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1 Introduction

One of the most important classes of measurements studied at the Large Hadron Col-

lider (LHC) concern processes which involve the production of the top quark. Of particular

interest is top-anti-top production, which is relevant both in studies of properties of the

Standard Model, as well as in searches for new physics, as it forms significant backgrounds

to many signatures [1].

In the Standard Model, the top quark is the heaviest particle and it does not form

bound states, but decays immediately to the W boson and the bottom quark. As the heavi-

est quark, it also couples most strongly to the Higgs boson, and therefore plays an important

role in the mechanism of electroweak symmetry breaking. Top quark pair production enters

into pole mass extraction as well as determination of gluon PDFs. Precise predictions for

top production allow one also to study rare decays, like those happening through flavour-

changing neutral currents, which are predicted to be very small in the Standard Model.

The value of the top mass also has an impact on the question of stability of the vacuum [2].

The experiments at the LHC have observed millions of top quarks and more will

be detected in the upcoming runs, including the one with high luminosity. The increasing

accuracy of experimental data from the LHC is in many cases superior to that of theoretical

predictions and this presents a challenge for theory.

The cross section for top pair production is currently known up to next-to-next-to-

leading order (NNLO) in Quantum Chromodynamics (QCD), both total and differential [3–

7]. This, single, complete, NNLO result has been obtained with the approach based on

STRIPPER [8–10]. There exist also several partial results including NNLO corrections to

the off-diagonal channels obtained with the qT slicing method [11], leading-colour NNLO

correction to the qq̄ channel calculated with the antenna subtraction [12], as well as ap-

proximate NNLO correction including semi-leptonic decays in the narrow-width approxi-

mation [13]. Besides, the electroweak corrections for top pair production are known up to

NLO [14, 15], and they were also combined with the NNLO QCD corrections [16].

In addition to the fixed-order results, a number of resummed cross sections for our

process of interest have been calculated. In particular, soft gluons have been resummed

at threshold up to next-to-next-to-leading logarithmic (NNLL) accuracy [17–21]. Also,

combined resummation of soft and small-mass logarithms at NNLL has been performed [22,

23]. Soft and Coulomb gluons have also been resummed simultaneously [24]. Finally,

the top quark production cross section has been resummed in the small-qT limit up to

NNLL [25–27].

Given the complexity of the NNLO calculation for top pair production, a second,

independent result is highly desirable. One of the most promising methods that could be

used to obtain it is the qT slicing approach [28].

Consider the process h1 + h2 → F (qT ) + X, where two hadrons, h1 and h2, collide

and produce an object F , which is registered in a detector, together with an undetected

QCD radiation X. Then, the cross section at order NmLO can be written as a sum of two

– 2 –
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components

σFNmLO

dΦ
=

∫ qTcut

0
dqT

dσFNmLO

dΦdqT
+

∫ ∞
qTcut

dqT
dσF+jet

Nm−1LO

dΦdqT
, (1.1)

each of which is separately finite. The advantage of this approach is that the second term

in the above equation, which represents resolved emissions, is required only at the Nm−1LO

accuracy, and it is already known in most relevant cases. On the contrary, the first term

in eq. (1.1), which combines virtual and unresolved real corrections, is usually unknown.

However, it is needed only in the small-qT approximation.

In order to calculate the latter, we can use the Soft Collinear Effective The-

ory (SCET) [29], in which the cross section factorizes at small qT . SCET is an effective

theory derived from QCD by expanding diagrams around low-energy scales related to soft

and collinear particle emissions. It is based on the strategy of regions [30] and it leads to

representing a single QCD field by a set of fields corresponding to collinear, anti-collinear

and soft radiation. The hard degrees of freedom are integrated out into Wilson coefficients,

which are then used to adjust couplings of the effective theory. The new fields decouple in

the Lagrangian and this separation largely facilitates proofs of factorization theorems.

One of such factorizations [25] lies at the basis of the formalism used in our calculation,

and the only missing piece needed to use it to evaluate the cross section for top pair

production at the next-to-next-to-leading order is the NNLO, small-qT soft function. The

result for the latter is presented in this work.

Our result, together with the framework and tools developed to obtain it, form key

elements of an alternative calculation of the complete NNLO cross section for the top pair

production. They also make up an essential step towards extending the qT slicing method

to N3LO.

We note that our calculation shares many features with that of the NNLO soft function

for top pair production in the threshold limit [31, 32]. However, the result for the latter is

not of direct use in the context of qT slicing.

The paper is organized as follows. In section 2, we introduce, in detail, all concepts

relevant for our calculation. In particular, we define the variables, discuss the factorization

and define the small-qT soft function. We elaborate on the colour algebra and introduce the

idea of multiplicative renormalization of the soft function. In section 3, we present the LO

and NLO soft function, the latter up to the order ε, which is necessary for renormalization

of the NNLO soft function. Section 4 is devoted to a detailed description of the calculation

of the bare NNLO soft function. We discuss diagrams which have to be included and we

explain the methods which we developed to evaluate all the divergent integrals. Finally,

in section 5, we present the results for the complete, small-qT NNLO soft function up to

the order ε0. There, we also validate our framework by comparing the results from direct

calculation to predictions from the renormalization group, and by comparing the results

for a sub-class of NNLO graphs obtained with two different methods. In that section, we

also show the results for the NNLO soft function after renormalization. Our findings are

summarized in section 6.

– 3 –
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2 The formalism

We consider the hadronic process

h1(P1) + h2(P2)→ t(p3) + t̄(p4) +X(pX) , (2.1)

with the leading-order, partonic subprocesses

q(p1) + q̄(p2) → t(p3) + t̄(p4) , (2.2)

g(p1) + g(p2) → t(p3) + t̄(p4) , (2.3)

where p1 = ξ1P1 and p2 = ξ2P2. In eq. (2.1), X represents undetected QCD radiation.

2.1 Kinematics and notation

We define the following variables

s = (P1 + P2)2 , ŝ = (p1 + p2)2 ,

u1 = (p1 − p4)−m2
t , t1 = (p1 − p3)2 −m2

t ,

M2 = (p3 + p4)2 , y =
1

2
ln
ξ1

ξ2
,

(2.4)

where qT is the transverse momentum of the tt̄ pair, y is its rapidity, and mt is the top

quark mass. The small-transverse momentum limit is defined as

ŝ,M2, |t1|, |u1|,m2
t � q2

T � Λ2
QCD . (2.5)

We carry out our calculations consistently in d = 4 − 2ε dimensions. It is convenient

to introduce the following vectors

n = (1, 0
(d−2)
⊥ , 1) , n̄ = (1, 0

(d−2)
⊥ ,−1) , n · n̄ = 2 , n2 = n̄2 = 0 , (2.6)

which point towards directions of the colliding partons, and

kµ = n · k n̄
µ

2
+ n̄ · kn

µ

2
+ kµ⊥ (2.7)

≡ k−
n̄µ

2
+ k+n

µ

2
+ kµ⊥ . (2.8)

Notice that k⊥ is a d-vector, although with pure d− 2-dimensional transverse part.

The momenta of the incoming, p1 and p2, and the outgoing, p3 and p4, partons, can

be written as

pµ1 =

√
ŝ

2
n , pµ2 =

√
ŝ

2
n̄ , (2.9a)

pµi = mt v
µ
i + kµi , v2

i = 1 , i = 3, 4 , (2.9b)

where kµi is a residual momentum which scales like the soft mode kµi ∼ λ = qT /M � 1.

The total d-momentum of the tt̄ pair reads

q = p3 + p4 . (2.10)

– 4 –



J
H
E
P
1
0
(
2
0
1
8
)
2
0
1

We also introduce

βt =

√
1− 4m2

t

M2
, and xs =

1− βt
1 + βt

. (2.11)

The variable βt is related to the relative velocity of the top and anti-top (or, equivalently,

velocity of the top quark in the tt̄ rest frame) [33]

|~vt − ~vt̄| = 2βt . (2.12)

We will also work in coordinate space, where the position of the tt̄ pair is given by

xµ = x−
n̄µ

2
+ x+n

µ

2
+ xµ⊥ , (2.13)

where x⊥ is a d-dimensional vector with purely transverse part and the length x2
T = −x2

⊥.

It is useful to express its norm through the following logarithm

L⊥ = ln
x2
Tµ

2

4 e−2γE
. (2.14)

The soft function is invariant with respect to rescalings vi → κi vi, where κis are

arbitrary constants. It turns out to be convenient to use this property and redefine the

vectors v3 and v4 with slightly different normalization

ṽ3 =
√

1− β2
t v3 , ṽ4 =

√
1− β2

t v4 . (2.15)

Unless stated otherwise, we shall use the following parametrizations for the d-vectors

ṽ3 = (1, 0
(d−3)
⊥ , βt sin θ, βt cos θ) , (2.16a)

ṽ4 = (1, 0
(d−3)
⊥ ,−βt sin θ,−βt cos θ) , (2.16b)

k = k0 (1, 0
(d−4)
⊥ , sin θ1 sin θ2, sin θ1 cos θ2, cos θ1) , (2.16c)

l = l0 (1, 0
(d−4)
⊥ , sinχ1 sinχ2, sinχ1 cosχ2, cosχ1) , (2.16d)

where k and l are the momenta of the two soft gluons radiated at NNLO. The scalar

products involving the above vectors read

ṽ2
3 = ṽ2

4 = 1− β2
t , (2.17)

ṽ3 · ṽ4 = 1 + β2
t , (2.18)

n · ṽ3 = n̄ · ṽ4 = 1− βt cos θ , (2.19)

n̄ · ṽ3 = n · ṽ4 = 1 + βt cos θ , (2.20)

n · k = k0 (1− cos θ1) , (2.21)

n̄ · k = k0 (1 + cos θ1) , (2.22)

n · l = l0 (1− cosχ1) , (2.23)

n̄ · l = l0 (1 + cosχ1) , (2.24)

ṽ3 · k = k0 (1− βt sin θ1 cos θ2 sin θ − βt cos θ1 cos θ) , (2.25)
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ṽ4 · k = k0 (1 + βt sin θ1 cos θ2 sin θ + βt cos θ1 cos θ) , (2.26)

ṽ3 · l = l0 (1− βt sinχ1 cosχ2 sin θ − βt cosχ1 cos θ) , (2.27)

ṽ4 · l = l0 (1 + βt sinχ1 cosχ2 sin θ + βt cosχ1 cos θ) . (2.28)

We see, in particular, that

k0 =
1

2
(n · k + n̄ · k) =

1

2
(k+ + k−) =

1

2
(ṽ3 · k + ṽ4 · k) , (2.29a)

l0 =
1

2
(n · l + n̄ · l) =

1

2
(l+ + l−) =

1

2
(ṽ3 · l + ṽ4 · l) . (2.29b)

2.2 Small-qT factorization

At small transverse momenta of the top quark pair, qT , the cross section factorizes according

to the formula [25]

d4σ

dq2
T dydM dcosθ

=
8πβt
3sM

1

2

∫
xTdxT

dφ

2π
J0(xT qT )

×
{(

x2
TM

2

4e−2γE

)−Fgg(x2
T ,µ)

4Bµρ
g/h1

(ξ1,x⊥,µ)Bνσ
g/h2

(ξ2,x⊥,µ)Tr
[
Hµνρσ
gg (M,mt,v3,µ)Wgg(x⊥,µ)

]
+

(
x2
TM

2

4e−2γE

)−Fqq̄(x2
T ,µ)

Bq/h1
(ξ1,x

2
T ,µ)Bq̄/h2

(ξ2,x
2
T ,µ)Tr

[
Hqq̄(M,mt,cosθ,µ)Wqq̄(x⊥,µ)

]
+(q↔ q̄)

}
, (2.30)

which is a convolution of the beam functions, Bq/hi , B
µρ
g/hi

, the hard functions, Hqq̄, H
µνρσ
gg ,

the soft functions, Wqq̄, Wgg, and the anomaly exponents Fqq̄(x
2
T , µ), Fgg(x

2
T , µ). Above,

y corresponds to the rapidity of the top-anti-top quark system, defined in eq. (2.4), θ to

the scattering angle of the top quark in the tt̄ rest frame, and φ is the relative azimuthal

angle between x⊥ an v3.

We note that the gluon beam functions depend, in general, on the vector x⊥, which

means that they are sensitive both to its length and to its azimuthal position in the trans-

verse plane. On the contrary, the quark beam functions depend only on the magnitude of

the transverse position vector.

The functions appearing in eq. (2.30) capture contributions of gluon emissions from

different regions of phase space. In the light-cone parametrization, kµ = (k+, k−, k⊥), the

momenta corresponding to each function scale as

collinear kµi ∼ (1, λ2, λ)M2 Bi/h1
,

anti-collinear kµi ∼ (λ2, 1, λ)M2 Bi/h2
,

hard kµi ∼ (1, 1, 1)M2 Hīi,

soft kµi ∼ (λ, λ, λ)M2 Sīi .

(2.31)

The beam functions are process-independent and they are currently known up to

NNLO [34, 35]. The hard and the soft functions are not universal, hence, they have

– 6 –
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to be calculated on a process-by-process basis. The hard function can be extracted from

refs. [36, 37]. The small-qT soft function has been calculated up to NLO in refs. [25, 26].

Each function defined on the right hand side of eq. (2.30) is separately divergent when

calculated directly from diagrammatic definitions, like the ones that shall be discussed in

section 4. These divergencies correspond to the soft and collinear limits and they must

cancel between the hard, soft and beam functions, as the entire cross section has to be finite.

It turns out to be useful to remove divergences also at the level of the functions entering

the factorization formula (2.30). This can be achieved by the procedure of multiplicative

renormalization, and it will be discussed in detail, for the case of the soft function, in

section 2.8. As usual in the procedure of renormalization, the renormalized object acquires

dependence on an arbitrary parameter µ, which has to vanish at the level of the cross sec-

tion. This implies that the renormalized versions of the functions entering the factorization

formula (2.30) must satisfy certain evolution equations that govern their µ dependence.

2.3 The soft function

The general definition for the position-space, small-qT soft function entering the factoriza-

tion formula (2.30) reads [25]

W (x⊥, µ) =
1

dR
〈0|T̄ [O†s(x⊥)]T [Os(0)]|0〉 , (2.32)

where T̄ and T represent time and anti-time ordering [38]. The normalization factors are

dR = N , in the qq̄ channel,

dR = N2 − 1 , in the gg channel ,
(2.33)

where N is the number of colours, hence, in QCD, N = 3. It turns out to be convenient to

insert the sum over all final states (both discrete and continuous quantum numbers) into

the definition (2.32) and obtain

W (x⊥, µ) =
1

dR

∫∑
X

〈0|T̄ [O†s(x⊥)]|X〉〈X|T [Os(0)]|0〉 (2.34)

=
1

dR

∫∑
X

eiP⊥·x⊥ 〈0|T̄ [O†s(0)]|X〉〈X|T [Os(0)]|0〉 , (2.35)

where P⊥ is the total transverse momentum carried by gluons or massless quarks (which

recoil against the tt̄ system) in the state |X〉. The amplitude 〈X|T̄ [Os(0)]|0〉 is shown in

figure 1.

The operator Os is defined as a product of Wilson lines, which mediate soft gluon

exchanges between particles and give rise to colour correlations. The Wilson line for a

particle in representation R, moving along the straight line with d-momentum ni between

the points x+ ani and x+ bni, is defined as [39][
Φ(R)
ni (x; b, a)

]
aibi

=

{
P exp

(
ig0
s

∫ b

a
dt ni ·Ac(x+ t ni) T(R) c

)}
aibi

, (2.36)
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Figure 1. Representation of the amplitude involving four Wilson lines.

where P denotes path ordering. The indices ai and bi arise since the Wilson line is an

operator in colour space and it accounts for colour evolution of a particle due to gluon

emissions. The operator Os for top quark pair production in the qq̄ channel is given by

Os(x) =
[
Φ(3)
v3

(x;∞, 0)
]
b3a3

[
Φ(3̄)
v4

(x;∞, 0)
]
b4a4

[
Φ(3)
n (x; 0,−∞)

]
a1b1

[
Φ

(3̄)
n̄ (x; 0,−∞)

]
a2b2

,

(2.37)

and in the gg channel

Os(x) =
[
Φ(3)
v3

(x;∞, 0)
]
b3a3

[
Φ(3̄)
v4

(x;∞, 0)
]
b4a4

[
Φ(8)
n (x; 0,−∞)

]
a1b1

[
Φ

(8)
n̄ (x; 0,−∞)

]
a2b2

.

(2.38)

2.4 Azimuthal averaging

As we see in eq. (2.30), the factorization formula involves integration over φ, the azimuthal

angle between x⊥ an v3. If we restrict ourselves to the NNLO cross section for top quark pair

production, the NNLO soft function will enter the factorization formula (2.30) multiplied

by the leading order hard function and the leading order beam functions, both of which

are Lorentz scalars. Hence, the integration over the azimuthal angle can be pulled directly

to the soft function. This motivates us to define the averaged soft function

Sīi(x⊥) =

∫
dΩd−3

Sd−3
Wīi(x⊥) , (2.39)

with dΩd−3 being a rotationally-invariant measure on the unit (d − 3)-sphere, defined

recursively as∫
Sd−3

1

dΩd−3 =

∫
Sd−3

1

dΩ(θ1, θ2, . . . , θd−3) =

∫ π

0
dθ1 sind−4 θ1

∫
Sd−4

1

dΩ(θ2, . . . , θd−3) , (2.40)

with

θ1, . . . , θd−4 ∈ [0, π] , θd−3 ∈ [0, 2π] , (2.41)

while Sd−3 is this sphere’s surface, which can be calculated from the general formula

Sd =
2π(d+1)/2

Γ [(d+ 1)/2]
. (2.42)

– 8 –
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We note that the averaging of eq. (2.39) is defined in d − 3 dimensions as the entire

calculation of the NNLO soft function is performed consistently in d dimensions. That

implies that all external and internal momenta, as well as polarizations, are d-dimensional.

The averaged soft function can be expanded as perturbation series

Sīi(x⊥) =

∞∑
n=0

S
(n)

īi
(x⊥)

(αs
4π

)n
. (2.43)

Finally, we mention that in order to compute the complete NNLO cross section for

tt̄ production in the gg channel, one also needs a version of the NLO soft function which

is averaged azimuthally together with the xµ⊥x
ν
⊥ Lorentz structure which comes from the

NLO gluon beam function [35]. This component can be obtained using the unaveraged

NLO soft function of ref. [26].

2.5 Colour space

The soft function discussed so far is an abstract operator in colour space. It turns out to

be useful to represent it as a matrix, with the elements

SIJ = 〈cI |S|cJ〉 . (2.44)

We choose the basis vectors, |cI〉 =
(
cīiI
)
{a}, following ref. [31]. In the qq̄ channel, they read(

cqq̄1
)
{a} = δa1a2 δa3a4 ,

(
cqq̄2
)
{a} = tca2a1

tca3a4
, (2.45)

and in the gg channel

(cgg1 ){a} = δa1a2 δa3a4 , (cgg2 ){a} = ifa1a2c tca3a4
, (cgg3 ){a} = da1a2c tca3a4

. (2.46)

The inner product is defined as a sum over all colour indices

〈cI |cJ〉 =
∑
{a}

(cI)
∗
a1a2a3a4

(cJ)a1a2a3a4
. (2.47)

The above basis vectors are orthogonal but not orthonormal [31].

The NLO and NNLO contributions to the soft function can be represented as

S
(1)
bare(x⊥) =

∑
i,j

w
(1)
ij Iij(x⊥) , (2.48)

S
(2)
bare(x⊥) =

∑
i,j

w
(1)
ij I

(1)
ij (x⊥) +

∑
i,j,k,l

w
(2S)
ijkl I

(2)
ijkl(x⊥) +

∑
i,j,k

w
(2A)
ijk I

(2)
ijk(x⊥) , (2.49)

where w are the colour matrices defined as

w
(1)
ij =

1

dR
〈cI |Ti ·Tj |cJ〉 , (2.50a)

w
(2S)
ijkl =

1

dR
〈cI | {Ti ·Tj ,Tk ·Tl} |cJ〉 , (2.50b)

w
(2A)
ijk =

1

dR
〈cI | [Ti ·Tk,Tj ·Tk] |cJ〉 . (2.50c)

– 9 –
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The Hermitian, colour operators Ti satisfy the following relations [40]

Ti ·Tj = Tj ·Ti = T ci T
c
j , Ti ·Ti = T2

i = Ci 1 = Cai 1,
∑
i

Ti|Mn〉 = 0 , (2.51)

where 1 is the identity operator, ai ∈ {q, q̄, g}, and Cg = CA, Cq = Cq̄ = CF . The

operators Ti act on vectors in the colour space as follows

〈c1, . . . , ci, . . . , cn, c|Ti|b1, . . . , bi, . . . , bn〉 = 〈c1, . . . , ci, . . . , cn|T ci |b1, . . . , bi, . . . , bn〉
= δc1b1 . . . T

c
cibi

. . . δcnbn . (2.52)

The matrix elements of the ith parton operator, Ti, are given by (Tc
i )c1c2 = if c1cc2 , for

an initial-state and final-state gluon, (Tc
i )c1c2 = tcc1c2(= −tcc2c1), for a final-state quark

(anti-quark), and (Tc
i )c1c2 = −tcc2c1(= tcc1c2), for an initial-state quark (anti-quark).

2.6 Fourier transform

In practice, it is easier to calculate the soft function in momentum space. The relevant

scalar integrals, which appear in eqs. (2.48) and (2.49), can be transferred to momentum

space by means of the Fourier transform

Ĩ{i}(q⊥) =
1

(2π)
d−2

2

∫
dd−2x⊥I{i}(x⊥) eix⊥·q⊥ , (2.53a)

I{i}(x⊥) =
1

(2π)
d−2

2

∫
dd−2q⊥Ĩ{i}(q⊥) e−ix⊥·q⊥ , (2.53b)

where {i} represents the two, three or four particle indices. The structure of the I{i}(x⊥)

integrals, for all types of diagrams encountered at NNLO, is

I{i}(x⊥) =

∫
ddp e−ix⊥·p⊥ × (. . .) , (2.54)

where the ellipsis depend on details of the graph, i.e. the direction of the Wilson lines and

the soft parton emissions, and p denotes the total momentum of the latter.

By plugging eq. (2.54) to eq. (2.53a), we obtain

Ĩ{i}(q⊥) = (2π)
d
2
−1

∫
ddp δ(d−2)(p⊥ − q⊥)× (. . . ) . (2.55)

And by applying the azimuthal averaging of eq. (2.39) we get∫
dΩd−3

Sd−3
Ĩ{i}(q⊥) =

(2π)
d
2
−1

Sd−3

∫
ddp dΩd−3 δ

(d−2)(p⊥ − q⊥)× (. . . ) (2.56)

=
(2π)

d
2
−1

Sd−3

∫
ddp

qd−3
T

δ(pT − qT )× (. . . ) . (2.57)

In the above, we used rotational invariance of the measures and the fact that the order of

the integrations can be changed. This leads to a reinterpretation of the angles in dΩd−3 as
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the azimuthal angles of q⊥ and that allows one to go from (2.56) to (2.57) with the help of

the identity ∫
dΩd−3 δ

(d−2)(p⊥ − q⊥) =
1

qd−3
T

δ(pT − qT ) . (2.58)

Now, we rescale the momenta associated to the emissions by qT , in particular p̃µ = qT p
µ ,

and get ∫
dΩd−3

Sd−3
Ĩ{i}(qT ) =

1

qrT

(2π)
d
2
−1

Sd−3

∫
ddp̃ δ(p̃T − 1)× (. . . ) . (2.59)

Above, the overall power of qT has been denoted as r. It is a sum of the contribution from

the d− 2-dimensional delta function and a genuine contribution from the graph part. The

rescaling factorizes all the qT dependence. As a consequence, all integrals in momentum

space are proportional to the factor 1/qrT , with the power r, which depends on the order

of perturbative expansion. Hence, the transformation from momentum to position space,

by means of the Fourier Transform (FT), will amount to multiplication by a factor given

by the compact expression

FT

[
1

qrT

]d−2

= 2−2+3ε+r√π

(
e−γE+ 1

2
L⊥

µ

)−2+2ε+r
Γ (2− 2ε− r)

Γ
(

3
2 − ε−

r
2

)
Γ
(
r
2

) . (2.60)

At NLO, r = 2 + α, and at NNLO, r = 2 + 2α + 2ε for double-cut diagrams and

r = 2 + α + 2ε, for single-cut diagrams, where α is the analytic regulator discussed in

the next section. An important feature of (2.60), both at NLO and NNLO, is that its

expansion begins at order 1/ε

FT

[
1

q2+α
T

]d−2

= − 1

2ε
+O

(
α/ε2

)
, FT

[
1

q2+2α+2ε
T

]d−2

= − 1

4ε
+O

(
α/ε2

)
. (2.61)

Hence, to obtain a result in position space at the order ε0, one needs to calculate the

momentum-space soft function up to ε1.

2.7 Analytic regulator

The phase space integrals Ĩ{i} turn out to be divergent not only when the gluons become

soft, but also in the limit where the light-cone components of gluons’ momenta tend to

zero or infinity. Through the relation

yg =
1

2
ln
k+

k−
, (2.62)

this limit occurs when the gluon rapidity yg → ±∞. That is why, these are called “rapidity

divergencies”. They arise because, in SCET, we approximate the full QCD Feynman

integrals following the expansion by regions. Yet, we integrate each expression over the

full phase space of gluons’ momenta. We note that this does not give rise to double count-

ing [29]. Nevertheless, it forces us to introduce another regulator to handle the integrals.

The reason why contributions from different regions do not overlap even when in-

tegrated from −∞ to +∞ is that integrals in each region depend on a single scale and

– 11 –



J
H
E
P
1
0
(
2
0
1
8
)
2
0
1

expanding them further (e.g. soft integrals in the collinear region) leads to scaleless inte-

grals, which vanish.

In our calculation, we chose to adopt the analytic regulator prescription of ref. [41],

which amounts to the following replacement of the integration measure∫
ddk δ+(k2)→

∫
ddk

( ν

n · k

)α
δ+(k2) , (2.63)

where ν is a free parameter introduced for dimensional reasons (an analogue of µ in di-

mensional regularization) and we denote δ+(k2) = δ(k2)θ(k0). The regulator α becomes

necessary at intermediate stages of the calculation. Since rapidity divergencies do not ap-

pear in full QCD, the result for the complete cross section is finite in the limit α → 0. In

the case of the analytic regulator, the poles in α cancel not only at the level of the cross

section but even at the level of the soft function. This comes from the fact that the soft

function for the Drell-Yan process is equal to one, which implies that the product of the

beam functions is α-independent (but not the beam functions themselves, see ref. [35]). As

beam functions are universal, the same, α-independent product of the beam functions is

used in the process of tt̄ production. This means that the only dependence on α can occur

in the soft function. Therefore, all α poles have to vanish within the latter. We shall use

this feature as one of validations of our calculation.

2.8 Renormalization

The renormalized soft function of the small-qT factorization satisfies the following renor-

malization group evolution (RGE) equation [42]

d

d lnµ
Sīi(µ) = −γs†

īi
Sīi(µ)− Sīi(µ)γsīi , (2.64)

where

γsīi = γhīi − 2γi1 , (2.65)

and γh
īi

is defined as a non-Γcusp part of the full anomalous dimension matrix Γ [19],

while γi is the massless-particle anomalous dimension (and enters RGE equations for beam

functions in Drell-Yan and Higgs production [43, 44]). To make the notation lighter we

shall omit the index īi, keeping in mind that the soft function and the anomalous dimension

are different in the qq̄ and gg channels.

The soft anomalous dimension matrix γs is related to the soft renormalization factor

(also a matrix in colour space), Zs, as follows

γs = −Z−1
s

dZs
d lnµ

, (2.66)

and Zs absorbs all UV divergences such that

S(µ) = Z†s(µ, ε)Sbare(ε)Zs(µ, ε) . (2.67)
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Each quantity in the above equation has a perturbative expansion, either in the renor-

malized coupling, as = αs/(4π), or in the bare coupling, a0
s = α0

s/(4π), and the relation

between the two is

a0
s(ε) =

(
µ2eγE

4π

)ε
Zαas ≡ ξαs(ε, µ)Zα as(µ) , (2.68)

where the MS renormalization constant reads

Zα = 1− β0αs
4πε

+ . . . = 1− β0

ε
as(µ) + . . . , (2.69)

and β0 is the one-loop coefficient of the QCD β function given in eq. (C.5). Hence, sub-

stitution of eq. (2.43) for the bare and renormalized soft function, as well as eqs. (2.68)

and (2.69) to eq. (2.64) leads to the following, order-by-order relations

S(0) = S
(0)
bare , (2.70)

S(1) = Z†(1)
s S

(0)
bare + S

(0)
bareZ

(1)
s + ξαsS

(1)
bare , (2.71)

S(2) = Z†(2)
s S

(0)
bare + S

(0)
bareZ

(2)
s +Z†(1)

s S
(0)
bareZ

(1)
s

+Z†(1)
s ξαsS

(1)
bare + ξαsS

(1)
bareZ

(1)
s + ξ2

αsS
(2)
bare −

β0

ε
ξαsS

(1)
bare . (2.72)

The quantities on the l.h.s. are finite in the limit ε→ 0. The Z
(i)
s factors have only singular

terms with poles in ε, while the bare functions, S
(1)
bare and S

(2)
bare, have both singular and

finite parts.

For notational simplicity, in what follows we will absorb the ξαs prefactors into the

definitions of the bare soft functions and change the notation according to

ξnαsS
(n)
bare → S

(n)
bare . (2.73)

At the order a2
s, from eq. (2.72), we get

S(2)︸︷︷︸
finite part only

=

(I) pole part only︷ ︸︸ ︷
Z†(2)
s S

(0)
bare + S

(0)
bareZ

(2)
s +Z†(1)

s S
(0)
bareZ

(1)
s

+ Z†(1)
s S

(1)
bare + S

(1)
bareZ

(1)
s + S

(2)
bare −

β0

ε
S

(1)
bare︸ ︷︷ ︸

(II) finite + pole part

. (2.74)

Part (I) on the r.h.s. has only terms singular in ε, which come from the fact that the Zs
factors are defined in the MS scheme.

These pole terms have to cancel against the singular terms of part (II), which can be

used in the following way: knowing Z
(1)
s and Z

(2)
s , as well as S

(0)
bare and S

(1)
bare, allows one

to cross-check all the singular terms of the S
(2)
bare function obtained from direct calculation.

The explicit form of the Zs factor, together with the relevant anomalous dimensions are

given in appendix C.
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2.9 Determination of L⊥-dependent terms of the soft function from RGE

The RGE equation (2.64) can be written as

d

dL⊥
S(µ) = −1

2

[
γs† S(µ) + S(µ)γs

]
, (2.75)

where L⊥ was defined in eq. (2.14). Both the soft function and the anomalous dimension

have perturbative expansions

S = S(0) + asS
(1) + a2

sS
(2) + . . . , (2.76)

γs = as (γs,0 + asγs,1 + . . .) . (2.77)

All quantities in the above equations are renormalized and they are defined in d dimensions.

Because the anomalous dimension matrix starts at the order as, eq. (2.75) can be

solved iteratively. We just need to plug eqs. (2.76) and (2.77) into eq. (2.75) and remember

that the renormalized, 4-dimensional coupling as also depends on lnµ, which implies

das
dL⊥

=
1

2

das
d lnµ

=
1

2

∂as
∂ lnµ

=
1

2

β(as)

4π
= −β0 a

2
s +O

(
a3
s

)
, (2.78)

where we used the expansion of the QCD β function given in eq. (C.4).

After collecting terms at each order, we arrive at the following differential equations

d

dL⊥
S(0) = 0 , (2.79)

d

dL⊥
S(1) = −1

2

[
S(0) γs,0 + γ†s,0 S

(0)
]
, (2.80)

d

dL⊥
S(2) = −1

2

[
S(1) γs,0 + γ†s,0 S

(1) − 2β0S
(1) + S(0) γs,1 + γ†s,1 S

(0)
]
. (2.81)

Hence, knowing the soft anomalous dimension to order a2
s, and the soft function to

order a1
s allows one to determine all pieces of the soft function at order a2

s except the

constant, i.e. L⊥-independent term. Specifically, at order a2
s, we get

S(2) = −1

2

{
1

2

[
S

(1)
L⊥
γs,0 + γ†s,0 S

(1)
L⊥
− 2β0S

(1)
L⊥

]
L2
⊥ (2.82)

+
[
S

(1)
/L⊥
γs,0 + γ†s,0 S

(1)
/L⊥
− 2β0S

(1)
/L⊥

+ S(0) γs,1 + γ†s,1 S
(0)
]
L⊥

}
+ const ,

where S
(1)
L⊥

and S
(1)
/L⊥

denote, respectively, the L⊥-dependent and L⊥-independent pieces of

the S(1) soft function.

3 NLO soft function

The leading order soft function corresponds to the case without radiation. It is given by

the following, constant matrices [25, 31]

S
(0)
qq̄ =

(
N 0

0 CF
2

)
, S(0)

gg =

N 0 0

0 N
2 0

0 0 N2−4
2N

 , (3.1)
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Figure 2. Feynman diagram for the NLO soft function. The solid lines pointing towards the cut

represent the Wilson lines of the top quarks. The lines pointing away from the cut correspond to

the Wilson lines of the incoming, massless partons, quarks or gluons. The diagram represents a

class of graphs with all possible gluon connections between the Wilson lines.

respectively for the qq̄ and gg channels. Because the LO soft function is not divergent, the

above result corresponds both to the bare and the renormalized case. Hence, we see that

Z
(0)

īi
= 11.

The next-to-leading order, bare soft function, is given by

S
(1),bare

īi
=

∑
i,j=1,...,4

w
(1)
ij Iij , (3.2)

where the colour structure is encoded in the w
(1)
ij matrices defined as(

w
(1)
ij

)
IJ

=
1

dR
〈cI |Ti · Tj |cJ〉 , (3.3)

with the basis vectors |cJ〉 introduced in eqs. (2.45) and (2.46). For the sake of notational

simplicity, in what follows, we suppress the index īi in the colour matrices. It can always be

inferred either from the context, or based on the size of a matrix. The explicit expressions

for colour matrices (3.3) are given in appendix A.

Iijs in eq. (3.2) correspond to phase-space integrals, represented diagrammatically

in figure 2. The solid lines pointing towards the cut represent the top quarks. The

lines pointing away from the cut correspond to the incoming, massless partons. The

momentum-space versions of the integrals represented in figure 2, obtained with the

Fourier transform (2.53a), read

Ĩij = (4π)2

(
µ2eγE

4π

)ε
(2π)

d
2
−1

Sd−3 q
d−3
T

∫
ddk

(2π)d−1

( ν

n · k

)α
δ(k2) θ(k0) δ(kT − qT )

(−vi · vj)
vi · k vj · k

,

(3.4)

where
(
µ2eγE

4π

)ε
comes from renormalization of the strong coupling, see eq. (2.68), and the

remaining prefactors arise from the Fourier transform and azimuthal averaging. Only the

real-type diagrams contribute to the NLO soft function as the virtual graphs are scaleless

and vanish.

The integration measure can be written as ddk = dk+dk−d
d−2k⊥ and the k+ and

k− components are integrated from minus to plus infinity. However, the phase space of

integration of these light-cone momenta is restricted by δ(k2) θ(k0) appearing in eq. (3.4).

This can be easily seen by rewriting the above condition as δ(k+k− − k2
T ) θ(k+ + k−).
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Figure 3. Integration regions over the light-cone components of the on-shell (left) and off-shell

gluon. The former corresponds to the integrals of the NLO soft function defined in section 3, the

latter to bubble integrals of the NNLO soft function discussed in section 4.2.

The delta function fixes k+k− = k2
T > 0, hence the light-cone components must be both

positive or negative. And the theta function, chooses them to be both positive. All in all,

the integration over dk+dk− is restricted to the line depicted in figure 3 (left).

The NLO soft function has been calculated up to order ε0 in refs. [25, 26]. However, as

can be seen from eq. (2.74), to renormalize the NNLO soft function, we need to know the

NLO soft function up to the order ε1. This order has been calculated in ref. [45], yet, using

a slightly different definition of azimuthal averaging. We have adjusted this result to our

definition, as well as fully cross checked it using a sector decomposition-based approach

(described in detail in section 4.4), finding a perfect agreement.

Hence, the final result for the position-space NLO soft function up to order ε1 reads

S
(1)

īi
=−4w

(1)
13

[
Li2

(
1− t1u1

m2
tM

2

)
−2L⊥ ln

−t1
mtM

]
−4w

(1)
23

[
Li2

(
1− t1u1

m2
tM

2

)
−2L⊥ ln

−u1

mtM

]
+4w

(1)
33

[
L⊥+ln

(
t1u1

m2
tM

2

)]
−2w

(1)
34

1+β2
t

βt

[
L⊥ lnxs+f34

]
+4εw13

[
L2
⊥ ln

−t1
mtM

−L⊥Li2

(
1− t1u1

m2
tM

2

)
+
π2

6
ln
−t1
mtM

−Li3

(
1− t1u1

m2
tM

2

)]
+4εw23

[
L2
⊥ ln

−u1

mtM
−L⊥Li2

(
1− t1u1

m2
tM

2

)
+
π2

6
ln
−u1

mtM
−Li3

(
1− t1u1

m2
tM

2

)]
+εw33

[
2L2
⊥+4L⊥ ln

t1u1

m2
tM

2
−4Li2

(
1− t1u1

m2
tM

2

)
+
π2

3

]
−εw34

1+β2
t

βt

[
L2
⊥ lnxs+2f34L⊥+2J34 +

π2

6
lnxs

]
, (3.5)
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Figure 4. Bubble diagrams contributing the NNLO soft function.

where

f34 = −Li2

(
−xs tan2 θ

2

)
+ Li2

(
− 1

xs
tan2 θ

2

)
+ 4 lnxs ln cos

θ

2
, (3.6)

J34 = −2

∫ βt

0

db

b2 − 1
Li2

(
b2 sin2 θ

b2 − 1

)
, (3.7)

and the result for J34 can be expressed in terms of ordinary polylogarithms.

4 NNLO soft function: methods of calculation

To calculate the next-to-next-to leading order contribution to the bare soft function, one

needs to sum several groups of diagrams, each multiplied by a proper colour factor. The

relevant master formula can be derived directly using definitions given in eqs. (2.32)–(2.38),

expanding the Wilson lines and truncating the series at O
(
αs

2
)
. The diagrams can be

grouped according to the number of distinct Wilson lines connected by the gluons, which

can be two, three or four. They can also be classified based on how many lines are cut.

And this can be two, one or none. The bare soft function at NNLO reads

S
(2)
bare = S2-cut,gg + S2-cut,qq̄ + S1-cut + S0-cut . (4.1)

We shall now discuss groups of diagrams contributing to each of the terms in the above

equation. Then, we will describe the methods used to calculate them.

Double-cut diagrams. The gluons in double-cut diagrams can connect two, three or

four Wilson lines. Amongst the two-Wilson-line graphs, one can distinguish a special class

of bubble diagrams, depicted in figure 4. Besides gluons, they may also involve quarks

and, as we work in the Feynman gauge, also the ghost bubble. Even though they belong

to the class of two-cut diagrams, they are easier to calculate than most of the graphs in

this group. The integrals corresponding to the bubble diagrams, and methods applied to

evaluate them, shall be discussed in detail in section 4.2. The bubble graphs come with

colour matrices which are identical to those appearing in the NLO soft function, i.e. w(1),

given in appendix A.

The second group consists of non-bubble graphs in which the gluons attach to only

two distinct Wilson lines: i an j. These graphs are shown in figure 5. We see that they

include both abelian and non-abelian structures.
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Figure 5. Two-Wilson-line, double-cut diagrams required for the calculation of the NNLO soft

function.

The third group is formed by the three-Wilson-line, double-cut diagrams shown in

figure 6. The sum of the integral corresponding to D
(a)
8 and its complex conjugate produce

an integral which is a convolution of two NLO expressions. Exactly the same expression

is obtained when D
(b)
8 and D

(c)
8 are added to their complex conjugates. And all the sums

D
(i)
8 +D

(i)∗
8 , for i = a, b or c, are multiplied by the same colour factor {Ta

i ,T
b
i}Ta

jT
b
k. The

above observations were also made in the related calculation of the NNLO soft function for

top pair production in the threshold limit [31, 32].

The abelian graphs depicted in figure 6 constitute the only non-vanishing three-Wilson-

line contribution in the group of double-cut diagrams. This is because the non-abelian,

three-Wilson-line graphs cancel when summed over colour structures, which can be un-

derstood by analyzing the graph depicted in figure 7. Since it is a double-cut diagram,

the corresponding integral is a real-valued function. And it is multiplied by the colour

factor ifabcTa
i T

b
j T

c
k . The complete soft function receives also a contribution from a dia-

gram which is a complex conjugate of figure 7 and the complex conjugation only affects the

colour factor, turning it into −ifabcTa
i T

b
j T

c
k . Hence, the diagram of figure 7 and its complex

conjugate cancel, and the non-abelian graphs with three distinct Wilson lines connected

by the gluons do not contribute to the soft function.

We emphasize that this happens only because the integrals are real functions, as they

originate from double-cut diagrams. This property will not be true for single-cut, non-

abelian diagrams, and we will see that the corresponding contributions do not vanish when

summed over all diagrams.

Finally, the double-cut part of the soft functions receives contributions from a subset

of diagrams shown in figure 8, where the gluons connect four distinct Wilson lines. The

corresponding expressions take forms of convolutions of the NLO integrals, similarly to the

cases of D4 and D8 from figure 5 and 6. The four-Wilson-line diagrams come with the

colour operator Ta
iT

a
jT

b
kT

b
l .
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Figure 6. Three-Wilson-line, double-cut diagrams required for the calculation of the NNLO soft

function.

Figure 7. Three-Wilson-line, double cut diagram appearing in the calculation of the NNLO soft

function.

Figure 8. Four-Wilson-line, double cut diagram required in the calculation of the NNLO soft

function.

The complete expression for the NNLO soft function derived using the diagrammatic

approach described above can be obtained alternatively by taking the soft limit of the

relevant matrix elements in QCD.

In the case of the gg final state, in the limit k, l → 0, the squared matrix element

factorizes as [10]

M∗(0)
g,g,a1,...(k, l, p1, . . . )M(0)

g,g,a1,...(k, l, p1, . . . )

' 1

2

∑
ijkl

Sij(k)Skl(l) 〈M(0)
a1,...(p1, . . . )| {Ti ·Tj ,Tk ·Tl} |M(0)

a1,...(p1, . . . )〉

− CA
∑
ij

Sij(k, l) 〈M(0)
a1,...(p1, . . . )|Ti ·Tj |M(0)

a1,...(p1, . . . )〉 , (4.2)
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where Sij(k) is the eikonal integrand

Sij(k) =
pi · pj

(pi · k) (pj · k)
, (4.3)

which we had used to construct the NLO soft function integrals in eq. (3.4), and pi are

the d-momenta of the external partons. We note that the functions Sij(k) and Sij(k, l)
are invariant with respect to rescalings of the momenta of external particles of the Born

process. Therefore, they can be expressed in terms of velocities

ni =


n for i = 1

n̄ for i = 2

ṽi for i = 3, 4

. (4.4)

The function Sij(k, l) can be split into two parts

Sij(k, l) = Sm=0
ij (k, l) +

(
m2
i S

m 6=0
ij (k, l) +m2

j S
m 6=0
ji (k, l)

)
, (4.5)

where mi and mj are the masses of the external particles. The first term in eq. (4.5) has

been given in ref. [46] and reads

Sm=0
ij (k, l) =

(1− ε)
(k · l)2

pi · k pj · l + pi · l pj · k
pi · (k + l) pj · (k + l)

− (pi · pj)2

2 pi · k pj · l pi · l pj · k

[
2− pi · k pj · l + pi · l pj · k

pi · (k + l) pj · (k + l)

]

+
pi · pj
2 k · l

[
2

pi · k pj · l
+

2

pj · k pi · l
− 1

pi · (k + l) pj · (k + l)

×
(

4 +
(pi · k pj · l + pi · l pj · k)2

pi · k pj · l pi · l pj · k

)]
. (4.6)

In the above equation, the first line comes solely from the gluon and ghost bubble diagrams

of figure 4. The second line originates from the CA part of diagrams which do not involve

the triple-gluon vertex, that is D4 and D5 in figure 5. Finally, the last two lines receive

contributions from the non-abelian diagrams D6, D7 and the gauge bubble.

The second contribution in eq. (4.5) was derived in ref. [9] and represents additional

terms generated by non-vanishing masses. The relevant function is

Sm 6=0
ij (k, l) = − 1

4 k · l pi · k pi · l
+

pi · pj pj · (k + l)

2 pi · k pj · l pi · l pj · k pi · (k + l)

− 1

2 k · l pi · (k + l) pj · (k + l)

(
(pj · k)2

pi · k pj · l
+

(pj · l)2

pi · l pj · k

)
. (4.7)

Here, the first and the third term come from the CA part of diagrams which do not involve

the triple-gluon vertex, whereas the second term arises due to non-abelian contributions,

including the gauge bubble.
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Figure 9. Single-cut diagrams contributing to the NNLO soft function.

In the case of the final-state qq̄-pair, in the limit k, l→ 0, the matrix element factorizes

as [10]

M∗(0)
q,q̄,a1,...(k, l, p1, . . . )M(0)

q,q̄,a1,...(k, l, p1, . . . )

' TF
∑
ij

Iij(k, l) 〈M(0)
a1,...(p1, . . . )|Ti ·Tj |M(0)

a1,...(p1, . . . )〉 , (4.8)

where the function Iij(k, l) has the form

Iij(k, l) =
(pi · k) (pj · l) + (pj · k) (pi · l)− (pi · pj) (k · l)

(k · l)2 [pi · (k + l)] [pj · (k + l)]
. (4.9)

The above expressions can be used directly to calculate our soft function of interest by

applying the following formula

S
(2),f f̄

īi
(qT ) = (4π)4

(
µ2eγE

4π

)2ε

ν2α (2π)
d
2
−1

Sd−3 q
d−3
T

∫
dd δ+(k2)

(2π)d−1(n ·k)α
ddl δ+(l2)

(2π)d−1(n · l)α
δ(qT −|k⊥+ l⊥|)

×〈cīiI |M
∗(0)

f,f̄ ,a1,...
(k, l,p1, . . .)M(0)

f,f̄ ,a1,...
(k, l,p1, . . .)|cīiJ 〉 , (4.10)

where the case with f = q corresponds to the qq̄ final state while the case with f = g

corresponds to the gg final state.

We have checked through direct calculation that the expression for the NNLO soft

function derived using definitions given in eqs. (2.32)–(2.38), i.e. expanding the Wilson

lines and truncating the series at O
(
αs

2
)
, matches exactly the formula (4.10).

To complete the definition of eq. (4.10), we need to specify the colour matrices w
(1)
ij and

w
(2S)
ijkl , following eq. (2.50). The matrices w

(1)
ij , built from products of two colour operators,

are identical with those found in the calculation of the NLO soft function. The matrices

w
(2S)
ijkl , constructed from the anticommutator, involve products of four colour operators,

and appear for the first time at NNLO. The complete set of the w
(1)
ij and w

(2S)
ijkl matrices,

in both the qq̄ and the gg channel, is given in appendix A.

Single-cut diagrams. The single-cut diagrams required for the calculation of the NNLO

soft function for top pair production are shown in figure 9. In this class of graphs, one

gluon is real and the other runs in a loop. Because of the latter, the integrals from the

single-cut graphs produce also an imaginary contribution.
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As in the case of the double-cuts , also the single-cut term derived using the diagram-

matic approach described above can be obtained alternatively by taking the soft limit of

the relevant matrix elements in QCD. This results in the formula [47]

M∗ (1)
g,a1,...(k, p1, . . . )M(0)

g,a1,...(k, p1, . . . ) + c.c.

= −

[
2CA

n∑
i 6=j=1

(eij − eii)Rij〈M (0)(n)|Ti ·Tj |M (0)(n)〉

− 4π
n∑

i 6=j 6=k=1

eikIij〈M (0)(n)|fabcTa
iT

b
jT

c
k|M (0)(n)〉

]
, (4.11)

where

eµi =
pµi
pi · k

, (4.12)

while Rij and Iij correspond to the real and imaginary parts from integration over the loop

momentum and they were obtained in refs. [47, 48]. We notice that a new, antisymmetric

colour structure appears in the imaginary part: ifabcTa
iT

b
jT

c
k = [Ti · Tk,Tj · Tk]. The

corresponding colour matrix w
(2A)
ijk is defined in eq. (2.50c) and its explicit expressions are

given in appendix A.

We have checked through direct calculation, based on definitions given in eqs. (2.32)–

(2.38), that we reproduce the single-cut expression of eq. (4.11). With the latter, we can

then determine the real-virtual part of our soft function

S
(2),g

īi
(qT ) = (4π)4

(
µ2eγE

4π

)2ε

να
(2π)

d
2
−1

Sd−3 q
d−3
T

∫
ddk δ+(k2)

(2π)d−1(n · k)α
δ(qT − kT )

× 〈cīiI |M∗ (1)
g,a1,...(k, p1, . . . )M(0)

g,a1,...(k, p1, . . . ) + c.c. |cīiJ 〉 . (4.13)

Zero-cut diagrams. Purely virtual, two-loop diagrams, do not involve a cut gluon.

Therefore, the measurement function δ(d−2)(f(k, l) − q⊥) does not appear in the corre-

sponding integrals. As a consequence, these integrals are scaleless and vanish in dimen-

sional regularization. Hence, the NNLO soft function for top pair production does not

receive contributions from two-loop diagrams.

4.1 Symmetries between integrals

Our double-cut, soft function integrals have the general structure

Ĩ({pi, pj}) =

∫
ddk ddl δ(+)(k2)δ(+)(l2)h(pi · pj , pi · k, pi · l) δ(d−2)(k⊥ + l⊥ − q⊥) , (4.14)

where pi are the momenta of external particles.

The above integral can depend only on the scalar productions pi ·pj , which are invariant

with respect to Lorentz transformations pµ → Λµν p
ν . To balance the transformation of the

external momenta in the scalar products pi · k and pi · l one needs to transform the gluon

momenta k and l with
(
Λ−1

)µ
ν . This, however, does not leave the integral unchanged

for a general Lorentz transformation because of the transverse delta function appearing
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Figure 10. Gluon vacuum polarization diagram (a) and its cut counterpart (b). Dashed lines

correspond to either a quark, a gluon or a ghost.

in eq. (4.14). Therefore, the integral Ĩ({pi, pj}) is invariant only under a subgroup of the

Lorentz group which involves:

• rescaling of the light-cone components of the momenta k and l compensated by inverse

rescaling of the light-cone components of the external momenta,

• rotations of the above momenta in the transverse plane such that |k⊥ + l⊥| = qT .

Let us denote

p · q usual, d-dimensional scalar product, (4.15)

p ∗ q = p0q0 − p3q3 =
1

2
(p+q− + p−q+) . (4.16)

Given the above reduced Lorentz symmetry, and the fact that the result can only

depend on external momenta, we conclude, that our integral must be a function of pi ∗ pj
and pi,⊥ · pj,⊥ or, equivalently, pi ∗ pj and pi · pj .

As is clear from eqs. (4.3)–(4.9), the integrand is invariant under the rescaling of

p3 = λ3p3 and p4 = λ4p4, for arbitrary λ, which means that the result can only be a

function of ratios of the above scalar products.

Integrals which do not exhibit α poles are, in addition, invariant under rescaling of p1.

But, here, one cannot form a variable of the type p1 · p3/
√
p2

1p
2
3 because p1 is massless. As

a consequence, the only possibility is p3 ∗ p3/p
2
3 = p4 ∗ p4/p

2
4. This is why some abelian

integrals are equal. In the cases of the integrals with α poles, rescaling of p1 is broken by

the analytic regulator: I(λp1) = λ−αI(p1).

4.2 Differential equations approach and bubble diagrams

With an exception of the propagators introduced to regularize rapidity divergences, the

quark, gluon and ghost bubble, as well as part of the triple gluon vertex diagrams depicted

in figure 5, which we shall call “tadpole”, depend only on the momenta k and k + l. This

feature allows one to first integrate over k + l and then solve the integral over k with help

of the differential equation approach [49, 50]. The integration can be performed mostly

analytically, with an exception of a few one-dimensional integrals which we integrate by

numerical methods.
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4.2.1 Vacuum polarization tensor

We consider the process depicted in figure 10 (a), where the particle running in the loop

can be a quark, a gluon or a ghost. The corresponding vacuum polarization integrals read

ImΠµν(α) = Cf
g2

16
eεγEµ2εν2απ−4+ε

∫
ddk

Nµν(k, p)

(k · n)α (p · n− k · n)α k2 (p− k)2
, (4.17)

where Cf = CA for the gluon bubble and the tadpole, while Cf = −TF for the quark

bubble. The numerator Nµν(k, p) depends on the particle in the loop. For the quark loop

we have

Nµν = 8 kµkν − 4kµpν − 4pµkν − 4gµνk2 + 4gµνk · p , (4.18)

for the gluon+ghost loop

Nµν = (2d− 4) kµkν +
2d− 3

2
kµpν +

2d− 5

2
pµkν +

d− 6

2
pµpν

+gµν k2 + gµν k · p+
5

2
gµνp2 , (4.19)

and for the tadpole

Nµν = −4gµνp2 . (4.20)

The directions of momenta are indicated with arrows in figure 10 (a).

All propagators are assumed to be defined with the +iε prescription. The most generic

self-energy tensor that can be formed out the d-vectors p and n, and the metric tensor gµν is

ImΠµν(α) = T00 g
µν + Tpp p

µpν + Tnn n
µnν + Tpn (nµpν + pµnν) . (4.21)

The coefficients Tij can be expressed in terms of two scalar integrals, A0 and B0, through

the procedure of Passarino-Veltman reduction [51]

A
(a)
0 (α1, α2) =

∫
ddk

(n · k)α1 (n · (p+ k))α2 k2
, (4.22)

B
(a)
0 (α1, α2) =

∫
ddk

(−n · k)α1 (n · (p+ k))α2 k2 (p+ k)2
. (4.23)

The integral A0 can be shown to be scaleless and, therefore, it vanishes. Hence, it turns out

that the only two-point integral that we need to determine ImΠµν is B0, and this integral

can be calculated exactly by means of Schwinger parametrization. The result takes the form

B
(a)
0 (α1, α2) = iπ

d
2
Γ (ε)Γ (1− α1 − ε)Γ (1− α2 − ε)

Γ (2− α1 − α2 − 2ε)

(
−p2

)−ε
(n · p)−α1−α2 . (4.24)

Unitarity allows us to obtain also a version of this function which corresponds to the cut

diagram of figure 10 (b)

B
(b)
0 (α1, α2) = −2π

d
2
Γ (ε)Γ (1− α1 − ε)Γ (1− α2 − ε)

Γ (2− α1 − α2 − 2ε)
sin(πε) p−2ε (n · p)−α1−α2 . (4.25)
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Finally, the coefficients in eq. (4.21) take the following forms. For the quark bubble

T00 =
2
(
2(1− ε)2 − α(1− 2ε)

)
(1− ε)(3− 2α− 2ε)

B̃0(α) p2 , Tpp = −4(1− α− ε)
3− 2α− 2ε

B̃0(α) , (4.26)

Tnn =
2α

(1− ε)(3− 2α− 2ε)
B̃0(α)

p4

(n · p)2 , Tpn = − 2α

(1− ε)(3− 2α− 2ε)
B̃0(α)

p2

n · p
,

with

B̃0(α) = −g
2

16
TF

eεγEµ2εν2α

π4−ε B0(α, α) . (4.27)

For the gauge (i.e. gluon + ghost) bubble

T00 =
5− 3α− 3ε

3− 2α− 2ε
B̃0(α) p2 , Tpp =

−5 + 4α+ 3ε

3− 2α− 2ε
B̃0(α) , (4.28)

Tnn =
α

3− 2α− 2ε
B̃0(α)

p4

(n · p)2 , Tpn = − α

3− 2α− 2ε
B̃0(α)

p2

n · p
,

with

B̃0(α) =
g2

16
CA

eεγEµ2εν2α

π4−ε B0(α, α) . (4.29)

And for the tadpole

T00 = −g
2

4
CA

eεγEµ2εν2α

π4−ε B0(α, α) p2 , Tpp = 0 , Tnn = 0 , Tpn = 0 . (4.30)

The function B0(α, α) in eqs. (4.27), (4.29) and (4.30) can be given either by eq. (4.24)

or by eq. (4.25). In our soft function calculation, we will use the latter, cut version of this

two-point integral.

One can check that the results given in this section recover standard expressions for the

gluon vacuum polarization tensor in the limit α→ 0, where, in particular, the coefficients

Tnn and Tpn vanish.

4.2.2 Soft function integrals

The above results for the quark and gauge bubble can now be embedded in the two-Wilson-

line soft function graphs, as depicted in figure 4. The tadpole integrals correspond to the

diagram D6 of figure 5 with the eikonal propagator connecting the two gluons replaced by

a pinch. The integrals that appear have the following structure

I =

∫
ddk δ(k2

T − 1) θ(k2) θ(k0)

(n · k)a1+2α(n̄ · k)a2(v3 · k)a3(v4 · k)a4(k2)a0+ε
. (4.31)

We note that, as in the case of the NLO soft function discussed in section 3, the

integration measure can be written as ddk = dk+dk−d
d−2k⊥ and the k+ and k− components

are integrated from minus to plus infinity. However, the phase space of the integration over

the light-cone momenta is restricted, this time by θ(k2) θ(k0) = θ(k+k− − k2
T ) θ(k+ + k−).

Because of the first theta function, the integration is fixed not to a line, as in the case of

the NLO soft function depicted in figure 3 (left), but to the region defined by the condition
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k+k− > k2
T , which means that k+ and k− have to be both positive or negative. The second

theta function chooses k+ and k− to be both positive. Hence, the d-momentum of the

off-shell gluon which appears in the bubble and the tadpole diagrams is integrated over the

region depicted in figure 3 (right).

We would like to solve the class of integrals from eq. (4.31) by means of the method

of differential equations [49, 50], with help of reverse unitarity [52], which allows one to

turn delta functions into propagators. What prevents us from direct use of the latter is the

θ(k2) function. However, we can trade this theta function for the Dirac delta function at

the cost of introducing an extra integration over a spurious mass, m2. Namely, we multiply

eq. (4.31) by

1 =

∫ ∞
0

dm2δ(k2 −m2) , (4.32)

which leads to

I =

∫ ∞
0

dm2δ(k2 −m2)

∫
ddk δ(k2

T − 1) θ(k2) θ(k0)

(n · k)a1+2α(n̄ · k)a2(v3 · k)a3(v4 · k)a4(k2)a0+ε

=

∫ ∞
0

dm2δ(k2 −m2)

∫
ddk δ(k2

T − 1) θ(m2) θ(k0)

(n · k)a1+2α(n̄ · k)a2(v3 · k)a3(v4 · k)a4(m2)a0+ε

=

∫ ∞
0

dm2

(m2)a0+ε

∫
ddk δ(k2

T − 1) δ(k2 −m2)θ(k0)

(n · k)a1+2α(n̄ · k)a2(v3 · k)a3(v4 · k)a4
. (4.33)

Hence, we obtain

I =

∫ ∞
0

dm2

(m2)a0+ε
Ī(m2) . (4.34)

Now we can use reverse unitarity to turn delta functions in Ī(m2) into propagators, which

leads to the following topology

Ī(a1, a2, a3, a4, a5, a6) = (4.35)

=

∫
ddk

(n · k)a1+2α(n̄ · k)a2(v3 · k)a3(v4 · k)a4(k2 −m2)a5((n · k)(n̄ · k)−m2 − 1)a6
.

We observe that all ε poles, hence those of the soft origin, are generated by performing

the integral over m2 in eq. (4.34) while the function Ī(m2) is finite in the limit ε→ 0.

A set of identities can be derived for the class of integrals defined in eq. (4.35). First

of all, Ī(a1, a2, . . . , a6) obeys the standard integration by parts (IBP) identities∫
ddk

∂

∂kµ
qµĪ(a1, a2, . . . , a6) = 0 , (4.36)

with qµ = nµ, n̄µ, vµ3 , v
µ
4 , k

µ. The set of IBPs consists of five relations. In addition, the

topology Ī exhibits certain redundancies which result in additional identities. One of them

comes from the qT -delta propagator

Ī
(n · k)(n̄ · k)−m2 − 1

(n · k)(n̄ · k)−m2 − 1
= Ī , (4.37)
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which gives

Ī(a1−1, a2−1, a3, a4, a5, a6+1)−(m2+1)Ī(a1, a2, a3, a4, a5, a6+1) = Ī(a1, a2, a3, a4, a5, a6) .

(4.38)

The last identity arises from momentum conservation following the discussion of section 2.1

n+ n̄ = ṽ3 + ṽ4 . (4.39)

Multiplying the above by k leads to

Ī(a1, a2, a3 − 1, a4, a5, a6) + Ī(a1, a2, a3, a4 − 1, a5, a6)−
Ī(a1 − 1, a2, a3, a4, a5, a6)− Ī(a1, a2 − 1, a3, a4, a5, a6) = 0 . (4.40)

Hence, altogether we have seven identities which we use to reduce all the integrals appearing

in the problem to a set of master integrals.

While solving the bubble graphs with the above method, it is important to note that

the d-vector kµ in eq. (4.35) is now massive. Hence, the parametrization from eq. (2.16)

does not hold and it must be replaced with

k = (k0, . . . , |~k| sin θ1 sin θ2, , |~k| sin θ1 cos θ2, |~k| cos θ1) , (4.41)

where

|~k| =
√
k2

0 −m2 . (4.42)

Therefore, the relevant inner products now take the form

n · k = k0 − |~k| cos θ1 , (4.43)

n̄ · k = k0 + |~k| cos θ1 , (4.44)

ṽ3 · k = k0 − βt |~k| sin θ1 cos θ2 sin θ − βt |~k| cos θ1 cos θ , (4.45)

ṽ4 · k = k0 + βt |~k| sin θ1 cos θ2 sin θ + βt |~k| cos θ1 cos θ . (4.46)

We also get that

k0 =
1

2
(n · k + n̄ · k) =

1

2
(ṽ3 · k + ṽ4 · k) . (4.47)

The complete bubble+tadpole-part of the NNLO soft function requires calculation of

the integrals which correspond to the diagrams of figure 4 with ij = 13, 23, 33 and 34,

and similar combinations of pinched diagrams D6 of figure 5. The remaining integrals can

be obtained through the relations:

Ī14(βt) = Ī13(−βt), Ī24(βt) = Ī23(−βt), Ī44(βt) = Ī33(βt) . (4.48)

Since the values of the powers ai which appear in the definitions of the integrals are

governed by the powers in the denominator of eq. (4.17) and the powers of the p2, and

n · p propagators in the expressions for the coefficients Tij , eqs. (4.26)–(4.30), they are the

same the for the quark and gauge bubble, as well as for the tadpole integrals. Therefore,

obtaining a solution for one type of the bubble, allows us to use it for the other type.
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In our calculation, we also used a certain property of the topology (4.35) that allowed us

to express the integrals involved in the Passarino-Veltman reduction of Ī23 with the integrals

coming from tensor reduction of Ī13. Specifically, first of all, we note that the propagator

k2 −m2 in eq. (4.35) in reality represents the delta function from eq. (4.33). Therefore

m2 = k2 = (n · k)(n̄ · k)− k2
T = (n · k)(n̄ · k)− 1 , (4.49)

where the last equality comes from the transverse delta function in (4.33). The above

allows us to write

(n · k) = (m2 + 1)(n̄ · k)−1 . (4.50)

Let us now apply this to the class of graphs of the Ī23 type, which contain linear

propagators n̄ · k and v3 · k

Ī(α, βt; 0, a2, a3, 0, 1, 1) =

∫
ddk

(n · k)2α(n̄ · k)a2(v3 · k)a3(k2 −m2)((n · k)(n̄ · k)−m2 − 1)

=
1

(m2 + 1)2α

∫
ddk

(n̄ · k)−2α+a2(v3 · k)a3(k2 −m2)((n · k)(n̄ · k)−m2 − 1)

=
1

(m2 + 1)2α

∫
ddk

(n · k)−2α+a2(v4 · k)a3(k2 −m2)((n · k)(n̄ · k)−m2 − 1)

= Ī(−α,−βt; a2, 0, a3, 0, 1, 1) . (4.51)

In the second line we simply used the relation (4.50). In the third line we changed ~k → −~k,

and in the fourth line we used the property that the propagators v3 · k and v4 · k can be

turned to each other by the replacement βt → −βt.
All in all, we see that graphs of the type Ī23 can be expressed as slightly modified

versions of Ī13. Hence, we effectively need to calculate the following set integrals

Ī(α, βt; 1, 0, 1, 0, 1, 1) , Ī(α, βt; 1, 0, 0, 1, 1, 1) ,

Ī(α, βt; 0, 0, 2, 0, 1, 1) , Ī(α, βt; 2, 0, 1, 1, 1, 1) ,

Ī(α, βt; 2, 0, 2, 0, 1, 1) , Ī(α, βt; 0, 0, 1, 1, 1, 1) ,

Ī(−α, βt;−1, 0, 0, 1, 1, 1) , Ī(−α, βt; 1, 0, 0, 1, 1, 1) .

(4.52)

We start by reducing them with help of IdSolver [53] — a C++ implementation of

the Laporta algorithm [54], which depends on FORM [55] and Fermat [56]. As a result,

we obtain five master integrals, for which we then derive a set of differential equations with

respect to the variable βt. The structure of the set is such that the general solutions for

the masters can be obtained iteratively as a series in α and ε.

In fact, we only had to solve two systems of differential equations: one for three masters

from the reduction of Ī13 and the other for two masters from the reduction of Ī34. The

reduction of Ī33 leads to master integrals identical to those found from reduction of Ī13.

The same masters can be used to determine Ī23 as discussed above.

The expressions for the boundary integrals, corresponding to βt = 0, are easily calcu-

lated through direct integration and this allows us to determine the special solutions. As

a last step, we integrate the expressions for the functions from eq. (4.52) over the spurious

mass m2, following eq. (4.34). Except for a few one-dimensional integrals which appear at

order ε1 in momentum space, most of the result is given in an analytic form.
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4.3 Real-virtual diagrams

We now turn to the class of single-cut diagrams. As shown in figure 9, these diagrams

involve a gluon loop as well as a real gluon. Following ref. [47], we introduce the tree-level,

UV-renormalized, one-loop soft currents

Jµ(0)
a =

n∑
i=1

T ai e
µ
i , (4.53)

Jµ(1)
a = ifabc

n∑
i 6=j=1

T bi T
c
j

(
eµi − e

µ
j

)
g

(1)
ij (ε, k, pi, pj) , (4.54)

where eµi is the eikonal propagator defined in eq. (4.12).

The function gij , which is symmetric under the exchange i ↔ j, has been obtained

in a concise form in ref. [48]. The soft current Jµa corresponds to the sum of all parts

of diagrams shown in figure 9 to the left of the cut. It can therefore be used directly to

construct the single-cut contribution to our soft function of interest by attaching the gluon

with momentum p to the Wilson lines in a Born-level amplitude. As a result, we obtain

S1-cut
īi =

2π

αs
(4π)4να

(
eγE

4π

)3ε (2π)
d
2
−1

Sd−3 q
d−3
T

4∑
k=1

4∑
i 6=j=1

〈cīiI |ifabcT ak T bi T cj |cīiJ 〉 (4.55)

×
∫

ddp

(2π)d−1

δ+(p2) δ(pT − qT )

(n · p)α pi · p

(
pi · pk
pi · p

− pj · pk
pj · p

)
g

(1)
ij (ε, p, pi, pj) + c.c. ,

where [48]

g
(1)
ij (ε, p, pi, pj) = −1

2

αs
2π

(
4π

eγE

)ε ( 2(pi · pj)µ2

2(pi · p)2(pj · p)

)ε [
1

ε2
+

1∑
n=−1

εn
(
R

(n)
ij + iπI

(n)
ij

)]
.

(4.56)

The real and imaginary coefficients, R
(n)
ij and I

(n)
ij , were derived in refs. [47, 48], and they

depend solely on the rescaling-invariant variables

αi ≡
m2
i 2(pj · p)

2(pi · pj)2(pi · p)
, αj ≡

m2
j 2(pi · p)

2(pi · pj)2(pj · p)
. (4.57)

From eq. (4.56), and taking into account the expansion of the Fourier Transform coefficient

of eq. (2.61), we observe that the single-cut contributions to the position-space NNLO

soft function start at the order 1/ε3 for the real part and 1/ε2 for the imaginary part.

As we shall see in section 5, the 1/ε3 term cancels between the single and the double-cut

contributions.

4.3.1 Diagrammatic configurations

A range of different configurations of diagrams contribute to eq. (4.55). If the gluons

connect three massless Wilson lines, the corresponding integral is scaleless and vanishes.

However, when two massless and one massive Wilson lines are connected, the integral does

not vanish. The soft current for massless Wilson lines takes a very simple form and it has
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Figure 11. Example of the three-Wilson-line, single-cut diagrams that yield non-vanishing, purely

imaginary result.

been calculated in ref. [57]. Connecting this current to a massive Wilson line leads to an

expression which can be integrated analytically.

Another interesting subclass of single-cut diagrams is formed by two-Wilson line con-

figurations with gluons attached to two massless and one massive leg (e.g. 131). These

integrals correspond to case 1 of ref. [47] and they exhibit rapidity singularities. Finally,

we also need to include diagrams with three distinct Wilson lines, which corresponds to

case 3 of ref. [47].

Altogether, the single-cut part of the soft function receives contributions from ten

independent two-Wilson line and ten independent three-Wilson line integrals. All the

other integrals can be obtained through symmetry relations.

In particular, for the two-Wilson line diagrams we observe the symmetry Di,ji = Di,ij ,

where the comma corresponds to the cut in the diagram. Swapping i ↔ j on one side

of the cut has no effect as the colour and the kinematic parts both produce minus signs

which balance each other. One can also show that Dij,i = D∗i,ij , which has an important

consequence as it implies that the two-Wilson line, single-cut diagrams are purely real.

We also find symmetries for the three-Wilson line diagrams. First of all, swapping

particles on one side of the cut has similar effect to the one described above for the two-

Wilson-line case, namely Dk,ji = Dk,ij , which, again, arises because changes in signs in

the colour and the kinematic part balance each other. The most important relation, how-

ever, reads Dij,k = −D∗k,ij , and it means that the three-Wilson line, single-cut diagrams

are purely imaginary. In fact, this class of diagrams, constitutes the only source of the

imaginary part of the entire NNLO soft function for top pair production.

4.3.2 Three-particle diagrams with two massless and one massive Wilson lines

Let us consider a special case of three-Wilson-line diagrams which involve two massless

and one massive particle. Two such diagrams are depicted in figure 11. Using the notation

introduced above, we can write expressions corresponding to those two diagrams as

D12,3 = ifabc T a3 T
b
1T

c
2 (eµ1 − e

µ
2 ) eµ3 g

(1)
12 , (4.58)

D3,12 = −ifabc T a3 T b1T c2 (eµ1 − e
µ
2 ) eµ3 g

(1) ∗
12 . (4.59)

Hence, their sum reads

D12,3 +D3,12 = ifabc T a3 T
b
1T

c
2 (eµ1 − e

µ
2 ) eµ3

(
g

(1)
12 − g

(1) ∗
12

)
. (4.60)
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We see that the result is purely imaginary and that, contrary to the case of double-cut

diagrams, it does not vanish as, here, the antisymmetry of the colour factor under the

exchange 1↔ 2 is compensated by the antisymmetry of the kinematic part.

We note that our case is different from the one of ref. [58], which considers infrared

singularities of QCD amplitudes and where it is argued that all three-particle structures

with two massless and one massive Wilson lines must vanish. The latter happens because

ref. [58] discusses amplitudes, i.e. objects in which all Wilson lines originate from the same

vertex and all soft gluons are virtual. On the contrary, in our real-virtual diagrams, the

Wilson lines meet at two vertices and one gluon is cut.

To understand better why the contribution from the diagrams of figure 11 does not

vanish, it is useful to perform an analysis similar to the one of ref. [59]. For that purpose, we

use the soft current for massless particles with momenta p1,2 = (1, 0, 0,±1), which reads [57]

J
a(1)
2P (p1, p2; p, ε) = − 1

16π2
ifabcT

b
1T

c
2 εµ(p)

(
pµ1
p1 · p

− pµ2
p2 · p

)
×
(

4πp1 · p2

2 p1 · p p2 · p e−iπ

)ε 1

ε2
Γ 3(1− ε)Γ 2(1 + ε)

Γ (1− 2ε)
. (4.61)

Embedding the above in the integral over p gives

D12,3 ∝ ifabcT a3 T b1T c2
1

ε2
Γ 3(1− ε)Γ 2(1 + ε)

Γ (1− 2ε)

×
∫
ddp

δ+(p2)δ(d−2)(p⊥ − 1)

p+p3− + p−p3+ − p⊥ · p3⊥

1

pα+

(
p3+

p+
− p3−

p−

)(
4π

p+ p− e−iπ

)ε
. (4.62)

Let us now apply the change of variables, motivated by ref. [59]

(p+, p−, p⊥)→ (ξp−, ξ
−1p+, p⊥) with ξ = p3+/p3− . (4.63)

Our integral becomes

D12,3(α) ∝ ifabcT a3 T b1T c2
1

ε2
Γ 3(1− ε)Γ 2(1 + ε)

Γ (1− 2ε)

×
∫
ddp

δ+(p2)δ(d−2)(p⊥ − 1)

p+p3− + p−p3+ − p⊥ · p3⊥
ξ−α

1

pα−

(
p3−
p−
− p3+

p+

)(
4π

p+ p− e−iπ

)ε
= −ξ−αD12,3(−α) . (4.64)

Hence, we see that the above integral would exhibit scaling w.r.t. ξ, and vanish, if only

there was no α regulator. However, without the regulator, the integral is divergent. Hence,

we conclude that the contribution from tree-particle graphs with two massless and one

massive Wilson lines does not vanish.

This result only affects the imaginary part of the soft function. The tree-particle

graphs of the type of 123 do not contribute to the real part as there will always be a

complex-conjugate diagram with opposite sign due to colour operator.

The above conclusion does not invalidate the analysis of ref. [59], where it is claimed

that the massless-massless-massive diagrams vanish because of the scaling property (4.63).
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The key difference between our case and the one discussed there is that, in ref. [59], purely

virtual diagrams are considered. In those diagrams, rapidity divergences are regulated by

dimensional regularization [41]. Hence, no α regulator is required and the ξ scaling of

eq. (4.63) holds.

The key element of our calculation, which prevents the diagram 123 from vanishing, is

the transverse delta function. As explained in ref. [41] without this function, integration

over the transverse momentum provides a factor k−ε− which regularizes rapidity divergences,

hence there is no need for the regulator α. However, when the transverse delta is present,

it fixes q⊥ to some external value and the integration over q⊥ does not provide a regulator

of light-cone singularities. Hence, we need to introduce the analytic regulator α.

4.3.3 Method of integration

To evaluate the integrals in eq. (4.55) we proceed through the following set of steps. We

start from integration over the pT and p− components, which is straightforward as, in

the process, we use the two delta functions δ(p2) and δ(pT − 1). Then, we are left with

a nontrivial integration over p+ and cosφ , where φ is the azimuthal angle between v3⊥
and p⊥. The remaining angular variables do not appear in the integrand and they only

produce a surface term.

To deal with the nontrivial 2-dimensional integrals, we remap the variables p+ and φ

to a unit hypercube

p+ =
x

1− x
, cosφ = 1− 2 cos2 πy

2
. (4.65)

The second transformation is introduced for efficiency reasons as it eliminates integrable

singularity in the azimuthal integration. The first transformation compactifies the plus

component of the gluon momentum. This is useful as our integrals are in general divergent

when integrated over p+. The divergence comes from rapidity singularities and that is why

we have introduced the analytic regulator in eq. (4.55). To perform the integral over x, we

use the Laurent expansion

1

x1+aα
= − 1

aα
δ(x) +

[
1

x1+aα

]
+

, where

∫ 1

0
dx

[
1

x1+aα

]
+

f(x) =

∫ 1

0
dx

f(x)− f(0)

x1+aα
,

(4.66)

which makes the divergences explicit by turning them in α poles. All the coefficients of α

expansion are finite and take forms of one and two-dimensional integrals which we perform

numerically with help of the Cuba package [60, 61]. The integration is fast, hence, we are

able to achieve arbitrary accuracy.

4.4 Sector decomposition approach and real-real diagrams

The double-cut integrals take the following form

Ĩ =

∫
ddk

(2π)d−1

ddl

(2π)d−1

δ+(k2)δ+(l2) δ(|k⊥ + l⊥| − 1)

(n · k)α(n · l)α
×Graph(ni, k, l) . (4.67)

Two issues arise when one attempts to evaluate them. First of all, they are divergent

when integrated over a subset of variables, and the pattern of divergencies is complex, with
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many overlapping singularities. Secondly, the remaining part of the integration, where

divergencies do not appear, consists of complicated azimuthal integrals and care is needed

to perform them efficiently.

Because of these two separate challenges, it is convenient to factorize the graph-

dependent part as

Graph(ni, k, l) = (Graph(ni, k, l)|βt=0)︸ ︷︷ ︸
boundary part

(
Graph(ni, k, l)

Graph(ni, k, l)|βt=0

)
︸ ︷︷ ︸

weight

≡ I(ni, k, l)W(ni, k, l) .

(4.68)

For any graph, the boundary part is not only independent of βt but also of all the angles

except the angle between transverse components of gluons d-momenta θ1 = ^(k⊥, l⊥). In

other words, all divergences are present already in the boundary integrals and the remaining

integration over the angular variables which appear in the weight is finite.

Our strategy of evaluating the double-cut integrals will therefore consist of two ele-

ments: (i) use of sector decomposition to disentangle overlapping singularities and cast

them into a set of α and ε poles, (ii) supplementing the sector-decomposed integrals with

carefully parameterized weights and integrating them numerically with Cuba.

4.4.1 Integration of the on-shell and transverse delta functions

The momenta of the heavy quarks can be written using the following parametrization

ṽ3 = (1, βt sin θ v̂3⊥, βt cos θ) , (4.69)

ṽ4 = (1,−βt sin θ v̂3⊥,−βt cos θ) = (1,−~v3) , (4.70)

where v̂3⊥ is a unit vector in d− 2-dimensional space, cf. eq. (2.16).

As discussed in section 4.1, the integrand in eq. (4.67) can only depend on the scalar

products between k⊥, l⊥ and v3⊥. Due to rotational invariance of these scalar products,

one can always change the frame in the transverse space such that

k⊥ = |k⊥| (1, 0, 0,~0d−5), (4.71a)

l⊥ = |l⊥| (cos θ1, sin θ1, 0,~0d−5), (4.71b)

v3⊥ = |v3⊥| (cosφ1, sinφ1 cosφ2, sinφ1 sinφ2,~0d−5). (4.71c)

Since the momenta of the incoming particles are light-like and v4⊥ = −v3⊥, the soft

function integrals can only depend on v2
3⊥. Therefore, nothing is sensitive to the position

of the versor v̂3⊥. Hence, the integral (4.67) can be written as

Ĩ =
1

Sd−3

∫
dΩd−3(v̂3⊥)

∫
ddk

(2π)d−1

ddl

(2π)d−1

δ+(k2)δ+(l2)δ(|k⊥+ l⊥|−1)

(n ·k)α(n · l)α
×Graph(ni,k, l) ,

(4.72)
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where the surface of unit-sphere, Sd−3, is given by eq. (2.42), and the differential measures

read

ddk = dk+dk−dk⊥k
d−3
⊥ dΩ(χ1, χ2, . . . , χd−3), (4.73a)

ddl = dl+dl−dl⊥l
d−3
⊥ dΩ(θ1, θ2, . . . , θd−3), (4.73b)

dΩd−3(v̂3⊥) = dΩ(φ1, φ2, . . . , φd−3) . (4.73c)

Because we use the parametrization (4.71), all the angles except θ1, φ1 and φ2 can be

integrated trivially. Let us now replace the angle between the transverse components of

the two gluons’ momenta, θ1, by

η =
1− cos θ1

2
. (4.74)

Then, the whole measure takes the form

dΩd−3(v̂3⊥) ddk ddl = (4.75)

= 4−εS1−2ε S−2ε k
1−2ε
T l1−2ε

T

(
(1− η)η

)− 1
2
−ε
dk+dk−dl+dl−dkT dlT dη dΩ(φ1, φ2, . . . , φd−3) ,

where we used eqs. (2.40), (4.73) and (4.74). After performing the graph-independent

integrations over k−, l− and η, where the last quantity gets fixed to

η =
k2
T + l2T + 2kT lT − 1

4kT lT
, (4.76)

the integral (4.67) turns into

Ĩ =

∫
dk+ dl+ dkT dlT dΩ(φ1,φ2, . . . ,φd−3)k−α+ l−α+ k1−2ε

T l1−2ε
T (4.77)

×
{[

1−(kT − lT )2
][

1−(kT + lT )2
]}− 1

2
−ε
I(ni,k+, l+,kT , lT )W(ni,k+, l+,kT , lT ,φ1,φ2,βt) ,

and the delta functions generate the following relations

k− =
k2
T

k+
, l− =

l2T
l+
, (4.78)

and

|kT − lT | ≤ 1 ∧ kT + lT ≥ 1 . (4.79)

The last pair of inequalities defines the integration region in the (kT , lT ) plane, which is

depicted in figure 12 (left). The first inequality corresponds to the two (red) solid lines,

while the second inequality corresponds to the (blue) dotted line.

4.4.2 Divergencies

The non-integrable divergences of the integral (4.77) come from the graph-dependent part.

Since the weight is finite, the divergences are fully determined by the boundary integrand

I(ni, k+, l+, kT , lT ). Hence, each integral can in principle diverge due to integration over

the four independent variables: k+, l+, kT and lT , and some of the limits are coupled due

to the constraint of eq. (4.79). The singularities of the integral Ĩ correspond to vanishing

of the propagators in I, and this can happen in the following situations.
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Figure 12. The integration region in the transverse coordinates before (left) and after (right) the

transformation of variables from Step 1 discussed in section 4.4.3.

Propagators of the incoming particles. The incoming-particle propagators, n·k, n̄·k,

n·l and n̄·l, produce divergencies in the limits in which the plus or minus components of the

momenta of gluons tend to zero or infinity. This occurs in three regions of gluons’ momenta

• Rapidity region, where the momenta scale as (λ±1, λ∓1, 1). In terms of the indepen-

dent variables, the rapidity divergencies occur when

k+ → 0 or k+ →∞ or l+ → 0 or l+ →∞ . (4.80)

• Soft region, with the momenta scaling like (λ, λ, λ). This corresponds to either

k+ → 0, kT → 0 or l+ → 0, lT → 0 . (4.81)

We note that, when one gluon becomes soft, transverse momentum of the other gluon

tends to one due to the constraint (4.79).

• Collinear region, characterized by the scaling (1, λ2, λ). In terms of the independent

variables, the collinear singularity occurs when

kT → 0 or lT → 0 . (4.82)

Similarly to the case of the soft limit, because of the constraint (4.79), vanishing of

the transverse momentum of one gluon requires that the transverse momentum of

the other gluon tends to one, i.e. the second gluon cannot be soft or collinear to the

incoming parton. The reason why the collinear limit leads to vanishing of one of the

incoming-particle propagators is because of the relation (4.78).

Propagators of the outgoing particles. The propagators involving top or anti-top

quark, v3 · k, v4 · k, v3 · l and v4 · l, vanish only in the soft region. In terms of the

independent variables, the latter corresponds to the limits given in eq. (4.81) above.
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To see that the massive-particle propagators can produce divergencies only in the soft

region, let us use the parametrization of eqs. (4.71) and the relation (4.78). Together they

give

v3 · k =
v3+k−

2
+
v3−k+

2
− v3⊥ · k⊥

=
1 + βt cos θ

2

k2
T

k+
+

1− βt cos θ

2
k+ − βt sin θ kT . (4.83)

Since βt ≤
√

1−m2
t /ŝ < 1 and −1 ≤ cos θ ≤ 1, the coefficients in front of the components

of gluon’s d-momentum in the first two terms in eq. (4.83) can never vanish. The collinear

region corresponds to kT → 0 and finite k+, and we see that the propagator stays finite

in this limit. Similarly, the propagator does not vanish when k+ → 0 or k+ → ∞, while

kT 6= 0, which is the region of small/large rapidities of the gluon. Hence, the only way to

make the above propagator vanish is to send k+ and kT to zero simultaneously, and this

corresponds to the soft limit. The above proof can be repeated for the other propagators

of the outgoing particles.

Exact gluon propagator. Double-cut diagrams with the triple gluon vertex contain

the propagator (k + l)2 in which the momenta of the gluons are commensurate. After the

integration over k−, l− and η is performed, this exact propagator reads

(k + l)2 = 2 k · l = −1 +
k+ + l+

k+
k2
⊥ +

k+ + l+

l+
l2⊥ . (4.84)

Within the domain of integration defined in figure 12 (left), the above propagator vanishes

when

kT →
k+

k+ + l+
and lT →

l+

k+ + l+
. (4.85)

This limit corresponds to the two gluons with momenta k and l becoming collinear. Note

that, due to condition (4.79), only one of the two gluons can have vanishing transverse

momentum. One notices that the limit (4.85) is different with respect to the cases discusses

earlier. While the divergencies of the eikonal propagators happen only at the edges of the

integration domain, i.e. 0 or ∞ (endpoint singularities), the exact propagator vanishes

inside the integration region, on the manifold defined by eq. (4.85).

4.4.3 Mapping procedure

We would like to transform the integration region in the (k+, l+, kT , lT ) space into a unit

hyper-cube in the space of variables {xi}, and, if necessary, split it such that each of

the resulting integrals
∫ ∏

i dxif({xi}) has singularities only when one or more variables

xi → 0. We achieve the above in the following four steps:

Step 1. The transverse variables (kT , lT ) are transformed to new variables (xT , yT ) with

the replacements

kT =
1 + yT − xT yT

2(1− xT )
, lT =

1− yT + xT yT
2(1− xT )

, (4.86)
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Figure 13. Manifold where the double-cut integrals with triple-gluon vertex become divergent. It

corresponds to the limit of the two gluons k and l becoming collinear to each other.

and the inverse transformation reads

xT = 1− 1

kT + lT
, yT = kT − lT . (4.87)

This results in change of the integration region from the one shown in figure 12 (left) to

that of figure 12 (right). The latter corresponds to

0 ≤ xT ≤ 1 ∧ −1 ≤ yT ≤ 1 . (4.88)

The collinear divergences now occur in the limits

xT → 0, yT → −1 or xT → 0, yT → 1 , (4.89)

and the soft divergences correspond to

k+ → 0, xT → 0, yT → −1 or l+ → 0, xT → 0, yT → 1 . (4.90)

The limit of two gluons becoming collinear, eq. (4.85), in the new variables happens when

xT → 0, yT →
k+ − l+
k+ + l+

. (4.91)

The last divergence occurs on a manifold inside the integration region as depicted in fig-

ure 13.

Step 2. In order to transform the manifold singularity (4.91) into an endpoint singularity,

we split the integration region in the variable yT precisely on the manifold of figure 13

I =

∫ ∞
0
dk+

∫ ∞
0
dl+

∫ 1

0
dxT

∫ 1

−1
dyT Ī(k+, l+,xT ,yT )

=

∫
dk+dl+dxT

∫ c(k+,l+)

−1
dyT Ī(k+, l+,xT ,yT )+

∫
dk+dl+dxT

∫ 1

c(k+,l+)
dyT Ī(k+, l+,xT ,yT )

≡ Id+Iu , (4.92)
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where

c(k+, l+) =
k+ − l+
k+ + l+

. (4.93)

Now, we use two different parametrizations

yT =
k+− l+ +2l+ȳT

k+ + l+
, ȳT =

yT −c(k+, l+)

1−c(k+, l+)
=
k+(−1+yT )+ l+(1+yT )

2l+
for Iu ,

(4.94)

and

yT =
k+− l+−2k+ȳT

k+ + l+
, ȳT =

yT −c(k+, l+)

−1−c(k+, l+)
=
k+(1−yT )− l+(1+yT )

2k+
for Id .

(4.95)

Hence, we obtain

Id =

∫ ∞
0
dk+

∫ ∞
0
dl+

∫ 1

0
dxT

∫ 1

0
dȳT Īu(k+, l+, xT , ȳT ) , (4.96a)

Iu =

∫ ∞
0
dk+

∫ ∞
0
dl+

∫ 1

0
dxT

∫ 1

0
dȳT Īd(k+, l+, xT , ȳT ) . (4.96b)

With the above changes, the soft singularities happen at

k+ → 0, xT → 0 or l+ → 0, xT → 0 , (4.97)

in both integrals, Iu and Id, and for any value of ȳT . The case in which a gluon is collinear

to the incoming parton corresponds to

ȳT → 1 , (4.98)

for both integrals. We note that in the above limit, for Iu, it is the gluon with momentum

l that becomes collinear, whereas, for Id, the limit (4.98) corresponds to the gluon with

momentum k being collinear to the beam.

Finally, the limit of two gluons becoming collinear to each other, eq. (4.85), in the new

variables corresponds to

xT → 0, ȳT → 0 , (4.99)

for both Iu and Id.

Step 3. We see that the integrals (4.96) can be divergent at both ends in the variable

ȳT . In order to move all singularities to the limit xi → 0, we split Iu and Id at ȳT = 1
2

I{u,d} =

∫ 1

0
dȳT Ĩ{u,d} =

∫ 1
2

0
dȳT Ĩ{u,d} +

∫ 1

1
2

dȳT Ĩ{u,d} ≡ I{u,d}0 + I{u,d}1 . (4.100)

Then, we apply the following transformations

ỹT = 2(1− ȳT ) , ȳT = 1− ỹT
2
, for I{u,d}1 , (4.101)

and

ỹT = 2ȳT , ȳT =
ỹT
2
, for I{u,d}0 . (4.102)
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At this point, we have the following singularities:

soft k+ → 0, xT → 0 or l+ → 0, xT → 0 Iu0, Iu1, Id0, Id1 ,

collinear xT → 0, ỹT → 0 Iu1, Id1 ,

k ‖ l xT → 0, ỹT → 0 Iu0, Id0 .

(4.103)

Step 4. In the last step, we compress the ranges of the k+ and l+ integrals by the

transformation

k+ =
x

1− x
, l+ =

y

1− y
, (4.104)

whose inverse reads

x =
k+

1 + k+
, y =

l+
1 + l+

. (4.105)

Hence, finally, our integral is a sum of four contributions

I = Id0 + Id1 + Iu0 + Iu1 . (4.106)

4.4.4 Integrating the weight

As a final step, we integrate the weight over the azimuthal angles of v3: φ1 and φ2. In

order to map the angular variables into a unit hypercube, we first write the integration

measure as∫
Sd−3

1

dΩ(φ1, φ2, . . . , φd−3) =

∫
S1−2ε

1

dΩ(φ1, φ2, . . . , φ1−2ε)

=

∫ 1

−1
d cosφ1 sin−1−2ε φ1

∫
S−2ε

1

dΩ(φ2, . . . , φ1−2ε) . (4.107)

Then, we represent the remaining measure as [10]∫
S−2ε

1

dΩ(φ2, . . . , φ1−2ε) =
(4π)−εΓ (1− ε)
Γ (1− 2ε)

(4.108)

×
∫ +1

−1
d cosφ2

(
δ(1− cosφ2) + δ(1 + cosφ2)− 2ε

4εΓ (1− 2ε)

Γ 2(1− ε)

[
1

(1− cos2 φ2)1+ε

]
+

)
,

where we used the fact that our integrand is independent of the angles φ3, . . . , φ1−2ε. The

plus distribution is defined as∫ +1

−1
d cos ρ

[
1

(1− cos2 ρ)α

]
+

f(cos ρ) (4.109)

=

∫ 0

−1
d cos ρ

f(cos ρ)− f(−1)

(1− cos2 ρ)α
+

∫ +1

0
d cos ρ

f(cos ρ)− f(+1)

(1− cos2 ρ)α
.

The integral over the weight now reads

1

S1−2ε

∫
S1−2ε
1

dΩ(φ1,φ2, . . . ,φ1−2ε)W(βt,θ,φ1,φ2) =
(4π)−εΓ (1−ε)
S1−2εΓ (1−2ε)

∫ 1

−1
dcosφ1 sin−1−2εφ1 (4.110)

×

[∫ 1

0

dcosφ2

(
δ(1−cosφ2)W(βt,θ,φ1,0)−2ε

4εΓ (1−2ε)

Γ 2(1−ε)
W(βt,θ,φ1,φ2)−W(βt,θ,φ1,0)

(1−cos2φ2)
1+ε

)

+

∫ 0

−1
dcosφ2

(
δ(1+cosφ2)W(βt,θ,φ1,π)−2ε

4εΓ (1−2ε)

Γ 2(1−ε)
W(βt,θ,φ1,φ2)−W(βt,θ,φ1,π)

(1−cos2φ2)
1+ε

)]
.
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Figure 14. Quark bubble contribution to the NNLO soft function in the qq̄ channel. The plots

correspond to three independent entries of the 2×2 matrix determined for the fixed values of θ = π/4

and L⊥ = 0. We see perfect agreement between RG prediction and the direct calculation obtained

with two independent methods: differential equations (DE) and sector decomposition (SD).

To map this integral to a unit hypercube, we use the following changes of variables

cosφ1 = 1− 2 cos2(χπ/2), cosφ2 = 1− η2, sin2 φ2 = η2(2− η2) , (4.111)

in the second

cosφ1 = 1− 2 cos2(χπ/2), cosφ2 = η2 − 1, sin2 φ2 = η2(2− η2) , (4.112)

and the third line, respectively. From these, one gets

1

S1−2ε

∫
S1−2ε

1

dΩ(φ1, φ2, . . . , φ1−2ε)W(βt, θ, φ1, φ2) = R
∫ 1

0
dχ sin−2ε(πχ) (4.113)

×
[∫ 1

0
dη2

(
4−εδ(1− cosφ2)W(βt, θ, φ1, 0)− ε

R
W(βt, θ, φ1, φ2)−W(βt, θ, φ1, 0)

(1− cos2 φ2)1+ε

)
+

∫ 1

0
dη2

(
4−εδ(1 + cosφ2)W(βt, θ, φ1, π)− ε

R
W(βt, θ, φ1, φ2)−W(βt, θ, φ1, π)

(1− cos2 φ2)1+ε

)]
,

where we define the prefactor

R =
Γ (1− ε)2

2Γ (1− 2ε)
. (4.114)

5 NNLO soft function: results

The bare NNLO soft function for the top pair production has the following structure

S
(2)
bare(L⊥, βt, θ) =

1

ε2
S(2,−2)(L⊥, βt, θ) +

1

ε
S(2,−1)(L⊥, βt, θ) + S(2,0)(L⊥, βt, θ) . (5.1)

Because it encodes single and double-soft limit, it exhibits at most 1/ε2 singularity. How-

ever, higher order ε poles, as well as α poles, appear at intermediate stages of the calcula-

tion, but they cancel in the final combination.
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Figure 15. Quark bubble contribution to the NNLO soft function in the gg channel. The plots

correspond to six independent entries of the 3×3 matrix determined for the fixed values of θ = π/4

and L⊥ = 0. We see perfect agreement between RG prediction and the direct calculation obtained

with two independent methods: differential equations (DE) and sector decomposition (SD).

We have checked that, in our calculation, all α poles, including ε/α, as well as 1/ε4

vanish within each colour structure defined in eq. (2.50). As for the 1/ε3 pole, it comes out

with a non-zero coefficient in the single-cut and in the double-cut contributions. The value

of the 1/ε3 coefficient is however identical, in those two pieces up to a sign. Hence, in the

final combination, this pole does not appear in our result. We have demonstrated that,

when all contributions to the bare NNLO soft function are included, following eq. (4.1) the

soft function indeed shows at most 1/ε2 singularity.

As discussed in section 2.8, the pole part of the soft function, i.e. the functions

S(2,−2)(L⊥, βt, θ) and S(2,−1)(L⊥, βt, θ) defined in eq. (5.1), as well as the L⊥-dependent

part of the finite contribution, S(0,0)(L⊥, βt, θ), can be completely determined from the

renormalization group. The only term that has to be obtained through direct calculation

is the L⊥-independent part of S(2,0)(L⊥, βt, θ). In spite of the above, it is worth calculating

all the terms appearing in eq. (5.1) and use the redundant ones for cross checks of our

framework against RG prediction.

As much as the comparison of the results from direct calculations to the prediction of

the renormalization group is valuable, it is limited by the fact that RG misses the constant
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Figure 16. Real part of the NNLO soft function in the qq̄ channel. The figure shows three

independent entries of the 2× 2 matrix determined for the fixed values of θ = π/4 and L⊥ = 0. All

the points come from our direct calculation at different orders in ε expansion. The two results at

order ε0 correspond to the finite part of the NNLO soft function before and after renormalization.

The RG predictions for the pole part are shown as red (dashed) and green (solid) lines. The points

for order ε0 are connected by straight lines for better visibility.

part of S(2,0)(L⊥, βt, θ). In our calculation, we are however able to cross-check this missing

component as well since part of our soft function, namely the one corresponding to the

bubble and tadpole diagrams, can be determined with two completely different methods:

differential equations and sector decomposition.

Figures 14 and 15 show the results for the quark bubble part of the soft function, re-

spectively in the qq̄ and the gg channel, obtained from the renormalization group and from

the direct calculation with differential equations and with sector decomposition. The quark

bubble contribution can be singled out from the RG prediction as it is proportional to nf .

The plots correspond to three independent entries of the 2× 2 matrix and six independent

entries of the 3 × 3 matrix, determined for the fixed values of θ = π/4 and L⊥ = 0, and

shown as a function of βt. We see perfect agreement between the two sets of points as well as

between the points and the RG prediction. The error bars in the result from sector decom-

position come from the uncertainties of numerical integration. We have performed similar

comparison of the results from differential equations and sector decomposition for the gauge

bubble and for the tadpole, in both channels, each time finding an excellent agreement.

This constitutes a very strong validation of our computational framework. It tests all

the elements of the sector decomposition method and tools, discussed in section 4.4, up to

the finite order in ε. Even though the bubble graphs are easier to solve analytically than

the rest of the double-cut graphs, they pose a serious challenge to the sector decomposition

approach due to non-trivial numerators. Therefore, the comparison shown in figures 14

and 15 makes up a highly-nontrivial test of the entire framework used in the calculation of

the NNLO soft function.

We are now in a position to present the complete NNLO soft function for top quark

pair production at small qT . The results for the real part of the independent entries of the

matrices in the qq̄ and gg channel, at fixed values of θ = π/4 and L⊥ = 0, are given in
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Figure 17. Real part of the NNLO soft function in the gg channel. The figure shows six independent

entries of the 3× 3 matrix. All details as in figure 16.

figures 16 and 17, respectively. The points correspond to our direct calculation at orders

1/ε2, 1/ε and ε0.

For the poles, we also show, as lines, predictions from the renormalization group. We

see that the two sets of predictions agree perfectly.

For the finite term, we show two sets of points: the one before and the one after

renormalization. They differ by a finite function following the formula (2.74). We notice

that the difference is often substantial.

As discussed in section 4.3, due to the real-virtual contributions, the NNLO soft func-

tion contains also an imaginary part. As follows from eqs. (A.9) and (A.10), discussed

in appendix A, the imaginary part of the soft function matrix has only one independent

element. The corresponding results in the qq̄ and gg channel are given in figure 18. As in

the previous cases, the predictions were obtained for the values of θ = π/4 and L⊥ = 0, as

functions of βt. Like in the case of the real part, we see excellent agreement between the

renormalization group predictions and the direct calculation for the pole part.

6 Summary

A second, independent calculation of the NNLO correction for top quark pair production

in proton-proton collisions would be of great value. One of the methods that could be
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Figure 18. Imaginary part of the NNLO soft function in the qq̄ channel (left) and in the gg

channel (right). The figures show the only one independent structure in each matrix. All details as

in figure 16.

used to obtain it, is the qT slicing approach. In this article, we presented the result for the

complete NNLO, small-qT soft function for tt̄ production, which forms a significant step on

the way towards this goal. Now, all the ingredients needed to construct the NNLO cross

section for top pair production valid at small-qT are available.

To obtain our results, we have constructed a framework based on sector decomposition

and differential equations. The framework has been extensively validated. In particular,

we have checked that all the α poles, including ε/α, and all the ε poles beyond 1/ε2, vanish

in the complete result for the NNLO soft function. We also checked that we recover all

pieces predicted by the renormalization group, both the pole terms and the L⊥-dependent

part of the finite term. The strongest validation of our framework and tools comes from

finding a perfect agreement between numerical results from the sector decomposition-based

framework and analytic results obtained with the method of differential equations, for the

graphs involving gauge, ghost or quark bubble.

The NNLO, small-qT soft function can now be used to obtain full tt̄ cross section at

NNLO by means of the qT -slicing method, as well as for small-qT resummation at NNLL’.
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A Colour matrices

In this appendix, we collect all colour matrices that appear in the formulae for the soft

function at NLO and NNLO, in the basis defined in eqs. (2.45) and (2.46).

Let us start by determining the set of independent dot products of the operators Ti.

For the top pair production in the īi channel, we have

T2
i = Ci1 , for the incoming partons īi ,

T2
i = CF1 , for the outgoing tt̄ pair .

(A.1)

The colour conservation
4∑
i=1

Ti|M〉 = 0 , (A.2)

allows us to write the following set of equations{
Ti ·Tj =

∑
k 6=i
m 6=j

Tk ·Tm

}
, (A.3)

for i, j ∈ {1, . . . , 4}. By combining (A.1) and (A.3), we arrive at the relations

T1 ·T4 = T2 ·T3 , (A.4a)

T2 ·T4 = T1 ·T3 , (A.4b)

T1 ·T1 = T2 ·T2 = −T1 ·T3 −T2 ·T3 −T1 ·T2 , (A.4c)

T3 ·T3 = T4 ·T4 = −T1 ·T3 −T2 ·T3 −T3 ·T4 . (A.4d)

Hence, in general, we have four independent structures: T1 ·T3, T2 ·T3, T1 ·T2, T3 ·T4.

For the qq̄ channel, this number is further reduced to three, as all Ti ·Ti are equal, which

leads to the relation T1 ·T2 = T3 ·T4.

In the case of the qq̄ channel, the three independent matrices w
(1)
ij , defined in

eq. (2.50a), read

w
(1)
13 = −CF

2

(
0 1

1 2CF − N
2

)
, (A.5a)

w
(1)
23 = −CF

2N

(
0 −N
−N 1

)
, (A.5b)

w
(1)
34 = −CF

4N

(
4N2 0

0 −1

)
, (A.5c)
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while, for the gg channel, we have the following four independent w
(1)
ij matrices

w
(1)
13 = −1

8

 0 4N 0

4N N2 N2 − 4

0 N2 − 4 N2 − 4

 , (A.6a)

w
(1)
23 = −1

8

 0 −4N 0

−4N N2 −N2 + 4

0 −N2 + 4 N2 − 4

 , (A.6b)

w
(1)
12 = −1

4

 4N2 0 0

0 N2 0

0 0 N2 − 4

 , (A.6c)

w
(1)
34 = −

CFN 0 0

0 −1
4 0

0 0 −N2−4
4N2

 . (A.6d)

The w
(2S)
ij matrices, which enter the abelian part of the double-cut contributions to

the soft function (4.2), were defined in eq. (2.50b). In the case of the qq̄ channel, they take

the following explicit forms

w
(2S)
1333 =

 0 −(N2−1)
2

4N2

−(N2−1)
2

4N2 −(N2−2)(N2−1)
2

8N3

 , (A.7a)

w
(2S)
1433 =

 0
(N2−1)

2

4N2

(N2−1)
2

4N2 −(N2−1)
2

4N3

 , (A.7b)

w
(2S)
1314 =

(
−N2−1

2N
1
8

(
−N2 + 5− 4

N2

)
1
8

(
−N2 + 5− 4

N2

)
N4−4N2+3

8N3

)
, (A.7c)

w
(2S)
3334 =

−(N2−1)
2

2N 0

0
(N2−1)

2

8N3

 , (A.7d)

w
(2S)
1334 =

(
0 N4−3N2+2

8N2

N4−3N2+2
8N2 −N4−3N2+2

8N3

)
, (A.7e)

w
(2S)
1434 =

(
0 −N4−3N2+2

8N2

−N4−3N2+2
8N2 −N2−1

4N3

)
, (A.7f)

w
(2S)
3434 =

(
(N2−1)

2

2N 0

0 N2−1
8N3

)
, (A.7g)

w
(2S)
1414 =

(
N2−1

2N
1
2

(
1
N2 − 1

)
1
2

(
1
N2 − 1

)
N4+2N2−3

8N3

)
, (A.7h)

w
(2S)
1313 =

(
N2−1

2N
N4−3N2+2

4N2

N4−3N2+2
4N2

N6−4N4+6N2−3
8N3

)
, (A.7i)
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w
(2S)
3333 =

 (N2−1)
2

2N 0

0
(N2−1)

3

8N3

 . (A.7j)

In the gg channel, these colour matrices read

w
(2S)
1333 =

 0 1
2

(
1−N2

)
0

1
2

(
1−N2

)
−1

8N
(
N2 − 1

)
−N4−5N2+4

8N

0 −N4−5N2+4
8N −N4−5N2+4

8N

 , (A.8a)

w
(2S)
1433 =

 0 1
2

(
N2 − 1

)
0

1
2

(
N2 − 1

)
−1

8N
(
N2 − 1

)
N4−5N2+4

8N

0 N4−5N2+4
8N −N4−5N2+4

8N

 , (A.8b)

w
(2S)
1314 =

 −N 0 1− N2

4

0 −N
4 0

1− N2

4 0 N
4 −

1
N

 , (A.8c)

w
(2S)
3334 =

−
(N2−1)

2

2N 0 0

0 N2−1
4N 0

0 0 N4−5N2+4
4N3

 , (A.8d)

w
(2S)
1334 =

 0 1
4

(
N2 − 2

)
0

1
4

(
N2 − 2

)
−N

8 −N2−4
8N

0 −N2−4
8N −N2−4

8N

 , (A.8e)

w
(2S)
1434 =

 0 1
4

(
2−N2

)
0

1
4

(
2−N2

)
−N

8
N2−4

8N

0 N2−4
8N −N2−4

8N

 , (A.8f)

w
(2S)
3434 =

 (N2−1)
2

2N 0 0

0 1
4N 0

0 0 N2−4
4N3

 , (A.8g)

w
(2S)
1414 =

 N −N2

4
1
4

(
N2 − 4

)
−N2

4
1
8N
(
N2 + 2

)
−1

8N
(
N2 − 4

)
1
4

(
N2 − 4

)
−1

8N
(
N2 − 4

)
N3

8 −
3N
4 + 1

N

 , (A.8h)

w
(2S)
1313 =

 N N2

4
1
4

(
N2 − 4

)
N2

4
1
8N
(
N2 + 2

)
1
8N
(
N2 − 4

)
1
4

(
N2 − 4

)
1
8N
(
N2 − 4

)
N3

8 −
3N
4 + 1

N

 , (A.8i)

w
(2S)
3333 =


(N2−1)

2

2N 0 0

0
(N2−1)

2

4N 0

0 0
(N2−4)(N2−1)

2

4N3

 . (A.8j)

All the other w
(2S)
ijkl matrices can be derived from the above set by using the relations (A.4).
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As for the antisymmetric configurations, w
(2A)
ijk , there is only one independent matrix

per channel, which we choose to be w
(2A)
123 . In the qq̄ channel it reads

w
(2A)
123 =

1

8

(
0 −(N2 − 1)

N2 − 1 0

)
, (A.9)

and in the gg channel

w
(2A)
123 =

1

4

 0 −N2 0

N2 0 0

0 0 0

 . (A.10)

All the other antisymmetric matrices can be obtained as combinations of the above and

w
(1)
ij , using colour conservation (A.2), together with the relation

fabcT bi T
c
i =

i

2
CAT

a
i . (A.11)

B Cusp angles

The amplitudes are functions of Lorentz invariants [62]

sij ≡ 2σijpi · pj + iε , (B.1)

and

p2
i = m2

i , (B.2)

where

σij =

{
+1 if pi, pj are both incoming or outgoing

−1 otherwise
. (B.3)

For massive particles we define velocities

vi ≡
pi
mi

, v2
i = 1 . (B.4)

To this end, we label massless particles with lowercase i, j, . . . and massive ones with capital

indices I, J, . . ..

The soft anomalous dimension of eq. (2.66) is a function of cusp angles, βij , βIj and

βIJ , formed by massless and/or massive Wilson lines. They read [62]

βij = ln
−2σij pi · pj µ2

(−p2
i )(−p2

j )
= Li + Lj − ln

µ2

−sij
, (B.5a)

βIj = ln
−2σIj vI · pj µ

(−p2
j )

= Lj − ln
mIµ

−sIj
, (B.5b)

βIJ = arccosh (wIJ) = arccosh

(
−sIJ

2mImJ

)
, (B.5c)

where we have introduced

Li = ln
µ2

(−p2
i )
, (B.6)

which comes from regularization of the IR divergences in the effective theory by taking

massless partons slightly off-shell (−p2
i ) > 0 [58]. The logarithms Li need to cancel in the

final result for the anomalous dimension matrix.
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βIJ in space-like kinematics. For space-like kinematics of heavy particles (e.g. a top

quark incoming and a top quark outgoing), the cusp angle βIJ is real. It can still, however,

be chosen to be positive or negative, as the function arccosh has two branches, even for

real argument.

The choice of the positive βIJ has at least two advantages: (i) functions that appear in

the O
(
αs

2
)

contribution in eq. (C.11), which we shall discuss in appendix C, are real (in

the space-like case) and do not require analytic continuation, as 0 < x < 1 for Li2,3(x) and

for ln(x), (ii), coth(βIJ) has a physical interpretation of an inverse of a relative velocity

between particles I and J , vIJ , which reads

coth(βIJ) =
1

vIJ
, (B.7)

where

vIJ =

√
1− 4m4

t

s2
IJ

. (B.8)

The choice βIJ > 0 implies vIJ > 0 and this leads to the following relation between

the latter and the βt function introduced in eq. (2.11)

vIJ =
2βt

1 + β2
t

. (B.9)

We notice that

βt =

√
s− 1

s+ 1
, where s =

sIJ
2m2

t

, (B.10)

which means that
space-like: s < −1 βt ∈ [1,∞) ,

time-like: s > 1 βt ∈ [0, 1] .
(B.11)

We also note that vIJ ∈ [0, 1], both in the space-like and in the time-like case.

Eq. (B.7) has a unique solution for the space-like case with βIJ > 0 which reads

βIJ = −1

2
ln

1− vIJ
1 + vIJ

, (B.12)

and, with help of eq. (B.9) it can be expressed as

βIJ = −1

2
ln

[(
βt − 1

βt + 1

)2
]

= ln

(
βt + 1

βt − 1

)
, βt ∈ [1,∞). (B.13)

βIJ in time-like kinematics. We would like to analytically continue βIJ to the time-like

region which corresponds to sIJ > 0. The function in eq. (B.13) has a cut at imaginary

axis and, depending whether we cross it in the upper or the lower half-plane, we get a

different result.

The convention is already established in eq. (B.1). It implies that the invariant sIJ has

a small positive part which corresponds to analytic continuation over the upper half-plane.

And this means that βIJ acquires an imaginary part −iπ in the time-like region. The real

part is identical to the one of the space-like kinematics and, at the end, we get

βIJ = ln

(
1 + βt
1− βt

)
− iπ , βt ∈ [0, 1] . (B.14)
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C Anomalous dimensions and IR renormalization constant

The cusp anomalous dimension is given by the following perturbative series

Γ icusp(αs) = Γ i0
αs
4π

+ Γ i1

(αs
4π

)2
+ Γ i2

(αs
4π

)3
+ . . . , (C.1)

where

Γ in = Ci γ
cusp
n with Ci =

{
CF for the qq̄ channel ,

CA for the gg channel ,
(C.2)

and the coefficients to three loops read [63]

γcusp
0 = 4 ,

γcusp
1 =

(
268

9
− 4π2

3

)
CA −

80

9
TFnf ,

γcusp
2 = C2

A

(
490

3
− 536π2

27
+

44π4

45
+

88

3
ζ3

)
+ CATFnf

(
−1672

27
+

160π2

27
− 224

3
ζ3

)
+ CFTFnf

(
−220

3
+ 64ζ3

)
− 64

27
T 2
Fn

2
f . (C.3)

The QCD β function is given by

β(αs) = −2αs

[
β0

αs
4π

+ . . .
]
, (C.4)

where the leading coefficient for nf flavours of the active, massless quarks, is

β0 =
11

3
CA −

4

3
TFnf . (C.5)

The soft renormalization factor Zs can be obtained from the hard renormalization

factor Z, determined in ref. [64], by discarding all terms proportional to derivatives of the

anomalous dimension and by making the replacement Γn → γsn. Up to the order α2
s, it reads

Zs = 1 +
αs
4π

γs
0

2ε
+
(αs

4π

)2
[
γs

0

8ε2
(γs

0 − 2β0) +
γs

1

4ε

]
+O(α3

s) . (C.6)

The soft anomalous dimension

γs =

∞∑
n=0

(αs
4π

)n+1
γsn , (C.7)

has been introduced in section 2.8, and its explicit result for processes involving massive

particles reads [19]

γsqq̄ =
[
CF γcusp(β34, αs) + 2γQ(αs)

]
1

+
N

2

[
γcusp(αs)

(
ln

t21
M2m2

t

+ iπ

)
− γcusp(β34, αs)

](
0 0

0 1

)

+ γcusp(αs) ln
t21
u2

1

[(
0 CF

2N

1 − 1
N

)
+
αs
4π

g(β34)

(
0 CF

2

−N 0

)]
, (C.8)
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and

γsgg =
[
CF γcusp(β34, αs) + 2γQ(αs)

]
1

+
N

2

[
γcusp(αs)

(
ln

t21
M2m2

t

+ iπ

)
− γcusp(β34, αs)

]0 0 0

0 1 0

0 0 1


+ γcusp(αs) ln

t21
u2

1


0 1

2 0

1 −N
4

N2−4
4N

0 N
4 −N

4

+
αs
4π

g(β34)

 0 N
2 0

−N 0 0

0 0 0


 . (C.9)

In order to fully determine the above objects, we need the single-particle massive

anomalous dimensions for heavy quarks [58, 62]

γQ0 = −2CF ,

γQ1 = CFCA

(
−98

9
+

2π2

3
− 4ζ3

)
+

40

9
CFTFnf , (C.10)

as well as the velocity-dependent anomalous dimensions [33, 62, 65–68]

γcusp
0 (β) = γcusp

0 β cothβ ,

γcusp
1 (β) = γcusp

1 β cothβ + 8CA

{
π2

6
+ ζ3 + β2

+ coth2 β

[
Li3(e−2β) + βLi2(e−2β)− ζ3 +

π2

6
β +

β3

3

]
+ coth β

[
Li2(e−2β)− 2β ln(1− e−2β)− π2

6
(1 + β)− β2 − β3

3

]}
, (C.11)

and the function

g(β) = coth β

[
β2 + 2β ln(1− e−2β)− Li2(e−2β) +

π2

6

]
− β2 − π2

6
. (C.12)

The velocity-dependent cusp anomalous dimensions γcusp(β34) requires careful treat-

ment. It is unambiguously defined for space-like kinematics, in which case the function

given in eq. (C.11) is real. In the time-like kinematics, however, γcusp(β34) has to be

analytically continued to the region β ∈ [0, 1], as discussed in appendix B.

It turns out that the functions coth, ln and Li2,3, appearing in eqs. (C.11) and (C.12),

do not develop discontinuities when going from the space-like to the time-like case. Hence,

in those functions, we just substitute β34 → ln

(
1 + βt
1− βt

)
. And then, wherever β34 appears

in a coefficient, we use eq. (B.14). At the end, we obtain

γcusp
0 (βt) = −2

1 + β2
t

βt

{
ln

(
1− βt
1 + βt

)
+ iπ

}
, (C.13)

γcusp
1 (βt) =

1

9β2
t

{
30CA π

2βt (1− βt)2 + ln

(
1− βt
1 + βt

)[
72CA βt

(
1 + β2

t

)
ln

(
4βt

(1 + βt)2

)

– 51 –



J
H
E
P
1
0
(
2
0
1
8
)
2
0
1

+
(
1 + β2

t

) [
CA
(
3π2(βt(5βt − 8) + 5)− 134βt

)
+ 40TFnfβt

]
− 6CA(1− βt)2 ln

(
1− βt
1 + βt

)[
6βt +

(
1 + β2

t

)
ln

(
1− βt
1 + βt

)]]
+ 18CA

((
1 + β2

t

)2
Li3

[(
1− βt
1 + βt

)2
]
−
(
1− β2

t

)2
ζ(3)

−
(
1 + β2

t

) [ (
1 + β2

t

)
ln

(
1− βt
1 + βt

)
− 2, βt

]
Li2

[(
1− βt
1 + βt

)2
])}

+
iπ

9β2
t

{
72CA βt

(
1 + β2

t

)
ln

(
4βt

(1 + βt)2

)
− 18CA

(
1 + β2

t

)2
Li2

[(
1− βt
1 + βt

)2
]

− 18CA (1− βt)2 ln

(
1− βt
1 + βt

)[
4βt +

(
1 + β2

t

)
ln

(
1− βt
1 + βt

)]
+
(
1 + β2

t

) [
CA
(
3π2

(
1 + β2

t

)
− 134βt

)
+ 40TFnf βt

]}
, (C.14)

and

g(βt) =− 1

βt

{(
1+β2

t

)
ln

(
4βt

(1+βt)2

)
ln

(
1−βt
1+βt

)
+(1−βt)2

(
5π2

12
− ln

(
1−βt
1+βt

))
(C.15)

+
1

2

(
1+β2

t

)
Li2

[(
1−βt
1+βt

)2
]}

+
iπ

βt

{
(1−βt)2 ln

(
1−βt
1+βt

)
−
(
1+β2

t

)
ln

(
4βt

(1+βt)2

)}
.

The functions given explicitly in this appendix, together with the result for the NLO

soft function, eq. (3.5), allow for the complete determination of all the poles and all L⊥-

dependent terms of the NNLO soft function, following the discussion in section 2.8.
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