µ2ε

(q2
T )1+ε

δ(1− z) (3.9)

×
∫ 1

1
2

dxx−2εθ
(
(1− x)ER− qT

)[(
− 3 +

2

x
− ε
)

+ 2
1− x

(1− x)2 + (δ−E )2

]
.

Performing the remaining integral requires to treat the integrand as a two-dimensional

distribution, see eq. (A.10), and yields the result

J
WTA [1]
q(a) =

2CF
π

δ(1− z)

{
δ(q2

T )

[
1

ε2
+

1

ε

(
LR +

3

2

)
+

1

2
L2
R +

3

2
LR +

7

2
− 2 ln2 2− 5π2

12

]
− Lcut

1

(
qT ,

ER
2

)
+

(
2 ln 2− 3

2

)
Lcut

0

(
qT ,

ER
2

)
+ θ

(
ER

2
− qT

)
1

q2
T

[
3
qT
ER + 2 ln

(
1− qT

ER

)]}
. (3.10)

Finally we consider the cases where only one particle is inside the jet, that are inde-

pendent of the jet algorithm. We use x → 1 − x to combine the case where the gluon is

outside the jet with the case where the quark is outside. Both the integrals over transverse

momentum and energy fraction are fixed by the δ functions enforcing the measurement,

resulting in

J
[1]
q(b)+(c) =

2CF
π

µ2ε

(q2
T )1+ε

eεγE

Γ(1− ε)θ
(
z − 1 +

qT
ER

)
×
[(
− 3 +

2

z
− ε
)

+
2(1− z)

(1− z)2 + (δ−E )2

]
z−2ε. (3.11)

Expanding the result in ε and δ−E requires again some algebra with distributions, that is

performed explicitly in appendix A.2. We obtain

J
[1]
q(b)+(c) =

2CF
π

{
δ(q2

T )δ(1− z)

[
− 1

ε2
+

1

ε

(
2 ln δ−E − LR

)
− 1

2
L2
R +

π2

12

]
(3.12)

+

(
− 3 +

2

z
+ 2L0(1− z)

)[
L0(qT , µ)− Lcut

0

(
qT , ER(1− z)

)
+ LRδ(q

2
T )

]
− 2 ln δ−E L0(qT , µ)δ(1− z)− 2δ(q2

T )

[(
− 3 +

2

z

)
ln(1− z) + 2L1(1− z)

]}
.
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We now combine the expressions in eqs. (3.7) and (3.10) with (3.12), to obtain the bare

quark jet function at one loop

Jaxis [1]
q =

2CF
π

{
δ(1− z)

[
δ(q2

T )

(
2

ε
ln δ−E +

3

2ε
+

3

2
LR

)
− 2 ln δ−E L0(qT , µ) + ∆axis

q (q2
T )

]
+
(
pqq(z) + pgq(z)

)[
δ(q2

T )LR + L0(qT , µ)− Lcut
0

(
qT , ER(1− z)

)]
− 2

[(
− 3 +

2

z

)
ln(1− z) + 2L1(1− z)

]
δ(q2

T )

}
. (3.13)

The dependence on the algorithm occurs via the functions ∆axis
q , that explicitly read

∆SJA
q (q2

T ) = δ(q2
T )

(
13

2
− 2π2

3

)
, (3.14)

∆WTA
q (q2

T ) = δ(q2
T )

(
7

2
− 2 ln2 2− π2

3

)
+ θ

(
ER

2
− qT

)
1

q2
T

[
3qT
ER + 2 ln

(
1− qT

ER

)]
+

(
2 ln 2− 3

2

)
Lcut

0

(
qT ,

ER
2

)
− Lcut

1

(
qT ,

ER
2

)
. (3.15)

The expression for the WTA axis is more involved because it introduces the threshold

z > 1
2 . We notice that

∆WTA
q (q2

T ) = ∆SJA
q (q2

T )

[
1 +O

(
E2R2

q2
T

)]
. (3.16)

This implies that the dependence on the jet algorithm vanishes in the regime R � θ, as

predicted from the factorization formula in eq. (2.12) (the semi-inclusive jet function J
that enters there is independent of the jet axis).

3.3 One-loop results in impact-parameter space

The calculation of the quark jet function at one loop can also directly be performed in

impact-parameter space. This calculation provides a check of the results in the previous

section. We perform the same two integrals of eq. (3.3) with the cases shown in the table 2

as in the momentum-space calculation, but first carry out the Fourier transform of the

jet function

Jalg[1]
q (z, b, ER) =

∫
dq eib·q Jalg[1]

q (z, q, ER). (3.17)

The case with both partons inside the jet is the only one that depends on the choice of

axis. The result for SJA has a trivial dependence on the transverse momentum and can be

written as

J
SJA [1]
q(a) = 2CF δ(1− z)

[
1

ε2
+

1

ε

(
LR +

3

2

)
+

1

2
L2
R +

3

2
LR +

13

2
− 3π2

4

]
. (3.18)

Note that for this calculation the IR divergences are regulated by ε and we can safely

neglect the δ−E regulator.
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The WTA axis choice introduces a non trivial dependence on the transverse momentum

of the jet function. Symmetrizing the integral over x, as in eq. (3.9), we rewrite the jet

function as

J
WTA [1]
q(a) = 8πCF

(
µ2eγE

4π

)ε
δ(1− z)

∫ 1

1/2
dx

[
1 + x2

1− x − ε(1− x) +
1 + (1− x)2

x
− εx

]
×
∫

dd−2k

(2π)d−2

1

k2
T

θ
(
x(1− x)ER− kT

)
eib·k/x . (3.19)

Integration over the transverse momentum allows us to rewrite eq. (3.19) as

J
WTA [1]
q(a) = 2CF

(
µ2eγE

)ε
Γ2(1− ε)δ(1− z)(ER)−2εΓ(−ε)

∫ 1

1/2
dxx−2ε(1− x)−2ε

×
[

1 + x2

1− x − ε(1− x) +
1 + (1− x)2

x
− εx

]
− 2CF δ(1− z)B2

ER

∫ 1

1/2
dx

[
(1 + x2)(1− x) +

(1 + (1− x)2)

x
(1− x)2

]
× 2F3

(
1, 1; 2, 2, 2;−B2

ER(1− x)2

)
+O(ε). (3.20)

The jet function depends on the transverse position in terms of the dimensionless

combination

BER =
1

2
bTER . (3.21)

The remaining step is the integration over x. The integral in the first term (first two lines)

is straightforward to perform analytically. On the other hand, the second integral has

a part for which we were unable to obtain a closed analytical expression. The result of

this second integral is given by the function G(BER), whose explicit expression is given in

eq. (A.28). This leads to

J
WTA [1]
q(a) = 2CF δ(1− z)

[
1

ε2
+

1

ε

(
LR +

3

2

)
+

1

2
L2
R +

3

2
LR +

13

2
− 3π2

4
+ G(BER)

]
(3.22)

Note that the only difference between the SJA and WTA results is G. When BER � 1 the

function G is zero, as required by the axis independence in this limit.

Next we consider the case when only one parton is inside the jet. By using x→ 1− x,

we can combine case (b) and (c). As we now have an explicit dependence on the momentum

fraction of the jet, the rapidity regulator δ−E needs to be kept. We find,

J
[1]
q(b)+(c) = 2CF

{(
pqq(z) + pgq(z)

)[
LR − Lµ − 2 ln(1− z)

+B2
ER(1− z)2

2F3

(
1, 1; 2, 2, 2;−B2

ER(1− z)2

)]
+ δ(1− z)

[
2

ε
ln δ−E + 2Lµ ln δ−E

]
+ δ(1− z)

[
3

2ε
+

3

2
LR +

13

2
− 2π2

3

]
− δ(1− z)

[
1

ε2
+

1

ε

(
LR +

3

2

)
+

1

2
L2
R +

3

2
LR +

13

2
− 3π2

4

]}
. (3.23)
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The terms with a divergent behavior in the limit z → 1 should be understood as regulated

under the +-prescription. For clarity we have split the δ(1 − z) contribution into three

pieces: the first term will be eliminated after the renormalization of rapidity divergences,

and the third term is exactly cancelled by the corresponding part of the case with both

particles inside the jet, removing IR divergences presented here as double poles in ε.

The final result for the quark jet function for both choices of axis is obtained summing

eq. (3.18) (SJA) or (3.22) (WTA) with (3.23),

Jaxis [1]
q = 2CF

{(
pqq(z) + pgq(z)

)[
LR − Lµ − 2 ln(1− z)

+B2
ER(1− z)2

2F3

(
1, 1; 2, 2, 2;−B2

ER(1− z)2
)]

(3.24)

+ δ(1− z)

(
2

ε
ln δ−E + 2Lµ ln δ−E

)
+ δ(1− z)

(
3

2
LR +

3

2ε
+ ∆̃axis

q (BER)

)}
,

where

∆̃SJA
q (BER) =

13

2
− 2π2

3
, ∆̃WTA

q (BER) =
13

2
− 2π2

3
+ G(BER). (3.25)

We have checked that these expressions agree with those obtained in section 3.2, which is

partially numerical for the WTA axis. For the numerical implementation, we use the above

expressions when a closed analytic expression is available, while we find it more convenient

to estimate the sum S, defined in eq. (A.29), by numerically Fourier transforming its

momentum-space counterpart.

4 Renormalization and resummation

4.1 Rapidity renormalization

The jet function in eq. (2.3) has the same renormalization as in the case of TMDs. Here

we summarize the main points of rapidity renormalization, referring to e.g. ref. [25] for

further details. The rapidity renormalization factor Rq in eq. (2.8) can be extracted from

the soft function

Rq(b, ζ, µ) =

√
Sq(b, ζ, µ)

Zbq
, (4.1)

including the zero-bin Zbq, that accounts for the overlap with collinear modes.

The soft function for SIDIS is given by the following vacuum matrix element of soft

Wilson lines

Sq(b) =
1

Nc
Trc 〈0| T̄

[
S̃†n̄Sn

]
(0+, 0−, b)T

[
S†nS̃n̄

]
(0) |0〉 , (4.2)

where the coordinates in brackets indicate the position of both Wilson lines, and T (T̄ )

denotes (anti-)time ordering. The Wilson lines are defined as usual

Sn(x) = P exp

[
ig

∫ 0

−∞
dσ n·A(x+ σn)

]
, (4.3)

S̃n̄(x) = P exp

[
−ig

∫ ∞
0

dσ n̄·A(x+ σn̄)

]
.
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In eq. (4.2) we did not include the transverse gauge links which are necessary to preserve

the gauge invariance in singular gauges [43–45], because we do not use them in our com-

putations. For e+e− all Wilson lines are future pointing, which corresponds to S̃n̄ → Sn̄ in

eq. (4.2), but this fact has no practical consequences as in the case of TMDs [28, 46–48].

The overlap of collinear and soft modes depends in general on the rapidity regulator used

in the perturbative calculation and for the modified δ-regulator used in the present work

one finds that in fact Sq(b, ζ, µ) = Zbq, so that the rapidity renormalization factor has the

simple form Rq(b, ζ, µ) = 1/
√
Sq(b, ζ, µ).

The parameter ζ in Rq is a scale that comes from splitting the soft function in

two factors,

S

(
b; ln

(
µ2

δ+δ−

))
= S1/2

(
b; ln

(
µ2

(δ+
E )2ζ+

))
S1/2

(
b; ln

(
µ2

(δ−E )2ζ−

))
(4.4)

each one of which is absorbed in one of the jet functions or TMDs. Specifically, the per-

turbative calculation of the soft function reveals that it depends linearly on ln(µ2/(δ+δ−)),

where the δ± are the rapidity regulators for each of the collinear modes in the factorization

theorem. To separate them, ζ± are introduced with ζ+ζ− = (2E)4, and 2E is the hard

scale of the process under consideration. In the calculation of a jet function along the

direction n one can effectively replace δ−E = δ+
Eζ, so that the subscripts ± for the variable

ζ can be omitted. While the rapidity renormalization factor is simply multiplicative in

b-space, the jet function can also be calculated in momentum space, as we have shown in

the previous section.

4.2 One-loop renormalization of the jet function and small and large R limits

Our bare jet function in eqs. (3.13) and (3.24) is still affected by divergences. As discussed

in eq. (2.8) and section 4.1, its renormalization is particularly easy to implement in impact-

parameter space, where it is purely multiplicative and takes the same form as for hadron

TMDs. The explicit one-loop UV and rapidity renormalization factors are

Z [1]
q (ζ, µ) = −2

ε
CF

(
1

ε
+ lζ +

3

2

)
, (4.5)

R[1]
q (ζ, µ) = 2CF

[
1

ε2
−
(

1

ε
+ Lµ

)
ln

(
(δ−E )2ζ

µ2

)
− 1

2
L2
µ −

π2

12

]
, (4.6)

leading to the renormalized expression

Jaxis [1]
q (z, b, ER, µ, ζ) = 2CF

{(
pqq(z) + pgq(z)

)[
LR − Lµ − 2 ln(1− z)

+B2
ER(1− z)2

2F3

(
1, 1; 2, 2, 2;−B2

ER(1− z)2
)]

+ δ(1− z)

(
Lµlζ −

1

2
L2
µ +

3

2
LR + ∆̃axis

q (BER)− π2

12

)}
. (4.7)

The corresponding momentum-space result is presented in eq. (A.24).

From eq. (4.7) (or equivalently from eq. (A.24)) one can take the limits R → 0 and

R → ∞, to approach the factorization regimes described respectively in section 2.2 and
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in sections 2.3 and 2.4. In the small-R limit the two axes give the same result, and we

explicitly checked that the jet function factorizes further as in eq. (2.12). The perturbative

ingredients in which the jet function factorizes are listed in appendix A.4. The large-R limit

is particularly interesting for the WTA axis, where the jet function simplifies as in eq. (2.13).

We verified that the dependence on the jet radius drops out in this limit, obtaining

J WTA[1](b, µ, ζ) = 2CF

(
7

2
− 5π2

12
− 3 ln 2− 1

2
L2
µ + Lµlζ +

3

2
Lµ

)
. (4.8)

4.3 Resummation and ζ-prescription

The renormalization group equations (RGEs) of the TMD jet function are the same as for

the standard hadronic TMD,

µ
d

dµ
Jq(b;µ, ζ) = γq(µ, ζ)Jq(b;µ, ζ)

ζ
d

dζ
Jq(b;µ, ζ) = −Dq(µ; b)Jq(b;µ, ζ) (4.9)

where Dq and γq are the rapidity and UV anomalous dimension, respectively. We only

consider the quark jet function, because the gluon does not enter in our phenomenological

results. As in the hadronic TMD case we have

Dq = −d lnRq
d ln ζ

∣∣∣∣
f.p.

= −1

2

d lnRq
d ln δ+

∣∣∣∣
f.p.

, (4.10)

where |f.p. denotes the finite parts.

Since the order of derivatives can be interchanged, one obtains [29, 49],

µ
d

dµ

(
−Dq(µ2, b)

)
= ζ

d

dζ
γq(µ, ζ) = −Γcusp

q . (4.11)

where Γcusp
q is the quark cusp anomalous dimension. Consequently,

γq = Γcusp
q lζ − γV,q, (4.12)

where

lζ ≡ ln

(
µ2

ζ

)
, (4.13)

and γV is the finite part of the renormalization of the vector form factor. Both γV and

D are known up to O(a3
s) [50–54], and a numerical computation of the fourth-order cusp

anomalous dimension was recently presented in ref. [55]. All these anomalous dimensions

are collected in appendix A.3.

The high energy scale value for µ is always set at the hard scale, i.e.
√
s for e+e−

and Q for SIDIS. As for the TMD case, the evolution of the jet function in the plane

(µ, ζ) is governed by eq. (4.9). A systematic treatment of this case has been provided

in ref. [15], and in our results we have implemented the optimal solution suggested in

that work. Summarizing the main points: the solution of eq. (4.9) is in principle path
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independent, when the anomalous dimensions are known to all orders. This means that

the evolution is effectively provided by an evolution potential: in the plane (µ, ζ) one can

identify null-evolution curves corresponding to equipotential lines and the true evolution

occurs only between jet functions belonging to different equipotential lines. When the

perturbative expansion of the anomalous dimension is truncated, it is possible to recover a

path-independent result through e.g. the improved-γ scheme of ref. [15], which only affects

terms in the perturbative expansion beyond the order that one is working at.

At this point we are left to choose an initial equipotential line ζµ(b), which is known as

the ζ-prescription. A special line is provided by the saddle point of the evolution potential.

This line exists for all values of b (at least for bT < 1/ΛQCD) and covers all the ranges on

µ and ζ, providing the optimal solution

Jq(b;µ, ζµ(b)) = Jq(b). (4.14)

Explicitly, at two-loop order

lζµ ≡ ln
µ2

ζµ
=

1

2
Lµ −

3

2
+ as

[
11CA − 4nfTF

36
L2
µ + CF

(
− 3

4
+ π2 − 12ζ3

)
(4.15)

+ CA

(
649

108
− 17π2

12
+

19

2
ζ3

)
+ nfTF

(
− 53

27
+
π2

3

)]
.

The evolution of the optimal distribution to a generic set of scales (µ, ζ) is then simply

given by

Jq(b;µ, ζ) = Jq(b)U
q
R[b; (µ, ζ), (µ0, ζµ0(b))], (4.16)

where (µ0, ζµ0(b)) is a point on the special line and U qR is the TMD evolution factor

U qR[b; (µ1, ζ1), (µ2, ζ2)] = exp

[∫
P

(
γq(µ, ζ)

dµ

µ
−Dq(µ, b)

dζ

ζ

)]
. (4.17)

Choosing the simplest possible line which connects the initial and final point of the evolution

in the improved-γ scheme, eq. (4.17) reduces to4

U qR[b; (µ, ζ), (µ, ζµ(b))] = U qR[b; (µ, ζ)] =

(
ζ

ζµ(b)

)−Dq(µ,b)

, (4.18)

which is convenient for numerical calculations.

The rapidity anomalous dimension Dq has a nonperturbative part, which is indepen-

dent of other nonperturbative inputs of the jet distribution and should be estimated by

itself. The ζ-prescription (unlike e.g. the b∗-prescription) allows this separation theoret-

ically. At the moment, the only extraction of the nonperturbative part of the evolution

factor from data within this prescription has been carried out in ref. [56], so that in our phe-

nomenological analysis we use their parametrization for the nonperturbative contribution

to the rapidity anomalous dimension,

Dq(µ, b) = Dres
q (µ, b∗(b)) + g(b). (4.19)

4The scales in the argument of UqR are ordered according to the convention of [15].

– 19 –



J
H
E
P
1
0
(
2
0
1
9
)
0
3
1

Here Dres
q is the resummed perturbative part of Dq, and

b∗(b) =

√
b2TB

2
NP

b2T +B2
NP

, g(b) = c0 bT b
∗(b) , (4.20)

where the constants BNP and c0 parametrize the nonperturbative effects. The perturbative

expansion of the resummed rapidity anomalous dimension Dres
q is

Dres
q (µ, b) =

∞∑
n=0

ans (µ)Dres[n]
q (X) (4.21)

where X = β0as(µ) ln(µ2b2T e
2γE/4), β0 is the leading coefficients of the QCD beta function

and as = g2/(4π)2. The leading term reads

Dres[0]
q (X) = −Γ

[0]
q

2β0
ln(1−X), (4.22)

and we have used this expansion up to third order in as, which incorporates the four-loop

anomalous dimension. The complete expression up this order can be found in refs. [15, 57].

The unresummed expression for the rapidity anomalous dimension is reported in eq. (A.16).

4.4 Numerical implementation of evolution

We use arTeMiDe to run the double scale evolution from the initial scale of the TMD jet

function/PDF

(µ0, ζ0) =

(
2e−γE

bT
+ 2 GeV , ζµ0

)
, (4.23)

where µ0 is frozen at 2 GeV to avoid the Landau pole and (µ0, ζ0) belongs to the special

line, to the hard scale

(µH , ζH) =

(
√
s, s) e+e−

(Q,Q2) SIDIS
(4.24)

Since the rapidity resummation is the dominant source of uncertainty and to consis-

tently use the nonperturbative parameters extracted in ref. [56], we will always use the

highest known order in the evolution, even though the jet function for generic R is only

calculated at one-loop order. The nonperturbative parameters of the evolution kernel in

eqs. (4.19) and (4.20) are set to

BNP = 2.5 GeV−1 , c0 = 0.037 . (4.25)

5 Quark jet function for large R at two loops

As we will see in our numerical analysis, the large-R limit captures the dominant part

of the perturbative corrections. This justifies focusing on the quark jet function in the
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Figure 3. The difference between the O(α2
s) contribution to e+e− cross section with a cut on the

angular decorrelation θ ≤ θcut, obtained from Event2 and from our factorization theorem. The

panels correspond to the (e+e− version of) anti-kT , Cambridge/Aachen and kT jet algorithm, and

the curves correspond to the different color structures, see eq. (5.2). The uncertainty bands indicate

the statistical uncertainty. The missing two-loop constant in the quark jet function is the value of

the plateau at small θcut.

large-R limit, J WTA
q , which is completely determined at two loops by known anomalous

dimensions, except for a constant j[2]. Explicitly,

J [2] ,WTA
q (b, ER, µ, ζ)

=CF

{
CF

[
1

2
L4
µ − (3 + 2lζ)L

3
µ +

(
2l2ζ + 6lζ −

5

2
+ 6 ln 2 +

5π2

6

)
L2
µ (5.1)

+

((
14− 12 ln 2− 5π2

3

)
lζ +

45

2
− 18 ln 2− 9π2

2
+ 24ζ3

)
Lµ

]
+ CA

[
− 22

9
L3
µ +

(
11

3
lζ −

35

18
+
π2

3

)
L2
µ +

(
404

27
− 14ζ3

)
lζ

+

((
134

9
− 2π2

3

)
lζ +

57

2
− 22 ln 2− 11π2

9
− 12ζ3

)
Lµ

]
+ nfTF

[
8

9
L3
µ +

(
2

9
− 4

3
lζ

)
L2
µ −

112

27
lζ +

(
− 40

9
lζ − 10 + 8 ln 2 +

4π2

9

)
Lµ

]}
+ j[2] ,

We extract this constant using the Event2 generator [58], which we run with nf = 5 and an

infrared cutoff ρ = 10−12, generating about a trillion events. Specifically, we consider the
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difference at O(a2
s) between the the cross section with a cut on the angular decorrelation

θ ≤ θcut obtained from Event2 and our factorization theorem, extracting the overall factor

of a2
s = α2

s/(4π)2. This is shown in figure 3, where the different panels correspond to the

(e+e− version of) anti-kT [20], Cambridge/Aachen [59, 60] and kT [61] jet algorithm. The

different curves in each panel correspond to the C2
F , CFCA and CFTF color structure,

with the bands indicating the statistical uncertainty. From varying the infrared cutoff we

conclude that the cross section obtained from Event2 can be trusted for log10 θ
cut > −3,

corresponding to the plotted range.

The clear plateau at small values for θcut shows that our factorization theorem predicts

the singular part of the cross section correctly. The value of the plateau corresponds to

the missing two-loop constant j[2] (the overall factor of 1/2 was chosen to cancel the factor

of 2 from the two jet functions in the factorization theorem). The decomposition of j[2] in

terms of the C2
F , CFCA and CFTF color structures is given by

j[2] = j
[2]
CF

+ j
[2]
CA

+
nf
5
j

[2]
TF
, (5.2)

i.e. the color structures are inside the constants. We extracted the result by fitting the

plateau to a constant, assuming nf = 5, and the generalization to arbitrary number of

flavors only involves rescaling j
[2]
TF

. The best range for this fit is not a priori clear, since

we have no control over the power corrections, corresponding to contributions to the cross

section not included our factorization theorem. These become more relevant as θcut in-

creases; on the other hand, lowering θcut increases the statistical uncertainties. We choose

to consider the fit range −3 ≤ log10 θ
cut ≤ log10 θ

cut
max, where we vary log10 θ

cut
max between

−2.9 and −2 in steps of 0.02 (this corresponds to the size of our binning). We perform a

different fit in each window, including the uncertainty from the Event2 integration. We

take the lowest and highest value obtained in this way as the error, and their average as

the central value, leading to

anti-kT : j
[2]
CF

= 25.3± 0.6 , j
[2]
CA

= −6.3± 0.2 , j
[2]
TF

= −12.5± 0.3 ,

C/A : j
[2]
CF

= 24.5± 0.6 , j
[2]
CA

= −6.7± 0.2 , j
[2]
TF

= −12.5± 0.2 ,

kT : j
[2]
CF

= 12.2± 1.1 , j
[2]
CA

= −9.3± 0.2 , j
[2]
TF

= −13.0± 0.3 . (5.3)

While these constants are remarkably similar for anti-kT and Cambridge/Aachen, they

differ substantially for kT .

6 Results

The region of interest for TMDs is small qT , for which the regimes θ ∼ R and θ � R are

most relevant. This leads us to exclusively focus on the WTA axis, which is well behaved

in the large-R limit. We start by considering the transverse momentum decorrelation in

e+e− collisions, obtaining numerical predictions for the Belle II and LEP experiments.

We use e+e− to test the perturbative convergence, and explore the dependence on the jet

radius R and cut on the jet energy fraction z. In the case of SIDIS we provide numerical
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Figure 4. Dependence of the cross section differential in the transverse momentum decorrelation

on the jet radius parameter R, for cuts on jet energy fraction z > 0.25 (left) and z > 0.75 (right).

We use the NLO jet function computed in the regime R ∼ θ, and show the large-R result (red solid)

for comparison.

predictions for HERA and the EIC, and investigate the sensitivity of our cross section to

nonperturbative effects.

In our numerical implementation we build on the arTeMiDe code [14, 15] to obtain

resummed predictions for TMD cross sections. The original version of arTeMiDe [62, 63]

provides cross sections for Drell-Yan and SIDIS with fragmentation into hadrons. However,

its modular structure allowed us to extend it to processes involving jets with a modest

amount of modification. Specifically, we have added e+e− → dijet and jet-SIDIS high-level

modules, and a jet TMD low-level module that provides our perturbative input for the

quark jet functions in b-space at the initial scale.

6.1 Momentum decorrelation in e+e− collisions

In our analysis of the e+e− cross section, differential in the transverse momentum decor-

relation, we consider two experiments:

• Belle II:
√
s = 10.52 GeV, 4 quark flavors.

• LEP:
√
s = 91.1876 GeV, 5 quark flavors.

We account for both the photon and Z-boson contribution, and restrict the plotted qT range

to a region where the power corrections to the factorization theorem can be neglected.

In the Belle analysis we omit b-jets, since we do not include quark mass effects in our

calculation of the jet function. (Experimentally, these are of course relatively easy to

distinguish from light quark jets.)

We start our analysis by studying the dependence on the jet radius parameter R in

figure 4 for LEP. The cross section is shown for various jet radii, ranging from R = 0.1 to 0.7,

using the factorization formulae for θ ∼ R in section 2.1. We consider two representative

cuts on the jet energy fraction: z > 0.25 (left panel) and z > 0.75 (right panel). For

comparison we also show the large-R limit, discussed in section 2.3. We use the one-loop

jet function (since we only have the one-loop result for θ ∼ R), but include the hard

function at two-loop order and perform the resummation at N3LL accuracy.
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Figure 5. Perturbative convergence of the cross section differential in transverse momentum decor-

relation, for Belle II (left) and LEP (right), for jet radius R = 0.5 and jet energy fraction z > 0.25.

The N3LL result is obtained with the prescription in eq. (6.1). The bands encode the perturbative

uncertainty, as described in the text.

As expected, as R increases the results approach the R→∞ limit. In both cases, the

cross section for R = 0.7 is indistinguishable from the large-R result, and for z > 0.25 the

difference is even minimal for R = 0.5. This means that in the factorization in eq. (2.13)

the power corrections O(θ/R) ∼ O(b2TE
2R2) have a limited impact even for θ . R. This

observation will be used in the rest of our analysis, to justify including the two-loop jet

function in the large-R limit, as this will capture the dominant two-loop contribution.

Explicitly, we will combine results according to(
dσ

dqT

)N3LL

=

(
dσ

dqT

)NLO

+

(
dσ

dqT

)NNLO

R→∞
−
(

dσ

dqT

)NLO

R→∞
, (6.1)

where NLO and NNLO indicate the order of the jet function. In each term we use the NNLO

hard function and include the resummation at N3LL accuracy. The above approximation

contains all large logarithms of θ (or equivalently, qT ) at N3LL accuracy. It reduces to

NNLL accuracy for θ ∼ R � 1, since it misses some O(θ/R) corrections. We have shown

that their effect is small, except in the tail region.

Next we study the perturbative convergence of the TMD cross section in figure 5. We

take R = 0.5, z > 0.25 and show results for the cross section for Belle II (left panel) and

LEP (right panel) at NLL, NNLL and N3LL. The ingredients that enter in the various

perturbative orders are summarized in table 3. The perturbative uncertainty is estimated

by varying the scales µi in eqs. (4.23) and (4.24) up and down by a factor 2 around their

central value and taking the envelope. The band obtained by this procedure at NLL is

artificially small and not shown. As expected, the N3LL correction is small compared to

the NNLL one, and the uncertainty bands overlap and are reduced at higher order.

In figure 6 we investigate the dependence of the cross section on the cut on the jet

energy fraction z > zcut for a fixed value of the jet radius, which provides a complementary

picture to figure 4. We show results for Belle II with R = 0.7 (left panel) and LEP with

R = 0.3 (right panel), imposing z > zcut and varying zcut = 0.01 to zcut = 0.75. As in

figure 4, we use NLO jet functions. For R = 0.7 the dependence on the cut on z is relatively
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Figure 6. Dependence of the transverse momentum decorrelation distribution on the cut on jet

energy fraction z, for Belle II with R = 0.7 (left panel) and LEP with R = 0.3 (right panel). The

dependence on this cut is larger for smaller R, as discussed in the text. In both cases, the results

for z > 0.5 (solid red curve) exactly coincide with the large-R limit, see footnote.

mild, which reflects the fact that in the large-R limit the jet function is proportional to

δ(1 − z), and thus independent of this cut. For R = 0.3 there is a stronger dependence,

and at very small (large) values of z the cross section shows unphysical features. This is

not surprising, since the cross section diverges as zcut → 0 (every single low-energy particle

originates a different jet) and has large logarithms of 1 − zcut for zcut → 1. We found

that, regardless of the jet radius, for zcut = 0.5 the cross section coincides with the large-R

result. This is due to a one-loop accident.5

As a next step, we study how sensitive these cross sections are to BNP and c0 that

parametrize the nonperturbative contribution to the rapidity evolution, see eqs. (4.19)

and (4.20). We considered both the “fixed BNP” and “variable BNP” schemes used in

the recent fit in ref. [56], and varied the parameters within the statistical errors listed in

their table 4. In practice, we found that the BNP variation is subdominant, so in figure 7

we simply plot variations of c0. As one would expect, the sensitivity to nonperturbative

effects is much larger at Belle, commensurate with its smaller center-of-mass energy, and

increases at low transverse momenta. The conclusions obtained from the two schemes are

compatible with each other. The situation is similar for LEP, though the relative variation

is substantially lower (below 1% for most of the range in qT ).

Finally, we have investigated the impact of the choice of jet algorithm, specifically,

the impact of the different two-loop constants in eq. (5.3). We found the difference with

respect to anti-kT to be negligible for Cambridge-Aachen (< 0.1%) and very small for the

kT algorithm (< 1%).

5At one loop, the initial quark undergoes a single splitting, see figure 2. When integrating over 0.5 <

z < 1, each phase-space configuration contributes to the cross section with exactly one jet (either a jet

containing two particles or a jet containing the most energetic particle). Due to the WTA recombination

prescription, the resulting jet axis is the same in either case, independent of R. Thus it must in particular

coincide with the large-R limit.
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Figure 7. Estimate of the sensitivity of the TMD to nonperturbative effects in the rapidity

resummation at Belle II (left) and LEP (right). We vary the parameter c0 in the range of its

statistical uncertainty, testing both the fixed and variable BNP schemes of ref. [56]. Results are

obtained with the prescription in eq. (6.1).

6.2 Transverse momentum dependent distributions in SIDIS

In this section we show representative results for TMD measurements with jets in SIDIS,

showing results for

• HERA:
√
s = 318 GeV,

• EIC:
√
s = 100 GeV.

The EIC is a future facility for the study of TMD distributions, and the above value for

its center-of-mass energy is an assumption. We take 10 ≤ Q ≤ 25 GeV and study the

transverse momentum distribution for qT ≤ 3 GeV, ensuring that power corrections of

order q2
T /Q

2 to the factorization theorem can be neglected. In this kinematic range we

expect quark mass effects to be negligible, so we ignore them. We work in the Breit frame,

impose a cut on the jet energy fraction z > 0.25 and set the jet radius to R = 0.5. Our

e+e− analysis in the left panel of figure 4 shows that in this case the large-R approximation

works extremely well, so we again include the two-loop, large-R jet function of section 5,

using eq. (6.1).

We use the quark TMD PDFs obtained in ref. [56]. In this fit the matching of the TMDs

onto PDF is incorporated at NNLO, using the NNPDF 3.1 PDFs [64] with αs(MZ) = 0.118.

The additional nonperturbative component of the TMD PDFs is modeled with the ansatz

fNP = exp

(
− λ1(1− x) + λ2x+ λ3x(1− x)b2T√

1 + λ4xλ5b2T

)
, (6.2)

where the values for λi were fit in ref. [56].

Our results are shown in figure 8, for which we consider different intervals in the

elasticity y in the range 0.01 < y < 0.95. In each case, we obtained the uncertainty band
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Figure 8. TMD cross section for SIDIS with jets at the EIC (left) and at HERA (right), with

10 < Q < 25 GeV and different intervals in elasticity within the range 0.01 < y < 0.95. Results are

obtained with the prescription in eq. (6.1).

+5%

�5%

0

e p ! e jetX, EIC

R = 0.5, z > 0.25, 0.01 < y < 0.95

0

+3%

�3%

Figure 9. Sensitivity of the cross section to nonperturbative effects at the EIC (left) and HERA

(right). This is estimated by varying the parameter c0, that controls the nonperturbative contri-

bution to the evolution kernel, within its current statistical uncertainty [56]. Results are obtained

with the prescription in eq. (6.1).

by independently varying the scales µH and µ0 up and down by a factor of 2 around their

central values, and taking the envelope. We find that roughly half of the contribution to

the cross section comes from low elasticity (y < 0.2). The variation in shape between

the different elasticity intervals is modest; at high elasticity the peak of the distribution is

shifted towards larger transverse momenta.

We now investigate the sensitivity of our observable to nonperturbative hadronic

physics. A rough impression can be obtained by varying the parameters BNP, c0 and λi
(see eqs. (4.19), (4.20) and (6.2)) that enter our nonperturbative model. In principle, these

parameters are highly correlated and a full error estimate would require taking data with a

large number of replicas, along the lines of the original analysis in ref. [56]. In practice, we
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observe that the nonperturbative uncertainty is dominated by the variation of the single

parameter c0. Therefore, we obtain a realistic estimate of the size of NP effects by simply

varying c0 within its statistical uncertainty, which we show in figure 9. The effect of varying

c0 is not large (below 5% at the EIC and 3% at HERA), but non-negligible, and grows for

small qT . This plot suggests that such a measurement can likely be used to improve our

knowledge of the nonperturbative part of the evolution kernel, parametrized by c0, which

is very relevant because it is universal. We have explored the dependence on R, zcut and

the range in Q and y, finding similar sensitivity to nonperturbative effects.

7 Conclusions

The study of the transverse momentum distribution of the proton can benefit from using

jets (instead of hadrons) as final state. A clear advantage is that the jet momentum can

be calculated in perturbation theory, while the fragmentation of hadrons is an intrinsically

nonperturbative process. We provided an initial formulation of this idea, using a modern

definition of jets, in ref. [1]. There we observed, for the first time, that the cross section for

dijet production in e+e− collisions and SIDIS with a jet in the final state can have the same

factorization as for hadronic TMD measurements, simply replacing a TMD fragmentation

function by our TMD jet function. This factorization depends on the jet radius R and

recombination scheme, holding only for all values of R if the Winner-Take-All axis is used.

In particular, in the regime of small qT , which is interesting for extracting the intrinsic

transverse momentum of partons in the proton, the cross section for the standard jet axis

does not satisfy the usual TMD factorization.

To explore the ramifications of these ideas, we presented numerical results in this paper

for Belle II and LEP (e+e− collisions), and HERA and the EIC (SIDIS), building on the

existing arTeMiDe code. We reported the details of the NLO calculations of the TMD

jet function, and have also numerically evaluated the NNLO contribution in the large-

radius limit with Event2. This was motivated by the observation that the NLO result

is well described using the large-R jet function, for all experimental cases we consider.

Consequently we can achieve the same N3LL accuracy as in the corresponding hadronic

TMD cases.

We have verified the perturbative convergence of our numerical predictions, achieving

perturbative uncertainties of order 5% in the peak of the distribution at N3LL. We also

find that our cross sections have similar sensitivity to nonperturbative effects as the cor-

responding hadronic case, without the burden of additional nonperturbative effects from

fragmentation. Specifically, we have investigated how the cross section changes when vary-

ing the nonperturbative parameters within the errors provided in ref. [56], concluding that

in principle these experiments can provide important constraints on these parameters. Here

we benefit from using the ζ-prescription, which ensures that the nonperturbative parts of

the evolution kernel and the rest of the TMD are uncorrelated.

The nonperturbative effects to the jet TMD have not been estimated in this work.

However our factorization theorems ensure that these effects can be included in the def-

inition of the jet functions and are therefore universal, i.e. the same in e+e− collisions
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and SIDIS. In this respect, the hadronization of jets can be treated in the same way as

the nonperturbative part of a hadron TMD, and is therefore expected to be subdominant

compared to the nonperturbative part of the evolution. Consequently, jet measurements

may provide one of the best ways to constrain the nonperturbative part of the evolution

kernel. To reduce the sensitivity to hadronization effects one can consider grooming, which

will be investigated in a forthcoming publication [65].
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A Perturbative ingredients

A.1 Conventions

The one-loop splitting functions are

pqq(z) = (1 + z2)L0(1− z) , pgq(z) =
1− (1− z)2

z
, (A.1)

where the plus distribution L0 is defined in eq. (A.3). We introduce the following shorthand

for logarithms

LR = ln

(
µ2

E2R2

)
, lX = ln

(
µ2

X

)
, Lµ = ln

(
b2Tµ

2

4e−2γE

)
, (A.2)

where X ∈ {Q2, s, ζ}.

A.2 Plus distributions

We define dimensionless plus distributions as

Ln(x) =

[
lnn x

x

]
+

, (A.3)

which satisfy ∫ 1

0
dxLn(x) = 0 . (A.4)
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Integrating these plus distributions against a smooth function f(x) results in∫ x0

0
dx f(x)Ln(x) =

∫ x0

0
dx

lnn(x)

x

[
f(x)− f(0)

]
− f(0)

∫ 1

x0

dx
lnn(x)

x
. (A.5)

Plus distributions in terms of the transverse momentum qT are derived from eq. (A.3),

Ln(qT , q0) =
1

q2
0

Ln
(
q2
T

q2
0

)
, (A.6)

such that ∫ p2T

0
dq2
T f(q2

T )Ln(qT , q0) =

∫ p2T /q
2
0

0
dx f(q2

0x)Ln(x) . (A.7)

Related “cut” distributions are defined as

Lcut
n (qT , q0) = Ln(qT , q0)θ(q0 − qT ) . (A.8)

Plus distributions naturally arise in the expansion of logarithmically-singular terms in

dimensional regularization,

1

(1− z)1+ε
= −1

ε
δ(1− z) + L0(1− z) +O(ε) ,

µ2ε

q2+2ε
T

= −1

ε
δ(q2

T ) + L0(qT , µ) +O(ε) . (A.9)

In the calculation of the jet function in momentum space, one encounters terms where

the above expansion cannot be used because the divergences in the limits ε→ 0 and δ−E → 0

are mixed by a step function. In particular, expanding eq. (3.11) involves the identity

µ2ε

q2+2ε
T

1− z
(1− z)2 + (δ−E )2

θ

(
z − 1 +

qT
ER

)
= δ(q2

T )

{
δ(1− z)

[
− 1

2ε2
+

1

ε

(
ln δ−E −

1

2
LR

)
− 1

4
L2
R

]
+ LRL0(1− z)− 2L1(1− z)

}
+ L0(qT , µ)

[
− δ(1− z) ln δ−E + L0(1− z)

]
− Lcut

0

(
qT , ER(1− z)

)
L0(1− z) , (A.10)

where the last term involves a genuine two-dimensional distribution. This identity was

obtained by switching to cumulative distributions in both variables, then expanding in δ−E ,

and finally expanding in ε,∫ p2

0
dq2
T

∫ 1

y
dz

µ2ε

q2+2ε
T

1− z
(1− z)2 + (δ−E )2

θ

(
z − 1 +

qT
ER

)
(A.11)

= − 1

2ε2
+

1

ε

[
ln δ−E − ln

(
µ

ER

)]
− 2 ln δ−E ln

p

µ
− ln2

(
µ

ER

)
+

1

2
ln

(
µ

ER

)
ln(1− y)

+ 2 ln
p

µ
ln(1− y)− ln2(1− y) + θ

(
ER(1− y)− p

)
ln2

(
ER(1− y)

p

)
+O(ε, δ−E ) .
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Order F.O. Γcusp γV D
N3LL a2s a4s a3s a3s

NNLL a1s a3s a2s a2s

NLL a0s a2s a1s a1s

Table 3. Various orders in resummed perturbation theory, and the fixed-order (F.O.) and resum-

mation ingredients they involve. The fixed-order ingredients are the perturbative expansion of the

hard function, jet function and the coefficients in the matching of the TMD PDFs onto collinear

PDFs. We also use the PDFs extracted at this order as well, and use the corresponding running of

the coupling.

Every term can now be identified as the cumulative of a distribution, resulting in eq. (A.10).

We note that the last term in the expansion, defined by

∫ 1

y
dz

∫ p2

0
dq2
T Lcut

0

(
qT , ER(1− z)

)
L0(1− z) = −θ

(
ER(1− y)− p

)
ln2

(
ER(1− y)

p

)
,

(A.12)

is only well-defined by the prescription in eq. (A.5) if one first carries out the integral over

q2
T before the integral over z.

A.3 Anomalous dimensions

We now list the anomalous dimensions that enter the double-scale evolution described in

section 4. Our predictions use N3LL resummation by default, corresponding to the first

row in table 3. An exception is figure 5, where we compare different orders to test the

convergence of resummed perturbation theory. We only need the anomalous dimensions

for quarks, which we expand as

Γcusp
q =

∞∑
n=0

an+1
s Γ[n]

q , γV,q =

∞∑
n=0

an+1
s γ

[n]
V,q , Dq =

∞∑
n=1

ansD[n]
q . (A.13)

The coefficients in the expansion of the cusp anomalous dimension are given by

Γ[0]
q = 4CF ,

Γ[1]
q = CF

[
CA

(
268

9
− 4π2

3

)
− 80

9
nfTF

]
,

Γ[2]
q = CF

[
C2
A

(
490

3
− 536π2

27
+

88

3
ζ3 +

44π4

45

)
+ CAnfTF

(
− 1672

27
+

160π2

27
− 224

3
ζ3

)
+ CFnFTF

(
− 220

3
+ 64ζ3

)
− 64

27

(
nfTF )2

]
,

Γ[3]
q = 20702− 5171.9nf + 195.5772n2

f + 3.272344n3
f . (A.14)
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The fourth-order result was computed numerically in ref. [55], which also provides a full

decomposition in terms of color structures. The non-cusp anomalous dimension is given by,

γ
[0]
V,q = − 6CF ,

γ
[1]
V,q =CF

[
CF

(
− 3 + 4π2 − 48ζ3

)
+CA

(
− 961

27
− 11π2

3
+ 52ζ3

)
+nfTF

(
260

27
+

4π2

3

)]
,

γ
[2]
V,q =CF

[
C2
F

(
− 29− 6π2 − 136ζ3 −

16π4

5
+

32π2

3
ζ3 + 480ζ5

)
+ CFCA

(
− 151

2
+

410π2

9
− 1688

3
ζ3 +

494π4

135
− 16π2

3
ζ3 − 240ζ5

)
+ CFnfTF

(
5906

27
− 52π2

9
+

1024

9
ζ3 −

56π4

27

)
+ (nfTF )2

(
19336

729
− 80π2

27
− 64

27
ζ3

)
+ C2

A

(
− 139345

1458
− 7163π2

243
+

7052

9
ζ3 −

83π4

45
− 88π2

9
ζ3 − 272ζ5

)
+ CAnfTF

(
− 34636

729
+

5188π2

243
− 3856

27
ζ3 +

44π4

45

)]
. (A.15)

The rapidity anomalous dimension can be conveniently expressed in terms of Γcusp
q in

eq. (A.14) as

D[1]
q =

Γ
[0]
q

2
Lµ ,

D[2]
q =

Γ
[0]
q β0

4
L2
µ +

Γ
[1]
q

2
Lµ +D[2]

q (0) ,

D[3]
q =

Γ
[0]
q β2

0

6
L3
µ +

(
1

2
Γ[1]
q β0 +

1

4
Γ[0]
q β1

)
L2
µ +

(
2β0D[1]

q (0) +
1

2
Γ[2]
q

)
Lµ +D[3]

q (0) . (A.16)

The first two coefficients of the QCD beta function, that enter here, are given by

β0 =
11

3
CA −

4

3
nfTF ,

β1 =
34

3
C2
A −

20

3
CAnfTF − 4CFnfTF , (A.17)

and the constant terms read

D[2]
q (0) =CFCA

(
404

27
− 14ζ3

)
− 112

27
CFnfTF ,

D[3]
q (0) =CF

[
C2
A

(
297029

1458
− 1598π2

243
− 6164

27
ζ3 −

77π4

270
+

44π2

9
ζ3 + 96ζ5

)
+ CAnfTF

(
− 62626

729
+

412π2

243
+

904

27
ζ3 −

2π4

27

)
+ (nfTF )2

(
3712

729
+

64

9
ζ3

)
+ CFnfTF

(
− 1711

27
+

304

9
ζ3 +

8π4

45

)]
. (A.18)
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A.4 Fixed-order ingredients

The hard function for electron-positron annihilation up to two loop is [31, 66, 67]

He+e−(s, µ) = 1 + 2asCF

(
− l2s−3l2s−8 +

7π2

6

)
+2a2

sCF

{
CF

[
l4s + 6l3s +

(
25− 7π2

3

)
l2s

+

(
93

2
− 5π2 − 24ζ3

)
ls +

511

8
− 83π2

6
− 30ζ3 +

67π4

60

]
+ CA

[
− 11

9
l3s +

(
− 233

18
+
π2

3

)
l2s +

(
− 2545

54
+

22π2

9
+ 26ζ3

)
ls

− 51157

648
+

1061π2

108
+

313

9
ζ3 −

4π4

45

]
(A.19)

+ nfTF

[
4

9
l3s +

38

9
l2s +

(
418

27
− 8π2

9

)
ls +

4085

162
− 91π2

27
+

4

9
ζ3

]}
+O(a3

s) ,

where ls is defined in eq. (A.2). DIS is related to e+e− at the level of the amplitude by

s→ −Q2. For the hard function this leads to

HDIS(Q2, µ) = He+e−(Q2, µ)− 2asπ
2CF

+ 2a2
sπ

2CF

[
CF

(
2l2Q2 + 6lQ2 + 16− 4

3
π2

)
+ CA

(
− 11

3
lQ2 − 233

18
+
π2

3

)
+ nfTF

(
4

3
lQ2 +

38

9

)]
+O(a3

s) . (A.20)

The respective tree-level cross sections are given by

σe
+e−

0 (s) =
∑
q

4πα2NC

3s
ē2
q(s), (A.21)

σDIS
0,q (Q2, x) =

2πα2

Q4

[
1 +

(
1− Q2

xs

)2]
ē2
q(Q

2) , (A.22)

where the effective lepton charge ē2
q includes the contribution from Z boson production,

ē2
q(Q

2) = e2
q +

(v2
q + a2

q)(v
2
` + a2

` )− 2eqvqv`(1−m2
Z/Q

2)

(1−m2
Z/Q

2)2 +m2
ZΓ2

Z/Q
4

. (A.23)

Here eq is the electric charge of the quark, vi and ai are its vector and axial couplings, mZ

is the mass of the Z and ΓZ its decay width. Our numerical predictions always include Z

boson corrections, though their effect is small for Belle and SIDIS.

We computed the (renormalized) NLO quark jet functions in section 3. The final

expression for the renormalized jet function in transverse momentum space is given by

J [1], axis
q (z, q, ER, µ, ζ) = 2CF

{
δ(1− z)

[
3

2
LRδ(q

2
T )− lζ L0(qT , µ)− L1(qT , µ) + daxis

q (q2
T )

]
+
(
pqq(z)+pgq(z)

)[
LRδ(q

2
T ) + L0(qT , µ)− Lcut

0

(
qT , ER(1− z)

)]
− 2

[(
− 3 +

2

z

)
ln(1− z) + 2L1(1− z)

]
δ(q2

T )

}
, (A.24)
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where the axis-dependent functions are simply related to eq. (3.14) by daxis
q = ∆axis

q − π2

12

and the π2/12 difference comes from the soft function in eq. (A.30),

dSJA
q (q2

T ) = δ(q2
T )

(
13

2
− 3π2

4

)
,

dWTA
q (q2

T ) = δ(q2
T )

(
7

2
− 2 ln2 2− 5π2

12

)
+ θ

(
ER

2
− qT

)
1

q2
T

[
3qT
ER + 2 ln

(
1− qT

ER

)]
+

(
2 ln 2− 3

2

)
Lcut

0

(
qT ,

ER
2

)
− Lcut

1

(
qT ,

ER
2

)
. (A.25)

In impact-parameter space the renormalized jet function reads

J [1], axis
q (z, b, ER, µ, ζ) = 2CF

{
δ(1− z)

[
3

2
LR −

1

2
L2
µ + Lµlζ + d̃axis

q (BER)

+
(
pqq(z) + pgq(z)

)[
LR − Lµ − 2 ln(1− z)

+B2
ER(1− z)2

2F3

(
1, 1; 2, 2, 2;−B2

ER(1− z)2
) ]}

, (A.26)

where the axis-dependent functions are again related to eq. (3.25) by d̃axis
q = ∆̃axis

q − π2

12 ,

d̃SJA
q =

13

2
− 3π2

4
,

d̃WTA
q =

13

2
− 3π2

4
+ G(BER). (A.27)

The explicit expression for the function G entering the impact-parameter space calculation

is given below,

G(BER) =− 11− 5

8
B2

ER 2F3

(
1, 1; 2, 2, 2;−B

2
ER

4

)
− 2B2

ER 2F3

(
1, 1; 2, 2, 2;−B2

ER

)
ln 2

+

(
4πB2

ERH
S
0 (BER) +

3

2
πHS

0 (BER)− 8BER

)
J1(BER)

+

(
−4πB2

ERH
S
1 (BER) + 8B2

ER −
3

2
πHS

1 (BER) + 11

)
J0(BER) + S (A.28)

where HS
n are the Struve functions of order n. S is a remainder that we did not manage

to simplify further,

S = 2B2
ER

∞∑
n=0

Γ(1 + n)

Γ3(2 + n)
(−B2

ER)n
[
H2n − n 3F2

(
1, 1, 1− 2n; 2, 2;

1

2

)]
(A.29)

with Hn the n-th harmonic number.

In eq. (A.26) we already absorbed the soft function (and removed the soft-collinear

overlap) as described in section 4, and the expressions are therefore free of divergences.

For completeness we list the soft function at NLO [68, 69]

S[1]
q (b, µ, ζ) = −4CF

[
1

ε2
− 1

ε
ln

(
δ+δ−

µ2

)
− ln

(
δ+δ−

µ2

)
Lµ −

1

2
L2
µ −

π2

12

]
+O(ε) . (A.30)
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For θ � R, the dependence on the axis vanishes and the jet function factorizes accord-

ing to eq. (2.12). The semi-inclusive quark jet function that enters in this expression is at

NLO given by [32]

J [1]
q (z, 2zER, µ) =2CF

[
δ(1− z)

(
13

2
− 2π2

3
+

3

2
LR

)
+ (LR − 2 ln z)

(
pqq(z) + pgq(z)

)
− 2pgq(z) ln(1− z)− 2(1 + z2)L1(1− z)− 1

]
, (A.31)

The one-loop matching coefficients for TMD fragmentation from quarks are [25, 28]

z2C[1]
q→q(z, b, µ) = 2CF

[
pqq(z)

(
2 ln z − Lµ

)
+ δ(1− z)

(
− 1

2
L2
µ + Lµlζ −

π2

12

)
+ 1− z

]
,

z2C[1]
q→g(z, b, µ) = 2CF

[
pgq(z)

(
2 ln z − Lµ

)
+ z

]
. (A.32)
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