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1 Introduction

Entanglement is an important quantity in field theory, but its precise definition can be sub-

tle. Naively, one associates a division of space into two parts A and B with a factorization

of Hilbert spaces

HA∪B = HA ⊗HB. (1.1)

This factorization holds for scalar fields with a lattice regulator, but one has to be more

careful in the continuum. The basic issue is that while quantum field theory naturally

comes equipped with a Hilbert space associated with a Cauchy surface, it does not naturally

associate Hilbert spaces HA to regions with boundary.

In quantum field theory there are two independent issues that prevent the naive fac-

torization of the Hilbert space from holding. The first has to do with the continuum limit,

and the second with gauge invariance.
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One first issue is that in the algebraic approach to quantum field theory, regions of

space are associated with von Neumann algebras, rather than Hilbert space factors. States

in quantum field theory must satisfy the Hadamard condition, that correlation functions

of local operators must approach those of the vacuum at short distances. This universal

structure of correlations at short distances is at odds with the assumption of Hilbert space

factorization: a factorized Hilbert space would admit states of the form |ψA〉 ⊗ |ψB〉 ∈
HA ⊗ HB which have no correlations across the interface between regions A and B and

hence do not satisfy the Hadamard condition. The entanglement entropy, being ultraviolet

divergent, is not well-defined in the algebraic framework. Nevertheless, it is still possible

to define quantities such as relative entropy in the algebraic setting [1] that are ultraviolet

finite [2]. See ref. [3] for a recent review of the algebraic approach to entanglement.

The need for an algebraic description of subsystems arises because of the infinite

amount of entanglement coming from the deep ultraviolet. At such extreme distances

we expect to exit the regime of validity of quantum field theory on a fixed background,

and for quantum effects of gravity to take over. Indeed, much of the interest in entangle-

ment entropy comes from its relation to the Bekenstein-Hawking entropy and therefore to

quantum gravity. In the quantum gravity description it is unclear whether local algebras

of observables exist, or what their classification as von Neumann algebras would be.

A second obstacle to Hilbert space factorization, more relevant for our present pur-

poses, arises due to gauge invariance. In gauge theory, the physical Hilbert space consists of

wavefunctionals satisfying local constraints. As a result, the Hilbert space does not have a

local tensor product structure [4–13]. Instead, one can associate an extended Hilbert space

to each region of space which contains edge modes on the boundary. The edge modes

carry gauge charges which allow Wilson lines to end on the boundary. These local Hilbert

spaces can be combined with an entangling product [14], which enforces cancellation of

the surface charges. Once can introduce a slight generalization of entanglement entropy

applicable to the case where the Hilbert space does not factorize. One simply embeds the

physical Hilbert space into a larger Hilbert space which does admit a factorization, and

calculates entanglement entropy as usual in this larger space. This is sometimes called the

extended Hilbert space definition of entanglement entropy.

The purpose of the present article is to show how the extended Hilbert space defini-

tion of entanglement fits naturally within the context of topological quantum field theory

(TQFT). In the axiomatic formulation of closed TQFT one associates Hilbert spaces with

closed, codimension-1 manifolds and disjoint unions with their tensor products [15]. The

evolution of these manifolds is described by cobordisms, which are assigned to linear maps.

These assignments arise from computing the Euclidean path integral on a cobordism, and

by gluing a basic set of cobordisms one can obtain the path integral on a general manifold.

To describe entanglement of regions within a single connected spacetime, we need

additional rules for describing the Hilbert space of manifolds with codimension-2 bound-

aries, which we identify as entangling surfaces. This leads to a richer set of cobordisms

arising from cutting manifold along codimension-1 as well as codimension-2 surfaces. An

extended TQFT is the mathematical framework that describes cutting and gluing of man-

ifolds along surfaces of arbitrary codimension. In particular in two-dimensions, Moore and
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Segal derived sewing axioms that ensure the compatibility of different ways of cutting the

same manifold. The sewing axioms were meant to classify D-branes, viewed as objects in

the category of boundary conditions; in this work we interpret them as rules that classify

extended Hilbert spaces and their edge modes.

To describe entanglement in the extended TQFT formalism, we have to formulate the

extended Hilbert space construction as a spacetime process. In particular, the rule for

embeddi ng the Hilbert space of a circle into that of an interval, and for embedding the

Hilbert space of one interval into a larger interval are described by cobordisms:

: Hcircle → Hinterval, : Hinterval → Hinterval⊗Hinterval. (1.2)

These diagrams are to be read from top to bottom, and describe a circle being cut open

into an interval, and that interval being split into two subintervals. By repeating these

maps we can view a state of the circle as a state in the tensor product of any number of

intervals.

Each time we apply one of the splitting rules (1.2) we introduce a new codimension-1

boundary around the entangling surface. To ensure that the introduction of the entangling

surface does not change the state, we require that holes in the diagrams can be sewn up:

= , = . (1.3)

This is a boundary condition that was identified in [16] as an entanglement brane. In a

different context, this boundary condition has been used to obtain integrable lattice models

from line operators in TQFT’s (see [17] and the references within)

We begin in section 2 by reviewing the axioms of “open-closed” TQFT and its dia-

grammatic notation. We will avoid discussion of the underlying category theory, details of

which can be found elsewhere [18]. In section 3 we show how entanglement can be described

in open-closed TQFT upon introducing the entanglement brane axiom, which allows us to

sew up holes as in (1.3). We show how this can be used to study entanglement entropy,

modular flows and negativity of states produced by Euclidean path integrals on arbitrary

Riemann surfaces.

In sections 4 and 5 we consider the specific example of two-dimensional Yang-Mills

theory, and the closely related chiral Gross-Taylor string theory. While not strictly topo-

logical, these theories can be treated using TQFT methods. We show how each of these

theories can be cast as open-closed TQFTs satisfying the entanglement brane axiom. In

the case of two-dimensional Yang-Mills, we apply this formalism compute entanglement

entropy, modular Hamiltonians, as well as negativity of general subregions and states,

generalizing results of [7]. For the chiral Gross-Taylor string, we provide a worldsheet in-

terpretation of the entanglement brane in the case of arbitrary entangling surfaces and for

general states. This provides a worldsheet prescription for calculations of entanglement

entropy and related quantities.

– 3 –
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Finally, we note that while our results on negativity and modular Hamiltonians are

new, some results such as the entanglement entropy for 2D Yang Mills already exist in

the literature [7, 19]. However, our approach here makes explicit nontrivial assumptions

about the theory, which is encoded in the entanglement brane axiom of section 3. We

hope that making this structure explicit is a step toward better understanding those theo-

ries which admit a description in terms of local subsystems “glued together” by quantum

entanglement.

2 Open-Closed TQFT

The diagrammatic structure of an open-closed TQFT originated from the factorization

of string worldsheet amplitudes that describe interactions of open and closed strings [20].

Here we will review the subject as formulated by [18, 21, 22]. A nice informal treatment is

given by [23].

2.1 Closed TQFT

A two-dimensional closed TQFT can be formulated in terms of the category of cobordisms.

A cobordism between two codimension 1 manifolds Σin and Σout is an oriented manifold

M with Σin and Σout as the “incoming” and “outgoing” boundaries.1

From the perspective of category theory, the path integral of a 2D closed TQFT is

viewed as a rule that assigns a vector space C to each oriented circle and a linear map to

cobordisms between circles. Disjoint unions of circles are mapped to tensor products of

C, and changing the orientation corresponds to taking the dual of the vector space. Most

importantly, gluing cobordisms corresponds to composition of linear maps.

The “pair of pants” cobordism given by µC in (2.6) defines a multiplication on C that

endows it with the structure of an algebra. The equivalence of cobordisms related by

orientation preserving diffeomorphisms imply relations that make a two dimensional closed

TQFT a commutative Frobenius algebra.

A Frobenius algebra is an algebra C with some additional operations:

µ : C ⊗ C → C, product (2.1)

η : C→ C, unit (2.2)

∆ : C → C ⊗ C, coproduct (2.3)

ε : C → C, counit/trace (2.4)

There is also a braiding operation τ , which just maps X ⊗ Y → Y ⊗X. Using these one

can construct a natural pairing π = ε ◦ µ : C ⊗ C → C. For a Frobenius algebra C, this is

1The notion of an “incoming” and “outgoing” boundary can be defined intrinsically. Take an oriented

basis B for the tangent space TΣ of the boundary, and complete it to a basis B ∪ {v} of TM , where v is

chosen to make B∪{v} a positively oriented basis. Then v either points into or out of M , which determines

whether Σ is incoming or outgoing. Cobordisms are defined up to orientation-preserving diffeomorphisms

that also preserve the boundaries, and can be glued together along an incoming and outgoing boundary. In

two dimensions, Σin and Σout are disjoint unions of circles, and a cobordism is a worldsheet that describes

evolution between them.
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non-degenerate and satisfies the invariance condition

π(ab, c) = π(a, bc). (2.5)

The algebraic operations correspond to a set of elementary cobordisms:

µC = ηC = ∆C = εC = τC =

(2.6)

In addition, it is useful to include the identity map:

1 = (2.7)

Given these definitions, the topological invariance of the TQFT ensures that it satisfies the

rules of a Frobenius algebra. For example, the condition that ηC is the unit follows from

= (2.8)

An arbitrary compact,oriented 2D manifold can be obtained by gluing the elemen-

tary cobordisms in (2.6). The compatibility of different gluings is ensured because of the

associativity

= (2.9)

and commutativity (µ = µ ◦ τ):

= (2.10)

The cobordism describing the pairing π can be given a shorthand notation:

:= . (2.11)

The product and coproduct must satisfy the Frobenius condition:

= = . (2.12)

– 5 –
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By attaching a unit to the above diagrams one may show that the Frobenius condition

implies the “zigzag identity”:

= . (2.13)

This expresses the fact that the pairing π is nondegenerate. The invariance condition (2.5)

follows from gluing a co-unit to the associativity constraint.

2.2 Open TQFT

An open TQFT is similar to a closed TQFT except that the cobordisms are now oriented

manifolds with boundaries. Here the Hilbert spaces are associated to intervals, and the

basic building blocks correspond to the diagrams:

µO = ηO = ∆O = εO = τO = .

(2.14)

While the multiplication µO is associative, it is not commutative:

6= (2.15)

Instead we require the weaker property that it be symmetric (ε ◦ µ = ε ◦ µ ◦ τ):

= . (2.16)

As in the closed TQFT, we define a bilinear form ε ◦ µ:

:= . (2.17)

Then (2.16) is the statement that the bilinear form is symmetric:

= . (2.18)

– 6 –
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The Frobenius condition

= = (2.19)

holds, so an open TQFT is a symmetric Frobenius algebra.

2.3 Open-closed TQFT

To describe a state on the circle in terms of states on an interval, we need a unified

framework that includes both closed and open cobordisms. This structure is known as an

open-closed TQFT.

Open-closed TQFTs are classified by knowledgeable Frobenius algebras. A knowledge-

able Frobenius algebra is a combination of a commutative Frobenius algebra C (representing

the closed sector) and a symmetric Frobenius algebra O (representing the open sector). It

also has two additional morphisms: the zipper i : C → O and a dual cozipper i∗ : O → C.

i : C → O zipper (2.20)

i∗ : O → C cozipper (2.21)

These are expressed graphically by the diagrams

i = , i∗ = (2.22)

There are some further consistency conditions that relate the open and closed sectors.

1. The zipper preserves the unit:

= (2.23)

2. The zipper preserves the product:

= (2.24)

3. Knowledge. The zipper maps into the center of the open string category, so the open

strings “know” about the center.

= (2.25)
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4. Duality. The cozipper is dual to the zipper.

= (2.26)

5. Cardy. The “double twist” projects onto the center.

= (2.27)

Note that the Cardy condition can be put into a more familiar form by sandwiching it

between the open unit and counit and using the symmetry property (2.18). The result is:

= . (2.28)

On the left is the open string slicing in which the cylinder partition function is viewed as

a trace, and on the right is the closed string slicing it is viewed as an amplitude between

boundary states.

These conditions ensure topological invariance of the partition function: any manifold

with boundary can be decomposed into the basic building blocks (2.6), (2.14) and (2.22)

and the identities for the open and closed sectors, together with equations (2.23)–(2.27).

This was proved in [18].

2.4 Branes

Given a closed TQFT, there can in general be multiple ways to extend it to an open/closed

TQFT. In the string theory description, this corresponds to the fact that there can be

different types of branes on which the open strings can end. In this case we can associate

labels a, b, c, . . . to the boundaries of the open diagrams, with the rule that we can only

compose morphisms when their boundary labels match.

For example, for each triple of labels a, b, c we have a µO,a,b,c : Hab⊗Hbc → Hac which

we denote:

a
b

c (2.29)

The rule for composing such diagrams is that the labels have to match whenever they are

joined via the boundary of an open string.

– 8 –
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Thus when splitting a Hilbert space using the zipper or comultiplication, we have to

make a choice of brane to insert at the entangling surface. This is the subject of the

next section.

3 The entanglement brane

We now consider how to describe entanglement between regions of space in the formalism

of open-closed TQFT. As a simplest example we will consider the Hartle-Hawking state

|HH〉 which is the state produced by the unit cobordism:

|HH〉 = . (3.1)

We would like to express this state as an entangled state of two intervals. We can do this

using the zipper (2.22) and the open coproduct (2.14):

→ → (3.2)

This maps a state on the circle to an entangled state of two intervals. By continuing to apply

the open coproduct, we can decompose the state into an arbitrary number of intervals.

In general when doing the procedure (3.2) we have to make a choice of boundary

condition at each step, so the state should really be denoted:

a

b

a

(3.3)

This state is different from the one we started with; the original state has no boundaries

while the new one does. The state therefore depends on the choice of boundary conditions,

or more generally on the state inserted at the boundary.

The definition of the reduced density matrix of a subregion is that expectation values

of operators restricted to that region calculated with the reduced density matrix agree with

expectation values calculated in the original state. For a partition of a system into parts

A and B, with a local operator OA on system A this means

trA[trB(ρ)OA] = tr[ρ(OA ⊗ 1)] (3.4)

This constraint is actually quite powerful, and was used in [7] to argue for the presence of

edge modes in the entanglement entropy of two-dimensional Yang-Mills theory. Here we

will see that it fixes the boundary condition associated to the entangling surface.

– 9 –
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In order for property (3.4) to hold, expectation values in the state (3.3) should be the

same as those in the original Hartle-Hawking state. This is a condition on the boundary

labels: we demand the existence of a label e (for entanglement) such that

e

e
= , e

e = . (3.5)

Since the different labels of the boundaries correspond to branes, we call this boundary

condition the entanglement brane, following [16].2

In fact, the conditions (3.5) are not independent; they both follow from a new axiom.

Entanglement brane axiom:

=

e

e . (3.6)

To see that this axiom implies (3.5), we observe that:

= = = =

(3.7)

This shows that closed string “windows” can be closed. Moreover, we have:

= = = = , (3.8)

2We will see in section 5 that in the case of the Gross-Taylor string theory, it coincides precisely with

the entanglement brane of [16].

– 10 –
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which implies

= = = =

(3.9)

so both parts of eq. (3.5) are satisfied.

Note that once we have the result (3.5), any holes in the worldsheet can be closed up,

so that any diagram with only closed inputs and outputs is equivalent to a diagram in the

closed theory. To see this, we use a result of [18] which states that any diagram can be

reduced to a normal form. For diagrams without open inputs or outputs this normal form

contains only closed cobordisms and some number of “windows” of the form

i∗i = . (3.10)

Using (3.7) we can close the windows, and we are left with a purely closed diagram.

This has important implications for the entanglement entropy. Suppose we wish to

calculate the entanglement entropy of an arbitrary state produced by the Euclidean path

integral. This state is represented by a cobordism from the empty set to some number of

circles and intervals. We can calculate the entanglement entropy by the replica trick, by

calculating the partition function of the α-replicated state as a function of α. For each

integer α, this partition function is a diagram without inputs or outputs and hence can be

evaluated within the closed sector. The result can be analytically continued in α to obtain

the entanglement entropy. Thus we see that we can evaluate the entanglement entropy

purely within the closed sector, even though this entanglement is counting states within

the open sector. Thus the entanglement brane axiom implies that the closed sector carries

information about the open sector.

Going in the reverse direction, the entanglement brane axiom also implies we can open

up any closed diagram. Since we can replace the cylinder with a window, we can also open

up the product:3

= = (3.11)

3Note that this means that the closed product is determined by the open product.

– 11 –
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Now we can convert any closed diagram to open as follows. First, we open up every unit

and product using (3.11) and the entangling brane axiom (3.6). The resulting diagram

contains zipper/cozipper contractions of the form ii∗ which can be replaced with open

diagrams using the Cardy axiom (2.27). The result is an equivalent diagram purely in the

open sector.

We note that the origin of the entanglement brane boundary condition seems rather

innocuous, as it follows straightforwardly from the requirement, encoded in (3.4), that the

splitting of a region into two should not affect the expectation values of local operators.

However, we have seen that it has far-reaching implications, allowing any diagram to be

expressed as an open diagram with suitable boundary conditions. This is a strong condition,

and it is not clear that every open-closed TQFT admits an entanglement brane.

Let us return now to the example of calculating the entanglement entropy of the Hartle-

Hawking state (3.1). Using the entanglement brane axiom, we can write the sphere diagram

as a trace in the open sector, a relation which was essential to the original formulation of

the entanglement brane in the string context [16, 24]:

= = = = . (3.12)

This shows that the modular flow associated with the Hartle-Hawking state, which is

rotation on the sphere, can be instead expressed as a rotation on the annulus. The latter

can be interpreted as a trace, since the fixed points of the rotation can be replaced with a

boundary satisfying the entanglement brane boundary condition.

In the next section we will see how this works in the specific example of Yang-Mills

theory in two dimensions.

4 Two-dimensional Yang-Mills theory

The Euclidean partition function of two-dimensional Yang-Mills theory on a Riemann sur-

face M of Euler characteristic χ and area A is given by

Z =
∑

R

(dimR)χe−
g2YMAC2(R)

2 . (4.1)

The sum runs over all irreducible representations R of the gauge group G (which is assumed

to be compact). The dimension of each representation is denoted dim(R) and its quadratic

Casimir by C2(R). The Yang-Mills coupling constant gYM has dimensions of inverse length.

Due to the dependence of (4.1) on the area A, two-dimensional Yang-Mills is not purely

topological except in the A → 0 limit. However, the open-closed TQFT formalism can

be easily extended to accommodate such an “area-dependent” QFT [25–27]. The main

modification consists of attaching an area-dependent Boltzmann factor to each cobordism.

– 12 –
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Because of the nontrivial Hamiltonian, the cylinder and strip cobordisms of nonzero area

will now become propagators rather than the identity element. We will see that all the

axioms of section 2 and the entanglement brane axiom of 3 are satisfied with the only

modification that total area must match on both sides of each formula.

4.1 Two-dimensional Yang-Mills as an area-preserving QFT

Let us first consider the Hilbert space of a circle. The configuration space variable is the

holonomy U = P exp
(∮
iAµdx

µ
)
, and the corresponding Hilbert space consists of class

functions of U . A convenient orthonormal basis is given by states |R〉 whose wavefunctions

are Wilson loops in the irreducible representations R:

〈U |R〉 = trR(U). (4.2)

In the zero-area limit, the unit element which is compatible with the entanglment brane

axiom has a wavefunction equal to the delta function on the group:

〈U |ηC〉 = δ(U, 1). (4.3)

This forces the holonomy along the boundary of each hole to be identity, so it can be

shrunk down to a point. Expressed in the representation basis, this gives the state:

ηC =
∑

R

dim(R)e−βC2(R) |R〉 = . (4.4)

Here we have introduced a dimensionless factor β = 1
2g

2
YMA which acts like an inverse

temperature. On the interval, Gauss’s law is relaxed at the boundaries and the Hilbert

space is given by the space of square-integrable functions on G. Here, the orthonormal

basis consists of matrix elements |Rab〉 in irreducible representations of G:

〈U |Rab〉 =
√

dimR Rab(U) a, b,= 1 · · · dimR. (4.5)

The factor of dimR ensures the states are normalized in the Haar measure.

The states labelled by a, b are the edge modes that define the extension from the

Hilbert space on a circle to that of an interval. The entangling product which entangles

these edge modes and glues together intervals corresponds to matrix multiplication. This

can be understood by expressing the Wilson line U on the larger interval as a product

U = UV UV̄ of Wilson lines on the two halve of the interval. The wavefunction then

factorizes according to

Rac(U) =
∑

b

Rab(UV )Rbc(UV̄ ) (4.6)

|Rac〉 →
∑

b

1√
dimR

|Rab〉 |Rbc〉

where the factor of 1√
dimR

accounts for the normalization of states. This factorization

defines the open multiplication

µO =
∑

R,a,b,c

e−βC2(R)

√
dim(R)

|Rac〉 〈Rab| 〈Rbc| = . (4.7)

– 13 –
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Similarly, a state on the circle can be embedded into the Hilbert space of an interval via:

trR(U) =
∑

a

Raa(U) (4.8)

|R〉 →
∑

a

1√
dimR

|Raa〉 ,

which defines the zipper. In summary, the rules that define 2D Yang Mills as an axiomatic

QFT are:

µC =
∑

R

e−βC2(R)

dim(R)
|R〉 〈R| 〈R| = (4.9)

ηC =
∑

R

dim(R)e−βC2(R) |R〉 = (4.10)

µO =
∑

R,a,b,c

e−βC2(R)

√
dim(R)

|Rac〉 〈Rab| 〈Rbc| = (4.11)

ηO =
∑

R,a

√
dim(R)e−βC2(R) |Raa〉 = (4.12)

i =
∑

R,a

e−βC2(R)

√
dim(R)

|Raa〉 〈R| = (4.13)

Since the bases |R〉 and |Rab〉 are orthonormal, the corresponding co-units, co-

multiplications, and co-zipper can be obtained simply by flipping bras to kets.

It can be verified that these assignments satisfy the Moore-Segal and entanglement

brane axioms. To see how the entanglement brane axiom is satisfied, it is useful to consider

the annulus:

=
∑

R,a,b

e−βC2(R) =
∑

R

(dimR)2e−βC2(R) = (4.14)

Each boundary of the annulus requires a trace over the edge modes supported there, giving

a dimR factor per boundary. This reproduces the sphere partition function and shows that

the (dimR)2 factor in the closed sector counts edge modes in the open sector.

4.2 Entanglement

We now show how some explicit calculations of entanglement entropy can be carried out

in two-dimensional Yang-Mills using the extended QFT formalism.

Single interval. As discussed in section 3, the factorization of the Hartle-Hawking state

is given by the open copairing:

= = =
∑

R,a,b

e−
1
2
βC2(R) |Rab〉 |Rba〉 . (4.15)
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where β
2 is the area of the hemisphere times

g2YM
2 . Note that this state is unnormalized; as

we will see shortly, the normalization factor is nonlocal. Using the open pairing, we can

turn this state on two intervals into a linear map from one to the other:

ψ = = =
∑

R,a,b

e−
1
2
βC2(R) |Rab〉 〈Rba| (4.16)

This state-channel duality is a useful trick. In particular we can write the (un-normalized)

reduced density matrix on one interval as a strip of twice the area:

ρ = ψψ† = =
∑

R,a,b

e−βC2(R) |Rab〉 〈Rba| (4.17)

The modular Hamiltonian H = − log ρ generates evolution from one interval to the other;

in this case it is given simply by H = βC2(R). The trace of the density matrix defines a

thermal partition function with respect to H:

Z = trρ =
∑

R,a,b

e−βC2(R) = (4.18)

which sums over edge modes propagating in each loop. We can now read off the entangle-

ment entropy from the eigenvalues of the reduced density matrix, which are e−βC2(R)

Z (with

multiplicity dim(R)2) when properly normalized. In terms of the probability distribution

over representations, p(R) = (dimR)2e−βC2(R)

Z , the entanglement entropy is

S = −
∑

R

p(R) log p(R) + 2
∑

R

p(R) log dimR (4.19)

which agrees with the result in [7]. The first term is the Shannon entropy of the distribution

p(R) which is associated with the sphere partition function. The second counts the degen-

eracy of the edge modes, with the factor of 2 corresponding to the two entangling points.

Two-intervals. The diagrammatic formalism generalizes easily for the case of multiple

intervals. For the case of two intervals, we can factorize the Hartle-Hawking state via:

(4.20)
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Using the state-channel mapping, can view this state as an evolution from one pair of

intervals to the other

ψ = =
∑

R,a,b,c,d

e−
1
2
βC2(R)

dimR
|Rab〉 |Rcd〉 〈Rad| 〈Rcb| (4.21)

This cobordism describes evolution under the modular Hamiltonian, and corresponds to

half of the modular flow. The reduced density matrix ρ = ψψ† is obtained by flipping this

diagram upside down and gluing it back to itself. The effective partition function is now

Z = trρ =
∑

R,a,b,c,d

e−βC2(R)

(dimR)2
|Rab〉 |Rcd〉 〈Rab| 〈Rcd| (4.22)

This is a path integral on a sphere with four holes. Aside from the sum over more edges,

this expression differs from the single interval case by the crucial 1
(dimR)2

factor, which

arises from the interaction of the two intervals.4 This modification of the Boltzmann factor

is precisely what is needed to satisfy the entanglement brane axiom, since it makes Z

manifestly equal to the sphere partition function when we sum over all the edge modes.

The two-interval modular hamiltonian is now

H =
∑

R,a,b,c,d

(
log(dimR)2 + βC2(R)

)
|Rab〉 |Rcd〉 〈Rab| 〈Rcd| (4.23)

The entanglement entropy can once again be expressed in terms of the probability

distribution p(R) = (dimR)2e−βC2(R)

Z on the sphere:

S = −
∑

R

p(R) log p(R) + 4
∑

R

p(R) log dimR (4.24)

This again splits in to a classical and a quantum piece which counts the edge mode degen-

eracy, with the factor of 4 accounting for the boundaries introduced at four points of the

entangling surface.

Thermal state. Here we apply the extended TQFT formalism to decompose a thermal

state. The thermofield double state of two circles can be denoted by

|TFD〉 = . (4.25)

4Due to this factor of dim(R)−2 and the sum over edge modes, the n-fold replica of the sphere will

have the partition function Zn = (dimR)4−2ne−nβC2(R), which is consistent with 4 − 2n being the Euler

characteristic of the replica manifold (for n = 1 it is a sphere, for n = 2 a torus, etc.).
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We will consider the entanglement when one of these circles is split into two intervals:

=
∑

R,a,b

e−
1
2
βC2(R)

dimR
|R〉 |R, a, b〉 |R, b, a〉 (4.26)

The single interval density matrix and the corresponding partition function are

ρ = =
∑

R,a,b

e−βC2(R)

(dimR)2
|Rab〉 〈Rab| (4.27)

Z = trρ =
∑

R,a,b

e−βC2(R)

(dimR)2

The corresponding modular flow involves a open string that pinches to form a closed string

and open string pair, which then recombine to form an open string. In this case, the

normalization Z =
∑

R e
−βC2(R) is the partition function on a torus, as required by the

entanglement brane axiom. The entropy then takes the same form as in (4.19), with

p(R) = e−βC2(R)

Z the probability distribution on the torus.

4.3 Reduced density matrix for general states and regions

Due to gauge invariance, the reduced density matrix of a general state and region is neces-

sarily diagonal in the edge mode basis |Rab〉 [5]. Therefore we only need to determine the

correct powers of dimR that appear. In the examples above we saw that a factor of 1
dimR is

associated with the two cobordisms in figure 1. It was shown in [18] that these correspond

to saddle points of a Morse function, which we identify with the modular time parameter.

The occurrence of these saddle points is dictated by the global topology of the 2-

manifold and its foliation by intervals. In terms of the vector field that evolves these

intervals in modular time, the saddle point is zero of index −1, while the entangling surface

becomes a zero of index 1 when we shrink it to a point using the entanglement brane axiom.5

We can then apply the Poincaré-Hopf theorem which says that the Euler characteristic χ

of a manifold counts the total number of zeroes, graded by their index. This implies that

the number of saddle points that occur in an n-interval modular flow is

s = 2n− χ. (4.28)

5The index of a zero is defined as the winding number of the map obtained by restricted the vector field

to a circle around the zero.
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3THECATEGORYOFOPEN-CLOSEDCOBORDISMS19

Proof.Weanalyzethepropertiesofthenon-degeneratecriticalpointp∈Mcasebycase.

1.Ifp∈M\∂M,thenthecriticalpointischaracterizedbyitsindexi(p)(thenumberofnegative
eigenvaluesofHessp(f))asusual;see,forexample[26].ThereexistsaneighbourhoodU⊆M
ofpandacoordinatesystemx:U→2inwhichtheMorsefunctionhasthenormalform,

f(p)=−
i(p) ∑

j=1

x2
j(p)+

2∑

j=i(p)+1

x2
j(p)(3.27)

forallp∈U.

(a)Iftheindexisi(p)=2,thentheMorsefunctionhasamaximumatp,andsothe
neighbourhood(andtherebytheentireopen-closedcobordism)isdiffeomorphictoεC
of(3.25).Recallthattheverticalcoordinateofourdiagramsis−fratherthan+f.

(b)Iftheindexisi(p)=1,thenfhasasaddlepoint.IfMwereaclosedcobordism,i.e.
∂0M=∂M,theusualargumentwouldshowthatMiseitheroftheformµCor∆C

of(3.25).Intheopen-closedcase,however,thesaddlecanoccurinothercases,too,
dependingonhowtheboundary∂Misdecomposedinto∂0Mand∂1M.Weproceed
withacasebycaseanalysisandshowthatineachcase,thissaddleisequivalenttoone
ofthecompositionsdisplayedin(3.26):

∼=,(3.28)

∼=.(3.29)

Hereweshowthesaddleattheleftandtheequivalentdecompositionasacomposition
andtensorproductofthecobordismsof(3.25)withidentitiesontheright.Thesaddle
of(3.28)canappearintwoorientationsandwiththeintervalsinitssourceandtargetin
anyordering.Inanyofthesecases,itisequivalenttooneofthefirsttwocompositions
displayedin(3.26).Thesaddleof(3.29)canappearflippedupside-downorleft-right
orboth,givingrisetothelastfourcompositionsdisplayedin(3.26).

Notethattheequivalencesof(3.28)and(3.29)relatecobordismswhosenumberof
criticalpointsdiffersbyanoddnumber.Thisisanewfeaturethatdosnotoccurin
thecaseofclosedcobordisms.

(c)Ifi(p)=0,thenfhasaminimum,andthecobordismisdiffeomorphictoηCof(3.25).

2.Otherwise,p∈∂1M\∂0M,i.e.thecriticalpointisonthecolouredboundary,butdoesnot
coincidewithacornerofM.Considertherestrictionf|∂1M:∂1M→whichthenhasa
non-degeneratecriticalpointatpwithindexi′(p)∈{0,1}.

(a)Ifi′(p)=1,thenf|∂Mhasamaximumatp.

i.Ifpisa(−)-criticalpointoff,thecobordismisdiffeomorphictoεAof(3.25).

ii.Ifpisa(+)-criticalpointoff,theneighbourhoodofplooksasfollows,

p
M

(3.30)

19

3. Knowledge The zipper maps into the center of the open string category, so the open

strings ”know” about the center.

= (2.20)

4. Duality The cozipper is dual to the zipper.

= (2.21)

5. Cardy The “double twist” projects onto the center.

= (2.22)

Note that the Cardy condition can be put into a more familiar form by sandwiching it

between the open unit and counit and using the symmetry property (2.14). The result is:

= . (2.23)

On the left is the open string slicing in which the cylinder partition function is viewed as

a trace, and on the right is the closed string slicing it is viewed as an amplitude between

boundary states.

These conditions ensure topological invariance of the partition function: any manifold

with boundary can be decomposed into the basic building blocks (2.5), (2.11) and (2.17) and

the identities for the open and closed sectors, together with equations (2.18) - (2.22). This

was proved in [12].

– 6 –

3 THE CATEGORY OF OPEN-CLOSED COBORDISMS 19

Proof. We analyze the properties of the non-degenerate critical point p ∈ M case by case.

1. If p ∈ M\∂M , then the critical point is characterized by its index i(p) (the number of negative
eigenvalues of Hessp(f)) as usual; see, for example [26]. There exists a neighbourhood U ⊆ M
of p and a coordinate system x : U → 2 in which the Morse function has the normal form,

f(p) = −
i(p)∑

j=1

x2
j (p) +

2∑

j=i(p)+1

x2
j (p) (3.27)

for all p ∈ U .

(a) If the index is i(p) = 2, then the Morse function has a maximum at p, and so the
neighbourhood (and thereby the entire open-closed cobordism) is diffeomorphic to εC
of (3.25). Recall that the vertical coordinate of our diagrams is −f rather than +f .

(b) If the index is i(p) = 1, then f has a saddle point. If M were a closed cobordism, i.e.
∂0M = ∂M , the usual argument would show that M is either of the form µC or ∆C

of (3.25). In the open-closed case, however, the saddle can occur in other cases, too,
depending on how the boundary ∂M is decomposed into ∂0M and ∂1M . We proceed
with a case by case analysis and show that in each case, this saddle is equivalent to one
of the compositions displayed in (3.26):

∼= , (3.28)

∼= . (3.29)

Here we show the saddle at the left and the equivalent decomposition as a composition
and tensor product of the cobordisms of (3.25) with identities on the right. The saddle
of (3.28) can appear in two orientations and with the intervals in its source and target in
any ordering. In any of these cases, it is equivalent to one of the first two compositions
displayed in (3.26). The saddle of (3.29) can appear flipped upside-down or left-right
or both, giving rise to the last four compositions displayed in (3.26).

Note that the equivalences of (3.28) and (3.29) relate cobordisms whose number of
critical points differs by an odd number. This is a new feature that dos not occur in
the case of closed cobordisms.

(c) If i(p) = 0, then f has a minimum, and the cobordism is diffeomorphic to ηC of (3.25).

2. Otherwise, p ∈ ∂1M\∂0M , i.e. the critical point is on the coloured boundary, but does not
coincide with a corner of M . Consider the restriction f |∂1M : ∂1M → which then has a
non-degenerate critical point at p with index i′(p) ∈ {0, 1}.

(a) If i′(p) = 1, then f |∂M has a maximum at p.

i. If p is a (−)-critical point of f , the cobordism is diffeomorphic to εA of (3.25).

ii. If p is a (+)-critical point of f , the neighbourhood of p looks as follows,

p
M

(3.30)

19

We want to view this state as an evolution from one pair of intervals to the other

 = =
X

R,a,b,c,d

1

dim(R)
|Rabi |Rcdi hRad| hRcb| (3.12)

We can flip and glue this diagram to get the modular Hamiltonian.

Note that the modular Hamiltonian comes with an explicit factor of dim(R)�2. When

we sew together any number of modular Hamiltonians there will be four boundaries. So the

n-fold replica gets a factor of (dimR)4�2n, which is the correct topology (for n = 1 it’s the

sphere, for n = 2 the torus, etc.).

The normalization factor for the density matrix on two intervals is the same as the case

for one interval:

Z =
X

R,a,b,c,d

(dimR)�2 =
X

R

(dimR)2. (3.13)

Normalizing by this factor, we can read o↵ the entanglement entropy directly from the Schmidt

decomposition  . The entropy takes a thermal form, but unlike for one interval it has non

-zero modular energy:

S = �
X

R,a,b,c,d

1

(dimR)2Z
log

1

(dimR)2Z
(3.14)

=
X

R

(dimR)2

Z
log(dimR)2 + logZ

The first term is the expectation value of the modular Hamiltonian H

H =
X

R,a,b,c,d

log(dimR)2 |Rabi |Rcdi hRab| hRcd| (3.15)

in the Hartle Hawking state while the second term is the free energy. This is the same as that

of a sphere because we can fill in each hole at the entangling surface with an E brane, which

is the closed string unit. Note that even though we have the same value for the partition

function as in the case of the single interval, the boltzmann factors are di↵erent when we view

it with respect to the Hilbert space of two intervals. In the string theory description of Z,

we should describe it in terms of a sum over worldsheets of two open strings with 4 ⌦ points

and 2 ⌦�1 points.

– 9 –

Figure 1. These two cobordisms (along with the closed multiplication) describe saddle points of the

modular flow. In these figures, modular time flows from top to bottom and can be interpreted as a

height function, which is the standard example of a Morse function. A saddle point corresponds to a

critical point of the Morse function where the Hessian has one positive and one negative eigenvalue.

Figure adapted from ref. [18].

For example, applying this to the one interval foliation of a torus gives s = 2− 0 = 2,

in agreement with (4.26). For n intervals on a sphere we have s = 2n − 2 saddle points;

for example, when n = 3 there should be four saddles. The tensor product decomposition

of this state is

. (4.29)

The cobordism describing half the modular flow gives the linear mapping

ψ =
∑

R,a,b,c,d,e,f

e−
1
2
βC2(R)

(dimR)2
|Rad〉 |Rcf〉 |Reb〉 〈Rab| 〈Rcd| 〈Ref | (4.30)

so ρ = e−βĈ2(R)

(dimR)4
, consistent with the presence of four saddle points.

4.4 Negativity

While the entanglement entropy is a useful characterization of entanglement for pure states,

for a mixed state it does not distinguish between entanglement and classical correlations.

For such states more refined measures of entanglement exist, but unfortunately most are

not easily computable.6 One exception is the logarithmic negativity, which we will now

consider [29, 30].

6A precise statement of their noncomputability is given in ref. [28], and we thank Yichen Huang for

bringing this work to our attention. Of course, this does not preclude the possibility of computing it for

specific states, such as those prepared by the Euclidean path integral as we considered here.
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For a density matrix ρ on two intervals, we define its partial transpose ρΓ by:

ρΓ = ρ (4.31)

Note that in general one must be careful about complex conjugation so that one takes

the transpose and not the hermitian conjugate; in this example all wavefunctions are real

and we can ignore this subtlety. Partial transposes of more general states can be similarly

expressed by flipping some subset of inputs and outputs using the pairing and copairing.

While ρ defines a positive operator, ρΓ is not necessarily positive. The logarithmic

negativity

E = log‖ρΓ‖1, (4.32)

measures the failure of ρΓ to be positive and acts as a useful measure of entanglement.

As an example, consider negativity of two adjacent intervals on the sphere, which share

a single endpoint. The reduced density matrix in this situation is given by:

ρ = . (4.33)

The partial transpose of the right interval is:

ρΓ = =
∑

R

e−βC2(R)

dimR
|Rab〉 |Rcd〉 〈Rad| 〈Rcb| . (4.34)

Note that if we trace any odd power of ρΓ we get a surface with three boundaries, while if

we trace any even power of ρΓ we get a surface with four boundaries.

The negativity can be calculated by a generalization of the replica trick where one

separately analytically continues from odd and even n [31]. Let Zne = tr((ρΓ)ne) for ne
even and Zno = tr((ρΓ)no) for no odd. For the case at hand we note that the analytic

continuations from even and odd n differ:

Zne =
∑

R

dim(R)4−nee−neβC2(R), Zno =
∑

R

dim(R)3−noe−noβC2(R). (4.35)

no → 1 just gives the normalization of the state. The logarithmic negativity is given by

E = lim
ne→1

log
Zne
Z1

. (4.36)

Note that this formula does not require Z to be normalized.
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We can write this in terms of the distribution over representations, which is

p(R) =
1

Z1
dim(R)2e−βC2(R). (4.37)

And we find that

E = log〈dim(R)〉. (4.38)

We can find the same result by calculating the spectrum of ρΓ given by (4.34). Note that

this is not the same as the edge term 〈log dimR〉. Instead we have 〈log dimR〉 < log〈dimR〉
by convexity of the logarithm. We will comment on this distinction in the next subsection.

We can also consider the negativity of two adjacent intervals in a thermofield double

state (4.26). The partially transposed density matrix is

ρΓ = =
∑

R,a,b,c,d

e−βC2(R)

(dimR)2
|Rab〉 |Rcd〉 〈Rcd| 〈Rab| (4.39)

Apart from the factor of 1
(dimR)2

, the density matrix just swaps the state on the two

intervals. The normalization is the torus partition function

Z = TrρΓ =
∑

R,a,b,c,d

e−βC2(R)

(dimR)2
δacδbd =

∑

R

e−βC2(R) (4.40)

An eigenbasis of ρΓ is given by

|Rabcd±〉 =
1√
2

(|Rab〉 |Rcd〉 ± |Rcd〉 |Rab〉) (4.41)

where the antisymmetric state is absent when a = c, b = d. The normalized eigenvalues

are ± e−βC2(R)

(dimR)2Z
The negativity is therefore

E = log
∑

R,a,b,c,d

e−βC2(R)

(dimR)2Z
= log

∑

R

(dimR)2e−βC2(R)

Z
= log 〈(dimR)2〉 , (4.42)

where the expectation value is taken with respect to the probability distribution p(R) =
e−βC2(R)

Z on the torus.

We see that the logarithmic negativity captures the entanglement in the edge modes

between adjacent intervals, which is associated with the powers of dim(R). Unlike the von

Neumann entropy, it does not pick up the Shannon entropy associated with the distribution

over different representations R. This reflects the structure of the states: the label R is
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a global degree of freedom, so when we reduce to a subregion it is effectively a classical

degree of freedom. Conversely, we see that the edge modes do contribute to the negativity

and correspond to entanglement rather than simply classical correlations.7

4.4.1 Relative negativity?

The logarithmic negativity bears some similarity to the edge mode contribution to the

entanglement, except that it takes the form of log〈dim(R)n〉 rather than 〈log dim(R)n〉. In

this sense the logarithmic negativity is more analogous to a free energy than to an entropy.

However it is suggestive of a related measure that would give the edge term exactly.

We will consider again the example of two adjacent intervals on the sphere, for which

the reduced density matrix (normalized) is

ρ =
1

Z

∑

R,a,b,c,d

e−βC2(R)

dim(R)
|Rab〉 |Rbc〉 〈Rad| 〈Rdc| , (4.43)

and its partial transpose is

ρΓ =
1

Z

∑

R,a,b,c,d

e−βC2(R)

dim(R)
|Rab〉 |Rdc〉 〈Rad| 〈Rbc| . (4.44)

Then a natural quantity to consider is the relative entropy between ρ and ρΓ:

S(ρΓ||ρ) = tr(ρ log ρ)− tr(ρ log ρΓ). (4.45)

Note that log(ρΓ) would appear to be ill-defined, since ρΓ can have negative or zero eigen-

values. In the present case we see that the negative eigenspace of ρΓ is spanned by an-

tisymmetric states of the form |Rab〉 |Rdc〉 − |Rad〉 |Rbc〉, on which ρ has no support. A

straightforward calculation then gives for this example

S(ρΓ||ρ) =
∑

R

p(R) log dim(R) = 〈log dim(R)〉. (4.46)

Thus the relative entropy captures precisely the entropy of the edge mode shared by the

two intervals.

Unfortunately, the quantity (4.45) does not make sense in general; the operators ρ and

ρΓ act on different spaces. Nevertheless, it might be interesting to try to find an analog

of (4.45) that would be well-defined for more general quantum systems.

5 The Gross-Taylor string theory

The large-N limit of two-dimensional Yang-Mills theory can be formulated as a closed

string theory [33]. In particular, the U(N) Yang Mills partition function on a closed

Riemann surface admits a closed worldsheet expansion with string coupling gstring = 1
N .

7It was noted in [10, 32] that the entanglement associated with the edge modes cannot be distilled into

Bell pairs with gauge-invariant operations. While this is true, the logarithmic negativity is blind to the

distinction between gauge-invariant and gauge-variant operators and so counts the edge modes as entangled.
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In addition to the usual string interactions, it was found that the string encounters certain

target space singularities called Ω and Ω−1 points, whose presence depends on the target

space topology. In [16], we considered the partition function on a sphere as an effective

thermal partition function describing entanglement between two halves of the equatorial

circle. We showed that the two Ω points on the sphere are the entangling points cutting the

circle into two intervals. These entangling points can be stretched into the worldline of an

entanglement brane, which is a hypersurface where open strings end. Unlike a D-brane, the

open strings ending on an entanglement brane are part of a closed string which is partially

hidden behind the entangling surface.

To show that we can consistently treat the entanglement edge modes of the Gross-

Taylor string theory in terms of entanglement branes, we have to consider entanglement

of multiple disjoint intervals. The corresponding modular flow probes Riemann surfaces

of negative Euler characteristic, where we can give an open string interpretation of the

Ω−1 points. Given these motivations, we now apply the extended TQFT formalism to the

target space of the Gross-Taylor string.

5.1 Chiral Gross-Taylor string as a closed string TQFT

The Hilbert space of the Gross-Taylor string can be obtained as a certain large-N limit

of the Yang-Mills Hilbert space. Since the Yang-Mills Hilbert space is labelled by repre-

sentations of U(N), a prescription is needed for how to fix a representation while taking

N →∞. The naive way of taking this limit via the Frobenius formula, in which one keeps

the number of boxes in the Young tableau finite as N →∞, captures one chiral half of the

Yang Mills Hilbert space [34]. In the following we consider the corresponding chiral Gross-

Taylor (CGT) string theory. We will use the extended TQFT framework to formulate this

string theory independently from its gauge theory origins.

We consider the chiral case purely for simplicity; the non-chiral theory can also be

treated in this axiomatic framework but the precise form of the entanglement brane is

more complicated [16].

Hilbert space on a circle. The (second quantized) Hilbert space of closed strings is

isomorphic to the fock space of bosonic oscillators a†l which create strings winding l times.

String configurations with total winding number n are described by states labelled by

permutations σ ∈ Sn.

|σ〉 =

∞∏

l=1

(a†l )
nl |0〉 ,

∑
lnl = n (5.1)

where nl denotes the number of cycles of length l in σ. Each cycle represents a closed

string loop that winds l times. Closed string are indistinguishable, and this is reflected in

the the fact that the state |σ〉 only depends on the conjugacy class of σ as specified by nl.

The closed string inner product follows from the standard commutation relations

[al , a
†
l′ ] = l δll′ (5.2)
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In terms of permutations, we have

〈σ|η〉 =
∑

τ

δ(η, τρτ−1) (5.3)

with the corresponding resolution of identity

1 =
∑

n

∑

σ∈Sn

1

n!
|σ〉 〈σ| = (5.4)

Note that the states |σ〉 are overcomplete and also not normalized.

Basic cobordisms. For convenience we will consider the non-interacting limit, which is

the analogue of the zero area limit of 2D Yang-Mills.8 The basic cobordisms that define

the CGT string theory at closed string coupling gs are:

ηC =
∑

n=1

1

n!

∑

σ∈Sn
g−Kσs |σ〉 = (5.5)

µC(|σ〉 |τ〉) =
∑

ρ∈Sn
gns ωστρ |ρ〉 = (5.6)

εC |σ〉 = g−Kσs = (5.7)

πC(|σ〉 |η〉) =
∑

τ

δ(η, τστ−1) = (5.8)

κC =
∑

n

1

n!

∑

σ∈Sn
|σ〉 |σ〉 = (5.9)

Here we have introduced new notation for the pairing π and co-pairing κ; because the

states |σ〉 do not form an orthonormal basis, these have a nontrivial representation. For

the same reason, we have expressed the cobordisms by their action on states rather than

using bra-ket notation which uses the inner product implicitly. The factors ωσ appearing

in the product will be determined below.

Each cobordism defines a target space for closed string worldsheets which wrap the

spacetime at least once.9 The closed string unit ηC is the fundamental building block for

the closed TQFT. Since it is a contractable hemisphere, we demand that the connected

components of the allowed worldsheets have disk topologies and end on the S1 bounding

the hemisphere. We assign the state |σ〉 to each worldsheet whose boundary covers the

S1 according to the permutation σ. The corresponding amplitude then assigns a factor of

8Restoration of the string interactions is slightly more complicated than the case of Yang-Mills, because

the string basis does not diagonalize the Hamiltonian. As shown in [16], this involves adding branch point

interactions in the bulk of the string worldsheets and summing over their locations in target space, resulting

in an area dependence.
9It is a special feature of the Gross-Taylor string theory that all worldsheets cover the target space at

least once [33]. For this reason there are no particles in this string theory!
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g−1
s for each disk that appears in the worldsheet configuration, consistent with the rules of

string perturbation theory.

We can think of the center of the hemisphere as the location of a D-instanton that emits

closed strings with amplitude g−1
s per closed string [35]. This is also a branch point for the

closed string worldsheets, whose branches are permuted according to σ as we encircle the

D-instanton. This is what Gross and Taylor referred to as the Ω point.

We now turn to the definition of the weights ωσ. The multiplication µC can be written

generically as

µC(|σ〉 |τ〉) =
∑

ρ∈Sn
gns ωστρ |ρ〉 (5.10)

where each term corresponds to worldsheet process in which initial closed string configura-

tions σ and τ are cut and reglued into the final configuration ρ. The factor of gns has been

factored out of the weight ω for convenience. To obtain the correct fusion amplitudes we

apply the constraint

= , (5.11)

which identifies µC as the multiplicative inverse of ηC . Then for each n, the coefficients ωα
are determined by first defining an element Ωn of the Sn group algebra:

Ωn =
∑

α∈Sn
gn−Kαs α (5.12)

and then taking the formal inverse:

Ω−1
n =

∑

α∈Sn
ωαα (5.13)

The identity ΩΩ−1 = 1 in the Sn algebra then implies

∑

α∈Sn
(gn−Kαs ωασ−1) = δ(σ), (5.14)

which ensures equation (5.11) is satisfied.

As in the case of the hemisphere, the worldsheets form a branched covering of the

diagram representing µC , which is sphere with three punctures. The punctures are la-

belled by string configurations τ , ρ, and σ which determine the branching structure of the

worldsheet around those points. Fusing these branch points together gives a branch point

singularity that is weighted by ωτρσ. This is what Gross and Taylor called an Ω−1 point.

The difference between the number of Ω points and the number of Ω−1 points is equal to

the Euler characteristic of the target space.
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5.2 Chiral Gross-Taylor string as an open-closed TQFT

Hilbert space on an interval. Upon cutting the CGT closed string into an open string,

one finds that each open string endpoint supports N edge modes corresponding to Chan-

Paton indices of U(N). Formally, the CGT string assigns to an interval the Hilbert space

of functions on the group U(N) as N →∞. This open string Hilbert space is spanned by

wavefunctions of the form

〈U |IJ〉 = Ui1j1 . . . Uinjn , (5.15)

where Uij is a matrix element in the fundamental representation and n > 0 counts the

number of open strings. The multi-dimensional Chan-Paton factors I = (i1, . . . , in) and

J = (j1, . . . , jn) actually give a redundant labelling of the states since |IJ〉 = |σ(I)σ(J)〉
for any permutation σ ∈ Sn. This is an expression of open string indistinguishability.

Moreover these states are not orthogonal, instead their inner product is given by

=

∫
dU UIJU

†
KL =

∑

α,σ∈Sn

ωα
Nn

δI,σ(L)δJ,ασ(K). (5.16)

This formula says that the overlap between two stacks of open strings is zero unless we

can tie their Chan-Paton factors together to make a closed string configuration. As in the

closed string case, the coefficients ωα are defined via

Ωn =
∑

α∈Sn
NKα−nα, Ω−1

n =
∑

α∈Sn
ωαα (5.17)

The appearance of Ω−1
n can also be understood via it’s relation to the dimensions dim(R)

of U(N) irreps. Using Schur-Weyl duality, it can be shown that for an irreducible repre-

sentation R corresponding to a Young tableau with n boxes

(dimR)±1 =
1

n!
χR(Ω±1

n ), (5.18)

where χR(α) is a character of Sn. Due to the grand orthogonality theorem, the U(N) inner

product evaluated in the representation basis will contain a factor of (dimR)−1 which is

responsible for the appearance of Ω−1 in the open string formula (5.16). The non-orthogonal

inner product implies a non-trivial isomorphism between the Hilbert space and its dual,

which makes the usual bra-ket notation for linear maps problematic. For this reason we

will avoid this notation in the following.

The basic open-closed cobordisms. The open cobordisms describe target spaces for

open string worldsheets. The “constrained boundaries” traced out by endpoints of intervals

are worldlines of 0-branes where open strings end. In the case of an entanglement boundary,

the number of these entanglement branes is related to the closed string coupling as we

show below.

Here we outline a way to systematically build up the open string extension of the

closed string algebra, starting with the co-multiplication ∆O. This describes the extended
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Hilbert space factorization which splits each initial open string to into two according to

Uij =
∑

k UikUkj :

∆O(|IJ〉) =
∑

K

|IK〉 |KJ〉 = . (5.19)

As in the case of Yang-Mills the sum over k projects the internal edge modes onto a singlet

under U(N). The same factorization can be applied to a closed string state |σ〉, viewed as

an element of the open string Hilbert space. This leads to the expression for the zipper i.

i(|σ〉) =
∑

I

|Iσ(I)〉 = (5.20)

From the co-multiplication, we can also obtain the co-unit εO via the identity

= ⇒ εO(|IJ〉) = δIJ . (5.21)

Once equipped with the zipper i, we can apply axiom 1 (2.23) to obtain the open string

unit from the closed string unit:

ηA = i ◦ ηC =
∑

n=1

∑

I

1

n!

∑

σ∈Sn
g−Kσs |Iσ(I)〉 . (5.22)

This expression contains gs, which requires an open string interpretation. This is deter-

mined by the entanglement brane axiom in the form.

= (5.23)

Applying this equation to a basis state |σ〉 gives
∑

I δI,σ(I) = NKσ = g−Kσs , leading to the

crucial relation

gs =
1

N
(5.24)

This is a compatibility relation needed in order to shrink a D0 brane into a D-instanton,

in accordance with the entanglement brane axiom.

The unit can now be combined with the co-multiplication to give the co-pairing:

= =
∑

n=1

∑

I

1

n!

∑

σ∈Sn
NKσ |IK〉 |Kσ(I)〉 . (5.25)

As in the closed string TQFT, the open string multiplication is determined by taking the

multiplicative inverse of the open unit, which leads to the appearance of the Ω−1 point.
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Alternatively, it can be determined by the gluing:

= ⇒ µO(|IJ〉 |KL〉) =
∑

α,σ∈Sn

ωασ−1

Nn
δJ,α(K) |Iσ(L)〉

(5.26)

The corresponding worldsheets describe the fusion of open strings whose Chan-Paton in-

dices are matched up to permutations.

Finally, the co-zipper can be obtained by the gluing

= (5.27)

and the pairing from solving the zigzag identity:

= (5.28)

We leave some details of the basic cobordism calculations to the appendix. In summary,

the elementary open-closed cobordisms are completed by the following:

µO(|IJ〉 |KL〉) =
∑

α,σ∈Sn

ωασ−1

Nn
δJ,α(K) |Iσ(L)〉 = (5.29)

∆O(|IJ〉) =
∑

K

|IK〉 |KJ〉 = (5.30)

ηO =
∑

n=1

∑

I

1

n!

∑

σ∈Sn
NKσ |Iσ(I)〉 = (5.31)

εO(|IJ〉) = δIJ = (5.32)

i(|σ〉) =
∑

I

|Iσ(I)〉 = (5.33)

i∗(|IJ〉) =
∑

τ,σ

ωσ
Nn

δ(J, στ−1I) |σ〉 = (5.34)

5.3 Examples

Here we show how these open-closed cobordisms combine to give various representations

of the partition function ZS2 = trV (ρV ) which determines the entanglement structure of

the CGT string. As in the case of 2D Yang-Mills, different choices for V give different
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series expansions for ZS2 according to the entanglement spectrum on V . Our main goal is

to provide a worldsheet interpretation in which each entangling surface supports N = 1
gs

entanglement branes and each saddle point of the the modular flow corresponds to an

interaction point for the open string. In the closed string description, these correspond to

the Ω and Ω−1 points respectively.

We begin with the reduction of the Hartle-Hawking state (defined by the hemisphere)

onto the open string Hilbert space of a single interval V . As noted in section 3 the cobordism

describing the tensor factorization of this state is

|ψ〉 = = = (5.35)

The reduced density matrix ρV defines a partition function

= tr

( )
=
∑

n

∑

IJ

1 =
∑

n

∑

σ∈Sn

NKσNKσ

n!
(5.36)

In the last equality, we accounted for open string indistinguishability |IJ〉 = |σ(I)σ(J)〉
(See [16] for an explanation of the combinatorics). This is a thermal partition function

where each term describes disconnected open strings worldsheet ending on N entanglement

branes at each entangling surface. The permutation σ determines the winding of the open

strings around the thermal circle, and Kσ counts the number of open strings. Applying

the entanglement brane axiom gives a closed string description:

= =
∑

σ∈Sn

g−Kσs g−Kσs

n!
(5.37)

Here each stack of N entanglement branes is shrunk to an Ω point. Each term in the

sum corresponds to a covering of the sphere by a (disconnected) closed worldsheet that is

branched over the two Ω points. The permutation σ ∈ Sn labels the pattern of branching

and determines the worldsheet Euler characteristic via the Riemann Hurwitz theorem [16],

which in turn determines the powers of gs. The number of Ω points coincides with the

Euler characteristic χ = 2 of the target space, consistent with the result of [33, 34].

To identify general entangling surfaces with entanglement branes and the Ω point

singularities, we consider the density matrix for multiple intervals in the Hartle Hawking

state. For two intervals, we learned in section 4 that half of the modular flow is described

by the cobordism in (4.21).

In terms of formulas, this gives a mapping

ψ(|IJ〉 |KL〉) =
∑

α,σ∈Sn

ωσα
Nn
|Iα(L)〉 |kσ(J)〉 (5.38)
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=

3 THE CATEGORY OF OPEN-CLOSED COBORDISMS 19

Proof. We analyze the properties of the non-degenerate critical point p ∈ M case by case.

1. If p ∈ M\∂M , then the critical point is characterized by its index i(p) (the number of negative
eigenvalues of Hessp(f)) as usual; see, for example [26]. There exists a neighbourhood U ⊆ M
of p and a coordinate system x : U → 2 in which the Morse function has the normal form,

f(p) = −
i(p)∑

j=1

x2
j (p) +

2∑

j=i(p)+1

x2
j (p) (3.27)

for all p ∈ U .

(a) If the index is i(p) = 2, then the Morse function has a maximum at p, and so the
neighbourhood (and thereby the entire open-closed cobordism) is diffeomorphic to εC
of (3.25). Recall that the vertical coordinate of our diagrams is −f rather than +f .

(b) If the index is i(p) = 1, then f has a saddle point. If M were a closed cobordism, i.e.
∂0M = ∂M , the usual argument would show that M is either of the form µC or ∆C

of (3.25). In the open-closed case, however, the saddle can occur in other cases, too,
depending on how the boundary ∂M is decomposed into ∂0M and ∂1M . We proceed
with a case by case analysis and show that in each case, this saddle is equivalent to one
of the compositions displayed in (3.26):

∼= , (3.28)

∼= . (3.29)

Here we show the saddle at the left and the equivalent decomposition as a composition
and tensor product of the cobordisms of (3.25) with identities on the right. The saddle
of (3.28) can appear in two orientations and with the intervals in its source and target in
any ordering. In any of these cases, it is equivalent to one of the first two compositions
displayed in (3.26). The saddle of (3.29) can appear flipped upside-down or left-right
or both, giving rise to the last four compositions displayed in (3.26).

Note that the equivalences of (3.28) and (3.29) relate cobordisms whose number of
critical points differs by an odd number. This is a new feature that dos not occur in
the case of closed cobordisms.

(c) If i(p) = 0, then f has a minimum, and the cobordism is diffeomorphic to ηC of (3.25).

2. Otherwise, p ∈ ∂1M\∂0M , i.e. the critical point is on the coloured boundary, but does not
coincide with a corner of M . Consider the restriction f |∂1M : ∂1M → which then has a
non-degenerate critical point at p with index i′(p) ∈ {0, 1}.

(a) If i′(p) = 1, then f |∂M has a maximum at p.

i. If p is a (−)-critical point of f , the cobordism is diffeomorphic to εA of (3.25).

ii. If p is a (+)-critical point of f , the neighbourhood of p looks as follows,

p
M

(3.30)

19

We want to view this state as an evolution from one pair of intervals to the other

 = =
X

R,a,b,c,d

1

dim(R)
|Rabi |Rcdi hRad| hRcb| (3.12)

We can flip and glue this diagram to get the modular Hamiltonian.

Note that the modular Hamiltonian comes with an explicit factor of dim(R)�2. When

we sew together any number of modular Hamiltonians there will be four boundaries. So the

n-fold replica gets a factor of (dimR)4�2n, which is the correct topology (for n = 1 it’s the

sphere, for n = 2 the torus, etc.).

The normalization factor for the density matrix on two intervals is the same as the case

for one interval:

Z =
X

R,a,b,c,d

(dimR)�2 =
X

R

(dimR)2. (3.13)

Normalizing by this factor, we can read o↵ the entanglement entropy directly from the Schmidt

decomposition  . The entropy takes a thermal form, but unlike for one interval it has non

-zero modular energy:

S = �
X

R,a,b,c,d

1

(dimR)2Z
log

1

(dimR)2Z
(3.14)

=
X

R

(dimR)2

Z
log(dimR)2 + logZ

The first term is the expectation value of the modular Hamiltonian H

H =
X

R,a,b,c,d

log(dimR)2 |Rabi |Rcdi hRab| hRcd| (3.15)

in the Hartle Hawking state while the second term is the free energy. This is the same as that

of a sphere because we can fill in each hole at the entangling surface with an E brane, which

is the closed string unit. Note that even though we have the same value for the partition

function as in the case of the single interval, the boltzmann factors are di↵erent when we view

it with respect to the Hilbert space of two intervals. In the string theory description of Z,

we should describe it in terms of a sum over worldsheets of two open strings with 4 ⌦ points

and 2 ⌦�1 points.

– 9 –

Figure 2. The cobordism associated with half of the modular flow of two intervals on S2, and an

associated Morse function with one singularity. Figure adapted from ref. [18].

Each term describes the worldsheet of open strings that split and rejoin in a way that is

dictated by the target space topology. However, in addition to the swapping of endpoints

(I, J) → (I, L), (K,L) → (K,J), each stack of open strings experiences an interaction

(I, L)→ (I, α(L)), (K,J)→ (K,σ(J)). In the right figure, this whole process is compressed

into a single interaction point located at the saddle point of the target manifold. We identify

this as an Ω−1 point, because the worldsheet is branched over that point according to σα

and is weighted with the appropriate factor of ωσα.

The target space for the density matrix ρV = ψψ† is a sphere with four holes. The

corresponding effective partition function is

ZS2 = trV ρV =
∑

n

∑

σ,α,ρ,β∈Sn

∑

ε,η∈Sn

ωσα
Nn

ωρβ
Nn

NKεNKεβαNKηNKηρσ (5.39)

Each term in this sum corresponds to open string worldsheets that end on N entanglement

branes at each of the 4 boundaries. The two factors of ωσα show that the worldsheets

encounter two Ω−1 points, which is consistent with the Euler characteristic χ = −2 of the

target space. As in the previous example, we can give a closed string intepretation by

applying the the entanglement brane axiom, which closes up the entanglement branes into

four Ω points. The target space then becomes a sphere with χ = 4− 2, consistent with the

cancellation of Ω and Ω−1 points that was described in [33, 34].

The multi-interval case follows a similar pattern. This enables us to give a worldsheet

prescription for trV ρV in which we insert 2n stacks of N entanglement branes at the

entangling points, and s = 2n − χ interaction points in the bulk correponding to the

Ω−1 points.

6 Discussion

By appealing to the framework of extended TQFT, we have shown how entanglement

entropy in TQFT can be naturally understood in terms of an embedding of the closed

Hilbert space into the open Hilbert space given by particular cobordisms. We also showed

that the language of cobordisms is naturally suited to describe modular flows of multiple

disjoint regions and for computations of entanglement entropy and negativity.

– 29 –



J
H
E
P
1
0
(
2
0
1
9
)
0
1
6

The essential new ingredient is the entanglement brane axiom, which allows the Hilbert

space of a circle or interval to be split according to regions of space. However, this axiom

raises new questions. First, we do not know exactly what class of open/closed TQFTs admit

a boundary condition satisfying the entanglement brane axiom. Two-dimensional TQFTs

are sufficiently simple that one may hope to have a complete classification. Given the

origin of the entanglement brane axiom as characterizing a decomposition into subsystems

we expect it to hold whenever the TQFT can arise from a system defined on a lattice. This

suggests that TQFTs that cannot be made to satisfy the entanglement brane axiom may

have an anomaly preventing their implementation on a lattice, as in the case of a chiral

conformal field theory.

This also raises an interesting question. Suppose one calculates entanglement entropy

via the replica trick in a closed TQFT which cannot be extended to an open-closed TQFT

satisfying the entanglement brane axiom. Does the resulting quantity have any physical

interpretation? There appears to be no guarantee that the resulting quantity corresponds

to the von Neumann entropy of any density matrix. For example, it is not clear that the

“entanglement entropy” calculated in this would even be positive.

It would be interesting to generalize this framework to understand entanglement in

two-dimensional conformal field theories. Here the entanglement brane axiom may have to

be modified to account for the UV divergence that arises when closing up the entanglement

boundary. For example, this divergence appears in the leading term of the entanglement

entropy of a single interval.

Nevertheless, for CFT states prepared from the Euclidean path integral, we expect

that the entanglement entropy will probe the data of the open-closed CFT, which satisfies

similar rules as the open-closed TQFT [20]. Here, the relevant boundary conditions are con-

formal boundary conditions which satisfy the Cardy condition. For a rational CFT, these

correspond to finitely many Cardy states. For the case of the Ising model CFT, [36] showed

how the entanglement entropy depends on these Cardy states and how they are mapped

to entanglement boundary conditions of the microscopic model. In [37], the multi-interval

modular Hamiltonian was obtained by incorporating the cutting and gluing operations

that are manifest in the cobordism of figure 2. These examples give some hints for how to

incorporate entanglement calculations in the framework of extended CFT.

Another natural extension of the current work is to TQFT in higher dimensions. We

saw in section 3 that the entanglement brane axiom gives further constraints between the

open and closed sectors and hence may simplify the classification of higher-dimensional

TQFTs. In particular, Chern-Simons theory in three dimensions provides a model where

we expect a richer set of boundary conditions, since many edge theories are consistent with

the same bulk [38]. Here we will also encounter higher-codimension objects such as the

interface of a physical boundary with the entanglement partition.

We have reformulated the chiral Gross-Taylor string theory as an open-closed TQFT,

without reference to 2D Yang-Mills. This formulation shows that to cut the closed string

into open strings in a way that is consistent with the Moore-Segal and entanglement brane

axioms, we have to introduce N = 1
gs

Chan-Paton factors, corresponding to N entangle-

ment branes at each entangling surface. It would be interesting to apply the same con-
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struction to the full non-chiral Gross Taylor string, where BV-BRST structure is expected

to emerge due to constraints between the two chiral sectors [16].

We have seen that the entanglement brane axiom implies that the closed sector knows

about the density of states in the open sector. Although the entanglement entropy of

an interval in Yang-Mills theory includes a contribution from the edge modes, it can be

calculated via the replica trick without reference to the open sector. This is related to the

fact that the Euclidean partition function of gravity can be used to find the Bekenstein-

Hawking entropy without explicit reference to the underlying microstates being counted. It

has been argued that this is more than just an analogy, and that the Bekenstein-Hawking

entropy could be understood as a contribution from edge modes, analogous to the term

log dimR appearing in the entanglement entropy of 2D Yang-Mills [16, 39, 40]. Further

support for this relation has recently been found from holographic arguments [41, 42].

They suggest a picture in which the gravitational Hilbert space of a region with boundary

splits into sectors according to the area of the boundary, with states transforming in a

representation of a local symmetry group of dimension eA/4G.

A natural setting to understand this conjecture is Jackiw-Teitelboim gravity, where

an independent counting of the gravitational microstates of a two-sided wormhole

are provided by the dual Schwarzian quantum mechanics [43, 44]. Jackiw-Teitelboim

gravity admits a formulation as a two-dimensional BF theory closely related to the

two-dimensional Yang-Mills theory considered here. However it was pointed out in [45]

that naive application of the Yang-Mills results to the BF theory does not reproduce the

results of the Schwarzian theory and hence does not lead to the correct formula for the

Bekenstein-Hawking entropy. Thus it remains an interesting open problem to understand

whether Jackiw-Teitelboim gravity can be formulated as an open-closed TQFT satisfying

the entanglement brane axiom.10
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A Derivations of open string cobordisms

The main identity we need in computing cobordims for the CGT string is ΩΩ−1 = 1 in the

Sn algebra, which implies that

1 =
∑

α,β∈Sn
(NKα−nωβ) αβ =

∑

α,σ∈Sn
(NKα−nωα−1σ) σ (A.1)

10Shortly after v1 of this paper appeared on the arxiv, ref. [46] made significant progress on this question

using a restricted version of the BF theory.
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With a change of labeling this can be written as an identity

∑

α∈Sn
(NKα−nωασ−1) = δ(σ). (A.2)

For example, the co-unit ε is obtained from the gluing:

= (A.3)

Evaluating on a basis element, this gives

ε(|IJ〉) =
∑

τ,L

∑

α,σ

ωαN
Kτ−n

n!
δI,αστ(L)δJ,σ(L) (A.4)

=
∑

β,α

ωαN
Kβ−nδI,αβ(J)

=
∑

β,ρ

ωρβ−1NKβ−nδI,ρ(J)

= δIJ

Cozipper. The co-zipper is obtained from the following cobordism

= (A.5)

which gives:

i∗(|IJ〉) =
∑

n

1

n!

∑

σ,α,β∈Sn

ωα
Nn

δ(J, αβσβ−1I) |σ〉 (A.6)

=
∑

n

∑

α,τ∈Sn

ωα
Nn

δ(J, ατI) |τ〉 (A.7)

We can also verify the E brane axiom directly using the identity (A.2):

=
∑

n,α,στ

1

n!

ωαN
Kσ

Nn

∑

I

δI,ατσ(I) |τ〉 (A.8)

=
∑

n,α,στ

1

n!
ωαN

KσNKατσ−n |τ〉

=
∑

n,στ

1

n!
NKσ

∑

β

ωβ(τσ)−1NKβ−n |τ〉

=
∑

n,στ

1

n!
NKσ |σ〉 = .
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