
J
H
E
P
1
0
(
2
0
1
8
)
1
9
7

Published for SISSA by Springer

Received: July 10, 2018

Revised: September 20, 2018

Accepted: October 19, 2018

Published: October 30, 2018

Systematic classification of three-loop realizations of

the Weinberg operator

Ricardo Cepedello,a Renato M. Fonsecab and Martin Hirscha

aAHEP Group, Instituto de F́ısica Corpuscular, CSIC — Universitat de València,
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Abstract: We study systematically the decomposition of the Weinberg operator at three-

loop order. There are more than four thousand connected topologies. However, the vast

majority of these are infinite corrections to lower order neutrino mass diagrams and only

a very small percentage yields models for which the three-loop diagrams are the leading

order contribution to the neutrino mass matrix. We identify 73 topologies that can lead

to genuine three-loop models with fermions and scalars, i.e. models for which lower order

diagrams are automatically absent without the need to invoke additional symmetries. The

73 genuine topologies can be divided into two sub-classes: normal genuine ones (44 cases)

and special genuine topologies (29 cases). The latter are a special class of topologies, which

can lead to genuine diagrams only for very specific choices of fields. The genuine topologies

generate 374 diagrams in the weak basis, which can be reduced to only 30 distinct diagrams

in the mass eigenstate basis. We also discuss how all the mass eigenstate diagrams can

be described in terms of only five master integrals. We present some concrete models and

for two of them we give numerical estimates for the typical size of neutrino masses they

generate. Our results can be readily applied to construct other d = 5 neutrino mass models

with three loops.
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1 Introduction

The smallness of the observed neutrino masses has motivated many theoretical studies.

For Majorana neutrinos, it can be understood from the Weinberg operator [1]:

OW =
cαβ
Λ
LαLβHH (1.1)

The classical seesaw picture of this operator [2–5] corresponds to choosing for Λ a very

large scale, say Λ ∼ O(1014) GeV, in which case neutrino masses are of the (sub-)eV order

for cαβ ' O(1). However, cαβ could be naturally much smaller than one, resulting in

correspondingly lower values for the energy scale Λ at which lepton number is violated.

There are two simple ways of realizing such a suppression: (i) neutrino masses might be

radiatively generated, in which case cαβ ∝ 1/(16π2)n, where n is the number of loops; (ii)

higher d-dimensional operators might be responsible for neutrino mass generation. Note

that such operators are always of the form OW × (H†H)
d−5
2 . In this paper we will follow

the former idea and study systematically the decomposition of eq. (1.1) at three-loop order.

For a recent systematic study of higher dimensional tree-level neutrino mass models see [6].

The idea that neutrino masses might be small due to their radiative origin is nearly as

old as the seesaw mechanism itself, the Zee model being the classical example [7]. Many

references can be found in the recent review [8]. See also [9] for general recipes on building

loop neutrino mass models. For our work, the most relevant references in the literature

are [10–12]: in [10] it was pointed out that there are just three variants of the seesaw at tree-

level; references [11] and [12] gave a systematic decomposition of the Weinberg operator
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at 1-loop and 2-loop level, respectively. We make use of these results in the current work,

which can be understood as a extension of [11, 12] to 3-loop diagrams. We also mention

in passing that d = 7 neutrino masses were studied systematically at tree-level in [13] and

at the 1-loop level in [14]. The only genuine d = 7 tree-level model was discussed in [15].

All the above papers follow a diagramatic approach to the classification of neutrino

mass models. Alternatively, one can start from a list of non-renormalizable ∆L = 2 opera-

tors and find the ultra-violet completions (i.e. neutrino mass models) from a deconstruction

of all operators. This approach has been used, for example, in [16–18], see also the discus-

sion in [8].

Although understandably 3-loop neutrino mass models have received much less atten-

tion than lower order ones, still a number of papers on the subject can be found in the

literature. An early example where the Weinberg operator is generated via a 3-loop dia-

gram is the so-called KNT model [19]. In it, two charged scalar singlets plus a right-handed

neutrino are added to the Standard Model (SM). Since the main motivation of this paper

is to connect neutrino masses with dark matter, a Z2 symmetry is added by hand under

which one scalar and the right-handed neutrino are odd. The resulting 3-loop diagram is

shown as model-2 in section 3 and we label its topology as T5 in appendix A. The KNT

model and a number of variants based on this original idea have been studied in several

papers since then. For example, the authors of [20] added a second NR to explain the two

distinct mass scales observed in neutrino oscillations. Other variants using SU(2) triplets

and quintuplets instead of singlets were discussed in [21] and in [22], respectively. Similar

ideas revolving around the use of larger representations in the KNT model have been dis-

cussed in [23]. Also, the use of coloured particles in the KNT loop was studied in [24–26].

Yet another model variation with doubly charged singlets and doubly charged vector-like

fermions was constructed in [27]. A scale-invariant version of the KNT model was pre-

sented in [28]. Finally, we mention that the phenomenology associated to the scalars in the

KNT model and its triplet variant was discussed in [29]; for the collider phenomenology

see [30, 31]. In all the above papers on the KNT model, the Z2 symmetry was introduced

by hand. In [32], however, SU(2)L septuplets are used (both scalar and fermionic), which

lead to an accidental Z2 symmetry and thus to automatically stable dark matter. There is

also a very recent paper [33], based on the KNT topology, which uses (triplet) leptoquarks

to explain also the anomalies observed in B-decays.

There are other 3-loop models based on topologies different from the one of the KNT

model. The AKS model [34] requires two Higgs doublets, two NR, a charged and a neutral

scalar singlet. A Z2, under which singlets are odd, eliminates the tree-level seesaw and

stabilizes again the dark matter candidate. The AKS model generates two neutrino mass

diagrams: they correspond to our diagrams DM
6 and DM

7 in figure 7, descending from

topologies T37 and T22, respectively, shown in appendix A. The phenomenology and vacuum

stability constraints for the AKS model have been studied in [35–37].

The same topologies and diagrams as in the AKS model appear also in [38]. However,

the authors of [38] use doubly charged vector-like fermions and a scalar doublet with

hypercharge Y = 3/2 (plus the singlets of the AKS model). The diagrams DM
6 and DM

7

appear also in [39]. Here, however, these diagrams descend from our topologies T40 and
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T33. D
M
6 appears also in a model based on singlets [40], again descending from T40. The

last 3-loop model we mention is the one discussed in [41]. It contains a scalar septet and

a fermionic quintuplet, generating the diagrams DM
6 (from T37) and DM

7 (from T32). The

model contains an accidental Z2, but still one needs to impose an additional Z2 by hand.

Our classification scheme for the different topologies concentrates on identifying 3-loop

genuine topologies, which are those associated with the dominant contributions to the

neutrino mass matrix. We discuss thoroughly the concept of “genuineness” in section 2.

There, we also define two classes of such topologies: normal (or ordinary) genuine topologies

(in total there are 44 of them) and special genuine topologies, which require very special

fields (29 cases). The full list is given in appendix A.

As we will explain later, these special genuine topologies are associated to finite loop

integrals, even though they generate some particular 3- or 4-point interaction at loop level.

This happens because the corresponding tree-level renormalizable vertex vanishes due to

the antisymmetric nature of some SU(2)L contractions. Our 29 special genuine topologies

are of this type. However, there are some 3-loop models in the literature which also rely

on such a loop-generated vertex, but do not (necessarily) fall into that list of 29 special

topologies. Instead, those models use a symmetry to forbid the tree-level vertex, which is

then generated at loop level, once the symmetry is (spontaneously) broken. The model

presented in [42] falls into this class. (It generates diagram DM
4 , at the level of diagrams

in the mass eigenstate basis.) Here, the tree-level vertex eReRk
++ of the Babu-Zee 2-loop

model [43–45] is forbidden by a global U(1). Spontaneous breaking of this U(1) to a Z2

generates a Majorana mass for the NR (and produces a singlet Majoron) and generates

this vertex at the 1-loop level. Similarly, a 3-loop diagram (DM
5 ) appears in [46]. Note

that, this type of models falls into the class called “fermionic cocktail” in [8]. We also

mention [47], which studies a neutrino mass model based on an additional SU(2) group,

which leads to a 3-loop diagram with new vector bosons.

Then, there are also higher-dimensional 3-loop models. The authors of [48] presented a

3-loop model with neutrino masses at d = 7. The so-called “cocktail model” [49] is actually

a 3-loop model at d = 9. (For a study of the phenomenology of the cocktail model see [50]).

Note that we limit our deconstruction of 3-loop models to d = 5 models. Thus, although

the five master integrals defined in the appendix cover all possible 3-loop integrals, our

topologies (and diagrams) are complete only for the d = 5 case.

The rest of this paper is organized as follows. In section 2 we explain our classification

scheme and how our results are obtained. All models which we classify as genuine have

finite 3-loop integrals and thus do not need lower order counter terms for renormalization.

We discuss that there is a further class of genuine topologies with finite 3-loop integrals,

which correspond to loop generation of some 3- or 4-point vertices. We call these the

special genuine topologies. We then show that the 73 genuine topologies (normal plus

special ones) are associated to 374 diagrams in the weak basis, which get reduced to only

30 diagrams in the mass basis. We will discuss the dichotomy between normal and special

topologies/diagrams in detail. We would like to point out that we are mostly interested in

diagrams with new scalars (and/or new fermions). However, there could also be diagrams

with vector particles, either the standard model W-boson or some exotic vector. While
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many of our results apply also to diagrams with vectors, we stress that due to a particu-

lar loophole in our procedure for finding genuine diagrams our list of genuine diagrams is

incomplete for vectors. This is discussed in section 2 in more detail. In section 3 we show

some example models, discussing them briefly. For two of them we perform also numerical

calculations of the expected neutrino mass scale; they can easily reproduce the observed

neutrino masses. We then close with a short discussion of our results. Several more techni-

cal aspects of our work are deferred to the appendix, where we show the genuine topologies

and give the full definitions of the master integrals. A full list of the topologies and diagrams

mentioned in our work can be found in the supplementary material, available also in [51].

2 Genuine topologies, diagrams and models

The following nomenclature will be used throughout the text. We shall call topologies to

those Feynman diagrams where no property of the fields is considered (in graph theory,

these are also known as undirected multigraphs). If scalars are differentiated from fermions,

we will call them diagrams. If additionally the quantum numbers of the internal particles

are specified, we will use the expression model-diagrams (or just model when it is clear

from the context what we mean by this word).

Let us discuss now the concept of a genuine model-diagram, diagram and topology.

Essentially, we want to identify this concept with those model-diagrams (plus their associ-

ated diagrams and topologies) for which the leading contribution to neutrino masses arises

at 3-loops, without the need to introduce extra symmetries. Nevertheless, note that models

with extra symmetries can be phenomenologically interesting; we provide one example of

a 3-loop model-diagram with extra symmetries in section 3.

It is important to keep in mind that, in general, loop integrals have a finite and an

infinite part. Infinite integrals require a lower order counter term in a consistent renor-

malization scheme. Thus, models with infinite n-loop amplitudes must necessarily also

generate neutrino mass diagrams with less loops, and for that reason model-diagrams with

an infinite amplitude are not genuine in our sense. However, certain diagrams lead auto-

matically only to finite loop integrals, in which case it might be possible to build genuine

model-diagrams from them.

Finiteness of the amplitude of a model-diagram is therefore a necessary condition for it

to be genuine. However, it is not sufficient: it is also necessary to ensure that there are no

other automatically generated model-diagrams with less loops. Consider neutrino masses

generated via the dimension d = 5 + 2n operator

LLHH
(
H†H

)n
(2.1)

through a diagram with ` loops. It is expected that

Mν ∼
1

(4π)2`

(
〈H〉
Λ

)1+2n

〈H〉 . (2.2)

As such, for diagrams with a characteristic scale Λ ∼TeV, removing a loop (`→ `−1)

and increasing the operator dimension by two units (n → n + 1) leaves Mν with roughly
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Figure 1. A 1-particle reducible 3-loop topology. The line in the middle must correspond to one

of the standard tree-level seesaw mediators, hence the topology is not genuine. The middle line is

a fermion with the quantum numbers of νR ≡ (1,1, 0) or Σ ≡ (1,3, 0) if it splits the external fields

as LH|LH, or it is the scalar ∆ = (1,3,−1) if the splitting is LL|HH.

the same value. So in order to have a dominant (d, `) contribution to neutrinos masses,

those with (d′, `′) = (d− 2i, `− j) and j > i should be absent.1 Genuine model-diagrams

are those associated to these cases; in other words, the combination of fields participating

in genuine model-diagrams must not be sufficient, by itself, to generate other more impor-

tant neutrino mass contributions. For example, a model with a right-handed neutrino, νR,

will also give a d = 5 tree-level contribution to the neutrino mass (unless an additional

symmetry is used to eliminate some unwanted couplings), which will likely be the more im-

portant one. Stated in this way, genuineness is a concept which applies to model-diagrams.

However, the list of such cases is infinite, in principle, as there are endless possibilities

of assigning quantum numbers to the internal particles. We will therefore be interested

in cataloguing those diagrams and topologies for which there exists at least one genuine

model-diagram. These topologies and diagrams will be considered genuine themselves.

We found all such diagrams after a series of steps. First, using known algorithms (see

for example [52]) we generate a list of all 3-loop connected topologies with 3- and 4-point

vertices, and four external lines. This list contains a total of 4367 topologies. Only 3269 of

them can accommodate 2 external fermion lines plus 2 external scalars using renormalizable

interactions only.

Still at the level of topologies, we can already exclude a large number of these by ap-

plying the following straightforward criteria. We eliminate all cases with tadpoles (i.e., self-

connecting vertices) and self-energies (i.e., 2-point subdiagrams with one or more loops),

since these have always infinite parts in their loop integrals. This cut leaves us with 370

topologies.

We then eliminate the 1-particle reducible topologies, that is those topologies which

become disconnected by cutting one of its lines. These cases can be discarded because the

line which would disconnect the topology must have the quantum numbers to mediate type

I, type II or type III seesaw (see figure 1).

This leaves us with 160 potentially genuine topologies, which can be divided in three

classes: normal genuine topologies, special genuine topologies and non-genuine topologies.

This division is done in steps.

There are those topologies for which an internal loop (or loops) can be compressed

to a 3-point vertex (of the type fermion-fermion-scalar or scalar-scalar-scalar). For the re-

maining topologies, we find all valid diagrams, labelling internal lines as scalars or fermions

1Note that by closing some pairs of H/H∗ external lines it will always be possible to find other contri-

butions with (d′, `′) = (d− 2i, `− i).
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All topologies (connected, with 3 loops and 4 legs) 4367

Allow two external fermion lines 3269

No tadpoles 1056

No self-energies 370

1-particle irreducible 160

No 3-point loop subgraphs 70

No unavoidable 4-point scalar loop subgraphs 44

Table 1. Number of topologies, after the cumulative application of a series of cuts described in

the text. Out of the initial 4367, only 44 have all the properties listed above: these are the normal

genuine topologies. We would like to point out that dropping the requirement that a topology

does no become disconnected by the cut of a single internal line (1-particle irreducibility), the final

number of topologies would still be 44.

?

Figure 2. Subparts of diagrams with loops and 3 external lines can be compressed into a 3-line

vertex, reducing the number of loops of the diagram. For subparts with 4 external lines, this will

only generate a renormalizable interaction if all external lines are scalars.

in all possible ways, keeping externally exactly two scalars and two fermions. In this list

we identify all diagrams with internal loops which can be compressed to a 4-scalar inter-

action. All diagrams without 3-point nor scalar 4-point loop subdiagrams fall into one of

44 topologies — see the counting on table 1. These we consider normal genuine diagrams

and topologies. Their complete list is given in appendix A (the topologies) and in [51] (the

topologies and the diagrams).

Consider first 3-point vertices. No matter what is the particle content of a model, if a

loop with 3 external legs is allowed by symmetry, so is the trilinear vertex without the loop

(see figure 2). Since this reasoning applies equally to fermion-fermion-scalar and to scalar-

scalar-scalar vertices, this criterion can be defined at the level of topologies. For loops with

4 external legs, on the other hand, it is only possible to compress it to a renormalizable

vertex if all external lines are scalars. Thus, this criterion needs to be used on diagrams,

not topologies. The important point is that if a diagram has compressible subdiagrams

(with 3 or 4 external legs), it cannot be genuine. We note that there is also the expectation

of the converse: diagrams with incompressible loops are genuine, as there will be a choice

of quantum numbers for the internal scalars and fermions such that there will be no other

neutrino mass contribution with less loops (in appendix B we present an argument why we

believe this is always true). That is why earlier we called them normal genuine diagrams.

The usage of the word “normal” in this context is explained by the existence of excep-

tions to the above arguments. First of all, strictly speaking, this cut on 4-point vertices
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Figure 3. Our procedure to obtain genuine 3-loop neutrino mass diagrams and topologies may

not be valid in the presence of vector fields. In this example, a 1-loop fragment of a larger diagram

cannot be contracted into a renormalizable point interaction, see text.

?

Figure 4. This 2-loop realization of the dimension five Weinberg operator illustrates a loophole in

our automatized algorithm for finding genuine n-loops neutrino mass diagrams and topologies (we

therefore track these special cases manually). In particular, if the scalar SA (or SB) is the Higgs

fields H, and SB (or SA) is an SU(2) singlet with the correct hypercharge, then there is no point

interaction HSASB . Hence, the existence of the left diagram does not imply that one can build the

diagram on the right, with one loop less.

is only valid for diagrams without vector fields. Consider the diagram shown in figure 3:

it has 3 external vector fields (V ) and one scalar (S). Yet a term V V V S is not Lorentz

invariant, hence such a loop cannot be compressed into a renormalizable interaction (the

effective interaction is ∂V V V S, of dimension 5). As a consequence of this, some otherwise

non-genuine topologies might be classified as genuine if vector fields are used. We are

mentioning this exception only for completeness, since we are interested in diagrams with

fermions and scalars only.

However, a second exception to the procedure used to obtain the previously mentioned

44 genuine diagrams is more subtle. To understand it, consider the 2-loop diagram in fig-

ure 4. The diagram appears to be non-genuine because it requires fields with quantum

numbers such that they would have a renormalizable interaction HSASB, which could be

used to remove one loop from the diagram. In a sense, this is indeed always true: such

trilinear combination of fields must be gauge invariant. Yet, HSASB might be identically

zero for specific choices of SA and SB. Take the case where SA is the Higgs field H, and

SB is a scalar singlet with hypercharge -1. Then, HHSB ≡ 0 because the SU(2) singlet

contraction of two doublets is antisymmetric. For particular choices of the quantum num-

bers of the remaining fields, one can in fact check that no d = 5 1-loop model is generated,

hence the 2-loop diagram/topology in figure 4 is in fact genuine. This construction in-

volving the use of repeated fields to forbid point-interactions (which otherwise would be
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Figure 5. One example of a non-genuine but finite topology (to the left), generating the diagram

on the right. See text.

allowed by their quantum numbers) can obviously be extended to 3-loop diagrams. These

genuine 3-loop diagrams (topologies) which lead to non-genuine model-diagrams, unless

very special choices of quantum numbers are made, we call the special genuine diagrams

(topologies). Out of the 160 topologies mentioned above, 44 are normal genuine ones, and

of the remaining 116 there are 29 which fall into this class. The complete list is shown in

appendix A, where we also classify them according to which particular particle combination

is needed to make the corresponding model genuine.

Note that, if we break down the fields into their components, the neutrino mass ob-

tained from these special topologies arises from a difference of diagram amplitudes, with

the negative sign(s) coming from the anti-symmetry of SU(2)L (and/or color) contractions.

This is very clear, for example, in the 1-loop subdiagram in figure 4 (on the left), which

must correspond to an HHSB interaction, as mentioned earlier. In the limit where the

momenta flowing into these critical subdiagrams is small, the difference of amplitudes will

approach zero. However, the momenta flowing into these subdiagrams is a loop momenta,

hence the overall neutrino mass obtained from special genuine diagrams does not need to

be small when compared to the mass obtained from normal genuine diagrams.

The other 87 remaining topologies (160 = 44+29+87) generate non-genuine diagrams.

Even so, it is important to note that some of these topologies (27 of them) may lead to non-

genuine finite diagrams. These are diagrams for which an additional (broken) symmetry

is always needed to forbid the otherwise allowed `-loop diagrams (` < 3) that result from

compressing one or more loops to a renormalizable vertex. We show an example of such

a topology and corresponding non-genuine finite diagram in figure 5. In this diagram, the

inner loop on the fermion line is an example of a compressible 3-point vertex. However,

if this fermion is of Majorana type, one can add to the corresponding model an extra

symmetry, for example a global U(1) as in [42]. A SM singlet scalar can then be coupled

to the Majorana fermion and assigned a charge under the U(1). The tree-level coupling

of the compressible inner loop could be forbidden in this way. Spontaneous breaking of

this U(1)→ Z2 by the vacuum expectation value (vev) of the singlet generates a Majorana

mass term for the fermion and allows then this 3-loop diagram to exist.

We stress again that we do not consider this class to be genuine, as these models require

extra symmetries (which need to be broken). Note that the symmetries can not be exact,

otherwise the compressible loop is also forbidden by the symmetry. For the remaining 60

topologies in this non-genuine class all diagrams have infinite loop integrals. Due to the

large number of topologies in this sub-class, we do not show them in this paper; they can

be can found in [51].
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Figure 6. There are two normal genuine diagrams associated to the topology shown in the top.

There is also a total of 32 diagrams which can be drawn with a non-renormalizable fermion-fermion-

scalar-scalar interaction. Finally, there are 4 diagrams which are also not normal genuine ones

because it is possible to shrink a subpart of them into a renormalizable point interaction. (Note

however that under some very specific circumstances, the third, the fifth and sixth diagrams in the

top row can be genuine, hence they are considered special genuine diagrams.)

We now return to the construction of the genuine diagrams. From the 44 normal

genuine topologies, a total of 228 genuine diagrams can be built [51]. In figure 6 we show

for one particular topology the possible diagrams, explaining graphically why several of

them are not genuine. Diagrams with compressible loops are discarded in this set, as well

as diagrams with non-renormalizable interactions. In this particular example, the topology

has only two normal genuine diagrams. The remaining genuine diagrams, of the special

kind, must be found carefully in a non-automated way (there are 146 of them, 66 of which

have a special genuine topology, while the other 80 have a normal one).

As a final step, the two external scalars standing for Higgs vev insertions are removed,

and a list of 18 genuine (amputated) diagrams is obtained. These are shown in figure 7. In

other words, the 228 diagrams in the electro-weak basis can be reduced to 18 diagrams in

the mass eigenstate basis. To these one has to add the 12 diagrams in figure 8 which are

obtained from special genuine diagrams. A visual summary of the steps described so far,

as well as a counting of the genuine diagrams and topologies, can be found in figure 9. We

state again, that while most of our results apply also to diagrams with vector bosons, our

lists are not complete for vectors, due to the loophole discussed above in figure 3.

We close this section by noting that the amplitudes of the 18+12 diagrams from fig-

ures 7 and 8 can be decomposed as linear combination of five master integrals [53]. Some

of these master integrals admit an analytical solution, while others can only be solved

numerically. A more detailed discussion about them is given in appendix C.
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7 8 9 121110

1 3 4 5 6

1615 1813 14 1713

2

Figure 7. List of normal genuine diagrams in the mass basis. Note that the two external Higgs

lines were removed: in general there is a many-to-one relation between the original diagrams and

the amputated ones shown here. Diagrams in this list are referred to in the text as DM
i , where i is

the number of the diagram shown here.

292825 26

2322 24

27

2019 21

30

Figure 8. List of special genuine diagrams, with the external Higgs lines removed. Diagrams in

this list are referred to in the text as DM
i , where i is the number of the diagram shown here.

3 Examples

From the complete set of 228+146 genuine diagrams one can generate models by assigning

quantum numbers to the internal fields following some basic rules. However, not all will

lead to genuine 3-loop neutrino mass models. For that, one should guarantee the absence of

fields that generate lower order contributions. For example νR, ∆ and Σ of the basic three

tree-level seesaws, or the scalar S ≡ (1,4)3/2 together with the fermion Ψ ≡ (1,3)1 from the

d = 7 tree-level BNT model [15]. Here, we introduced the notation (SU(3)C, SU(2)L)Y for
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no selfdenergies N370F

renormalizable if two
legs are fermions N3269F

1PI N160F

Others N522F Others

N228F

N52F

N94F

Diagrams Nweak basisF Diagrams Nmass basisFTopologies

N66F

N80F

N228F

Special genuine N12F

Normal genuine N18F

Special genuine N29F Special genuine N146F

Normal genuine N228FNormal
genuine N44F

Finite nondgenuine N27F

In figure 14 In figure 15 In figure 7 In figure 8 On the web [48]
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four legs N4367F
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N60F

no tadpoles N1056F

Figure 9. Summary of the different types of diagrams and topologies. Out of thousands of

topologies, only 160 are potentially interesting. They correspond to a total of 896 diagrams: 228

can provide dominant neutrino mass contributions without special considerations (normal genuine

diagrams), and a further 146 can do so only with very special setups (special genuine diagrams).

We call normal genuine topologies to those associated to at least one normal genuine diagram (there

are 44); the special genuine topologies are the remaining cases which are associated to at least one

special genuine diagram (there are 29). The remaining topologies are non-genuine but some of

them (27) have at least one finite diagram. Once the external Higgs fields are removed, the 228

normal genuine diagrams become 18 amputated diagrams, while the remaining genuine diagrams

in the weak basis yield 12 more amputated diagrams.
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Figure 10. Five examples of three-loop d = 5 genuine neutrino mass models.

the quantum numbers of internal particles. We will use this notation mostly in the figures.

Note that we shortened this to SU(2)LY for colourless particles. Thus, for example, a

fermionic 10 corresponds to a right-handed neutrino νR. As discussed above, it is however

possible in many cases to construct models that avoid lower order diagrams, despite the

use of particles such as νR, by adding additional symmetries by hand to the model. We

will show one example of such a model below. In that case we add a superscript ω to the

particle quantum numbers to indicate which particles are charged under the new symmetry.

The simplest possibility is usually a Z2.

Since there are endless possibilities for the quantum numbers of the internal fermions

and scalars, the number of genuine models is infinite. Here we will just show a few basic

examples: five comparatively simple models are shown in figure 10. Let us discuss them

briefly.

Model 1, based on the same diagram as the KNT model, can be considered as one

of the simplest genuine 3-loop models possible. The diagram needs only three singlets

(two different scalars and one vector-like fermion) and no additional symmetry to produce

a non-zero neutrino mass. All other models that we found need either (i) larger SU(2)L
representations and/or (ii) a larger number of beyond SM fields and/or (iii) an additional

symmetry to avoid lower order diagrams.
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Model 2 is the simplest realization of the KNT model. It also contains only three

different singlets, as is the case for model 1. However, the KNT model needs an extra

symmetry to avoid a tree-level seesaw contribution from the fermionic singlet (recall that

10 ≡ νR). We indicate the particles transforming non-trivially under the new symmetry, by

writing their charge ω as a superscript. Note that for the simplest case of a Z2 this simply

reduces to the particles in the innermost loop to being odd, while the rest of the diagram

contains only particles transforming even. As we mentioned earlier in the introduction of

the paper, there is a number of variations of this diagram in the literature containing larger

SU(2)L representations in the loops and colored particles as well.

We have chosen model 3 to show how larger SU(2)L representations can also play a

natural role in 3-loop neutrino mass models. This model is associated to topology T3, being

the first 3-loop model to do so in the literature, as far as we know. There are three new

scalars, 30, 32, 11 and one new fermion 4−3/2 (plus its vector partner). The model contains

a triply-charged “leptonic” fermion as well as a triply charged scalar, and thus it should

lead to a very rich accelerator phenomenology.

The second row in figure 10 shows two models with coloured fields. Here, we have

chosen the simplest possibilities for colour, i.e. we use only triplets. Variants with larger

colour representations could be created in a straightforward manner. In the diagram of

model 4, colour runs only in one of the loops. This model has again only three new fields.

However, in contrast to models 1–3, here all new fields are scalars. The scalar (3,2)1/6 is

a lepto-quark, thus standard LHC searches for these particles should put bounds on this

model. Note that model 4 descends from our topology T1 (we have not found any model

with this topology in the literature). Model 5 is a second example with coloured particles:

it needs 5 exotic fields, but no additional symmetry. Note again that the exotic fermions

in this model, (3,2)−11/6 and (3,1)5/3, both must be vector-like.

In the following we will discuss models 1 and 5 in more detail, including a numerical cal-

culation of the relevant 3-loop integrals. We will only consider the unrealistic case where one

neutrino is massive, adding just one generation of every new field for simplicity. Therefore,

our results should be understood as estimates of the typical scale of the neutrino masses and

not as a prediction for their exact values. Note, however, that it is possible to fit all neutrino

oscillation data, including the mixing angles, in radiative models. Usually, adding more

copies of the exotic fermions is enough (we discuss this briefly at the end of this section).

Also, unless we say otherwise, in the following all dimensionless couplings are set to one

and, in this simplified setup, we will not put a hierarchy nor flavour structure in the indices

of the Yukawa couplings. (This is done for simplicity; it is not a requirement/constraint

on the models.) When there are no analytical solutions, the calculations for the three-loop

integrals have been done numerically with the code pySecDec [54]. For detailed definitions

of the loop integrals see the appendix C.

3.1 Model 1

Model 1 contains the SM fields plus the ones given in table 2. The fermion F has a vector

partner F , which is not explicitly shown in the table. The neutrino mass in model 1 is

– 13 –
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Fields SU(3)C SU(2)L U(1)Y

S1 1 1 1

S2 1 1 3

F 1 1 2

Table 2. Quantum number assignments for the beyond-the-SM fields of model 1 (compare to

figure 10).

generated from the following terms in the Lagrangian:

L = LSM + Y1LcLS1 + Y2Fe
cS1 + Y3Fe

cS†2 + λSS2(S
†
1)3 + h.c.

+m2
1S
†
1S1 +m2

2S
†
2S2 +MFF + · · · . (3.1)

Other quartic terms in the scalar potential (such as H†HS†S) are not explicitly given

here, as they will only result in uninteresting corrections to the scalar masses. It is worth

mentioning that Y1 in eq. (3.1), in principle, is a 3 × 3 antisymmetric matrix. This fact is

important if one wants to fit the complete neutrino oscillation data (see the discussion at

the end of this section).

The mass diagram of model 1 in figure 10 shows that the neutrino mass is proportional

to the product of two masses of SM charged leptons. Considering the dominant contribu-

tion with two τ leptons running in the loop, the neutrino mass matrix is then calculated

straightforwardly as:

(Mν)αβ = − 3!

(16π2)3
λS
m2
τ

M
[(Y1)ατ (Y2)τ (Y3)τ (Y1)τβ + (α↔ β)] Floop(x1, x2) . (3.2)

After EWSB, in the mass eigenbasis, model 1 generates the diagram DM
3 in figure 7 with

a mass insertion in each of the three internal fermions. From the diagram, and assigning

momenta to the internal fields, we get the following expression for the loop function Floop,

which is given by a dimensionless integral:

Floop(x1, x2) =

∫∫∫
(k1,k2,k3)

1

[k21][k21 − x1][k22][k22 − x1][k23 − 1][(k2 − k3)2 − x1][(k3 − k1)2 − x2]
.

(3.3)

Here mτ was neglected, while the other masses were normalized to the vector-like mass M

of the field F :

x1 =
m2

1

M2
, x2 =

m2
2

M2
. (3.4)

We also used the short-hand notation∫
k

≡ (16π2)

∫
d4k

(2π)4
. (3.5)

For the full decomposition of Floop(x1, x2), in terms of master integrals, suitable for nu-

merical evaluation, see appendix C.
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Figure 11. The neutrino mass scale in model 1 for a few sample choices of parameters, see text

for details.

In figure 11 we show the neutrino mass scale for different choices of parameters. For the

calculation we have taken all masses of the new scalar singlets equal, i.e. m1 = m2 = mS .

As can be seen from eq. (3.2), Mν is proportional to the fourth power of the Yukawas. For

masses of order O(1) TeV one can reproduce the neutrino atmospheric scale (∼ 0.05 eV)

with Yukawas O(10−2 − 10−1).

The dependence of the neutrino mass on the masses of the fields in the loop is also

understood straightforwardly. From the diagram of model 1 in the mass eigenbasis, it is

straightforward to see that the neutrino mass should scale as:

Mν ∼ m2
τ

M

Λ2
, (3.6)

where Λ is some characteristic energy scale. As the loop function contains only two mass

scales, i.e. mS and M (neglecting mτ ), for mS � M the neutrino mass decreases with

1/m2
S , while for small scalar masses one obtains a constant value (for a fixed M).2

In summary, as figure 11 shows, the correct neutrino mass scale is obtained in this

model for a wide range of masses. In one extreme case, the new physics scale can be as

high as 103 TeV if all Yukawas are order one. On the other hand, even for masses M and

mS of the order of 1 TeV, Yukawa couplings can be as large as O(0.1).

3.2 Model 5

We have performed an analogous study for model 5 of figure 10. In the mass eigenbasis,

the neutrino diagram corresponds to diagram 10 in figure 7 with a mass insertion on both

d-quark internal lines.

2This is true only if M � mτ . It can be easily checked that for M → 0 the integral vanishes and

neutrinos remain massless.
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Fields SU(3)C SU(2)L U(1)Y

SQ 3 2 1/6

S1 3 1 5/3

S2 3 2 -11/6

F1 3 1 5/3

F2 3 2 -11/6

Table 3. Quantum numbers of the new fields given in model 5 (see figure 10).

The new fields present in the model are listed in table 3. Among others, the Lagrangian

contains the following interactions:

L = LSM +Y1Ld
cSQ+Y2QF1S2+Y3QF2S1+Y L

4 F1F2S
†
Q+Y R

4 F1F2SQ+µSS
†
QS
†
1S
†
2 +h.c.

+MF1F1F1+MF2F2F2+m2
SQ
S†QSQ+m2

S1
S†1S1+m2

S2
S†2S2+ · · · . (3.7)

Additional quartic terms in the scalar potential coupling the new scalars and the higgs

field are not written down explicitly.

Similarly to model 1, the neutrino mass in model 5 is proportional to the product of

two d-quark masses. Thus, one expects the dominant contribution will be proportional to

the mass of the bottom quark squared:

(Mν)αβ = − 12µS
(16π2)3

m2
b

m2
SQ

[(Y1)αb(Y2)b(Y3)b(Y1)bβ + (α↔ β)] (3.8)

×
[
Y L
4 FL(x1, x2, x3, x4) + Y R∗

4 FR(x1, x2, x3, x4)
]

where

FL(x1,x2,x3,x4)=

∫∫∫
(k1,k2,k3)

√
x1x3

[k21][k21−1][k22][k22−1][k23−x1][k23−x2][(k2−k3)2−x3][(k3−k1)2−x4]
,

(3.9)

FR(x1,x2,x3,x4)=

∫∫∫
(k1,k2,k3)

/k3( /k2− /k3)
[k21][k21−1][k22][k22−1][k23−x1][k23−x2][(k2−k3)2−x3][(k3−k1)2−x4]

,

(3.10)

are two dimensionless loop integrals normalized to the mass of the new scalar SQ,

x1 =
M2
F1

m2
SQ

, x2 =
m2
S1

m2
SQ

, x3 =
M2
F2

m2
SQ

, x4 =
m2
S2

m2
SQ

. (3.11)

For the decomposition of both integrals in terms of master integrals we refer again to

appendix C.

There are two different integrals contributing to the neutrino mass, as can be seen in

eq. (3.8), due to the fact that one may flip the chirality of the internal fermions with mass
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Figure 12. Loop functions, see eq. (3.9), that enter the neutrino mass, see eq. (3.8), generated by

model 5, see figure 10. For this plot, the masses of S1 and S2 are taken to be 1 TeV, while both

fermion masses MF1
= MF2

= MF .

insertions. F1 and F2 must have vector-like masses,3 thus there are two possible choices

for the chiral structure of the vertex, i.e. either one uses Y L
4 F1 F2 or Y R∗

4 (F1)
∗(F2)

∗. This

yields one loop integral with MF1MF2 in the numerator and another one with the loop

momenta of both fermions instead of their masses. This fact is important because, unlike

in model 1, for model 5 a cancellation can occur between both contributions, as shown in

figure 12. This cancellation occurs when all the masses in the diagram are of the same

order. For example, O(1) TeV in the case shown in figure 12.

In figure 13 we show some examples for the neutrino mass scale for specific but arbitrary

choices of parameters. Taking all the masses of the new scalars equal for simplicity, i.e.

mS1 = mS2 = mS , for masses of O(1) TeV Yukawas around O(0.5) are needed to generate

the atmospheric scale. The difference, compared to the previous case of model 1, arises

from the fact that the loop integral in model 5 contains one extra propagator compared to

model 1, as well as one extra Yukawa coupling. Thus, the neutrino mass scales differently

in model 5. The dependence on the masses is again easily understood, considering that for

model 5 one has:

Mν ∼ µSm2
b

(
M2
F

Λ4
+

1

Λ2

)
. (3.12)

For MF � mS one has a plateau whose height scales as 1/Λ2, instead of 1/Λ as in model

1, see eq. (3.12), while for large fermion masses both models have the same behaviour.

It is worth mentioning that model 5 contains an extra mass scale, i.e. the coupling µS
in eq. (3.7). In figure 13 we have chose µS = mS . Increasing its value will smoothen the

differences between both models, making it possible to reach the measured neutrino mass

3New fermions beyond the standard model fields must have vector-like mass terms for phenomenological

reasons. For example, a fourth chiral family is excluded by the Higgs production measurements at the LHC.
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Figure 13. The neutrino mass scale for model 5 in figure 10, for some example choices of param-

eters. See text for details.

scale with smaller Yukawas couplings. On the other hand, the need of at least one neutrino

mass of the order of 0.05 eV can be interpreted as a lower limit on this parameter.

We have chosen to discuss models 1 and 5 in more detail because they span the typical

range of three-loop neutrino mass models. By direct inspection of the genuine diagrams,

listed in figure 7, it can be seen that every integral contains 7 or 8 propagators, leading

to the same behaviour as in either model 1 or model 5, respectively, in the limit of large

masses. For small scalar and fermion masses, the scale of Mν depends on the numerator

of the integral, i.e. the number of fermions inside the loop along with the chiral structure

of each vertex, as well as the presence of SM mass insertions.

Finally, we should point out that obviously any realistic neutrino mass model should be

able to reproduce all neutrino oscillation data, i.e. the two neutrino mass squared differences

along with three neutrino mixing angles and phases. The aim of our simplified examples

was to show how the neutrino mass scales in typical 3-loop models; it was not to make a

thorough neutrino flavour fit. However, going beyond the simplified scenario where there is

just one non-zero charged lepton (or down-quark) mass the neutrino mass matrices given

in (3.2) and (3.8) have rank-2. This makes it possible to fit normal or inverted hierarchical

neutrino spectra, including a correct fit for angles and phases, in both model 1 and model

5. In order to fit a degenerate neutrino spectrum, a rank-3 neutrino mass matrix is needed.

This can be achieved easily in model 5 just by adding extra copies of the new fields, for

instance having two copies of F1 and F2. However, fitting a degenerate spectrum is not

possible for the case of model 1, disregarding the number of copies of the fermions. This

is due to the antisymmetry of the Yukawa Y1.
4 Adding more copies of scalars in model 1

would allow to fit also degenerate spectra. Again, as with the overall mass scale, our two

example models represent the two typical kind of models, that can be found at 3-loop order.

4This can be understood recalling that the rank of any n× n antisymmetric matrix is at most n− 1 for

odd n’s, together with the identity rank(AB) ≤ min(rank(A), rank(B)), for two arbitrary matrices A and B.
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4 Conclusions

In this paper we have discussed the complete decomposition of the Weinberg operator at

3-loop order. Our analysis concentrates on finding those topologies and diagrams that can

give the dominant contribution to the neutrino mass matrix, without the use of additional

symmetries beyond those of the standard model. We call such topologies/diagrams genuine.

We considered models with scalars and fermions only.

The requirement of “genuineness” eliminates the large majority of possible topologies:

from more than four thousands, there are only 73 topologies which satisfy this criteria.

We have discussed how to identify these cases and we listed them in appendix A. Those

73 genuine topologies were sub-divided into two classes: normal ones (44 topologies) and

special ones (29 topologies). While the former can be found systematically by our selection

criteria, the latter topologies form an exception to our general rules, as explained in detail

in section 2 and in the appendix A. This exception is related to the fact that usually, if any

three fields (or four scalars) can interact through a loop, then they can also do so through

a renormalizable local interaction. However, for special combinations of fields this is not

true: for example, the Higgs-Higgs-singlet local interaction is null, but a loop with these 3

external scalars does not need to have a zero amplitude.

The 44 topologies we have found are associated to a total of 228 diagrams in the electro-

weak basis, from which one can get 3-loop leading order neutrino masses contributions.

Going to the mass eigenstate basis, this list is reduced to only 18 diagrams (they are shown

in figure 7). To these normal genuine diagrams one has to add 146 special ones , in the

electroweak basis, which give another 12 mass eigenstate diagrams (see figure 8) We have

also discussed how all those diagrams can be calculated with only five master integrals

which where analysed in the literature previously [53]. We give them in appendix C, where

we also show how the loop integrals for specific neutrino mass models can be constructed

with two examples.

We have then also shown in section 3, how our general results can be easily used to

build genuine 3-loop neutrino mass models. A few examples are briefly mentioned, and

for two of them we have calculated the neutrino mass scale in more detail. This allows

us to estimate the typical parameter range (couplings and masses), for which these 3-loop

models can explain the measured neutrino oscillation data. We find that dimension 5 3-loop

models will give a good fit to data if the new particles have masses roughly in the range

1− 103 TeV. Such a low scale is partially testable at current and future colliders, as well as

in experiments searching for lepton flavour violation. Thus, 3-loop models are interesting

constructions, since they are experimentally testable. We hope that model builders will

find our results useful.
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A List of genuine topologies

In this work we are interested in those scenarios where the dominant contribution to neu-

trino masses arises from a 3-loop realization of the Weinberg operator. As explained in

the main text, genuine neutrino mass diagrams must descend from one of the 44 topolo-

gies shown in figure 14, otherwise it is not possible to forbid lower order contributions,

independently of the assignment of fermions and scalars to the lines.
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The topologies are ordered according to specific field content needed in order to be considered as

genuine. See the text for details.

However, the procedure used to identify these 44 normal genuine topologies admits a

loophole: in the presence of very special fields, it is possible to generate 3-loop neutrino

masses diagrams with other topologies, with no lower order contributions appearing. In

figure 15 we show these 29 special genuine topologies.

Consider topology 54: there is only one way of making a fermion chain connecting the

two external L’s hence there is a single diagram to be considered (see figure 16). One can

identify in it a 2-loop subdiagram with 4 external scalar lines, shown in red in the middle

of figure 16. Two of the external scalars are the Higgs fields of the Weinberg operator,

while the others (S and S′) are unknown a priori, hence the subdiagram is associated to

the operator HHSS′. This means that, for most assignments of quantum numbers to

the internal fields, one can write down such an interaction directly in a renormalizable

Lagrangian, in which case neutrino masses can be generated via the 1-loop diagram shown

in figure 16 on the right.

However, strictly speaking the 2-loop subdiagram generates the non-local operator

H(x1)H(x2)S(x3)S
′(x4) which we may rewrite as

H (x1)H (x2)S (x3)S
′ (x4) = H (x)H (x)S (x)S′ (x) +

∑
n

cn
∂2n

Λ2n
H (x)H (x)S (x)S′ (x) ,

(A.1)

where x is some space-time point close to the xi, Λ is some mass scale and the cn are

adimensional parameters. If H(x)H(x)S(x)S′(x) is nullified, the 1-loop neutrino mass
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Genuine diagram 
under special conditions

otherwise ...

Figure 16. Topology 54 has only one diagram associated to it (shown here inside the box on the

left). This diagram is only genuine under special conditions, in particular the two scalars interacting

with the fermion line (S and S′) must be a Higgs H and a scalar φD ≡ (1,2,−3/2).

depicted in figure 15 will not exist. Keeping in mind that in the Weinberg operator the

two Higgs doublets contract as an SU(2) triplet, there is only one possibility of avoiding a

renormalizable HHSS′ interaction: setting S = H and S′ = φD ≡ (1,2,−3/2), or vice-

versa.5 With this very special setup, the 3-loop diagram in figure 16 is genuine, and that

is why the corresponding topology is included in figure 15.

As a more involved example, we will now discuss topology 71, for which there is

a single genuine diagram, shown in figure 17. In this same figure, we indicate in red

two subdiagrams (with 3 and 4 external lines) which should not be shrinkable to point

interactions, otherwise the diagram becomes non-genuine. In particular, the internal scalars

must be such that the local operators HSS′ and HS′S′′S′′′ are zero, while still allowing

their non-local counterparts.

To nullify the first interaction, HSS′, we must have either S′ = S, S = H or S′ = H.

But the first possibility (HSS) is no good, as there is no SU(2) representation R such that

R ×R × 2 is gauge invariant. The second and third possibilities (HHS and HHS′), on

the other hand, imply that either S′ = φS ≡ (1,1,−1) or S = φS , respectively.

We consider now the other interaction, HS′S′′S′′′, which also needs to be zero in

its point-like realization. Given the two possible quantum number assignments for S′, we

might haveHφSS
′′S′′′ orHHS′′S′′′. However, it is not complicated to check that HφSS

′′S′′′

would require either S′′ or S′′′ to be a gauge singlet (1,1, 0), so one could make a 2-loop

realization of the Weinberg operator by removing this scalar line from the 3-loop diagram.

We then proceed with the only viable hypothesis — HS′S′′S′′′ = HHS′′S′′′. Again, we

are faced with two scenarios: (a) one of the undetermined scalars (S′′ and S′′′) is equal to H,

or (b) both S′′ and S′′′ are different from H. Scenario (a) implies that (S′′, S′′′) = (H,φD),

5If S′ was a SU(2) quadruplet, S′ = (1,4,−3/2), the local operator H(x)H(x)H(x)S′(x) would not

vanish. Another idea to avoid the HHSS′ point interaction is to have S = S′ = (1,R,−1/2) for some SU(2)

representation R, such that the two S’s contract antisymmetrically. This happens for odd-dimensional

SU(2) representations (other than the trivial one): R = 3,5,7, · · ·. The problem is that, for hypercharge

−1/2, such R’s lead to fractionally charged particles, the lightest of which would be stable and therefore

pose a cosmological problem [55] (adding a non-trivial colour quantum number would not change this).

Therefore we discarded such scenarios altogether.
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Genuine diagram 
under special conditions

Figure 17. Topology 71 has one genuine diagram, shown here. The quantum numbers of the scalars

must be special, otherwise one could build the Weinberg operator from a 1- or 2-loop diagram. In

particular, this scenario is avoided only if S = φS ≡ (1,1,−1), S′ = H, S′′ = φy ≡ (1,1, y), and

S′′′ = φ̃y ≡ (1,1,−1− y) for some hypercharge y 6= 0,±1,±2.

while scenario (b) leads to S′′ = φy ≡ (1,1, y), and S′′′ = φ̃y ≡ (1,1,−1− y) for some

y. In the last case, both scalars must be SU(2) singlets in order to ensure that the field

product S′′S′′′ does not have a triplet component which would be responsible for coupling

the two H’s symmetrically.

Taking into consideration everything said so far, it might then seem that there are two

possibilities for topology 71 with the labelling as indicated on figure 17: (S, S′, S′′, S′′′) =

(φS , H,H, φD) and
(
φS , H, φy, φ̃y

)
(possibly switching the quantum number of S′′ and

S′′′). However, a model with both the scalar φS and the scalar φD will inevitable generate

the 2-loop diagram shown in figure 18, so the diagram in figure 17 is genuine only if

(S, S′, S′′, S′′′) =
(
φS , H, φy, φ̃y

)
. It is worth mentioning that although the scalar loop with

φS and φD in figure 18 seems to diverge, the loop is finite. This is because such special

diagrams involve differences of two diagrams due to the SU(2)L contractions, removing the

divergences. This is the same contractions that makes precisely H(x)H(x)φS(x) = 0.

For all the topologies in figure 15, we performed a similar analysis as in the previous

examples, identifying the loop or loops at the diagram level that can exploit the loophole

and, therefore, the specific field content needed for the diagram to be genuine. With this

analysis, we classified the topologies in three groups such that all the diagrams generated

by a certain topology require the same fields to be genuine. In figure 15, the first two rows

of topologies (from topology 45 to 60) generate diagrams which contain one or two 4-point

loop scalar vertices with at least one external higgs. The models descending from these

topologies necessarily have the fields φy, φ̃y and/or φD in order to be genuine. Topologies

61 to 70 generate diagrams with one 3-point internal loop, i.e. with no leg being a external

leptons or Higgs. This can be either a 3-point scalar or fermion-fermion-scalar vertex. Note

that in both cases the tree level should be zero, so one cannot have more than one copy

of these fermions or scalars. Finally, the diagrams coming from the last three topologies

71, 72 and 73, contain at least one reducible loop with two scalars and an external higgs.

In principle, one can avoid the corresponding 2-loop diagram with the recipe described in

figure 17, thus making the topology genuine. Nevertheless, we mention that this diagram
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Figure 18. Two loop diagram which can be built in a model with the scalar fields φS ≡ (1,1,−1)

and φD ≡ (1,2,−3/2). Note that because H(x)H(x)φS(x) = 0, it is not possible to remove the

bottom loop in the diagram.

alone generates models which are not able fit neutrino data as they contain a structure

identical to the simplest realization of the Zee model [7].6

Just like the two example above, many of the 29 special topologies in figure 15 admit

only 1 valid diagram, with specific quantum numbers assigned to some of the internal

lines. Indeed, there is a total of 80 diagrams associated to these 29 topologies, which are

distributed as follows (for topologies 45 to 73): 1, 1, 1, 1, 2, 3, 1, 1, 1, 1, 1, 4, 2, 2, 4, 2,

20, 18, 1, 1, 1, 1, 2, 3, 1, 1, 1, 1, 1. The complete list of diagrams can be found in [51].

B Relation between incompressible loops and genuineness of a diagram

We have mentioned in section 2 that those diagrams for which it is possible to compress

one or more loops into a renormalizable vertex v are not genuine,7 as one can then use the

interaction v to construct a similar diagram with less loops. In other words,

loop compressibility ⇒ non-genuineness . (B.1)

Obviously, this is equivalent to the statement that genuine diagrams have incompressible

loops (genuineness⇒ loop incompressibility). However, this is not the same as

loop incompressibility ⇒ genuineness (B.2)

and yet it was stated before that we expect this to be true. Indeed, our analysis relies on

this important assumption, so in this appendix we discuss why we believe it to be true. We

think that the argument presented here is compelling, but we stop short of calling it a proof.

First, consider the following intuitive/informal explanation for the implication (B.2).

For particular assignments of quantum numbers to the internal lines of a diagram, there

6Note that unlike the Zee model where another copy of the Higgs can be added to fit neutrino data, in

the case under discussion this is not a viable solution, because the resulting model will be a correction to

a dominant 2-loop model generated by reducing the 3-point scalar loop with the copy of the Higgs.
7We have also discussed in detail an exception to this rule, due to the potential presence of repeated

fields. Hence we introduced the concept of special genuine diagrams and topologies, which are genuine even

though they have compressible loops.
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Figure 19. Two loop diagram with oriented lines `i and vertices vj . The hypercharge of each line

is indicated as a function of two free numbers: α1 and α2. The hypercharge of the external lines

was fixed to 1 in this example.

might be extra interactions between some of the diagram’s fields which are completely unre-

lated to the interactions used in the diagram. If that is the case, it might be possible to con-

struct the Weinberg operator LLHH with less loops by using the additional interactions.

However, there will be a choice of quantum numbers of the internal lines such that this does

not happen: no extra “non-trivial interactions” (see below) between the fields is possible,

hence the operator LLHH cannot be realized by a simpler diagram, with less loops.

In order to formalize this idea, consider only the abelian U(1)Y symmetry. In a n-loop

diagram where the hypercharge of the external particles is fixed, the hypercharges yi of the

internal lines depend on n free numbers αj . More specifically, the yi are linear functions

of these n parameters:

yi = ci0 +

n∑
j=1

cijαj , (B.3)

where the ci0 and cij are numbers which depend on the hypercharge of the external particles

and on the topology.8 Figure 19 shows an example where y6 = y7 = 1 by choice, and

y1 = α1, y2 = 1 + α1, y3 = α2, y4 = −1 + α2, y5 = 1 + α1 − α2 .

A crucial question is then the following: what is the full list of interactions between the

fields used in the diagram? From the point of view of the U(1)Y symmetry, any hypothetical

interaction beyond those used in the diagram will either be (a) forbidden, (b) allowed for

particular values of the αj or (c) allowed for all values of the αj . Referring to figure 19,

`3`
∗
4, `1`2`3 and `∗1`2`

∗
7 (respectively) are examples of each of these interactions. We will

only be interested in those interaction of type (c) because we can choose the αj in order

to build a model where all interactions of type (a) and (b) are forbidden.

For the rest of this discussion, it is important to keep in mind that the U(1)Y symmetry

is blind to combinations of a field and its conjugate, `i`
∗
i , hence one can add/remove them

at will from any allowed vertex. Now, note that the hypercharges yi in equation (B.3) are

8Given that the αj are free numbers, there is some arbitrariness in the choice of cij : for any invertible

matrix X one can replace cij by
∑
j′ Xjj′c

i
j′ .
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the most general solutions to a linear system of equations∑
j

Cijyj = 0 , (B.4)

where the rows of the matrix C represent each vertex, and its columns stand for each line

in the diagram: if line number j enters(leaves) vertex i, then Cij = 1(−1), otherwise this

entry is null. For the example in figure 19 we would have the following matrix:

C =


−1 0 0 1 1 0 0

0 1 −1 0 −1 0 0

0 0 1 −1 0 0 −1

1 −1 0 0 0 1 0

 . (B.5)

For each external line in the diagram, since its hypercharge is fixed, one must add that

constraint as well.

The important point is that any new vertex would correspond to adding a new row to

matrix C. This operation will not change the solution space if and only if the new row is a

linear combination of the existing rows (the solutions of C ·y = 0 and C ′ ·y = 0 are the same

only if the lines of C ′ are linear combinations of those of C). Additions and subtractions

of rows of C translates into making new vertices v which are the product of existing ones

(addition) or its conjugates (subtraction): v = v
(∗)
i v

(∗)
j v

(∗)
k · · ·.

9 The vertices obtained in

this way account for all unavoidable interactions (considering the U(1)Y group only).

For example, there are vertices v1 = `∗1`4`5 and v2 = `2`
∗
3`
∗
5 and in figure 19, so the

interactions v2v2 = `2`2`
∗
3`
∗
3`
∗
5`
∗
5 or v∗1v2 = `1`2`

∗
3`
∗
4`
∗
5`
∗
5 cannot be forbidden by any choice

of α1, α2. Nevertheless, these are non-renormalizable interactions: to reduce the number of

fields in these new interactions, one can only use the fact that combinations of the form `i`
∗
i

are irrelevant for the U(1)Y symmetry, hence for example v1v2 = `∗1`2`
∗
3`4 (modulo `5`

∗
5).

Graphically, it is very easy to follow what is happening: we remove the line `5 connecting

the vertices v1 and v2, condensing them into a quartic interaction. Applying this process

repeatedly for the internal lines `3, `4 and `5, one generates the new interaction `∗1`2`
∗
7

(= v1v2v3 modulo `i`
∗
i ’s) which graphically is obtained by collapsing the lower loop of the

diagram into a point.

Another interesting example are those cases where the same field appears in more than

one line in the diagram. For the present discussion what is important are those situations

where this is unavoidable, rather than just possible. According to the previous discussion,

two lines ` and `′ must have the same hypercharge (and therefore potentially represent the

9The fact that the hypercharge of external lines is fixed introduces a complication: the previous state-

ment is true, but one can also add hyperchargeless combinations of the external fields. In the case of

external Higgses H and L’s, that would correspond to the combination HL, but one can invoke addition-

ally Lorentz invariance to allow only the addition of pairs of this combination, i.e. HHLL. However, the

sum of all vertices v1v2v3 · · · in our diagrams, by construction, yield the Weinberg operator (times irrelevant

combinations of the internal lines of the form IiI
∗
i ), so the original statement stands: the only extra vertices

which do not spoil the solution space in equation (B.3) are the trivial ones formed from the product of the

vertices in the diagram and their conjugates.
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same field) if and only if the bilinear interaction `∗`′ is unavoidable, i.e. one must be able

to merge various of the diagram vertices into such interaction. Lines `6 and `7 in figure 19

constitute an example of such a scenario (they are external lines, hence their hypercharge

was fixed to 1 in our example, but even if they were internal lines of a bigger diagram,

U(1)Y invariance could not forbid the coupling `∗6`7).

In summary,

1. For a n-loop diagram, the hypercharge of the internal lines depends on n free numbers

αi.

2. The only interactions between the various lines which cannot be forbidden for any

choice of αi (the U(1)Y unavoidable interactions) are those for which the sum of

hypercharges is identically 0, i.e. 0 + 0α1 + 0α2 + · · · 0αn. (Only a subset of these

interactions are truly unavoidable as one should take into account the full Standard

Model symmetry, as well as Lorentz invariance.)

3. The full list of U(1)Y unavoidable interactions can be obtained by merging to-

gether the diagram vertices (and/or their conjugates). In this merging process,

(line X) (line X)∗ combinations can be added or removed.

4. Most of these unavoidable interactions are non-renormalizable. Renormalizable new

vertices can be formed only if there are those removable (line X) (line X)∗ combina-

tions mentioned earlier, otherwise by merging vertices the number of lines constantly

increasing. Graphically, this corresponds to coalescing adjacent vertices in the dia-

gram, and removing the line(s) connecting them.10

There are 4 external lines (LLHH) indirectly connected to each other through a web of

vertices and internal lines. The unavoidable alternative ways of connecting these 4 lines

must be through an alternative web of unavoidable vertices. Graphically, this new web of

lines and vertices must be obtained from the original one by the vertex-merging process

described above. So, if it is not possible to remove one or more loops from a diagram by

collapsing them into a point, the diagram is genuine.

C Master integrals for 3-loop neutrino masses

In this appendix, we give the minimal set of integrals that span the complete list of possible

genuine models. In principle, starting from the list of 30 genuine diagrams in the mass

eigenbasis (see figure 7 and 8), one should obtain at least 30 integrals assigning momenta to

the fields. This initial set, however, can be further reduced applying the results previously

10Even though it is not important for the present discussion, we mention here that the deleted lines can

be the external L’s and/or H’s: graphically one would connect the diagram with a conjugated copy of itself

(that is, a copy of the diagram with the orientation of all lines flipped) via the external L and/or H lines,

which would become internal lines. For example, consider a diagram with Higgs interactions v1 = H`1`2
and v2 = H`3`4. Then v1v

∗
2 = `1`2`

∗
3`
∗
4 is a new, unavoidable interaction which can be obtained graphically

in the way just described.
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used in 2-loop calculations in [12, 56], both based on [57], and 3-loop integrals in [53, 58].

Here, we are going to summarize the results in these papers which we need.

Using the notation of [53], we can write:

T(n1,n2,n3,n4,n5,n6)(x1,x2,x3,x4,x5,x6) =

∫∫∫
(k1,k2,k3)

(C.1)

× 1

[k21−x1]n1 [k22−x2]n2 [k23−x3]n3 [(k1−k2)2−x4]n4 [(k2−k3)2−x5]n5 [(k3−k1)2−x6]n6

Here we have used the abbreviation given in eq. (3.5) and the powers of the propagators ni
can be any integer number. Note that the integral is invariant under the interchange of pairs

(ni, xi) and moreover, satisfies the nine identities obtained by integration by parts [59],

0 =

∫∫∫
(k1,k2,k3)

∂

∂kµi

[
kµjX

]
, (C.2)

for i, j = 1, 2, 3, with X equal to any product of propagators of the form shown in eq. (C.1).

One can find very useful identities for this kind of integrals, such as:

3

2
d+

6∑
j=1

(xjj
+ − 1)nj = 0. (C.3)

Here d is the dimension of the momentum integration in dimensional regularization and j±

is short-hand notation for the following operator:

j±T(...,nj ,...) = T(...,nj±1,...). (C.4)

By repeated application of the identities (C.2), any of the 3-loop integrals T can be

reduced to a linear combination of five master integrals [53]:

H(x1, x2, x3, x4, x5, x6) = T(1,1,1,1,1,1)(x1, x2, x3, x4, x5, x6)

G(x3, x1, x6, x2, x5) = T(1,1,1,0,1,1)(x1, x2, x3, x4, x5, x6)

F(x1, x2, x5, x6) = T(2,1,0,0,1,1)(x1, x2, x3, x4, x5, x6) (C.5)

A(x1)I(x2, x3, x5) = T(1,1,1,0,1,0)(x1, x2, x3, x4, x5, x6)

A(x1)A(x2)A(x3) = T(1,1,1,0,0,0)(x1, x2, x3, x4, x5, x6).

where A is the standard one-loop Passarino-Veltman function [60] and I is a two-loop

integral described in [57]. It is worth mentioning that analytical expressions exist for the

well-known integrals A and I, while for the three-loop ones (F, G, and H) results are

known only for particular cases (see [53] for details).

Particularizing to our case, starting from the 30 diagrams in figure 7 and 8, in the

mass insertion approximation, and assigning momenta to the internal lines, one can find

that the integrals have repeated propagators with equal momenta but different masses.11

11The momenta flowing into the diagrams is set to 0, given the smallness of neutrino masses.
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One can prove that every 3-loop integral in figure 7 and 8 can be written in terms of the

integrals in eq. (C.1). We note here that partial fractions can be used to reduce the number

of propagators with common momenta [57]:

T({n11,n12},n2,n3,n4,n5,n6)({x11, x12} , x2, x3, x4, x5, x6) = (C.6)

=
1

x11 − x12

[
T({n11,n12−1},n2,n3,n4,n5,n6)({x11, x12} , x2, x3, x4, x5, x6)

−T({n11−1,n12},n2,n3,n4,n5,n6)({x11, x12} , x2, x3, x4, x5, x6)
]
,

where T({n11,n12},n2,n3,n4,n5,n6)({x11, x12} , x2, x3, x4, x5, x6) is the same as T without the

braces, but with an extra propagator [k21 − x12]n12 .

On the other hand, some integrals with a non-trivial integrand numerator can be

further simplificatied using the p2-decomposition, namely

p2

(k2 − x1)(p2 − x2)
=

1

(k2 − x1)
+

x2
(k2 − x1)(p2 − x2)

. (C.7)

To demonstrate how this procedure works in practice, we can take for instance the

loop integral of model 1, given in eq. (3.3) of section 3. Applying the identity (C.6) twice

to both propagators sharing k1 and k2 momenta, Floop(x1, x2) can be directly decomposed

in terms of a linear combination of G’s:

Floop(x1, x2) =
1

x21

{
G(1, x1, x2, x1, x1)−G(1, x1, x2, 0, x1)

−G(1, 0, x2, x1, x1) + G(1, 0, x2, 0, x1)

}
. (C.8)

For model 5, the decomposition of the loop integral FL(x1, x2) in (3.9) is straightfor-

ward given the previous example. One only has to apply eq. (C.6) three times to obtain a

linear combination of eight G integrals. Here we focus on the decomposition of FR(x1, x2),

just to present an example of a integral with a non-trivial numerator. One should first

notice that under the integral sign

/k3( /k2 + /k3) −→ k3 · (k2 + k3) =
1

2

[
(k2 + k3)

2 − k22 + k23
]
. (C.9)

It is clear that one should apply the p2-decomposition in eq. (C.7) along with the partial

fractions decomposition (C.6), as in the previous case, to get rid of the numerator and

the repeated propagators. The full process of the decomposition is rather lengthy and
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cumbersome, so here we give just the final result.

FL(x1, x2, x3, x4) =

√
x1x3

x1 − x2

{
G(x1, 1, x4, 1, x3)−G(x1, 1, x4, 0, x3)

−G(x1, 0, x4, 1, x3) + G(x1, 0, x4, 0, x3)

−G(x2, 1, x4, 1, x3) + G(x2, 1, x4, 0, x3)

+ G(x2, 0, x4, 1, x3)−G(x2, 0, x4, 0, x3)

}
, (C.10)

FR(x1, x2, x3, x4) =
1

2

1

x1 − x2

{
(x1 + x3 − 1)

[
G(x1, 1, x4, 1, x3)−G(x1, 0, x4, 1, x3)

]
− (x1 + x3)

[
G(x1, 1, x4, 0, x3)−G(x1, 0, x4, 0, x3)

]
− (x2 + x3 − 1)

[
G(x2, 1, x4, 1, x3)−G(x2, 0, x4, 1, x3)

]
+ (x2 + x3)

[
G(x2, 1, x4, 0, x3)−G(x2, 0, x4, 0, x3)

]
+
[
A(1)−A(0)

][
I(x1, 1, x4)− I(x1, 0, x4)

− I(x2, 1, x4) + I(x2, 0, x4)
]}
. (C.11)

One can check that the loop integral decompositions are still symmetric under the inter-

change of x1 and x2, as it was the case with the original integral definitions in eq. (3.9).
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