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Abstract: We present a detailed and self-contained analysis of the universal Schwinger-

Keldysh effective field theory which describes macroscopic thermal fluctuations of a rel-

ativistic field theory, elaborating on our earlier construction [1]. We write an effective

action for appropriate hydrodynamic Goldstone modes and fluctuation fields, and discuss

the symmetries to be imposed. The constraints imposed by fluctuation-dissipation the-

orem are manifest in our formalism. Consequently, the action reproduces hydrodynamic

constitutive relations consistent with the local second law at all orders in the derivative

expansion, and captures the essential elements of the eightfold classification of hydrody-

namic transport of [2]. We demonstrate how to recover the hydrodynamic entropy and give

predictions for the non-Gaussian hydrodynamic fluctuations.

The basic ingredients of our construction involve (i) doubling of degrees of freedom a la

Schwinger-Keldysh, (ii) an emergent gauge U(1)T symmetry associated with entropy which

is encapsulated in a Noether current a la Wald, and (iii) a BRST/topological supersym-

metry imposing the fluctuation-dissipation theorem a la Parisi-Sourlas. The overarching

mathematical framework for our construction is provided by the balanced equivariant co-

homology of thermal translations, which captures the basic constraints arising from the

Schwinger-Keldysh doubling, and the thermal Kubo-Martin-Schwinger relations. All these

features are conveniently implemented in a covariant superspace formalism. An added

benefit is that the second law can be understood as being due to entropy inflow from the

Grassmann-odd directions of superspace.

Keywords: Effective Field Theories, Topological Field Theories, Quantum Dissipative

Systems, AdS-CFT Correspondence

ArXiv ePrint: 1803.11155

Open Access, c© The Authors.

Article funded by SCOAP3.
https://doi.org/10.1007/JHEP10(2018)194

mailto:f.m.haehl@gmail.com
mailto:nayagam@gmail.com
mailto:mukund@physics.ucdavis.edu
https://arxiv.org/abs/1803.11155
https://doi.org/10.1007/JHEP10(2018)194


J
H
E
P
1
0
(
2
0
1
8
)
1
9
4

Contents

I Introduction &background 1

1 Introduction 1

1.1 Preview of the general framework 2

1.2 U(1)T gauge invariance and thermal equivariance 3

1.3 A brief history of hydrodynamic effective field theories 5

1.4 Outline of the paper 7

2 Review of thermal equivariance 8

2.1 The SK-KMS superalgebra 8

2.2 Superspace and the thermal gauge multiplet 11

2.3 Super-index contractions 13

II Hydrodynamic effective field theories 15

3 The hydrodynamic degrees of freedom 15

3.1 The pion fields of hydrodynamics 15

3.2 Symmetries of the hydrodynamic sigma models 17

3.3 Comments on U(1)T gauge dynamics 21

4 Dissipative effective action and entropy inflow mechanism 23

4.1 Super-adiabaticity from U(1)T Bianchi identity 25

4.2 Fluid dynamical equations of motion 26

4.3 Adiabaticity equation, entropy inflow, and the second law 28

5 The MMO limit: a truncation for explicit calculations 32

5.1 Field content 33

5.2 The worldvolume connection 36

5.3 General observations 37

6 The MMO limit: examples 39

6.1 Zeroth order: ideal fluid 39

6.2 First order: viscosities and dissipation 40

6.3 Second order: some examples 44

7 The Eightfold Way from superspace 48

7.1 Class L (= Class HS ∪ Class HS) 49

7.2 Class D 50

7.3 Class B 54

7.4 Class HV 55

7.5 Class C 56

8 Discussion 56

– i –



J
H
E
P
1
0
(
2
0
1
8
)
1
9
4

III Thermal supergeometry: mathematical details 60

A The thermal SK-KMS superalgebra 60

B Review of equivariant cohomology 61

B.1 Weil model 61

B.2 Cartan model 63

C U(1)T connection and representation theory 64

C.1 Thermal commutator 64

C.2 U(1)T connection 65

D Superspace representations: adjoint superfield 66

D.1 Basic definitions and component fields 67

D.2 Gauge transformation and WZ gauge 68

D.3 Covariant derivatives and Bianchi identities 69

D.4 SK-KMS superalgebra 72

E Superspace representations: gauge multiplet 73

E.1 Component fields 73

E.2 Gauge transformation and WZ gauge 76

E.3 Super field strengths 77

E.4 Covariant derivatives and Bianchi identities 78

E.5 Double covariant derivatives of super field strengths 80

F Properties of the U(1)T KMS gauge group 80

F.1 Composing U(1)T transformations 81

F.2 U(1)T representation theory 86

IV Hydrodynamic sigma models: mathematical details 89

G Superspace representations: position multiplet 89

G.1 Basic definitions 89

G.2 Component fields the WZ gauge 91

G.3 Covariant derivatives and Bianchi identities 92

H Superspace representations: metric and curvature 94

H.1 Metric superfield 95

H.2 Curvature superfield 96

I Gauge fixing and super-diffeomorphisms 96

I.1 Worldvolume symmetries 96

I.2 Target space symmetries 98

J Fixing the worldvolume connection 99

K Superspace expansion of further fields in the MMO limit 104

– ii –



J
H
E
P
1
0
(
2
0
1
8
)
1
9
4

Part I

Introduction &background

1 Introduction

The dynamics of quantum field theories out-of-equilibrium encompasses many interesting

physical phenomena which are readily observable in nature. Often one is interested in the

macroscopic behaviour of the system after transient effects have settled down. In a wide

variety of examples we know empirically that the collective dynamics of the low energy

degrees of freedom leads to new dramatic effects including effective non-unitarity, entropy

production and dissipation. One would like to have a theoretical framework to address

these issues and isolate potential universal characteristics that are insensitive to the spe-

cific microscopic details. In the case of equilibrium (typically near ground state) dynamics,

the Wilsonian paradigm makes clear that one has to isolate the relevant macroscopic de-

grees of freedom and ascertain the generic dynamics for them subject to various symmetry

considerations. An analogous framework for non-equilibrium dynamics is the goal one

would like to aspire to.

Whilst the question for generic out-of-equilibrium dynamics remains as yet unclear, in

recent years progress has been made on understanding the situation in a near-equilibrium

regime where hydrodynamic effective field theories operate. Inspired by the structure of

the Schwinger-Keldysh functional integral there have been several works [1–10] dedicated

to constructing a framework to capture near thermal effective field theories in the hydrody-

namic regime.1 Our aim is to elaborate on these constructions and set out a comprehensive

framework for studying such effective field theories. We build on recent work and provide

further details underlying the construction of topological sigma models capturing dissipa-

tive hydrodynamics as described in [1].

The central problem in this regard is to decide on the basic symmetry princi-

ples/symmetry breaking pattern behind the effective field theory in the hydrodynamic

regime. The core challenge for these symmetry principles is to automatically explain both

the emergence of a macroscopic arrow of time and the existence of a local entropy current,

along with the non-conservation of the latter. These requirements necessitate a novel form

of effective field theory very different from existing paradigms. In our previous work [1, 3],

we posited a three-fold symmetry structure whose interplay successfully reproduces the

hydrodynamic effective theory. Our proposal consists of:

1. A set of ‘twisted’ super-symmetries emerging from the Schwinger Keldysh doubling.

2. An emergent thermal or ‘entropic’ gauge symmetry (denoted as U(1)T ) emerging

from the near thermal structure. Its gauge current is the entropy current.

3. A particular superspace component of U(1)T field strength acts as an order parameter

for CPT breaking. Its expectation value then leads to the emergence of arrow of time.

1An earlier attempt to construct dissipative hydrodynamic effective actions was made in [11] which

took its inspiration from the Martin-Siggia-Rose (MSR) construction [12]. We will give a more complete

discussion of some of the earlier attempts later in the introduction, section 1.3.

– 1 –



J
H
E
P
1
0
(
2
0
1
8
)
1
9
4

In this work, we will substantially add to the explicit computations which support the

above conjecture. In particular, we will show that a non-trivial statement required for the

self-consistency of our proposal does hold: for the entropy current to be a gauge current,

the apparent non-conservation of entropy in fluid dynamics should lift to an appropriate

conservation statement within our framework. We will see that this is indeed true; the

physical hydrodynamic entropy is only a part of larger conserved super-current. Our com-

panion paper [13] summarizes the salient features of our construction, especially the fact

that entropy production can be understood as a superspace inflow mechanism.

In the rest of this introduction, we will summarize various features of our proposal

and the resulting framework. While the entire discussion is framed in terms of hydrody-

namics, the reader should note that holography (more specifically fluid-gravity correspon-

dence [14, 15]) requires that these statements also be true in gravity. If the above set of

symmetries are indeed the correct framework for fluid dynamics, it follows that the same

symmetries should also underlie black hole physics including the emergence of arrow of time

via a superspace field strength as well as superspace inflow of entropy. The hydrodynamic

computations in this work when combined with fluid-gravity correspondence, force upon

us this somewhat radical conclusion.

1.1 Preview of the general framework

The basic philosophy behind our construction, first detailed in [1, 3], can be understood

as follows (see [5, 6] for detailed reviews). Hydrodynamics is supposed to capture the

causal, non-linear response of a physical system perturbed away from equilibrium, in a long-

wavelength, low-energy regime. In the microscopic presentation of the theory such response

functions are computed using the Schwinger-Keldysh formalism [16, 17] which involves a

complex time contour (or a doubled contour with forward (R) and backward (L) evolution)

in the functional integral. A key feature is that the response functions are the first non-

trivial observables; we insert a sequence of identical sources to disturb the system followed

by a mis-aligned source to facilitate a response/measurement, see figure 1 for an illustration.

The canonical way to view the Schwinger-Keldysh path integral is in terms of an action

on an extended Hilbert space HR⊗H∗L corresponding to the top and bottom legs of the con-

tour, respectively. One correspondingly doubles the operator algebra of the theory for we

can independently insert operators on either leg of the contour. The key insight of the recent

discussions was to interpret some of the well known identities for correlation functions which

are, for example, well reviewed in [18, 19], as consequences of topological BRST symmetries

inherent in the Schwinger-Keldysh construction (see [20] for a Hilbert space perspective).

The primary contention is that a Schwinger-Keldysh effective theory is characterized

by a doubling of fields and a degeneration to a topological theory when the sources of

two copies are appropriately aligned [3, 4]. As explained in [5] the BRST symmetries

may be understood as a consequence of the redundancy built into the Schwinger-Keldysh

doubling. This line of reasoning led us to argue that the natural language for Schwinger-

Keldysh is to work with a quartet of operators corresponding to the conventional doubled

operators OL,OR, and their Grassmann odd counterparts OG ,OG
obtained by the action of

the BRST charges. One can succinctly capture this by working in a superspace with two

– 2 –
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Figure 1. An illustration of the hydrodynamic observables in the Schwinger-Keldysh functional

integral phrased in the Keldysh average-difference basis. Response functions are correlators of a

sequence of difference operators (the external disturbances, denoted as blue dots) followed by an

average operator (the measurement, denoted by the black dots) in the future.

Grassmann odd scalar directions {θ, θ̄} which take care of the doubling and the topological

limit aspects of a Schwinger-Keldysh construction. Altogether the most natural way to view

the Schwinger-Keldysh construction is to work with a super-operator algebra on which the

BRST charges dubbed QSK and QSK act as super-derivations QSK ∼ ∂θ̄ and QSK ∼ ∂θ. The

topological invariance is then just the Grassmann translation invariance. A detailed account

of how this translational invariance can be used to give superspace rules for computing the

microscopic field theory correlation functions can be found in [5, 20].

It is important to emphasize that the Schwinger-Keldysh BRST symmetries essentially

capture the constraints imposed by unitary evolution of the microscopic degrees of freedom.

Furthermore, by virtue of being topological one expects these symmetries to be robust

under the renormalization group flow. Consequentially, they provide useful guideposts on

how to organize the low energy dynamics.

1.2 U(1)T gauge invariance and thermal equivariance

There is additional structure for near-thermal dynamics owing to the Gibbs structure of the

density matrix. Thermal field theory in its Euclidean avatar implements thermality by im-

posing periodicity in imaginary time. If we wanted to study real-time dynamics of thermal

systems, this Euclidean description should then be analytically continued into a Schwinger-

Keldysh path integral. The periodicity in the Euclidean description then translates to a set

of non-local conditions called Kubo-Martin-Schwinger (KMS) conditions [21, 22] satisfied

by the real time correlators. We expect that these conditions should deform appropriately

to describe real time correlators in a generic fluid dynamical state. A fundamental question

in any effective theory of thermal systems is how to implement a sensible deformation of

these (temporal) non-local conditions in a local effective theory.

Recently an answer to this question has emerged, mainly in the context of treating

fluid dynamics as an effective theory [2, 23]. It was conjectured the correct local principle

to enforce is to demand an emergent ‘entropic’ gauge symmetry dubbed U(1)T, which in

real time provides the correct analytic continuation of the Euclidean periodicity. Its gauge

current is the entropy current (this statement can be thought of as a generalization of

Wald’s idea that equilibrium entropy is a Noether charge [24]). This emergent KMS gauge

symmetry can be understood in terms of the topological structure of the Schwinger-Keldysh

– 3 –
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construction. In particular, it was argued in [5] that the additional constraints coming from

KMS invariance lead to a quartet of operations that act on the Schwinger-Keldysh super-

operator algebra. Two of these are Grassmann odd, thermal counterparts of the BRST

charges, QKMS ,QKMS and the two others are Grassmann even generators Q0
KMS

,LKMS .2

One can intuitively understand the thermal generators in the following fashion. For a

thermal system one can view real time dynamics as occurring on a background spacetime

that admits a fibration by a thermal circle. Recall that we are used to analyzing equilibrium

dynamics in the Euclidean framework as a statistical field theory in a geometry which is a

thermal circle fibration over a spatial background. We argue that this perspective continues

to be useful in the dynamical context. Given a notion of local temperature and a local

choice of inertial frame measuring it (as is usual in hydrodynamics), our contention is that

the background spacetime geometry on which the quantum dynamics occurs, should be

viewed as living on a thermal bundle over a Lorentzian base. The local fibres being given

by the thermal vector βµ(t, x), whose norm gives a measure of the local temperature; it

picks out the inertial frame for local equilibrium.

The generator LKMS implements translations along the thermal vector βµ. Owing to

the KMS conditions, we can equivalently say that LKMS implements gauge transformations

around the thermal circle. An operator O(t, x) when acted upon by this generator gets Lie

dragged along the local fibre, viz., O 7→ O + £βO. In general this is a non-local, discrete

operation since one compares an operator with its thermal counterpart. The latter is sepa-

rated by an imaginary amount set by the local temperature. We will eventually postulate a

continuum version, but before doing so let us intuit the rationale for the other KMS charges.

Owing to the underlying Schwinger-Keldysh BRST symmetries inherent in real time

dynamics, it follows that LKMS cannot act in isolation. Given that the symmetries act on

the operator superalgebra, it also follows that there ought to be quartet of KMS operations

that are interlinked by the Schwinger-Keldysh BRST charges. Said differently, it does not

suffice for there to be a single KMS operation LKMS since the superspace structure demands

that it uplift to an appropriate superspace operation. The explicit action of these charges

on the super-operator algebra can then be constructed directly. We will review the resulting

SK-KMS algebra generated by the six charges {QSK ,QSK ,QKMS ,QKMS ,Q0
KMS

,LKMS} below.

As noted in the references cited above and explained in [6] this algebra exemplifies an

extended equivariant cohomology algebra.

The complete structure of this algebra and its implications for generic thermal systems

have not yet been fully understood. However, for the analysis of low energy dynamics

in near-thermal situations, as in the hydrodynamic context, we can make some useful

simplifications. Insofar as the low energy hydrodynamic regime is concerned, one can

effectively work in the high temperature limit, where the local thermal circle becomes

infinitesimal. This has the salubrious effect of allowing us to both make the thermal

translations local, and pass into the continuum limit. We then view the low energy theory

2More precisely, {QKMS ,QKMS
,Q0

KMS
} are interior contractions in the language of extended equivariant

cohomology, while LKMS is a Lie derivation. A closely related superalgebra was posited in [4] where the au-

thors convolve the KMS symmetry with a discrete CPT action. This latter algebra can be viewed in the sta-

tistical (high temperature) limit as a restriction of the equivariant algebra with the symmetry left ungauged.

– 4 –
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as being equivariant with respect to the thermal gauge symmetry translating operators

around the thermal circle, which is nothing but the U(1)T KMS-gauge symmetry.

The basic framework for viewing such thermal equivariant cohomology algebras was

outlined in [6]. Our aim there was to explain the general structures and explicate the ori-

gins of the thermal U(1)T gauge symmetry. We also argued that this framework could be

used to understand the simplest Schwinger-Keldysh effective theory in the thermal regime.

The system under question is the worldline description of a thermal particle, often called

Brownian particle. The resultant macroscopic dynamics is the one given by the Langevin

equation. We kept the discussion there simple by focusing on the particle motion in one-

dimension, which amounts to studying a worldline sigma model with a one dimensional

target space constrained by the thermal equivariant cohomology algebra. The natural

generalization is to extend the discussion to Brownian branes [3] which can be viewed as

reparameterization invariant worldvolume sigma models. The target space is the spacetime

in which these branes lie embedded. The particular theory arising out of our considera-

tions is a natural generalization of twisted supersymmetric quantum mechanics studied by

Witten in the context of Morse theory [25]. Amongst the Brownian branes, the space-

filling one, captures, upon imposition of target space diffeomorphisms, the hydrodynamic

effective field theory [1].

The object of the current analysis is to examine deeply the underlying mathematical

structure of the thermal gauge theory and build up the necessary machinery to construct the

sigma models of interest. Whilst we view the current discussion as a necessary elaboration

of [1], it is the first step we need to take to check whether these sigma models with their

attendant KMS gauge symmetry match against expectations from thermal field theory. In

particular, we would want to show based on the formalism we are about to explicate that the

eightfold classification of hydrodynamic transport described in [2] is indeed comprehensive

and can be recovered from an effective action. A related objective is to develop necessary

mathematical machinery for near-equilibrium effective theory which will capture well the

thermal correlations.

In this work, we will focus on the topological or aligned limit, where one needs to

write down a theory with doubled topological invariance along with the above mentioned

U(1)T gauge invariance. This naturally brings us into the remit of equivariant cohomol-

ogy algebras and one effectively desires a superspace construction that encodes the relevant

constraints. We will work in the aforementioned superspace with two Grassmann odd direc-

tions and {∂θ, ∂θ̄} providing the necessary topological charges. Thus, our problem involves

studying U(1)T gauge invariance associated with thermal translations in the context of a su-

perspace. This interplay between thermal translations and Schwinger-Keldysh superspace

results in a rich thermal supergeometry which forms the central subject of this work.

1.3 A brief history of hydrodynamic effective field theories

To put our construction in perspective, we give a brief history of hydrodynamic effective

actions. For the case of ideal fluids, efforts to construct an action principle date back

several decades with works by Taub [26] and Carter [27, 28].

– 5 –
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Recent interest in understanding effective desciption of fluids was rejuvenated in an

interesting paper [29], where the authors proposed a useful strategy for identifying the low

energy dynamical degrees of freedom in terms of Goldstone modes for broken symmetries.

At the same time working with the local fluid element variables (the Lagrangian descrip-

tion), [30] gave a general framework to describe non-dissipative fluid dynamics, which was

employed to understand anomalous transport for Abelian flavour anomalies in 1 + 1 di-

mensions in [31]. Building on these works, [32] demonstrated how these could be used to

understand non-linear dissipative fluids, while [33–35] explored the specific features of Hall

viscosity in 2 + 1 dimensions.

In our first attempt to understand the generality of the formalism, we constructed

an action principle for anomalous transport in general in [36]. A curious feature of this

construction was that despite the anomalous transport being non-dissipative or adiabatic,

one nevertheless had to resort to a Schwinger-Keldysh type doubling of degrees of freedom

to construct an effective action.

While efforts were being expended to understand hydrodynamic effective actions,

progress was being made on understanding the constraints on transport from viewing hy-

drodynamics as a long-wavelength effective field theory, constrained by the requirement

that a local form of the second law is upheld on-shell in every fluid configuration (i.e.,

there exists an entropy current with locally non-negative divergence). This problem was

initially explored in [37] and a complete solution to neutral fluids at second order was

finally obtained by Sayantani Bhattacharyya in [38]. In the latter work it was shown that

there are non-trivial identities that transport coefficients need to satisfy in order to sat-

isfy the second law. Inspired by these developments, [39, 40] developed the equilibrium

partition function formalism from which all the constraints on transport can be obtained.

Application of this formalism to understand anomalous transport was explored in [41–43].

This analysis was further refined by Sayantani Bhattacharyya in [44, 45] who went on to

prove a remarkable theorem: apart from constraints coming from equilibrium, and the

positivity requirements on lowest order dissipative terms (viz., transport coefficients such

as shear viscosity, bulk viscosity, conductivity, etc., are non-negative definite), there are no

constraints on higher order dissipative terms.

Our first attempt to synthesize these results into a coherent picture culminated in the

eightfold classification of hydrodynamic transport as described in [2, 23]. This work involved

two distinct lines of development: firstly we took the axioms of fluid dynamics at face value,

and constructed an explicit parametrization of independent classes of transport consistent

with the second law at all orders in the derivative expansion. This classification, which

was named the Eightfold Way, indicated that apart from the obvious dissipative transport,

there are 7 independent adiabatic (i.e., non-dissipative) classes. Any transport coefficient

not in these classes is forbidden from appearing and belongs to the set of hydrostatic

forbidden terms, which can already be inferred from the equilibrium analysis. In a parallel

development we demonstrated that an action principle involving two essential ingredients,

(a) Schwinger-Keldysh like doubling, and (b) an emergent thermal U(1)T symmetry, could

capture all of the 7 adiabatic classes of transport. The former requirement was on the

one hand familiar from the issues encountered in the construction of anomalous transport

– 6 –
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effective actions, but was on the other surprising since we were dealing with a conservative

system. The U(1)T symmetry, however, was imperative given the doubling, to forbid

terms that would be in tension with microscopic unitarity. Equivalently, this symmetry is

necessary to implement the constraints arising from the KMS condition in equilibrium and

ensures that all the Schwinger-Keldysh influence functionals are consistent.

The structure of this action of adiabatic transport, dubbed the Class LT action, is

reminiscent of the MSR [12] construction. Roughly, the hydrodynamic terms arise from

an action of the form T ab g̃ab, where T ab is the energy-momentum tensor, and g̃ab is the

difference metric in the Schwinger-Keldysh doubled construction. It was independently

argued by [11] that such an MSR like construction should be the right framework for dissi-

pative fluid dynamics. Other attempts to construct actions for dissipative hydrodynamics

include [46–49].

Seeking to understand the origins of the Schwinger-Keldysh doubling and the U(1)T
symmetry led us to unearthing the general framework of thermal equivariance, which has

been explained in the sequence of papers [1, 3, 5, 6]. The key ingredients of this con-

struction, viz., the BRST symmetry were also independently argued for by [4]. Their

construction was further explored in [7, 9, 10]. There are some overarching similarities,

and some key differences between the two approaches. These have been spelled out in

some detail in [50] so we will refrain from providing further commentary here. The key

similarity is that other approaches seems to result in the same Lagrangian with the same

final symmetries in the hydrodynamic limit.

The key difference is that these works do not have an emergent U(1)T gauge symmetry,

and their implementation of KMS invariance as a discrete Z2 symmetry differs from our

viewpoint. Further, much of their work is also done within a non-covariant framework and

amplitude expansions, thus obscuring relations to previous literature as well as our work.

As explained in [50], their Z2 symmetry is however consistent with our proposal. Finally, [8]

provides a superspace description of this alternate construction and sketch some features

of hydrodynamic actions involving Lagrangians with mutually non-local terms. A related

approach with a focus on the path integral derivation of hydrodynamics was spelled out

in [51, 52]. While we have not tried to reassemble every non-covariant/non-local expressions

occurring in these works into a form that would facilitate more direct comparison to our

local covariant expressions, we anticipate agreement in the regime where the fluid dynamics

is correctly reproduced.

Note added. While this paper was nearing completion, [53] appeared on the arXiv,

which has some overlap with this work (especially elements of section 4).

1.4 Outline of the paper

In section 2 we briefly review the equivariant superspace construction that encodes the

Schwinger-Keldysh constraints in near thermal states.

The second part of this paper contains details on the application to hydrodynamic

effective field theories. In section 3 we review the sigma model degrees of freedom describ-

ing fluid dynamics, and the symmetries to be imposed on an effective action. We give

– 7 –
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an abstract discussion of the structure of the resulting hydrodynamic effective action in

section 4. This leads to the realization that the second law can be naturally understood as

due to an entropy inflow from the Grassmann odd directions in superspace. To make the

abstract discussion more accessible and provide a concrete framework for calculations, we

develop the “MMO limit” (after Mallick-Moshe-Orland [54]) of our formalism in section 5.

This limit provides a truncation of our formalism to keep track of only the fields relevant

to extract certain information of interest, such as the currents and the entropy production.

We provide several examples at low orders in the derivative expansion in section 6. In sec-

tion 7 we demonstrate how the complete eightfold classification of hydrodynamic transport

can be reproduced from our effective action. We discuss some open questions in section 8.

The third and fourth parts of this paper, comprise of a number of appendices. Here we

give further details on the formalism and explicit expressions for the superspace represen-

tations of various relevant fields. The reader interested in the general formalism of thermal

supergeometry is invited to consult these. In part III, the appendices A–F captures the

details of the U(1)T gauge symmetry, in particular general aspects of the representation

theory. In part IV, the appendices G and H describe the matter multiplets entering into

the construction, while appendices I and J delve into details about various gauge fixing

conditions, and construction of appropriate covariant objects which enter the hydrody-

namic sigma models. Finally, appendix K collects various expressions that enter into the

explicit computations of section 5 and section 6. This split allows us to keep the main line

of development in the paper free of technical complications (to the extent possible).

2 Review of thermal equivariance

Given a unitary QFT in a thermal state, real time correlation functions are computed

using the Schwinger-Keldysh functional integral contour; figure 1. Some key features of

this construction are a doubling of degrees of freedom, and an attendant set of constraints

induced by the redundancy thus introduced. Furthermore, in thermal equilibrium, corre-

lation functions are required to satisfy suitable analyticity properties encoded in the KMS

condition. The latter owes its origin to the special nature of the thermal density matrix,

which involves Hamiltonian evolution in Euclidean time. We review some of the salient

facts relating to these features, and their encoding in terms of a thermal equivariance

algebra. A detailed exposition of these ideas can be found in our earlier papers [5, 6].

2.1 The SK-KMS superalgebra

The Schwinger-Keldysh generating functional starts with an initial state ρ̂initial (w.l.o.g.

a mixed state) of a QFT, and implements a source-deformed forward (R)/backward (L)

evolution so as to be agnostic of the future state of the system, viz.,

ZSK[JR, JL] ≡ Tr
{
U [JR] ρ̂initial (U [JL])†

}
. (2.1)

A key feature of this construction is the localization of the generating functional on to the

initial state when sources are aligned:

ZSK[JR = JL ≡ J ] = Tr
{
ρ̂initial

}
. (2.2)
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We take this statement as encoding unitarity in the microscopic formulation, and it implies

that correlation functions vanish if their future-most insertion is a ‘difference operator’ of

the form OR − OL (we refer to this as the largest time equation). In particular, correlators

of only difference operators generically vanish. We argued that this would naturally be en-

forced by a topological BRST symmetry and introduced a pair of supercharges {QSK ,QSK}.
The two topological charges are CPT conjugates of each other,3 and ensure that the largest

time equation is upheld. We refer the reader to [20] where the Hilbert description of this

construction is discussed in detail.

When the initial state is furthermore thermal, ρ̂initial = ρ̂T = e−β Ĥ, the correlators

can be obtained (in equilibrium) by analytically continuing Euclidean thermal correla-

tors. Euclidean thermal periodicity translates then into a set of non-local KMS condi-

tions [21, 22, 55]. The schematic way to understand these conditions is by conjugating any

operator through the density matrix, noting that its Gibbsian nature results in shifting the

temporal argument of the operator t 7→ t− i β.4

These conditions encode the important fluctuation-dissipation relations; indeed for

two-point functions a simple rearrangement of the primitive KMS condition results in the

familiar relation between the commutator and the anti-commutator up to a statistical

factor:5

Tr
(
Â(tA) B̂(tB ) ρ̂T

)
= Tr

(
B̂(tB − i β) Â(tA) ρ̂T

)
=⇒ 〈{Â, B̂}〉 = − coth

(
1

2
β ωB

)
〈[Â, B̂]〉

(2.3)

where the second line is written in momentum space. It is traditional in much of the

literature to view the KMS condition as a Z2 involution, owing to the fact that the first

line of (2.3) involves a swap of operator order after conjugation; see [57] for a nice discussion.

Indeed [4] implement the KMS condition as a Z2 symmetry, and argue for an emergent

second topological charge to encode the KMS condition.

However, inspired by our previous studies of transport in relativistic fluids that is

consistent with the second law, we argued for a different approach involving an emergent

KMS-U(1)T gauge invariance [2, 3, 23]. This KMS symmetry acts on the fields by thermal

translations, as it must. The actual implementation of the KMS gauge invariance works

through the formalism of extended equivariant cohomological algebras. While the two

approaches appear to be superficially different, at the end of the day, we will end up with

a very similar superalgebra constraining low energy dynamics, modulo the following key

distinctions. Rather than repeat the technical exposition which can be found in [6] we shall

give a brief qualitative picture of our construction, pausing to note some key differences in

the two approaches:

3We note here that [4] also argue for a BRST symmetry, with the difference that they require only

one BRST charge to ensure the correct Schwinger-Keldysh functional integral localization upon source

alignment. See [50] for further comments.
4The direction of the shift and conjugation is dictated by convergence, so all motion is into the lower-half

complex time plane.
5For higher-point functions, a more elaborate analysis involving more switchbacks in time is neces-

sary [56].
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• In our construction, there is an emergent U(1)T symmetry which acts via thermal

diffeomorphisms. This symmetry is gauged, and its conserved charge is the net free

energy. We do not however describe the topological gauge dynamics of this field;

see section 3.3.

• If we freeze out the gauge modes, and instead treat them as non-trivial background

gauge fields which enforce CPT breaking, we leave behind an algebra that agrees

with [4] in the high temperature limit.6

• The advantage of having an explicit gauge symmetry is that it allows for CPT breaking

to emerge dynamically rather than being imposed a-priori in the formalism. Demon-

stration of this of course requires that the gauge dynamics admits such vacua, but thus

far we do not see any obstacle (as we describe in detail below) for this to be the case.

Usually, thermal equilibrium is viewed in terms of statistical mechanics (in the Eu-

clidean formulation of the QFT), owing to the fact that the thermal circle can be con-

sidered to be fibered non-trivially over the spatial geometry. The thermal equivariance

formalism, heuristically can be viewed as extending this fibration to the physical spacetime

(see figure 2). In this extended spacetime, we ask that the resulting physics be indepen-

dent of the choice of section of the thermal circle fibration, which amounts to imposing a

gauge invariance in the system corresponding to thermal translations in Euclidean time.

We expect this picture to make sense in the low energy limit, when frequencies and mo-

menta are low compared to the thermal scale ω T, k T � 1, when we can approximate the

discrete thermal circle translations by a continuous (and thence infinitesimal) translation.

The reader will recognize that we are postulating an emergent low energy gauge symmetry;

the information encoded in the KMS conditions is captured by the KMS-U(1)T symmetry

of thermal translations.7

The full BRST superalgebra relevant for our considerations is an extended equivariant

cohomology algebra, which is a graded algebra with 4 Grassmann odd and 2 Grassmann

even generators. The generators are categorized into exterior derivations {QSK ,QSK}, inte-

rior contractions {QKMS ,QKMS ,Q0
KMS
}, and a Lie derivation LKMS . The exterior derivations

and interior contractions are nilpotent, and the Lie derivation actually implements trans-

6We believe that their construction is also best understood in this limit. The high temperature limit of

the superalgebra is well known in the statistical mechanics literature and has been used to good effect to

derive the non-equilibrium form of the second law in [54]. We will have occasion to use it in our discussion

below in section 5, section 6 (we call it the MMO algebra).
7It is an interesting question as to what this structure implies away from the low energy or higher

temperature limit. While we have computed features of the SK-KMS algebra away from this limit from

microscopic Ward identities, we have not been able to distill them into a useful principle (cf., [6]). It is

also unclear where one should impose a global KMS condition in the hydrodynamic state which is only in

local equilibrium — our discussion only requires a local KMS condition be imposed. It is worth mentioning

here that the analysis of [8] argues that this can be done. We are however unsure if this implementation,

which involves writing down actions involving mutually non-local degrees of freedom with no direct coupling

between them, is compatible with the influence functionals derived in simple models of quantum dissipation

like those discussed in [58, 59].
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Im(t)

Re(t)

xi

Figure 2. Illustration of the spacetime picture associated with the proposed KMS gauge invariance,

with the figure taken from [6]. We upgrade the spacetime manifold (a Lorentzian geometry, depicted

in gray, with a typical Cauchy slice indicated in red), on which our quantum system resides to a

thermal fibre bundle. We further assume local thermal equilibrium (as in, e.g., hydrodynamics) at

each spacetime point which guarantees existence of a thermal vector βµ. We draw this vector field

as a circle fibration with a thermal circle whose size is set by the local temperature. The KMS

transformations we seek implement equivariance with respect to thermal translations along this

local imaginary time circle. Restricting to a gauge slice corresponds to picking a Lorentzian section

of this fibration. Note that the size of the thermal circle is exaggerated; our arguments assume the

high temperature limit where the size of the thermal circle is much smaller than the fluctuation scale.

lations along the thermal circle; operators are Lie dragged along the thermal vector βµ

consistent with their tensorial structure. The full algebra is presented in appendix A.

2.2 Superspace and the thermal gauge multiplet

We now describe how to implement our proposed symmetries, and give references to more

detailed discussions.

The practical way of implementing thermal equivariance in explicit constructions is to

pass onto a superspace description as described in [5, 6]. We introduce two Grassmann odd

coordinates {θ, θ̄}, identifying {QSK ,QSK} ∼ {∂θ̄, ∂θ}, and promote fields Y to superfields

(denoted by a circle “˚” accent):

Y → Y̊ = Y + θYψ̄ + θ̄Yψ + θ̄ θ Ỹ ≡ 1

2
(YR + YL) + θYψ̄ + θ̄Yψ + θ̄ θ (YR − YL) . (2.4)

The top (θ̄θ) components of the superfields represent the difference operators while the

Yψ,Yψ̄ are the ghost super-partners carrying same spin but opposite Grassmann parity as

Y. Individual components are recovered by taking suitable θ, θ̄ derivatives and projecting

onto ordinary space; we denote this projection as
∣∣ ≡ ∣∣

θ=θ̄=0
. This structure is sufficient to

describe the Schwinger-Keldysh formalism in generic initial states (see [20] for an example).

We refer to appendix A for a brief review of the algebraic construction.

– 11 –



J
H
E
P
1
0
(
2
0
1
8
)
1
9
4

To describe our macroscopic gauge theory at a certain temperature we introduce a

background timelike vector superfield β̊I(z).8 We will use some of the superdiffeomorphism

invariance to simplify the thermal super-vector:

β̊θ = β̊θ̄ = 0 = ∂θβ̊
a = ∂θ̄β̊

a . (2.5)

We will consider below only that subset of superdiffeomorphisms which respect this gauge

choice for the background thermal super-vector β̊I .9 Appendix I contains a detailed

discussion.

The U(1)T super-gauge transformations can be parameterized by an adjoint superfield

gauge parameter Λ̊. They act on a superfield Y̊ by Lie dragging it along Λ̊ β̊I and can be

represented by a thermal bracket,

(Λ̊, Y̊)β = Λ̊ £βY̊ , (2.6)

where £β denotes the super-Lie derivative along β̊I . The infinitesimal gauge transforma-

tion is thus given by

Y̊ 7→ Y̊ + (Λ̊, Y̊)β . (2.7)

For scalar Y̊scalar this is just a thermal translation

(Λ̊, Y̊scalar)β = Λ̊ β̊I∂I Y̊scalar . (2.8)

The Jacobi identity then fixes the action of thermal bracket on adjoint superfields, so that

under successive U(1)T transformation Λ̊′ 7→ Λ̊′ + (Λ̊, Λ̊′)β with

(Λ̊, Λ̊′)β = Λ̊£βΛ̊′ − Λ̊′£βΛ̊ . (2.9)

We introduce a U(1)T gauge superfield one-form as a triplet ÅI(z)≡{Åa(z), Åθ(z), Åθ̄(z)}

ÅI(z) dzI = Åa(z) dσa + Åθ(z) dθ + Åθ̄(z) dθ̄ (2.10)

whose gauge transformation is like an adjoint superfield except for an inhomogeneous

term, viz.,

ÅI 7→ ÅI + (Λ̊, ÅI)β − ∂IΛ̊ , (2.11)

with the thermal bracket as in (2.9). One can further define as usual a covariant derivative10

D̊I = ∂I + (ÅI , · )β , (2.12)

8We work in conventions where zI ≡ {σa, θ, θ̄} is the collection of superspace coordinates with lower

case Latin alphabet indexing the ordinary spacetime coordinates, reserving uppercase Latin indices for

superspace. The notation is adapted for sigma models of interest in our discussion later. zI will coordinatize

the worldvolume directions, while physical spacetime coordinates will be denoted as X µ̆ = {Xµ,Θ, Θ̄} and

indexed with lowercase Greek alphabet for ordinary indices with accented (breve) Greek lowercase reserved

for super-indices.
9We can also introduce a thermal twist Λβ(σ) which encodes the chemical potential for general ensembles

with additional conserved charges. The twist is the phase entering the thermal periodicity conditions in a

particular flavour symmetry gauge. For simplicity we will not elaborate further on this.
10The covariant derivative D̊ introduced in (2.12) implements covariance under U(1)T transformations on

a flat superspace Rd−1,1|2 in Cartesian coordinates. Later on we will encounter a super-covariant derivative

D̊ that will also involve additional contributions from the background geometric connection.
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and an associated field strength

F̊IJ ≡
(

1− 1

2
δIJ

)(
∂I ÅJ − (−)IJ ∂J ÅI + (ÅI , ÅJ)β

)
, (2.13)

where (−)IJ is the mutual Grassmann parity of the two indices involved (see below). Given

the low-energy superfields Y̊, the theory of macroscopic fluctuations is given as the general

superspace action invariant under U(1)T gauge transformations. We explain some essential

features of the gauge algebra, the structure of the multiplets and the various fields involved,

and the attendant representation theory in the appendices C, D, E. Some of the background

material has already been detailed in [6], so we also refer the reader there for further details.

The final symmetry we implement is CPT. It is important that the implementation

of CPT not conjugate the initial hydrodynamic state (which is crucial for example when

chemical potentials are turned on). We also require that such a symmetry be present even

when we discuss non-relativistic systems with no microscopic CPT symmetry. As such

any anti-linear involution respecting these criteria will suffice for our purposes and can

justifiably called CPT.11 We want to encode the information that the SK path integral

be invariant under the combined CPT transformation of the initial state and the sources.

The anti-unitary nature of CPT allows us to translate these requirements into a reality

condition for the SK path integral, viz.,

Z∗SK[JL, JR] = ZSK[JR, JL] . (2.14)

Apart from the usual action on σa coordinates, CPT exchanges θ̄ ↔ θ and hence acts

as an R-parity on the superspace. This is necessitated by our requirement that the θ̄θ

component of the superfields be identified with difference operators (and the exchange of

R ↔ L under CPT). In addition we have a conserved ghost number gh, which assigns

gh(θ) = 1, gh(θ̄) = −1. To understand these assignments, and our rationale for calling

the anti-linear involution as CPT, note that the fluid equations are not by themselves CPT

invariant. One can add an additional spurion field to make them so — this is the role i F̊θθ̄|
will play in our formalism. We therefore want our anti-linear involution symmetry of the

SK functional integral be such that i F̊θθ̄| is odd under it. As argued in section 8 of [5], the

aforementioned assignment will do the job.

2.3 Super-index contractions

We also are now at a point, where we should specify our super-index contraction conven-

tions. We follow the conventions described in the book by DeWitt [61], which says that

when adjacent super-indices are contracted from south-west to north-east ↗, there is no

sign, but one picks up a Grassmann sign when indices are contracted from north-west to

south-east ↘.

We will shortly introduce a metric superfield g̊IJ which will be used to raise and lower

indices. The thermal super-vector and gauge supermultiplet of course do not rely on the

11The manner we implement the anti-linear involution was inspired by Veltman’s diagrammatic rules for

the SK path integral for the vacuum initial state [60], which acts by exchanging incoming and outgoing

states in a scattering process.
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existence of a metric, but all of these will enter into our constructions below. The index

contraction convention is simplest to intuit from the orthogonality condition imposed on

metric and its inverse. We have:

g̊IJ g̊
JK = δ K

I , (−)J g̊IJ g̊JK = δIK . (2.15)

Note that the index placements are all important since any swap of indices ends up leading

to extra signs. In general, contraction of separated indices is carried out by checking what

the relative sign would be to bring the two indices being contracted next to each other:

T̊ I1···ImK1 ···Kn
L1 ···LpM1 ···Mq = (−)J(1+

∑
iKi+

∑
j Lj) T̊ I1···ImJ K1 ···Kn

L1 ···Lp J M1 ···Mq (2.16)

where the sign is such that the contraction of the tensor is still a tensor. We will however

leave this sign implicit in various formulae below, to keep them reasonably readable. The

reader should exercise care in contracting indices (we will give examples in section 5).
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Part II

Hydrodynamic effective field theories

3 The hydrodynamic degrees of freedom

Hydrodynamics is the long-wavelength effective field theory for systems in local, but not

global thermal equilibrium. The natural variables in terms of which hydrodynamics is

presented are the fluid velocity uµ(x) (normalized uµ uµ = −1 ), the local temperature

T (x), and other intensive parameters such as chemical potentials µi(x) when additional

conserved charges are present. It is useful to combine the basic data into a thermal vector

βµ = uµ/T and thermal twists Λi = µi/T − uµAµ as explained in [2]. We allow our

fluid to be subject to arbitrary (though slowly varying) external fields gµν(x) and A
(i)
µ (x),

respectively. The thermal vector picks out the direction of the local inertial frame in which

the fluid is locally at rest, and its length sets the size of the thermal circle. The choice of

the thermal vector/twist was inspired by the thermal circle fibration which proved useful

for the analysis of equilibrium partition functions.

Before proceeding, it is also helpful to understand qualitatively how hydrodynamics

emerges from a microscopic perspective. As noted in the introduction section 1, the hydro-

dynamic observables are response functions as those described in figure 1. The response

functions, which schematically are observables of the form 〈TSKO1
avO

2
dif · · ·Ondif 〉, are the

leading non-vanishing observables in the Schwinger-Keldysh formalism. They in turn are

related by the KMS relations to fluctuation correlators involving multiple average opera-

tors, which are schematically combinations of correlators of the form 〈TSKO1
avO

2
av · · ·Ondif 〉.

The dynamics in hydrodynamics is simply conservation of charges, which are the slow

modes surviving once the transient effects die down in any system that has been perturbed

away from global equilibrium. This leads to conservation of energy-momentum (and charges

if any). The low energy theory which then involves conserved current operators should

capture the IR limit of both the response functions and the fluctuations. The former is what

classical hydrodynamic constitutive relations tries to encode, but the latter is necessary for

the system to be aware of its microscopic origins. This entails that an effective field theory

should have adequate degrees of freedom to go beyond the classical hydrodynamic limit,

and be able to predict the structure of fluctuations. Thus, once we identify the relevant IR

modes that can lead to the correct hydrodynamic equations, we then need to figure out how

to upgrade them to include degrees of freedom that capture fluctuations. Fortunately, the

hard work is already done in the preceding discussion: the Schwinger-Keldysh superspace

and thermal equivariance makes this a simple task.

3.1 The pion fields of hydrodynamics

Let us start by identifying the classical variables in the hydrodynamic effective field the-

ory. In general, conservation laws follow from a Noether construction while dynamics is

dictated by a variation principle. The latter usually implies the former, but it is not al-

ways true that conservation laws encapsulate the entirety of dynamics. This can happen
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only if there is an additional reparameterization symmetry, whence the reparameterization

invariance of the dynamical fields essentially implements diffeomorphisms (or flavour rota-

tions) which result in the conservation laws appearing. This is precisely the situation in

hydrodynamics.

The natural framework to implement such a reparameterization invariance is to view

the degrees of freedom in terms of a parameterized sigma model, much like how we describe

string or brane dynamics in string theory. We pick an auxiliary space, the worldvolume, with

coordinates σa, and equipped with the reference thermal vector βa. The physical spacetime

coordinates Xµ are viewed as maps from the worldvolume to the target space, Xµ(σ). The

rigid worldvolume reference thermal vector pushes forward to the physical thermal vector

βµ = βa∂aX
µ in spacetime. The latter becomes dynamical through the push forward. At

the same time the spacetime metric gµν (which we recall is non-dynamical) pulls back to

give a worldvolume metric gab = gµν ∂aX
µ ∂bX

ν . Spacetime diffeomorphisms operate as

translations of the sigma model fields Xµ 7→ Xµ + ξµ.

Demanding worldvolume reparameterization invariance under such transformations

we end up with the correct variational principle to single out spacetime energy momentum

conservation as the dynamical equations of motion, as explained in [2] (extensions to flavour

charges can be found in the aforementioned reference).12 A worldvolume effective action

for the sigma model degrees of freedom described above gives rise to a class of Landau-

Ginzburg sigma models which capture a fraction of adiabatic transport in any relativistic

fluid. Such sigma models capture 2 of the 8 admissible physical classes of transport (Classes

HS and HS in the classification of [2]). In order to obtain the remainder, including the

dissipative Class D, we need additional structures. This is where the thermal equivariance

enters the discussion.

Let us start by elaborating on the sigma model fields Xµ(σ). These are the classical

variables encoding the information of how the fluid is behaving locally, since the physical

data contained in the thermal vector is entirely captured in them. To an extent, we may

simply view the reference vector βa as a means to remove the local inhomogeneities (as

can be seen by the gauge fixing alluded to in footnote 12; see also [51]). This structure is

illustrated in figure 3.

As noted at the outset these classical fields should be subject to thermal/quantum

fluctuations from the dissipative effects inherent in the fluid. Invoking the microscopic

Schwinger-Keldysh construction, we intuit that the hydrodynamic degrees of freedom

are Goldstone modes for spontaneously broken off-diagonal diffeomorphism (and flavour)

present in the microscopic description [2]. This philosophy was first made clear in [29] and

has been used in other attempts to construct hydrodynamic actions [11].

12As noted in [2] the Lagrangian fluid variables utilized in [30] which are predominantly employed in

the analysis of [4, 10] can be recovered by gauge fixing the thermal vector. In our experience there are

some disadvantages of working with this set of variables. Not only is one sacrificing manifest covariance,

but also there are some accidental symmetries (such as the volume preserving diffeomorphisms of [30]).

Furthermore, these variables are ill-adapted to circumstances where the entropy current is non-trivial, and

hence we chose to move to a more covariant formalism that also adapts naturally to equilibrium analysis

in [2] and subsequent works (see also [50]).
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�a

gab

�a �µ

gµ⌫

Xµ
Xµ(�a)

Figure 3. Illustration of the data for hydrodynamic sigma models as described in [2]. The physical

degrees of freedom are captured in the target space maps Xµ(σ) which are the hydrodynamic pion

fields. The worldvolume geometry is equipped with a reference thermal vector field βa, which

pushes forward to the physical thermal vector in spacetime, while the spacetime metric pulls back

to the worldvolume metric gab.

As a useful intuition building exercise, consider a probe particle immersed in the fluid.

Such a particle, buffeted by the fluctuations in the fluid, will undergo stochastic Brownian

motion. In addition to its classical position we should also keep track of its fluctuations.

In the standard discussion of the Langevin effective action one therefore introduces the

classical position X and the quantum/stochastic/fluctuation field X̃. The dynamics of the

Brownian particle can then be described by a worldline BRST symmetric action [12, 62],

which as explained in [3, 6] is the simplest example of the thermal equivariant sigma

model. This led us to describe the dynamics of Brownian branes, which are brane like

objects of various codimension which, when immersed in the fluid, undergo generalized

Brownian motion. Hydrodynamics then is the theory of a space-filling Brownian brane

(while Langevin dynamics corresponds to B0-brane dynamics).

The proposal then is to invoke the underlying Schwinger-Keldysh intuition and view

the target space maps Xµ(σ), the pion fields of the sigma model, as vector Goldstone

modes arising from broken difference diffeomorphisms of the doubled construction. It is

worth noting that such a description is necessary; the structural part of hydrodynamics is

‘universal’, since it is agnostic of the microscopic constituents of the quantum system. The

symmetry breaking pattern should reflect this fact. The details of the quantum system

matter in determining the actual values of the hydrodynamic transport data (the analog of

the pion coupling constants in the chiral Lagrangian). This perspective is also clear from

the fluid/gravity correspondence (see [14, 15]). The fluctuation fields will then arise from

the modes that couple to average diffeomorphisms in the doubled construction.

3.2 Symmetries of the hydrodynamic sigma models

Let us now take stock of the symmetries inherent in the thermal Schwinger-Keldysh con-

struction, encapsulated within the notion of thermal equivariance as described in sec-

tion 2, and upgrade the hydrodynamic Goldstone dynamics of section 3.1 to be cognizant

of them. We have seen that the symmetries arising from the microscopic picture, viz., U(1)T
gauge invariance, together with CPT and ghost number conservation are easily encoded in

superspace.
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gµ⌫

�̊I

zI = {�a, ✓, ✓̄}

X̊µ(z)g̊IJ Xµ,⇥, ⇥̄
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g⇥⇥̄ = i
<latexit sha1_base64="Wh8RRpILL5Cfjr4j0VjxlqHhhFE=">AAACBXicbZDLSsNAFIZP6q3GW9RlN4NFcFUSEdSFUHTjskJjC00Ik+m0HTq5MDMRSsjCnW/iThTErS/hxrdx2mahrT8MfPznHM6cP0w5k8q2v43Kyura+kZ109za3tnds/YP7mWSCUJdkvBEdEMsKWcxdRVTnHZTQXEUctoJxzfTeueBCsmSuK0mKfUjPIzZgBGstBVYtWGQe+0RVRh5IRYlF6i4Qiyw6nbDngktg1NCHUq1AuvL6ycki2isCMdS9hw7VX6OhWKE08L0MklTTMZ4SHsaYxxR6eezIwp0rJ0+GiRCv1ihmft7IseRlJMo1J0RViO5WJua/9V6mRpc+DmL00zRmMwXDTKOVIKmiaA+E5QoPtGAiWD6r4iMsMBE6dxM09QxOItHL4N72rhsOHdn9eZ1mUcVanAEJ+DAOTThFlrgAoFHeIZXeDOejBfj3fiYt1aMcuYQ/sj4/AGBC5ee</latexit><latexit sha1_base64="Wh8RRpILL5Cfjr4j0VjxlqHhhFE=">AAACBXicbZDLSsNAFIZP6q3GW9RlN4NFcFUSEdSFUHTjskJjC00Ik+m0HTq5MDMRSsjCnW/iThTErS/hxrdx2mahrT8MfPznHM6cP0w5k8q2v43Kyura+kZ109za3tnds/YP7mWSCUJdkvBEdEMsKWcxdRVTnHZTQXEUctoJxzfTeueBCsmSuK0mKfUjPIzZgBGstBVYtWGQe+0RVRh5IRYlF6i4Qiyw6nbDngktg1NCHUq1AuvL6ycki2isCMdS9hw7VX6OhWKE08L0MklTTMZ4SHsaYxxR6eezIwp0rJ0+GiRCv1ihmft7IseRlJMo1J0RViO5WJua/9V6mRpc+DmL00zRmMwXDTKOVIKmiaA+E5QoPtGAiWD6r4iMsMBE6dxM09QxOItHL4N72rhsOHdn9eZ1mUcVanAEJ+DAOTThFlrgAoFHeIZXeDOejBfj3fiYt1aMcuYQ/sj4/AGBC5ee</latexit><latexit sha1_base64="Wh8RRpILL5Cfjr4j0VjxlqHhhFE=">AAACBXicbZDLSsNAFIZP6q3GW9RlN4NFcFUSEdSFUHTjskJjC00Ik+m0HTq5MDMRSsjCnW/iThTErS/hxrdx2mahrT8MfPznHM6cP0w5k8q2v43Kyura+kZ109za3tnds/YP7mWSCUJdkvBEdEMsKWcxdRVTnHZTQXEUctoJxzfTeueBCsmSuK0mKfUjPIzZgBGstBVYtWGQe+0RVRh5IRYlF6i4Qiyw6nbDngktg1NCHUq1AuvL6ycki2isCMdS9hw7VX6OhWKE08L0MklTTMZ4SHsaYxxR6eezIwp0rJ0+GiRCv1ihmft7IseRlJMo1J0RViO5WJua/9V6mRpc+DmL00zRmMwXDTKOVIKmiaA+E5QoPtGAiWD6r4iMsMBE6dxM09QxOItHL4N72rhsOHdn9eZ1mUcVanAEJ+DAOTThFlrgAoFHeIZXeDOejBfj3fiYt1aMcuYQ/sj4/AGBC5ee</latexit><latexit sha1_base64="Wh8RRpILL5Cfjr4j0VjxlqHhhFE=">AAACBXicbZDLSsNAFIZP6q3GW9RlN4NFcFUSEdSFUHTjskJjC00Ik+m0HTq5MDMRSsjCnW/iThTErS/hxrdx2mahrT8MfPznHM6cP0w5k8q2v43Kyura+kZ109za3tnds/YP7mWSCUJdkvBEdEMsKWcxdRVTnHZTQXEUctoJxzfTeueBCsmSuK0mKfUjPIzZgBGstBVYtWGQe+0RVRh5IRYlF6i4Qiyw6nbDngktg1NCHUq1AuvL6ycki2isCMdS9hw7VX6OhWKE08L0MklTTMZ4SHsaYxxR6eezIwp0rJ0+GiRCv1ihmft7IseRlJMo1J0RViO5WJua/9V6mRpc+DmL00zRmMwXDTKOVIKmiaA+E5QoPtGAiWD6r4iMsMBE6dxM09QxOItHL4N72rhsOHdn9eZ1mUcVanAEJ+DAOTThFlrgAoFHeIZXeDOejBfj3fiYt1aMcuYQ/sj4/AGBC5ee</latexit>

Figure 4. Illustration of the data for hydrodynamic sigma models. The physical degrees of freedom

are captured in the target space maps X̊µ(σ, θ, θ̄), along with the gauge condition which aligns the

Grassmann coordinates in target space with their worldvolume counterparts Θ = θ and Θ̄ = θ̄. The

worldvolume geometry is equipped with a reference super-vector field β̊I , which pushes forward to

the physical thermal vector in spacetime, while the spacetime metric gµν (with gΘΘ̄ = i) pulls back

to the worldvolume metric g̊IJ . The pullbacks and pushfowards are U(1)T gauge covariant, since

the worldvolume dynamics is constrained by this symmetry.

This entails that we should first upgrade the worldvolume to superspace parameterized

by zI = {σa, θ, θ̄}. The thermal vector will be uplifted to a thermal super-vector β̊I . Since

we have worldvolume diffeomorphisms that upgrade themselves to superdiffeomorphisms,

we will exploit some of the freedom to gauge fix components of the reference super-thermal

vector as indicated in (2.5).13

Furthermore, we realize that the target space maps which are sigma model fields should

be upgraded to superfields following (2.4): Xµ(σ) 7→ X̊µ(z), viz.,

X̊µ = Xµ + θXµ

ψ
+ θ̄ Xµ

ψ + θ̄θ
(
X̃µ − ΓµρσX

ρ

ψ
Xσ
ψ

)
(3.1)

The contribution from target space connection to the top component of the superfield

(where the fluctuation field X̃µ resides) can be understood from covariance of the pullback

map and is explained for completeness in appendix I.

However, not only do the bosonic hydrodynamic pions get upgraded to a superfield,

but we also should obtain the spacetime Grassmann odd partners, leading to a spacetime

triplet of superfields:14

X̊ µ̆(z) =
{
X̊µ(z), Θ̊(z), ˚̄Θ(z)

}
. (3.2)

Note that this structure is enforced by the way we wish to implement the Schwinger-

Keldysh construction. Even in the physical spacetime we have to allow for the superspace

structure, since after all it is there that our quantum system resides (and it is the quantum

operators that get uplifted to super-operators). We illustrate the superspace upgrade of

the hydrodynamic pion fields, which we henceforth work with, in figure 4.

13We will examine worldvolume symmetries more precisely in appendix I, but note that the worldvolume

superdiffeomorphisms we allow are simply zI 7→ zI + f I(σa).
14Notational conventions for indices is summarized in footnote 8.
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The physical spacetime is equipped with a background metric gµ̆ν̆ which being a back-

ground source, we are free to pick at will. We will use this freedom to demand

gµΘ = gµΘ̄ = 0 , gΘΘ̄ = −gΘ̄Θ = i . (3.3)

We only turn on bottom components for the spacetime metric (thus enabling us to dispense

with superfield notational contrivances) which will suffice for the rest of the discussion. As

usual with sigma models we choose the target space data gµ̆ν̆(X ρ̆) and its metric compatible

connection first and then upgrade the resulting expressions to functions on the worldvolume

with the zI dependence induced from the embedding X̊ µ̆(z).

The symmetries alluded to above, viz., superdiffeomorphisms, CPT, and ghost number

symmetries act as usual on these. In addition the action of U(1)T is given as in (2.6);

for instance

(Λ̊, X̊µ)β = Λ̊ β̊I∂IX̊
µ , (3.4)

and similarly for {Θ̊(z), ˚̄Θ(z)}. We will refer to this action as the action of U(1)T on

fundamental representation (or 0-adjoints).15

On the worldvolume, the U(1)T gauge symmetry requires that we have in addition

to the reference super-vector (which mainly picks out the reference frame) the ÅI super-

form superfield. Since {X̊µ, Θ̊, ˚̄Θ} carry non-trivial U(1)T charges, gauge invariance on the

worldvolume requires that we work with suitable gauge covariant objects. To this end, the

pullback map onto the worldvolume will be implemented in a U(1)T covariant manner. As

a result the worldvolume metric gab gets uplifted to a superfield g̊IJ

g̊IJ(z) = gµν(X̊(z)) D̊IX̊µ D̊JX̊ν + gΘΘ̄

(
D̊IΘ̊ D̊J ˚̄Θ− D̊I ˚̄Θ D̊J Θ̊

)
, (3.5)

where we have already incorporated our gauge condition (3.3) to simplify this expres-

sion, and have stuck to DeWitt conventions [61] for super-index contractions as noted in

section 2.3.

Our goal will be to construct a topological sigma model governing the dynamics of

the fields {X̊µ, Θ̊, ˚̄Θ}. With the symmetries at hand, such a theory has been engineered to

capture the constraints arising from the Schwinger-Keldysh construction in thermal states.

However, the physical fluid dynamical theory is not a topological field theory; fluids have

non-trivial dynamics. To get the physical hydrodynamic data we should deform away from

the topological limit. This can be easily achieved by de-aligning the sources for the left

and right fields. This implies turning on the difference metric to obtain the physical the

energy-momentum tensor.

We obtain the energy-momentum tensor on the world-volume and then push it for-

ward to the physical spacetime, and so will turn on a difference source hIJ on the world-

volume, i.e.,

g̊IJ(z) → g̊IJ(z) + θ̄ θ hIJ(σ) . (3.6)

15Representations of the U(1)T thermal diffeomorphism symmetry are worked out in appendix F.
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Given the worldvolume Lagrangian, varying it with respect to the source deformation hIJ
will give us the (worldvolume) fluid dynamical stress tensor TIJ . The dynamics for the

fields will be obtained by variation with respect to the fields X̊µ; for the classical field Xµ,

the dynamics is obtained by varying the fluctuation field X̃µ and will end up being the con-

servation equation for the stress-tensor pushed-forward to the physical target space, Tµν .

The reader may be wondering what about the spacetime Grassmann fields, which were

introduced to incorporate the Schwinger-Keldysh superspace structure directly in the phys-

ical spacetime. However, here target space symmetries come to our rescue. What used to

be ordinary diffeomorphisms in spacetime, now get upgraded to target space superdiffeo-

morphisms that act on {X̊µ, Θ̊, ˚̄Θ}. Furthermore, a fluid dynamical effective field theory

is required to respect this spacetime symmetry; fluids cannot have potentials in physical

spacetime. Consequently, this superdiffeomorphism symmetry can be exploited to fix a

form of super-static gauge. We gauge fix:

Θ̊ = θ , ˚̄Θ = θ̄ , (3.7)

to simplify our discussion. As a consequence, in many formulae we will be sloppy about

indicating the full target super-tensor structure, so often the reader will encounter isolated

target spacetime components (indexed by lowercase Greek).

Let us take stock, now that we have assembled all the ingredients. The data for the

hydrodynamic effective field theories is captured by the following:

• A space filling Brownian-brane with intrinsic coordinates zI = {σa, θ, θ̄} on the world-

volume.

• A U(1)T gauge super-multiplet captured by ÅI , and a reference super-vector β̊I , which

has been partially gauge fixed to have only its βa component non-zero, cf., (2.5).

• Target space superfields X̊ µ̆ = {X̊µ, Θ̊, ˚̄Θ}, which are the dynamical degrees of freedom

in the theory and corresponding sources for conserved currents. For neutral fluids we

have a spacetime super-metric, which has been gauge fixed to satisfy (3.3).

• Target spacetime superdiffeomorphisms are exploited to set Θ̊ = θ and ˚̄Θ = θ̄, leaving

only X̊µ as the physical degrees of freedom. They transform as in (3.4) under the

worldvolume U(1)T gauge symmetry.

We have summarized this information after taking various gauge fixings into account

in a tabular form in table 1.

In what follows we will explain how to use this data, the target space and worldvolume

symmetries (including target space CPT) to construct hydrodynamic effective field theories

as we envisaged in [1]. We will carry out this exercise first somewhat abstractly, indulging in

superspace variational calculus, to extract some general lessons. We then will illustrate this

with examples at low order in the gradient expansion, deriving explicit actions involving

the classical and fluctuation fields. The last stage of our discussion will be to make contact

with the eightfold classification of [2].
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ghost Faddeev-Popov Vafa-Witten ghost Vector Position

charge ghost triplet of ghost quintet quartet multiplet

2 φ
T

1 G
T

η
T

λa Xµ
ψ

0 B
T

φ0
T

Aa Fa Xµ X̃µ

-1 G
T

η̄
T

λ̄a Xµ

ψ

-2 φ
T

ghost Faddeev-Popov Vafa-Witten ghost Vector Position

charge ghost triplet of ghost quintet quartet multiplet

2 φ
T

1 G
T

η
T

λa Xµ
ψ

0 B
T

φ0
T

Aa Fa Xµ X̃µ

-1 G
T

η̄
T

λ̄a Xµ

ψ

-2 φ
T

Table 1. The set of basic fields in the NT = 2 superalgebra along with their respective ghost

number assignments, in terms of which the hydrodynamic effective action is written.

In order to keep the presentation reasonable, and to write down formulae in a succinct

manner, we have relegated some of the details on how the various multiplets appearing in

table 1 are constructed to appendices. The reader interested in details of how the multiplets

are organized is invited to consult the following:

• Appendix D for the general structure of the adjoint multiplet.

• Appendix E for the general structure of the gauge multiplet.

• Appendix G for the multiplet containing the hydrodynamic pion fields.

• Finally, appendix H provides details on the construction of the worldvolume metric

which plays an important role in the construction of the actions.

Readers analyzing these appendices are advised to note that we first develop the struc-

ture of the multiplet on a flat worldvolume; we do not endow the worldvolume with an

intrinsic metric. For this purpose it suffices to consider the U(1)T covariant derivative D̊
introduced in (2.12). Of course in the physical theory, we want to work with the pullback

metric g̊IJ and its associated covariant derivative D̊. This turns out to be a bit more in-

volved and we describe in appendix J how one might go about constructing a worldvolume

connection, after describing the symmetries and gauge fixing constraints we impose on our

construction in appendix I.

3.3 Comments on U(1)T gauge dynamics

Before proceeding however we should make one important disclaimer. A complete theory

would also involve us giving a prescription for U(1)T dynamics. While we believe this

is possible, and is captured by a topological BF -type theory, we have not yet managed

to construct all the machinery necessary to give a satisfactory presentation here. We

will therefore ignore the U(1)T dynamics, for the most part, and effectively treat Å as a

background gauge field.

Furthermore, we will be so bold as to assume that it is consistent to give thermal

expectation values to all the fields of the U(1)T gauge multiplet such that

〈Åa〉 = 0 , 〈Åθ̄〉 = 0 , 〈Åθ〉 = θ̄ (−i) . (3.8)
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after variations on the worldvolume theory. This amounts to having a non-zero flux for the

super-field strength,

〈Fθ̄θ〉 = −i (3.9)

We refer to this limit as the MMO limit after Mallick-Moshe-Orland [54] and will carry

out explicit computations in this setting in section 5. We therefore define the background

gauge configuration:

MMO limit: Åa = 0 , Åθ̄ = 0 , Åθ = θ̄ (−i) . (3.10)

We have argued previously [1, 6] that the reason behind this component of the field

strength acquiring an imaginary vev has to do with spontaneous CPT symmetry breaking

in systems with dissipation. This spontaneous breaking of CPT underlies the origin of

the macroscopic arrow of time, codified into the second law. This picture is inspired by

the discussions of Mallick et al., [54] and especially Gaspard [63, 64], who derive the non-

equilibrium Jarzynski relation [65] and the associated work statistics of Crooks [66], using

this strategy. We leave it to future work to show that such a mechanism exists.

It is actually not hard to argue that an appropriate BF theory exists, for our con-

struction closely hews to the logic of NT = 2 balanced topological field theories discussed

in [67–70]. The prototype example, which was the inspiration for much of our work was

the topologically twisted version of N = 4 SYM constructed in [71]. The gauge dynamics

we want to write down is the generalization of their analysis to thermal U(1)T gauge sym-

metry (which is not complicated), and additionally extend it to arbitrary dimensions. The

latter is necessary for us, since we want to describe the nature of fluids in any number of

spacetime dimensions. While the BF theory does exist with the requisite NT symmetries

in arbitrary dimensions, the structure of the B̊-multiplet changes owing to the fact that

it has to capture a spacetime codimension-2 form. It should be possible to work this out

in detail (in fact using some of the existing technology, see e.g., [70]) and demonstrate the

aforementioned claim.

Due to this assumption, we will frequently drop terms in calculations, which will

eventually give rise to expressions proportional to one of the components of the U(1)T
gauge field that we set to zero at the end of the calculation. There is no obstruction to

computing all these terms, but they proliferate quickly and obscure some of the physical

aspects of the construction. We do keep track of those terms involving Grassmann-odd

tensor fields (or components thereof) which play a role in the physical interpretation.

Once we gauge fix the U(1)T gauge field as in (3.10) the NT = 2 thermal equivariant

algebra simplifies drastically. One can show (see appendix B) that the topological symme-

tries can be captured by two supercharges (these are the Cartan charges in the equivariant

construction) Q,Q which are nilpotent, but anti-commute to a thermal translation:

Q2 = Q2
= 0 , {Q,Q} = i£β (3.11)

Since the Lie derivative acts on scalars as £β = βa∂a, once we align βa = β δa0 we see

that {Q,Q} ∼ i β∂σ0 . This gauge fixed algebra appears to be well known in the statistical
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mechanics literature, and is used for example in [54] in their derivation of the Jarzynski re-

lation. In this form, this algebra also is the one written down in [4] in the high-temperature

(or as they put it, classical) limit.16 We will refer to the limit captured by (3.10), and the

resulting superalgebra (3.11), as the MMO limit henceforth. In this limit, we will recover

the constructions described in [1, 4] (see also [8, 10]).

Given this, the reader may ask, why do we even care if the U(1)T symmetry is gauged,

since after all we are effectively treating it as a global symmetry, and are picking a suitable

background field for our analysis in (3.10). There is an important physical distinction

which drives our considerations as we explained in [13], which we elaborate here.

If we stick to a background U(1)T gauge field ÅI , restricted to ensure that the field

strength component 〈F̊θθ̄|〉 = −i as in (3.10), CPT is broken explicitly in the theory. We will

a-priori have biased the theory towards picking out an arrow of time which leads to entropy

production in the fluid. On physical grounds however, we expect CPT breaking to emerge

dynamically rather than being imposed by fiat from the beginning. This entails that we

allow for a framework where dynamics picks out saddle points where 〈F̊θθ̄|〉 6= −i. This

clearly requires for ÅI to be a dynamical field in the problem.17 As we shall see below,

the U(1)T super-Bianchi identity, which is independent of the particulars of the gauge

dynamics ensures that the corresponding current is conserved. Absent any fundamental

obstructions to gauging the thermal diffeomorphisms and making the superspace gauge

fields dynamical, it behooves us to consider the possibility for them to be so.

4 Dissipative effective action and entropy inflow mechanism

We are now in a position to make our central claim and write explicit hydrodynamic

effective actions. We posit the following:

All of hydrodynamic transport consistent with the second law is described by effective actions

of the form

Swv =

ˆ
ddσ Lwv , Lwv =

ˆ
dθ dθ̄

√−̊g
z̊

L̊
[̊
gIJ ,β

a, D̊I , g̊
(ψ)
IJ , g̊

(ψ)
IJ

]
, (4.1)

provided the following symmetries are respected:

1. Invariance under U(1)T thermal diffeomorphisms and NT = 2 BRST symmetry.

2. Physical spacetime superdiffeomorphisms X µ̆ 7→ X µ̆ + Ĥ µ̆(X), with Ĥ µ̆(X) being a

target super-vector.

16In interest of completeness, let us note that [4] posit that there is a single nilpotent supercharge δ

implementing the Schwinger-Keldysh alignment condition, another emergent nilpotent supercharge δ̄ arising

from the KMS condition, satisfying altogether:

δ2 = δ̄2 = 0 , {δ, δ̄} = 2 tanh

(
i

2
β ∂t

)
≈ iβ∂t ,

where the last approximation holds in the high temperature limit.
17In this discussion and for the rest of the paper we implicitly assume that the scale at which the U(1)T

gauge symmetry emerges is commensurate with the scale at which CPT is broken. We offer some further

thoughts on the relative hierarchy of scales between these two phenomena in section 8.
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3. Worldvolume diffeomorphisms zI 7→ zI + f I(σa), with f I(σa) being a worldvolume

super-vector.

4. Anti-linear CPT involution.

5. Ghost number conservation.

In addition we require that the imaginary part of this action is constrained to be positive

Im(Swv) ≥ 0 (see appendix A of [7] for a clear discussion).

To rephrase this statement: any Lagrangian that is allowed by the NT = 2 symmetry of

U(1)T covariant Schwinger-Keldysh formalism is allowed and is consistent with the second

law, and these actions are complete vis a vis hydrodynamic transport at all orders in the

derivative expansion.18

Some comments and explanations are in order:

• In writing the action we introduced a derivative operator D̊I which upgrades the

U(1)T covariant derivative introduced in (2.12) to allow for construction of superdif-

feomorphism covariant tensors. We will only require that this derivative operator be

such that: (i) we can integrate by parts, and (ii) D̊I φ̊ = D̊I φ̊ (i.e., the action on

scalars agrees with the U(1)T covariant derivative); we make no further assumption

about the connection that specifies it. Importantly, it will not be required to be

metric compatible, which upends some of the standard intuition. In appendix J we

discuss what classes of connections are compatible with this assumption, and con-

struct and explicit example that we work with for explicit computations in section 5

and section 6. Our choice of connection for explicit computations is summarized in

section 5.2.19

• The measure for superspace integration involves the field

z̊ = 1 + β̊I ÅI (4.2)

which explicitly depends on the gauge field. Its origins can be traced back to the fact

that our pullback maps are implemented using the gauge covariant derivative (3.5).

Given the transformation of the hydrodynamic pions (3.4) it is easy to check that

D̊IX̊
µ = D̊IX̊µ = ∂IX̊

µ + (ÅI , X̊
µ)β = (−)J

(
δ J
I + ÅI β̊

J
)
∂JX̊

µ . (4.3)

Consequently, we end up with factors of z̊ when taking traces, determinants, etc., as

noted in [1]:

ddX dΘ dΘ̄
√
−g̊ = ddσ dθ dθ̄

√
−̊g det[∂IX̊

µ̆]

det[D̊IX̊ µ̆]
= ddσ dθ dθ̄

√−̊g
z̊

. (4.4)

18This holds in the usual perturbation or effective field theory sense, i.e., we are not claiming to have a

non-perturbative theory.
19In actual implementation we also require that the commutators of the two derivatives on scalars agrees

and closed on U(1)T field strengths, which can be defined in the absence of a metric connection.
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• We have also introduced the fields

g̊
(ψ)
IJ ≡ D̊θg̊IJ , g̊

(ψ)
IJ ≡ D̊θ̄g̊IJ . (4.5)

These turn out to be covariant 2-tensors consistent with all our symmetries (as ex-

plained in appendix I.1).

• Finally, note that symmetries 1, 2, and 3 are manifest in our formulation, while 4

and 5 can be trivially implemented.

We now describe how the effective actions of the form (4.1) maintain consistency with

the second law, give rise to the correct dynamical equations of motion, and note some

additional salient features. Most of these are summarized in the companion paper [13],

and non-superspace versions of some statements have already been noted earlier in [1].

4.1 Super-adiabaticity from U(1)T Bianchi identity

Let us first see how the action maintains consistency with the second law. To this end

consider the Ward identity associated with a U(1)T gauge transformation by a parameter

Λ̊. Define the energy-momentum and free-energy Noether super-currents20

T̊IJ ≡ 2√−̊g
δ

δ̊gIJ

(√
−̊g L̊

)
,

N̊I ≡ − z̊√−̊g
δ

δÅI

(√−̊g
z̊

L̊

)
.

(4.6)

The expression for the energy-momentum tensor should be familiar (modulo our upgrade

to a super-tensor). The Noether current N̊I is related to the free-energy super-current G̊I

up to a factor of the temperature:

N̊I = −G̊I

T̊
, (4.7)

generalizing the construction of free-energy currents in hydrodynamic sigma models [2].

Consider a U(1)T transformation by Λ̊. The worldvolume metric inherits the U(1)T
transformation from (3.4) while the gauge field ÅI transforms inhomogeneously as in (2.11).

The reference thermal super-vector β̊I does not transform. All told, we find that the U(1)T
gauge transformation acts as follows on the action:21

δΛ̊ Swv =

ˆ
ddσ

ˆ
dθ dθ̄

√−̊g
z̊

{
1

2
T̊IJ (Λ̊, g̊IJ)β + D̊I(Λ̊) N̊I

}
=

ˆ
ddσ

ˆ
dθ dθ̄

√−̊g
z̊

Λ̊

{
1

2
T̊IJ £βg̊IJ − D̊IN̊

I

}
.

(4.8)

20Note that variation of with respect to g̊IJ inside {̊g(ψ)
IJ , g̊

(ψ)
IJ } is well defined since integration by parts of

the Grassmann odd derivatives in {̊g(ψ)
IJ = D̊θ̄ g̊IJ , g̊

(ψ)
IJ = D̊θ g̊IJ} is allowed in this case. See appendix I.1.

21In (4.8) the first term inside the braces has a sign (−)I+J+IJ from super-index contractions, which we

have suppressed, while the second term is free of any signs. We will suppress signs from index contractions

in all of the present section.
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In writing the second line, we invoked the U(1)T transformation of the pullback metric,

inherited from (3.4), and performed an integration by parts in superspace.22

The quantity inside the curly braces must vanish due to the U(1)T symmetry. We shall

refer to this Ward identity as the super-adiabaticity equation :

D̊IN̊
I − 1

2
T̊IJ £βg̊IJ = 0 . (4.9)

This equation turns out to embody the physics of entropy production, and allows for a clean

parameterization of dissipative contributions. The connection is made through the off-shell

adiabaticity equation introduced in [2]. We review the basics of that analysis and explain

how entropy production arises in terms of a superspace inflow. One can equivalently view

this directly as a non-equilibrium detailed balance condition analogous to the Jarzynski

relation (as partly explained in [1]). Before doing so however it will be helpful to also

understand the dynamical content of the superspace action (4.1).

4.2 Fluid dynamical equations of motion

In superspace, we simply derive the equations of motion by varying (4.1) with respect to the

superfield X̊µ. Since g̊IJ is the dynamical worldvolume field (through its X̊µ-dependence),

this means that the variation will depend on the stress tensor. We thus find the following

equation of motion:

D̊I

(
T̊IJ D̊JX̊

µ
)

= 0 . (4.10)

At face value this seems not quite what we need, since the equation above involves all

the super-components of the energy-momentum tensor. In particular, expanding out in

components and distributing derivatives, we infer that23

0 = D̊a

(
T̊ab D̊bX̊

µ
)

+
(
D̊θT̊

aθ + D̊θ̄T̊
aθ̄
)
D̊aX̊

µ − T̊θθ̄
(
D̊θD̊θ̄ − D̊θ̄D̊θ

)
X̊µ︸ ︷︷ ︸

classical + fluctuations

+ T̊aθ D̊θD̊aX̊
µ − D̊a

(
T̊aθ D̊θX̊

µ
)

+ T̊θ̄b D̊θ̄D̊bX̊
µ − D̊a

(
T̊aθ D̊θ̄X̊

µ
)

︸ ︷︷ ︸
ghost bilinears

+ D̊θ̄T̊
θθ̄ D̊θX̊

µ − D̊θT̊
θθ̄ D̊θ̄X̊

µ︸ ︷︷ ︸
ghost bilinears

(4.11)

The second and third line are indicated as being ghost bilinears since each term is made of

tensors carrying non-vanishing ghost number. These we are free to ignore, so the physical

equation of motion that arises from (4.1) simply can be expressed as the projection of the

first line onto ordinary space:{
D̊a

(
T̊ab D̊bX̊

µ
)

+
(
D̊θT̊

aθ +D̊θ̄T̊
aθ̄
)
D̊aX̊

µ−T̊θθ̄
(
D̊θD̊θ̄−D̊θ̄D̊θ

)
X̊µ

}∣∣= 0+ghosts.

(4.12)

22We reiterate that we have not explicitly specified the worldvolume connection. Importantly, it is not

the Christoffel connection of g̊IJsince pullback is performed respecting U(1)T covariance. We prove the

existence of a measure compatible connection in appendix J, which along with the fact that the connection

does not contribute to derivatives of worldvolume scalars, is all we need for (4.8).
23Note there is overall (−)J sign coming from the contraction of indices.
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Setting the ghost bilinears implicit in (4.12) to zero, we will end up with equations that

involve both the classical field Xµ as well the fluctuations X̃µ. The latter are ignored in

the classical hydrodynamic equations, but the advantage of having a full effective action,

is that the deformation to the equations of motion owing to the statistical (and quantum)

fluctuations is made explicit.

The astute reader might wonder why such fluctuation terms are not encountered in

the MSR construction for Langevin dynamics [12] (see the textbook discussion in [72]). In

that case there is a stochastic noise term, which is assumed to be Gaussian. Consequently,

the fluctuations enter simply as a Lagrange multiplier enforcing the physical dynamical

equation, which can also be seen from the explicit superspace construction described in [6].

The novelty in hydrodynamics is the non-Gaussianity of the noise. There can be (and in

general are) non-trivial noise kernels in the system. As a result the fluctuation variable

will no longer enter simply as a Lagrange multiplier.

The formalism we have outlined here has the power to completely encompass such

behaviour. This is somewhat hard to see at the abstract level we are describing, so we

will indeed exemplify some of these statements with explicit calculations for dissipative

hydrodynamics up to second order in gradients in section 6.

While ignoring the ghost bilinears allows us to drop the second two lines of (4.11),

we still have to understand the contribution from the super-components of the energy-

momentum tensor. We will now argue that they do not contribute to the leading classical

dynamics, and in fact should simply provide the fluctuation terms in the equation of motion.

Rewriting the commutator of Grassmann odd derivatives, we claim:{(
D̊θT̊

aθ + D̊θ̄T̊
aθ̄
)
D̊aX̊

µ − T̊θθ̄
(

2 D̊θD̊θ̄X̊
µ − (F̊θθ̄, X̊

µ)β

)} ∣∣ = O(X̃µ) . (4.13)

This turns out to be pretty non-trivial to prove, but is explicitly borne out in examples

that we have computed (see section 5.3). With this understanding, we can then see that

the classical hydrodynamic equations are contained entirely in the first term of (4.12), viz.,

D̊a

(
T̊ab D̊bX̊

µ
) ∣∣ = 0 . (4.14)

To derive the first equation above we used the pullbacks and the fact that 0= D̊I e̊
I
µ|=D̊ae̊

a
µ|

which follows from our choice of the worldvolume connection be measure compatible,

cf., (J.21).

Equations (4.13) and (4.14) should be understood as follows: there is no superspace

inflow of energy-momentum modifying the classical hydrodynamic equations of motion.

At best there are additional fluctuation contributions arising from the Grassmann-odd

directions. We view this as a non-trivial consistency check of our formalism’s ability to

incorporate the correct dynamics.

This separation makes explicit the idea that we can capture the classical part of the

equations of motion by focusing on the ordinary space components alone. The role of the

superspace is to bring in the fluctuations (and associated Grassmann odd terms). Given

that the superspace directions control the entropy production, it makes sense for them to

capture the fluctuation deformations of the dynamical equations as well.
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Let us also convince ourselves that the worldvolume equation of motion (4.14) indeed

gives the correct dynamical equations for the hydrodynamic fields after pushing forward

the data to the target space. Writing24 T̊IJ = e̊ I
µ̆ e̊

J
ν̆ T µ̆ν̆ (contraction signs left implicit)

we have

D̊a

(
T̊ab D̊bX̊

µ
) ∣∣ = D̊aX̊

ν̆ ∇ν̆
(
e̊aρ̆ T

ρ̆µ
)
|

= ∇νTµν + D̊ae̊
a
ν T

µν |+ ghost bilinears + fluctuations

= ∇µTµν + ghost bilinears + fluctuations

(4.15)

where the last equality is ensured by the measure compatibility of the worldvolume connec-

tion as can be seen directly from (J.21). The issues arising from the U(1)T covariant pull-

backs are taken care of by the fact that (4.10) is a target space vector, and the contracted

indices transform homogeneously in both the worldvolume and target space. We will have

use for this statement when we try to understand the super-adiabaticity equation below.

The equations of motion we have written down only involve the variations of the

superfield X̊µ. In target space we also have supercoordinates Θ̊ and ˚̄Θ, which we have

previously gauged fixed to Θ̊ = θ and ˚̄Θ = θ̄. We could of course vary with respect to

these fields (prior to gauge fixing) and get corresponding equations — these will be related

by the underlying BRST supersymmetry to (4.10). What is a-priori clear is that these

equations will be Grassmann odd and thus proportional to the ghost fields. Since for the

most part we will ignore the ghost partners below, we will not have occasion to analyze

these equations of motion in detail here. We should however note that a corresponding

analysis for Langevin dynamics has been explicitly carried out earlier in section 7 of [6].

4.3 Adiabaticity equation, entropy inflow, and the second law

We recall that the conventional axiomatic formulation of hydrodynamics not only demands

that the dynamics be governed by conservation equations, but requires that the local form

of the second law be upheld on-shell in every fluid configuration. Usually this is taken to

mean that there exists an entropy current JµS with non-negative divergence. It is however

efficacious to take the statement of entropy production off-shell, by introducing a Lagrange

multiplier field. Exploiting the field-redefinition freedom in hydrodynamics, this can be

recast as the statement [2]:

∇µJµS + βµ∇νTµν = ∆ ≥ 0 , (4.16)

where ∇µ is the usual target space metric compatible covariant derivative. Note that ∆ is

the total (off-shell) entropy production. Legendre transforming the entropy current to free

energy Noether current via

Nµ = JµS + βν T
µν (4.17)

we arrive at the grand canonical form for the off-shell statement of the second law, which

demands that

∇µNµ − 1

2
Tµν£βgµν = ∆ ≥ 0 , (4.18)

where £βgµν = 2∇(µβν).

24e̊ Iµ̆ span the dual basis with (−)I e̊ Iµ̆ D̊IX̊
ν̆ = δ ν̆µ̆ and (−)µ̆ D̊JX̊

µ̆ e̊ Iµ̆ = δ IJ , written as usual in DeWitt

conventions [61].
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The special case where transport produces no entropy was given the name adiabatic

fluids. In this case an ordinary-space adiabaticity equation holds:

1

2
Tµν(adiabatic) £βgµν = ∇µNµ

(adiabatic) . (4.19)

The adiabaticity relation (4.18) was initially discussed in the target space as reviewed

above, but we can readily pull-back the relation to the worldvolume. Firstly, we note that

D̊aN̊
a
∣∣ = ∇µNµ + ghost bilinears + fluctuations

T̊ab£βg̊ab
∣∣ = Tµν£βgµν + ghost bilinears + fluctuations

(4.20)

Modulo some extra terms that we will interpret below, we can indeed view (4.9) as the

worldvolume version of the adiabaticity equation (uplifted to superspace). It is interesting

that the intricacies involved with the U(1)T covariant pull-backs essentially cancel out

completely after push-forward. We will now try to extract the some basic lessons by

decomposing the super-adiabaticity equation in more familiar terms by separating out the

super-tensor components.

Super-adiabaticity equation as entropy inflow from superspace. In the mani-

festly NT = 2 supersymmetric formalism, the adiabaticity equation is implied by (4.9).

Writing out the latter and separating the contributions from the ordinary and superspace

directions, we end up with:(
D̊aN̊

a − 1

2
T̊ab £β g̊ab

) ∣∣∣∣︸ ︷︷ ︸
classical + fluctuations

=−
(
D̊θN̊

θ + D̊θ̄N̊
θ̄ + T̊aθ £β g̊aθ + T̊aθ̄ £β g̊aθ̄ + T̊θθ̄ £β g̊θθ̄

) ∣∣∣∣︸ ︷︷ ︸
entropy inflow

(4.21)

Firstly, noting that {T̊ab, T̊θθ̄, N̊a} are the only Grassmann-even tensors (i.e., their bottom

components are Grassmann even fields) we project (4.21) down to θ = θ̄ = 0, isolating

the part that contains these tensors.25 It is worth reiterating here that when we project

Grassmann even quantities to their bottom component, we will end up with expressions

involving the classical fields Xµ, the fluctuations X̃µ, the zero ghost number element of the

Vafa-Witten quintet F̊θ̄θ| = φ0
T
, or ghost bilinears (either of the form Xµ

ψ
Xν
ψ, or involving

the gauge sector).

Therefore, upto contributions from the fluctuation fields (and ghost bilinears), the

terms we have isolated on the l.h.s. of (4.21) are precisely the combination appearing on

the l.h.s. of (4.18). This naturally suggests interpreting the second set of terms indicated

as ‘entropy inflow’ as the part that contributes to ∆. Hence,

∆ = −
(
D̊θN̊

θ + D̊θ̄N̊
θ̄ + T̊aθ £β g̊aθ + T̊aθ̄ £β g̊aθ̄ + T̊θθ̄ £β g̊θθ̄

) ∣∣∣ . (4.22)

We interpret this equation as saying that the entropy production is controlled by the

Grassmann-odd descendants of the free energy and energy-momentum super-tensors.

25This can be inferred by looking at the ghost charges or equivalently noting that g̊aθ and g̊aθ̄ are clearly

Grassmann-odd owing to them being proportional to D̊θX̊
µ and D̊θ̄X̊

µ, respectively.
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The total entropy produced manifests itself in the physical spacetime, although it orig-

inates from the superspace components. This is highly reminiscent of the anomaly inflow

mechanism, where one realizes a theory with an anomalous symmetry as the boundary

dynamics at the edge of a topological (bulk) field theory. The connection is not coinciden-

tal — the entropy current for charged fluids with mixed flavor-gravitational anomalies is

naturally captured by introducing a thermal gauge field whose chemical potential is the

temperature [43]. This construction provided the rationale behind the introduction of the

U(1)T gauge field in [2, 23], but as we see here the full justification is for this is provided

by working within the aegis of the thermal equivariance formalism.

To compare with conventional hydrodynamics, we only need to match the classical

part, since this is all that is captured in the familiar presentation of the system in terms of

constitutive relations. Dropping the ghost bilinears and setting X̃µ = 0 in the other terms,

we see that we can easily match the first set of terms in (4.22) with the entropy production

equation, provided we identify the ghost (Grassmann-odd) components of the free energy

current, N̊θ and N̊θ̄, as encoding the total dissipation:

∆ = −
(
DθN

θ + Dθ̄N
θ̄
)

+ ghost bilinears . (4.23)

We have dropped the contribution involving Tθθ̄ since it vanishes with our super-static

gauge choice which sets the bottom component g̊θθ̄| = i.26

Positivity of entropy production. We are now left with understanding why ∆ ≥ 0,

i.e., the second law. Let us first note that an abstract argument for entropy production

may be given by noting that the super-adiabaticity equation is equivalent to the Jarzynski

relation [65, 73] which provides the general non-equilibrium second law. We have previously

argued in [1] that U(1)T invariance and breaking of CPT symmetry imply Jarzynski’s

equation by employing the strategy described for Langevin dynamics in [54]. We won’t

undertake the upgrade of this statement to superspace directly. Instead we will follow

an alternate route and make direct connection between the analysis here and the eightfold

classification of hydrodynamic transport given in [2]. We can then invoke our earlier results

to constrain the contributions to ∆ and show that it is indeed non-negative definite.

Let us first attempt to gain some intuition for the terms in the r.h.s. of (4.23). We will

ignore the contribution from Tθa and Tθ̄a for we have seen that they contribute only ghost

bilinear terms. The physical entropy production will be a functional of the macroscopic

degrees of freedom Xµ, though we will often keep track of the fluctuation contribution as

well (given by terms involving X̃µ). The free energy Noether current appears in the action

(to linear order) as

Swv ⊃ −
ˆ
ddσdθdθ̄

√−̊g
z̊

N̊I ÅI = −
ˆ
ddσ ∂θ ∂θ̄

(√−̊g
z̊

N̊I ÅI

) ∣∣∣
=

ˆ
ddσ

(
−DθN

θ ∂θ̄Aθ + Dθ̄N
θ̄ ∂θAθ̄ + · · ·

) (4.24)

26We note that £β g̊θθ̄ = (−)I β̊I∂I g̊θθ̄ − ∂θ̄β̊I g̊θI + (−)I ∂θβ̊
I g̊Iθ̄. The last two terms vanish because of

our gauge choice on the thermal super-vector (2.5). The first term does not obviously vanish (recall that

we are working with a connection that is not metric compatible, so have to exercise care in using usual

intuition). However, we have a flat metric in the superspace directions (̊gθθ̄| = i) leading to a simple result:

£β g̊θθ̄| = 0.
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where the ellipses (· · · ) denote the ghost bilinear terms that we are dropping. We are also

not writing non-linear terms, which are necessary to ensure full covariance, but will not

contribute to ∆. Given (4.24) it is clear that ∆ can be extracted by switching on suitable

sources for the superfields ∂θ̄Aθ and ∂θAθ̄; to wit,

∆ =

(
δ

δ∂θ̄Aθ
− δ

δ∂θAθ̄

)
Swv (4.25)

An easy way to extract the contribution to ∆ is to turn on sources for the gauge superfield,

Åθ̄ = θB∆ and Åθ = −θ̄B∆. By construction the source B∆ for ∆ has ghost number zero;

in fact it appears in the gauge potential in the same place as the bare ghost number zero

element of the Faddeev-Popov triplet B
T

— compare the above with (E.5b) and (E.5c),

respectively.27 In explicit computations we will encounter non-linear terms in B∆, which

will be necessary to ensure that the action transforms correctly under U(1)T and CPT. The

easiest way to infer the contribution of B∆ will turn out to be by means of performing a

Faddeev-Popov rotation of the fields with a gauge parameter Λ̊FP = θ̄θB∆ and work with

the non-covariant versions of X̃µ and Fa as explained in footnote 27.

In summary, we start with the action (4.1) and pick out the contributions linear in B∆:

∆ = − 1√−g
δSwv

δB∆
. (4.26)

With this interpretation we are now in a position to constrain ∆ ≥ 0. Since we are in-

terested in contributions to the action proportional to ∂θ̄Åθ and ∂θÅθ̄, we conclude that

B∆ will occur in covariant derivatives of the worldvolume metric g̊IJ , the thermal vector

β̊I , the field strengths F̊JK , and their derivatives. We can further isolate contributions by

examining the discrete CPT symmetry that acts as a Z2 anti-linear involution (recall that

we implement CPT as R-parity on the worldvolume).

Firstly, unlike charge currents, N̊I is even under CPT, while ∆ is CPT odd. Therefore,

the only terms that can contribute to ∆ are those that transform with an additional pair of

super-covariant derivatives in the Grassmann odd directions (D̊θ and D̊θ̄), with an overall

factor of i to account for the anti-linearity of the CPT transformation. Secondly, while a-

priori these Grassmann-odd derivatives can appear inside various other derivatives, we can

adapt a trick introduced in [2] to simplify the analysis. One can capture extra derivatives

acting on the fluid dynamical fields through the action of a differential operator valued

tensor. Utilizing these two simple facts, we are lead to the observation that the only sets of

terms that contribute non-trivially to ∆ are those where we have a contribution from g̊
(ψ)
IJ =

27To be clear, we turn on the source B∆ only in the two aforementioned components, so as to aid in

extracting ∆ directly from the action. In particular, we do not perform a full Faddeev-Popov rotation

discussed in appendices E and G. The difference amounts to the following: a full FP-rotation by BT

will shift the top component of the vector multiplet Fa 7→ Fa + DaBT , as well as the fluctuation field,

X̃µ 7→ X̃µ − (BT , X
µ)β, as is clear from (E.5a) and (G.12), respectively. These combinations are U(1)T

covariant. However, extracting ∆ requires us to break the U(1)T covariance since we want to isolate a part

of the full adiabaticity equation. A full Faddeev-Popov rotation to introduce BT will, the reader can check,

give back the super-adiabaticity equation (more precisely: its bottom component).
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D̊θg̊IJ and g̊
(ψ)
IJ = D̊θ̄g̊KL. The free indices have to be contracted against a differential

operator valued super-tensor η̊IJKL [̊gIJ , β̊
I , D̊I ]. That is, the action takes the form:

Lwv, diss =

ˆ
dθ dθ̄

√−̊g
z̊

(
− i

4

)
η̊IJKL g̊

(ψ)
IJ g̊

(ψ)
KL . (4.27)

The dissipative tensor η̊IJKL is graded symmetric in both its first and second pair of in-

dices. In addition it is required to also be graded symmetric under the exchange of the

first and second pair of indices, viz.,

η̊(IJ)(KL) = (−)IJ η̊(JI)(KL) = (−)KL η̊(IJ)(LK)

η̊(IJ)(KL)
(D)

= (−)(I+J)(K+L) η̊(KL)(IJ)
(D)

.
(4.28)

See also section 7.2 for more details.

With this ansatz for the dissipative terms it is easy to isolate the contributions to ∆.

To this end we need the leading ghost free contributions, g̊
(ψ)
IJ = θ (B∆ − φ0

T
, gIJ)β + · · ·

and g̊
(ψ)
IJ = −θ̄ (B∆, gIJ)β + · · · , which leads us to:

∆ = − 1√−g
δSwv

δB∆
=

1

4
ηabcd £βgab £βgcd + fluctuations + ghost-bilinears , (4.29)

where we have employed the expectation value 〈φ0
T
〉 = −i owing to spontaneous CPT

breaking which signifies the origin of dissipation as argued for in [1].

We are now in a position to infer that as long as ηabcd is a positive definite (derivative

operator valued) map from the space of symmetric two-tensors to symmetric two-tensors,

the amount of entropy produced is non-negative definite, viz., ∆ ≥ 0. This is precisely the

condition inferred in [2], which generalizes the theorem proven by Sayantani Bhattacharyya

in [44, 45]. In the present context, this condition simply follows from demanding conver-

gence of the path integral — if ηabcd had negative eigenvalues, it would lead to divergent

terms in the path integral. We elaborate further in section 7.2.

We will now proceed to give explicit examples of various classes of transport for illus-

tration. In section 7 we will return to a general discussion of all classes of hydrodynamic

transport and how they are realized as specific forms of the Lagrangian (4.1). This will

then prove evidence for our central claim delineated at the beginning of this section.

5 The MMO limit: a truncation for explicit calculations

The previous discussion, whilst comprehensive, was quite abstract. To see how the fluid

dynamical effective actions work, and to verify the statements made above, it is helpful to

consider some explicit examples of terms that contribute to the action. This can, of course,

be done explicitly, since we only have to construct suitable U(1)T invariant actions build

from the hydrodynamic fields. The one complicating factor is that in terms of explicit

fields we have many components — there are four fields in the target space maps X̊µ

and the U(1)T super-gauge field ÅI has 12 component fields (3 of which are non-covariant

potentials). The full set of variables, organized by ghost number, is given in table 1. In

addition we turn on sources for various currents (see below).
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In this section we motivate a truncated sector of the theory which suffices to capture the

essential physics, and allows us to make contact with the familiar form of the hydrodynamic

constitutive relations. The basic idea is to set all the fields carrying non-vanishing ghost

number to zero, and furthermore effectively treat the U(1)T symmetry as a global symmetry

by ignoring the contributions from the gauge potentials. The rationale for the latter comes

from our discussion in section 3.3, where we have argued for the MMO limit (after Mallick-

Moshe-Orland [54]) where the gauge dynamics is frozen. This reduces the dynamical field

content to three fields: the hydrodynamic pions Xµ, the fluctuation fields X̃µ, and the

U(1)T field strength F̊θθ̄| ≡ φ0
T
, which will eventually be set to 〈φ0

T
〉 = −i according to (3.10)

and (3.9). In addition we will allow for some sources which will prove useful for extracting

currents: {hab, hθθ̄} as sources for the bosonic components of the energy-momentum tensor,

Fa for the entropy current, as well as a source B∆ for the total entropy production. We will

indicate sources in a slightly different colour to distinguish them from the dynamical field

content. We illustrate how the hydrodynamic effective actions work with this truncation

rather explicitly up to second order in derivatives.

5.1 Field content

We define the MMO limit to be the limit where all the ghost fields are set to zero a-priori.

In this limit, we truncate to the middle row of table 1 and furthermore ignore the gauge

potential Aa. In this limit, the superfields simplify drastically and we can write them

succinctly as:

Åa = θ̄θFa , F̊θθ̄ = φ0
T
, F̊θ̄a = θFa ,

Åθ̄ = θB∆ , F̊θ̄θ̄ = 0 , F̊θa = −θ̄
(
Fa + ∂aφ

0
T

)
,

Åθ = θ̄ (φ0
T
− B∆) , F̊θθ = 0 , F̊ab = θ̄θ (∂aFb − ∂bFa) ,

X̊µ = Xµ + θ̄θ X̃µ .

(5.1)

The fields we have retained in this limit, should be understood by the following rationale:

• The gauge field component Fa has been retained as a source for the Noether free

energy current Na. The super free energy current is defined in (4.6) and its bottom

component is isolated by varying with respect to the top component of Åa, viz., Fa.
Once we obtain the free energy current, we immediately obtain the entropy current

via (4.17).28

• The source B∆ which couples to the net entropy produced ∆. The general idea for

isolating entropy production has been described around (4.25). We will indeed verify

in examples below that variation with respect to this field gives the total entropy

production (including fluctuation terms).

28This statement relies on varying with respect to the gauge potential whilst keeping the pullback metric

fixed which is natural from the standpoint of (4.6). If we also vary with respect to the gauge potentials

contributing to the pullback metric itself, see (5.3), we will end up directly with the entropy current.
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• The top component of the sigma-model map, X̃µ. This field describes fluid fluc-

tuations and variation with respect to it will give the hydrodynamic equations of

motion.

• In (5.1) we have also kept φ0
T
, which we will evetually set to −i. This field plays the

role of an order parameter for dissipation.

From (5.1) we can also immediately get the following expressions for the derivatives of

the position superfield:

D̊aX̊µ = ∂aX
µ + θ̄θ

(
∂aX̃

µ + (Fa, Xµ)β

)
D̊θ̄X̊µ = θ

(
X̃µ + (B∆, X

µ)β

)
D̊θX̊µ = θ̄

(
(φ0

T
− B∆, X

µ)β − X̃µ
)

D̊θD̊θ̄X̊µ = X̃µ + (B∆, X
µ)β + θ̄θ

(
φ0

T
− B∆, X̃

µ + (B∆, X
µ)β
)
β

D̊θ̄D̊θX̊µ = (φ0
T
− B∆, X

µ)β − X̃µ − θ̄θ
(
B∆, (φ

0
T
− B∆, X

µ)β − X̃µ
)
β

(5.2)

It is instructive to note that the contribution of B∆ can be easily inferred by the map

X̃µ 7→ X̃µ + (B∆, X
µ)β which follows from U(1)T covariance, for reasons described in

footnote 27.

Let us now take stock of various other derived superfields which enter into the hydro-

dynamic effective action.

The world-volume metric. The pullback computation (3.5) leads to the following ex-

pression for the worldvolume metric with the ghosts set to zero:

g̊ab = gµν ∂aX
µ∂bX

ν+θ̄θ
[
hab+2gµν ∂(aX

µ
(
∂b)X̃

ν+(Fb),Xν)β

)
+X̃ρ ∂ρgµν ∂aX

µ ∂bX
ν
]

≡ gab+θ̄θ (hab+g̃ab)

g̊θ̄a = θgµν

(
X̃µ+(B∆,X

µ)β

)
∂aX

ν

g̊θa = θ̄ gµν

(
(φ0

T
−B∆,X

µ)β−X̃µ
)
∂aX

ν

g̊θθ̄ = −̊gθ̄θ = i+θ̄θ
[
hθθ̄+gµν

(
(φ0

T
−B∆,X

µ)β−X̃µ
)(

X̃ν+(B∆,X
ν)β

)]
≡ i+θ̄θ (hθθ̄+g̃θθ̄) (5.3)

where we used gΘΘ̄ = −gΘ̄Θ = i in target space and we introduced the following shortcuts:

gab = gµν ∂aX
µ ∂bX

ν ,

g̃ab = 2 gµν ∂(aX
µ
(
∂b)X̃

ν + (Fb), Xν)β

)
+ X̃ρ ∂ρgµν ∂aX

µ ∂bX
ν ,

g̃θθ̄ = gµν

(
(φ0

T
− B∆, X

µ)β − X̃µ
)(

X̃ν + (B∆, X
ν)β

)
= gµν (Jµ − (B∆, X

µ)β)
(
X̃ν + (B∆, X

ν)β

)
,

Jµ ≡ (φ0
T
, Xµ)β − X̃µ .

(5.4)
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Under a CPT transformation X̃µ gets exchanged with Jµ. Furthermore, in (5.3) we intro-

duced sources {hab, hθθ̄}. These help taking variations of the actions more explicitly and

also aid in departing from the topological limit. For instance, the stress tensor will be

obtained by varying the action with respect to hab (and then setting the sources to zero

as usual).

The inverse metric. One can work out the inverse of the metric in the MMO limit by

the requirement that

(−)J g̊IJ g̊JK = δIK . (5.5)

Note that the sign in this equation corresponds to the standard contraction convention for

superspace indices that are contracted as ↘, i.e., “NW to SE” as described in [61] and

explained in (2.15). One then finds:

g̊ab = gab−θ̄θgac gbd
(
hcd+g̃cd− 2 i (Jµ−(B∆,X

µ)β)
(
X̃ρ+(B∆,X

ρ)β

)
∂cXµ∂dXρ

)
,

g̊aθ̄ = i θ̄ gab (Jµ−(B∆,Xµ)β) ∂bX
µ ,

g̊aθ =−iθ gab
(
X̃µ+(B∆,Xµ)β

)
∂bX

µ ,

g̊θθ̄ = −̊gθ̄θ =−i+θ̄θ
(
hθθ̄+g̃θθ̄−(Jµ−(B∆,X

µ)β)
(
X̃µ+(B∆,Xµ)β

))
=−i+θ̄θ hθθ̄ .

(5.6)

This completes our discussion of the basic field content. For convenience, we will now

record some composite and derived fields in addition.

The super-determinant. We view the metric superfield and its inverse as super-

matrices. The super-determinant is then given by the Berezinian of the metric, i.e.,√
−̊g =

√
−det(̊gab) det (̊gz1z2 − g̊cz1 g̊

cd g̊dz2)
−1

=
√
− det gab

[
1 + θ̄θ

(
1

2
gcd (hcd + g̃cd)

)]
.

(5.7)

The z factor. The U(1)T covariant pullback measure in the action involves the field z̊

introduced in (4.2), which evaluates to

z̊ ≡ 1 + β̊I ÅI = 1 + θ̄θβaFa . (5.8)

One can explicitly check in the MMO limit the useful identity D̊I z̊ = F̊IJ β̊
J .29

The temperature superfield. The local temperature superfield of the worldvolume

description of the fluid is defined as

T̊ =
1√

−̊gIJ β̊I β̊J
=
(
−gabβaβb − θ̄θβaβb (hab + g̃ab)

)− 1
2

≡ T + θ̄θ T̃

where T ≡ 1√
−gabβaβb

, T̃ ≡ 1

2
T 3 βaβb (hab + g̃ab)

(5.9)

29In order to check this, note that z̊ is U(1)T 1-adjoint, which implies, e.g., (F̊IJ , z̊)β = F̊IJ £βz̊−z̊£βF̊IJ .
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Any function of T̊ (such as the pressure superfield p(T̊ )) can then be expanded similarly:

f(T̊ ) = f(T ) + θ̄θ f′(T ) T̃ . (5.10)

The velocity superfield. The fluid velocity is lifted to the following superfield:

ůI ≡ T̊ β̊I

in components: ůa =
(
T + θ̄θ T̃

)
βa , ůθ = 0 , ůθ̄ = 0

(5.11)

The spatial projector. The tensor that projects onto the space transverse to ůa has

the following components in the MMO limit:

P̊IJ ≡ g̊IJ + (−)K(1+L+I)+L(1+I+J) ůK ůL g̊IK g̊JL . (5.12)

In components:

P̊ab = Pab + θ̄θ P ca P
d
b (hcd + g̃cd)

P̊aθ = θ̄ Pab e
b
µ (Jµ − (B∆, X

µ)β)

P̊aθ̄ = θ Pab e
b
µ

(
X̃µ + (B∆, X

µ)β

)
P̊θθ̄ = i+ θ̄θ

(
hθθ̄ + Pcd e

c
µ e

d
ν (Jµ − (B∆, X

µ)β)
(
X̃ν + (B∆, X

ν)β

)) (5.13)

The spatial projector with upper indices, P̊ IJ = g̊IJ + ůI ůJ , reads as follows:

P̊ ab =P ab+θ̄θ
{

2T̃ uaβb−
[
hab+g̃ab−2i(Jµ−(B∆,Xµ)β)

(
X̃ρ+(B∆,Xρ)β

)
∂aXµ∂bXρ

]}
≡P ab+θ̄θ P̃ ab

P̊ aθ =−iθ gab
(
X̃µ+(B∆,Xµ)β

)
∂bX

µ

P̊ aθ̄ = i θ̄ gab (Jµ−(B∆,Xµ)β) ∂bX
µ

P̊ θθ̄ =−i+θ̄θ hθθ̄ (5.14)

where P ab ≡ gab + T 2 βaβb.

5.2 The worldvolume connection

We will later also need derivatives of superfields. To define these, we need to discuss the

covariant derivative, or the connection, in worldvolume superspace. This is a non-trivial

task because of the way in which the U(1)T symmetry intertwines with diffeomorphisms.

In particular, one can easily see that consistency of our formalism requires the connec-

tion in the worldvolume theory (though not the one in physical space!) to be not metric

compatible. The two essential features that the worldvolume covariant derivative D̊I has

to satisfy are the commutator condition[
D̊I , D̊J

]
±
X̊µ = (F̊IJ , X̊

µ)β , (5.15)
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and the requirement of measure compatibility (needed in order to be able to integrate by

parts as usual):

D̊J

(√−̊g
z̊

)
= 0 . (5.16)

A detailed analysis of these requirements is given in appendix J. There we argue that

these conditions fix the connection (up to some ambiguity, which we set to zero since it is

irrelevant for the following discussion). The resulting connection is

C̊IJK =
1

2
g̊IL

[
(−)L(1+J) D̊J g̊LK + (−)L(1+J+K)+JK D̊K g̊JL − (−)L D̊Lg̊JK

]
+

1

z̊

(
F̊IJ β̊K + (−)JK F̊IK β̊J

) (5.17)

In other words the connection we choose is the Christoffel connection built from D̊I ≡
∂I + (ÅI , · )β supplemented with thermal equivariance field strength data to ensure that

we have correctly accounted for the U(1)T covariance of the pullback. Note that the

connection has no (super-)torsion. The fully covariant derivative then acts as follows on a

generic super-tensor T̊ JK :

D̊I T̊ JK ≡ D̊I T̊ JK + (−)IJ C̊J IL T̊ LK − (−)IJ T̊ JL C̊LIK (5.18)

and similarly for tensors with more indices. In appendix K we write the superspace expan-

sion of the connection C̊IJK explicitly in the MMO limit.

This data is sufficient to go ahead with explicit computations (some more objects are

computed in the MMO limit in appendix K). In what follows we will describe the hydrody-

namic effective actions at the lowest three orders in the derivative expansion, demonstrating

explicitly the familiar structure expected from earlier analyses in [1, 2].

5.3 General observations

Before exploring examples, let us make some general observations which are now clear from

the MMO expansion of the fields.

Equations of motion. We can discern from the way that X̃µ appears in the metric

superfield (5.4) that the equations of motion will be target space covariant. To see this,

consider the way that the energy momentum tensor will generically couple to g̃ab in the

action (after performing the integration over Grassmann odd directions):

Swv ⊃
ˆ √−g

(
1

2
Tab g̃ab

)
⊃
ˆ √−g Tab∂(aX

µ

(
∂b)X̃

ν gµν +
1

2
∂b)X

ν X̃ρ∂ρgµν

)
,

(5.19)

where Tab contains both classical and fluctuation terms. This coupling is generic, as can be

seen from the fact that every occurance of the source hab (which by definition sources Tab)

is accompanied by a g̃ab. Push-forward to the physical spacetime and integration yields

the following: ˆ √−g X̃µ∇νTµν , (5.20)

where ∇µ is the usual Christoffel connection built from the target space metric gµν , and

Tµν = Tab ∂aX
µ ∂bX

ν .
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Superspace equation of motion. The projected version of the full superspace equation

of motion (4.10) led us to the statement that the energy-momentum inflow contains only

fluctuation terms, i.e., (4.13). There is a nice version of this statement in the MMO limit.

In the superspace action, the couplings relevant to (4.13) take the form:

Swv =

ˆ
ddσdθdθ̄

√−̊g
z̊

{
−T̊aθ g̊aθ−T̊aθ̄ g̊aθ̄−T̊θθ̄ g̊θθ̄+. . .

}
=

ˆ
ddσ
√−g

{
∂θT̊

aθ ∂aX
µJµ−∂θ̄T̊aθ̄ ∂aX

µ X̃µ−Tθθ̄(JµX̃
µ)+. . .+ghost bilinears

}∣∣∣
(5.21)

where we took the MMO limit in the second line and dropped all terms that are not

relevant to the present discussion (such as sources). From this expression we can see what

the contribution of the indicated currents to the equations of motion will be: variation

with respect to X̃µ precisely gives (minus) the combination (4.13).

Let us interpret this statement: when we vary the action with respect to X̃µ while

holding g̃ab fixed (where X̃µ enters differentiated) then we end up with the above com-

bination entering the equations of motion. From our explicit analysis below, we will see

that this combination will always lead to fluctuation terms and not modify the dynamical

equations of motion for the classical field Xµ as noted in section 4.

Total entropy production. In computing ∆ by variation of the action with respect to

the source B∆, note that B∆ always appears only in three qualitatively different ways:

(i). Every fluctuation field of the position occurs in the combination X̃µ+(B∆, X
µ)β (see

footnote 27). It is clear that variation of the action with respect to these occurrences

of B∆ gives a contribution proportional to equations of motion.

(ii). Every metric source appears in the combination hab + (B∆, gab)β; variation with

respect to these B∆ gives a term of the form 1
2 Tab £βgab.

(iii). Finally, the source for the free energy current occurs in the combination Fc − ∂cB∆,

which leads to the contribution ∇aNa in ∆.

We can thus anticipate on general grounds that the entropy production takes the expected

form:

− 1√−g
δSwv

δB∆
= ∇aNa − 1

2
Tab £βgab︸ ︷︷ ︸

=∆

+equations of motion, (5.22)

where ∇a is the standard Christoffel connection in the worldvolume after doing all super-

space integrals and setting sources to zero.
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In order for the above statements to be true, it is useful to observe the following.

For any superspace Lagrangian L̊ the effective action after integration over Grassmann

directions generically takes the form

Swv =

ˆ
ddσ
√−g

[(
1

2
gab(hab + g̃ab)−Faβa

)
L + (∂θ∂θ̄L̊)

]
. (5.23)

This can always be covariantized in the sense described above by adding a total derivative

term of the form

0 =

ˆ
ddσ
√−g∇c (βc B∆ L) =

ˆ
ddσ
√−g

[
1

2
gab (B∆, gab)β + βc∂cB∆ L + (B∆,L)β

]
,

(5.24)

such that adding (5.23) and (5.24) gives an action that only involves the combinations

described above.

6 The MMO limit: examples

Having defined the MMO limit, we now work out a few examples at low orders in the

derivative expansion to illustrate the formalism.

6.1 Zeroth order: ideal fluid

The simplest example is the ideal fluid. The effective superspace action has the form (4.1)

with the Lagrangian being simply the pressure superfield. We parameterize the action by

a scalar superfield f(T̊ ) and explicitly evaluate it in the MMO limit to be

L̊
(ideal)

=

√−̊g
z̊

f̊(T̊ )

=
√−g f(T )

(
1 + θ̄θ

[
1

2
gcd (hcd + g̃cd)− βaFa +

f′(T )

f(T )
T̃

])
.

(6.1)

f(T ) will turn out to be the standard pressure function, cf., (6.4). Here we have kept all clas-

sical and fluctuation fields, but have discarded ghost contributions. After the superspace

integration we will end up with:

L(ideal)

wv =

ˆ
dθdθ̄ L̊

(ideal) ≡ ∂θ∂θ̄ L̊
(ideal) ∣∣

θ=θ̄=0

=
√−g f(T )

(
1

2
gcd (hcd + g̃cd)− βaFa +

f′(T )

f(T )
T̃

) (6.2)

We could add a total derivative term to covariantize the expression as described in sec-

tion 5.3, but this would not affect the subsequent calculations. From the coefficients of the

sources hab and Fa we can easily read off the energy-momentum tensor and free energy

current, respectively:

Tab
(ideal)

≡ 2√−g
δL(ideal)

wv

δhab
= f(T )

(
gab +

f′(T )

f(T )
T 3 βa βb

)
,

Na
(ideal)

≡ − 1√−g
δL(ideal)

wv

δFa
= f(T )βa .

(6.3)
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The entropy current is related to the free energy current via (4.17) and can be obtained

directly from the action by varying also the Fa inside g̃ab (see (5.4)). The tensor Tab
(ideal)

encodes both pressure p(T ) and energy density ε(T ), which are obtained from the function

f. We identify

p(T ) = f(T ) , ε(T ) = T f′(T )− f(T ) . (6.4)

Note that there is no source term hθθ̄ in the action, so we conclude Tθθ̄
(ideal)

= 0.

To obtain the equations of motion (i.e., conservation equations), we vary the action

with respect to the fluctuation field X̃µ. The only occurrence of X̃µ in (6.2) is inside g̃cd.

Carrying out this variation simply yields the expected conservation:

∇a Tab
(ideal)

= 0 . (6.5)

Finally, there is no explicit dependence on B∆ in the Lagrangian (6.2). Variation with

respect to B∆ gives the free energy divergence, ∇aNa
(ideal)

. We therefore get for the total

entropy production:

∆
(ideal)

≡ − 1√−g
δL(ideal)

wv

δB∆
= 0 . (6.6)

6.2 First order: viscosities and dissipation

Let us now turn to the next order in the gradient expansion. We already know from

earlier analysis (see eg., [2]) that there is no non-dissipative contribution at this order.

So we should now focus on the dissipative terms, which gives us an opportunity to get

some intuition for the general arguments described in section 4.1. As noted in [1] and

explained around (4.27) the structure of dissipative terms is encapsulated in super-tensors

η̊((IJ)|(KL))
(D)

(̊gIJ , β̊
I , D̊I). Since this tensor will be contracted against terms that contain

explicit super-derivatives of the metric, to first order in gradients it suffices to consider it to

be built out of zero derivative objects. The natural structure then is simply combinations

of the projection super-tensor P̊ IJ respecting the conditions (4.28). All other tensors can

be argued to be equivalent once field redefinition ambiguities are accounted for (this is a

superspace version of the arguments given in section 5 of [2]).

These requirements then single out two possible independent tensor structures for first

order dissipative transport. These are parameterized by scalar superfields ζ̊(T̊ ) and η̊(T̊ ),

respectively:

L̊ = −
√−̊g

z̊

i

4
(−)(I+J)(K+L)+IJ+KL+K+L η̊((IJ)|(KL))

(D)
g̊

(ψ)
IJ g̊

(ψ)
KL

η̊IJKL
(D,visc.)

= ζ̊(T̊ ) T̊ P̊ IJ P̊KL + 2 η̊(T̊ ) T̊ (−)K(I+J) P̊K〈I P̊ J〉L
(6.7)

where the subscript “visc.” denotes the first order in gradients viscous transport con-

tributions. We have explicitly written the index contraction signs following from (2.16).

The transverse traceless index projection in the shear viscosity term will be defined below

in (6.16). The bottom components of the scalar superfields ζ(T ) and η(T ) will end up

being the usual bulk and shear viscosity transport coefficients.

– 40 –



J
H
E
P
1
0
(
2
0
1
8
)
1
9
4

We can expand the superspace structure (6.7) more explicitly to guide the eye. Using

the fact that in the absence of sources carrying non-zero fermion number we can set g̊
(ψ)
θa → 0

and g̊
(ψ)

θ̄a
→ 0, we find after evaluating the signs and symmetry factors:

L(D)
wv =− i

4
∂θ∂θ̄

(√−̊g
z̊

(−)(I+J)(K+L)+IJ+KL+K+L η̊((IJ)|(KL))
(D)

g̊
(ψ)
IJ g̊

(ψ)
KL

)∣∣∣∣
=− i

4

√−g
{

4

(
∂θ∂θ̄η̊

((θ̄c)|(θd))
(D)

+

[
1

2
gab(hab+g̃ab)−Faβa

]
η̊(θ̄c)(θd)

(D)

)
g̊

(ψ)

θ̄c
g̊

(ψ)
θd

+2∂θη̊
((ab)|(θd))
(D)

∂θ̄̊g
(ψ)
ab g̊

(ψ)
θd −4∂θη̊

((θθ̄)|(θd))
(D)

∂θ̄̊g
(ψ)

θθ̄
g̊

(ψ)
θd

+2∂θ̄η̊
((θ̄b)|(cd))
(D)

g̊
(ψ)

θ̄b
∂θ̊g

(ψ)
cd −4∂θ̄η̊

((θ̄b)|(θθ̄))
(D)

g̊
(ψ)

θ̄b
∂θ̊g

(ψ)

θθ̄

+
[
−2 η̊((θθ̄)|(cd))

(D)

(
∂θ̄̊g

(ψ)

θθ̄
∂θ̊g

(ψ)
cd +∂θ̊g

(ψ)

θθ̄
∂θ̄̊g

(ψ)
cd

)
+4 η̊((θ̄b)|(θd))

(D)

(
∂θ∂θ̄̊g

(ψ)

θ̄b
g̊

(ψ)
θd +g̊

(ψ)

θ̄b
∂θ∂θ̄̊g

(ψ)
θd

)
+η̊((ab)|(cd))

(D)
∂θ̄̊g

(ψ)
ab ∂θ̊g

(ψ)
cd +4 η̊(θθ̄)(θθ̄)

(D)
∂θ̄̊g

(ψ)

θθ̄
∂θ̊g

(ψ)

θθ̄

]}∣∣∣∣+ghost bilinears.

(6.8)

More explicitly, one can plug in the following expressions:

g̊
(ψ)

θ̄b
| =

(
X̃µ + (B∆, X

µ)β

)
∂bX

µ

g̊
(ψ)
θb | = (Jµ − (B∆, X

µ)β) ∂bX
µ

∂θ∂θ̄̊g
(ψ)

θ̄b
| =

(
φ0

T
− B∆, (X̃µ + (B∆, Xµ)β)∂bX

µ
)
β

∂θ∂θ̄̊g
(ψ)
θb | = − (B∆, (Jµ − (B∆, Xµ)β)∂bX

µ)β

∂θ̄̊g
(ψ)
ab | = −hab − g̃ab + (φ0

T
− B∆, gab)β

∂θ̊g
(ψ)
ab | = hab + g̃ab + (B∆, gab)β

∂θ̊g
(ψ)

θθ̄
| = −∂θ̄̊g

(ψ)

θθ̄
| = hθθ̄ + g̃θθ̄ .

(6.9)

We will now compute (6.8) for bulk and shear viscosity separately.

Bulk viscosity term. By explicit expansion of (6.8) using the MMO truncation of the

superfields as defined in section 5.1 and (6.9), we find:

L(visc.,ζ)

wv =

ˆ
dθdθ̄ L̊

(visc.,ζ)

= −√−g i
4
T ζ(T )

[
− i P ab

(
hab + g̃ab − (φ0

T
− B∆, gab)β

)
+ 2hθθ̄

]
×
[
− i P ab (hab + g̃ab + (B∆, gab)β) + 2hθθ̄

] (6.10)

This expression captures the full contribution of the bulk viscosity in the effective ac-

tion, including its associated dissipation and fluctuations. The latter are buried inside the

g̃ab, and we also see for the first time a contribution involving the metric source in the

Grassmann-odd directions.
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It remains to convince ourselves that the Lagrangian encodes viscous hydrodynamics

in the correct way. The constitutive relations are

Tab
(visc.,ζ)

≡ 2√−g
δL(visc.,ζ)

wv

δhab
= −iφ0

T
ζ(T )ϑP ab︸ ︷︷ ︸

classical

+ i T ζ(T )P ab P cd g̃cd︸ ︷︷ ︸
fluctuations

Na
(visc.,ζ)

≡ − 1√−g
δL(visc.,ζ)

wv

δFa
= 0 ,

(6.11)

where we set the sources to zero after variation, as usual. We also introduced the fluid

expansion ϑ = ∇aua. The classical part of the currents is as expected for bulk viscosity,

after we set 〈φ0
T
〉 = −i. We can then write the energy-momentum tensor including the

fluctuation contribution somewhat suggestively as:

Tab
(visc.,ζ)

= −1

2
T ζ(T )P ab P cd (£βgcd − 2i g̃cd) . (6.12)

The conservation equations for Tab
(visc.,ζ)

follow as before by varying the action associated

with (6.10) with respect to X̃µ. One can verify readily that this will indeed give the

expected result. We also recall that there are no contributions to the entropy current (and

likewise for the free energy current) at first order.

Furthermore, as noted above, there is also a contribution to the energy-momentum

tensor in the mixed Grassmann directions,

Tθθ̄
(visc.,ζ)

≡ 2√−g
δL(visc.,ζ)

wv

δhθθ̄
= 2φ0

T
ζ(T )ϑ︸ ︷︷ ︸

classical

− 2T ζ(T )P ab g̃ab︸ ︷︷ ︸
fluctuations

(6.13)

The full entropy production is also encoded in the superspace action. Namely, variation

with respect to the source B∆ gives

∆
(visc.,ζ)

≡ − 1√−g
δL(visc.,ζ)

wv

δB∆
= ∂aN

a
(visc.,ζ)

− 1

2
Tab

(visc.,ζ)
£βgab

= (iφ0
T
)
ζ

T
ϑ2︸ ︷︷ ︸

classical

− i

2
T ζ P abP cd £βgab g̃cd︸ ︷︷ ︸

fluctuations

(6.14)

which can be verified by explicit calculation. Let us now set 〈φ0
T
〉 = −i. Then the classical

part of entropy production is precisely what is expected for dissipative fluids on general

grounds [2]. The second law requires ∆
(visc.,ζ)

≥ 0, which holds for arbitrary fluid configu-

rations if and only if ζ ≥ 0.

A first-principles way to argue for the positivity of ζ is by extracting the imaginary

part of the effective action as a functional of the physical source (after turning off the

fluctuation terms and setting 〈φ0
T
〉 = −i):

Im
(
L(visc.,ζ)

wv

)
=
√−g 1

4
T ζ(T ) (P ab hab)

2 . (6.15)

In the path integral, the effective action occurs in an exponential eiSwv . Thus, for conver-

gence we require Im(Swv) ≥ 0. In the present case, this clearly translates to ζ ≥ 0.
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The shear viscosity term. We now wish to simplify the shear viscosity contribution

to (6.8). To explain the constellation of indices there, let us write the shear part of the

viscosity tensor more explicitly:

(−)K(I+J) P̊K〈I P̊ J〉L =
1

2

(
(−)JK P̊ IK P̊ JL + (−)I(J+K)P̊ JK P̊ IL

)
− 1

d− 1
P̊ IJ P̊KL .

(6.16)

By expanding (6.8) we get30

L(visc.,η)

wv =−√−g i
2
Tη

{
− 1

2

(
P acP bd+P bcP ad− 2

d−1
P abP cd

)(
hab+g̃ab−(φ0

T
−B∆,gab)β

)
×(hcd+g̃cd+(B∆,gcd)β)+

2i

d−1
P ab

(
2hab+2g̃ab−(φ0

T
−2B∆,gab)β

)
hθθ̄

+2i
[
P c(aeb)ν (Jν−(B∆,X

ν)β)
(
X̃µ+(B∆,Xµ))β

)
∂cX

µ
]

(hab+g̃ab+(B∆,gab)β)

+2i
[
P c(aeb)ν

(
X̃ν+(B∆,X

ν)β

)
(Jµ−(B∆,Xµ)β)∂cX

µ
](
hab+g̃ab+(φ0

T
−B∆,gab)β

)
+2iP ac∂aX

µ∂cX
ν

[(
φ0

T
−B∆, X̃µ+(B∆,Xµ)β

)
β

(Jµ−(B∆,Xµ)β)

]
−2iP ac∂aX

µ∂cX
ν
[
(B∆,Jµ−(B∆,Xµ)β)β

(
X̃µ+(B∆,Xµ)β

)]
−2

[
d+1

d−1
hθθ̄+Pµν

(
X̃µ+(B∆,Xµ)β

)
(Jν−(B∆,Xµ)β)

]
hθθ̄

}
+
√−g

{
Tη(T )

(
1

2
gcd (hcd+g̃cd+(B∆,gcd)β)−βc(Fc−∂cB∆)

)
P ab

+(Tη)′
(
T̃+(B∆,T )β

)
P ab+Tη

[
2
(
T̃+(B∆,T )β

)
Tβaβb−hab−g̃ab−(B∆,g

ab)β

]}
×∂aXµ∂bX

ν
(
X̃µ+(B∆,Xµ)β

)
(Jν−(B∆,Xµ)β)

(6.17)

The first line describes (among other things) the classical part and will give rise to the

standard energy-momentum tensor for shear viscosity and its associated dissipation. All

the remaining terms describe fluctuations. If desired, (6.17) can be simplified a little further

by using the identity

PµνJµ = Pµν
(
−i eaµ βa − X̃µ

)
= −PµνX̃µ , (6.18)

exploiting the fact that the spatial projector is transverse to the velocity (and hence the

thermal vector).

30As a consistency check, note that all terms in this expression are either CPT odd, or occur in CPT

conjugate pairs with a relative sign. Furthermore, note that the expression is manifestly U(1)T invariant

since every difference field (dressed with a tilde) occurs with the correct covariant dressing involving B∆

(see also below). We have added the total derivative term described in section 5.3.
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We can now read off the following currents:

Tab
(visc.,η)

≡ 2√−g
δL(visc.,η)

wv

δhab

=−2 iφ0
T
η(T )σab︸ ︷︷ ︸

classical

+2iT ηP a〈cP d〉b g̃cd︸ ︷︷ ︸
fluctuations

−
[
Tη
(

2P (acP b)d+P abP cd
)

+T 2η′uaubP cd
]
∂cX

µ∂dX
ν X̃(µ X̃ν)︸ ︷︷ ︸

fluctuations

Tθθ̄
(visc.,η)

≡ 2√−g
δL(visc.,η)

wv

δhθθ̄
= −4η(T )

d−1
φ0

T
(∂cu

c)︸ ︷︷ ︸
classical

+ 2T η(T )

(
2

d−1
P ab g̃ab+iP

µν X̃µX̃ν

)
︸ ︷︷ ︸

fluctuations

Na
(visc.,η)

≡− 1√−g
δL(visc.,η)

wv

δFa
=−T η(T )

(
Pµν X̃µ X̃ν

)
βa︸ ︷︷ ︸

fluctuations

(6.19)

where we have used (6.18) to replace Jν 7→ −X̃ν . The classical parts give the dissipative

constitutive relations for standard hydrodynamics, with σab being the shear tensor (the

symmetrized, trace free derivative of the velocity field). The fluctuation terms propor-

tional to g̃ab are precisely as anticipated in [1] and can be written in terms of a Hubbard-

Stratonovich noise field as explained there.

Finally, the entropy production is

∆
(visc.,η)

≡ − 1√−g
δL(visc.,η)

wv

δB∆

= ∂aN
a
(visc.,η)

− 1

2
Tab

(visc.,η)
£βgab + e.o.m.

= η σab (£βgab − 2i g̃ab) + 2η P c(aP b)d∇aub X̃cX̃d − η (u.∇)
(
P abX̃aX̃b

)
,

(6.20)

where we set 〈φ0
T
〉 = −i as before. The classical part of the entropy production is

η σab£βgab = 2
T η σ

2, which manifestly satisfies the second law as long as η ≥ 0. On

top of this, our derivation predicts the fluctuation terms in ∆
(visc.,η)

. In order to estab-

lish positivity of η, we can again compute the imaginary part of the effective action as a

functional of the physical source and demand its non-negativity for the path integral to be

well-defined. We find:

Im
(
L(visc.,η)

wv

)
=
√−g 1

2
T η

[
1

2

(
P ac P bd + P bc P ad − 2

d− 1
P ab P cd

)
hcd

]2

, (6.21)

which is positive semi-definite provided that η ≥ 0.

6.3 Second order: some examples

Second order hydrodynamics is rich and we will not record all possible terms here. They

have been classified in [2] and have been obtained for conformal fluids from a superspace

effective action in [1]. They are, of course, also encompassed by the general discussion of
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all order hydrodynamics in section 7. Here we discuss some examples in the MMO limit

to illustrate the formalism. The dedicated reader will see from these examples that the

formalism extends to all derivative orders (i.e., Class L of [2] is reproduced entirely from

our superspace formalism).

To write an action for second order fluids, we will need derivatives of the velocity

superfield. First we have to decide how to take derivatives since we do not have a metric

compatible connection. We will conventionally treat β̊I as a vector and correspondingly ůI

is also defined with an upstairs index. We differentiate these objects and then lower indices

whenever necessary. The reader can convince themselves that a different convention would

not change any of the currents that we compute (in the MMO limit).

Derivatives of β̊I and ůI . The simplest set of derivatives to compute are those of the

thermal vector β̊I on the worldvolume. Given our gauge fixing condition, we simply find

D̊I β̊J = δbI δ
J
a ∂bβ

a . (6.22)

The velocity superfield is given in (5.11) and we can take derivatives directly to obtain the

acceleration superfield åI ≡ (−)J ůJD̊J ů
I :

åa = aa+θ̄θ

{
2
T̃

T
aa+ub∂b

(
T̃

T

)
ua+

(β.∂)T

T
(u.F)ua+C̃abcu

buc

}

åθ =− i
2
θ

{
−2∇(a

[
∂b)X

µ
(
X̃µ+(B∆,Xµ)β

)]
+hab+g̃ab+(B∆,gab)β−4Faβb

}
uaub

åθ̄ =
i

2
θ̄

{
−2∇(a

[
∂b)X

µ (Jµ−(B∆,Xµ)β)
]
−hab−g̃ab+(φ0

T
−B∆,gab)β+4(Fa+∂aφ

0
T
)βb

}
uaub

(6.23)

where aa ≡ ub∂bua as usual. Likewise the expansion follows from:

ϑ̊ ≡ D̊I ů
I = ϑ+ θ̄θ

[
T̃

T
ϑ+ ub∂b

(
T̃

T

)
+

(β.∂)T

T
(u.F) + (−)I C̃I Ic u

c

]
(6.24)

where we defined the ordinary space expansion as ϑ ≡ ∂aua and the trace (−)I C̃I Ic can be

found in (K.3).

From the exhaustive classification of hydrodynamic transport in [2] we know that the

Lagrangian Class L of transport (i.e., adiabatic transport which can already be captured

using a single-copy Lagrangian) is quite rich. At second order in derivatives, neutral parity-

even fluids exhibit 5 types of transport that falls in Class L. We will not discuss all of these,

but give some examples for illustration.

6.3.1 Acceleration and expansion squared

We start with a Lagrangian consisting of the square of acceleration, å2, and the square

of expansion, ϑ̊2 (in the classification of [2], these belong to the hydrostatic Class HS and

non-hydrostatic Class HS , respectively):

L(a,ϑ)

wv ≡ L
(a)

wv + L(ϑ)

wv =

ˆ
dθdθ̄

√−̊g
z̊

[
K̊a(T̊ ) g̊IJ å

J åI + K̊ϑ(T ) ϑ̊2
]

(6.25)
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Explicit evaluation of the superspace integral is straightforward and yields

L(a)

wv =
√−g

{[(
2Ka+

T

2
K′

a

)
a2uaub+

1

2
Ka a

2 gab+Ka a
aab
]

(hab+g̃ab)−Ka a
2 (β.F)

+
i

2
Ka

[
−2uaub∇(a

[
∂b)X

µ
(
X̃µ+(B∆,Xµ)β

)]
+uaub (hab+g̃ab+(B∆,gab)β)+4(β.F)

]
×
[
−2ucud∇(c

[
∂d)X

µ (Jµ−(B∆,Xµ)β)
]
−ucud

(
hcd+g̃cd−(φ0

T
−B∆,gcd)β

)
−4βc(Fc+∂cφ0

T
)
]

+Kau
aub ad

[
2∇(a(hb)d+g̃b)d)+2(F(a,gb)d)β−∇d(hab+g̃ab)−(Fd,gab)β

]}
L(ϑ)

wv =
√−g

{[
1

2
(Kϑ+TK ′

ϑ)ϑ2uaub+
1

2
Kϑϑ

2P ab+2Kϑϑa
(aub)

]
(hab+g̃ab)

+Kϑϑ(u.∇)(hab+g̃ab)u
aub+Kϑϑ(2(β.∂)T−ϑ) (β.F)−2iKϑϑ(u.∂)hθθ̄

+Kϑϑu
a gbd

[
2∇(a(hb)d+g̃b)d)+2(F(a,gb)d)β−∇d(hab+g̃ab)−(Fd,gab)β

]}
(6.26)

Note that the presence of fluctuation terms is only superficial: expanding out g̃ab as in (5.4)

shows that all dependence on X̃µ actually cancels. We can then read off the energy-

momentum tensor and the free energy current:

Tab
(a,ϑ)
≡ 2√−g

δL(a,ϑ)

wv

δhab

=
(
4Ka + T K′a

)
a2 uaub +Ka a

2 gab + 2Ka a
aab + 2∇c

[
Ka

(
uaubac − 2ucu(aab)

)]
+Kϑ ϑ

2 gab +
(
TK ′ϑ ϑ

2 − 2K ′ϑ ϑ (u.∂)T − 2Kϑ(u.∂)ϑ
)
uaub − 2∇c

(
Kϑ ϑu

c gab
)

Na
(a,ϑ)
≡ − 1√−g

δL(a,ϑ)

wv

δFa
= Ka a

2 βa +Ka

(
aa uc ud − 2ua u(c ad)

)
£βgcd −Kϑ ϑ

2 βa , (6.27)

where we have set φ0
T

= −i. The above currents then precisely match the ones derived in

appendix F of [2], which provides a non-trivial consistency check on our formalism. Note

that there are no fluctuation terms in the above currents (as expected in Class L). Finally,

we find

Tθθ̄
(a,ϑ)
≡ 2√−g

δL(a,ϑ)

wv

δhθθ̄
= 4 i∇a(Kϑ ϑu

a) ,

∆
(a,ϑ)
≡ − 1√−g

δL(a,ϑ)

wv

δB∆
= e.o.m.

(6.28)

where “e.o.m.” denotes a term proportional to the equations of motion.

6.3.2 Shear squared

Let us now consider another, slightly more complicated, Class L term: the square of the

shear tensor,

L(σ2)

wv =

ˆ
dθdθ̄

√−̊g
z̊

[
K̊σ(T̊ ) σ̊2

]
(6.29)
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where

σ̊2 ≡ (−)I(1+K+J+L)+K(1+L)+J(1+L)+L g̊IK g̊JL σ̊IJ σ̊KL

σ̊IJ ≡
1

2
(−)M(1+J+N)+N P̊I

M P̊J
N

(
D̊M ůN + (−)MND̊N ůM −

2

d− 1
g̊MN ϑ̊

)
.

(6.30)

That is, σ̊IJ is the superspace version of the usual (symmetric, transverse, traceless) shear

tensor. The superspace expansion of σ̊IJ is computed in appendix K (see eq. (K.12)).

Transport associated with an ordinary space Lagrangian of the form σ2 was studied in [2].

The anti-symmetric combination Ω̊IJ = D̊I ůJ − (−)IJD̊J ůI (which is closely related to the

vorticity tensor) could be treated similarly as in our analysis below.

For σ̊2 we find after a straightforward calculation (using (K.12)):

σ̊2 = g̊acg̊bd σ̊ab σ̊cd − 4̊gaθg̊bd σ̊ab σ̊θd − 4̊gaθ̄g̊bd σ̊ab σ̊θ̄d − 4̊gθθ̄g̊bd σ̊θb σ̊θ̄d

− 4 g̊θag̊θ̄b σ̊θθ̄ σ̊ab − 2 g̊θθ̄g̊θ̄θ σ̊θθ̄ σ̊θ̄θ

= σ2 − 2

(d− 1)2
ϑ2 + θ̄θ

{
− 2(hab + g̃ab)σ

ac σbc + 2 (∂θ∂θ̄σ̊ab|)σab

+ 4i
(
Ja σa

c − gcd(∂θ̄σ̊θd|)
)(

X̃b σbc − (∂θσ̊θ̄c|)
)

− 4i

d− 1

[
(∂θ∂θ̄σ̊θθ̄|) + X̃aJb σab +

1

d− 1
ϑhθθ̄

]
ϑ

}
.

(6.31)

The second line of the r.h.s. does not contribute to the currents. The other two lines yield:

Tab

(σ2)
=Kσ σ

2 gab+T K ′σ σ
2uaub−4Kσ σ

acσbc−4Kσ
ϑ

d−1
σab+4Kσ∇cu(aσb)c

+4Kσ acσ
c(aub)+2Kσ σ

2uaub−2∇c
(
Kσ u

cσab
)

− 4

(d−1)2

[(
Kσ+

T

2
K ′σ

)
ϑ2uaub+

1

2
Kσ ϑ

2 gab−∇c
(
Kσ ϑP

abuc
)]

,

Na

(σ2)
=−Kσ σ

2βa+
2

(d−1)2
Kσ ϑ

2βa ,

Tθθ̄

(σ2)
=

4 i(d+1)

(d−1)2
∇a(Kσ ϑu

a) .

(6.32)

To intuit these constitutive relations, first note that there are no fluctuation terms involving

X̃µ. This is consistent with the expectation that Class L transport is adiabatic and does not

involve fluctuations. For a more detailed understanding, we can decompose the relations

as follows:

• The first two lines of Tab
(σ2)

, and the first term in Na
(σ2)

correspond to the constitutive

relations associated with the shear-tensor-squared Class L transport, worked out in

detail in appendix F of [2].31

31Note a typo in eq. (F.9) of [2]: the first term in the third line has the wrong sign.
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• The last line of Tab
(σ2)

together with the second term in Na
(σ2)

correspond to Class L

transport of type ϑ2. Indeed, one can easily check that these terms take the same

form as {Tab
(ϑ2)

,Na
(ϑ2)
} in (6.27) up to normalization. This is true up to a single term

in the energy-momentum tensor proportional to u(aab), which is, however, adiabatic

by itself.

In conclusion, the Lagrangian (6.29) describes a particular type of second order Class L

transport in a consistent fashion. In order to match to the classification of second order

Class L transport in [2], one has to form some linear combinations of the constitutive

relations worked out there. We speculate that this is because superspace prefers a slightly

different natural basis of constitutive relations than does the Landau-Ginzburg construction

of [2]. It would be interesting to work this out in detail by conducting an exhaustive analysis

of second order Class L transport using the superspace formalism.

7 The Eightfold Way from superspace

Having understood the formalism behind the superspace construction of hydrodynamic

effective actions, we now turn to the question of completeness, which inspired us to un-

dertake this analysis. This will provide the proof for the theorem stated at the beginning

of section 4. As described earlier, in [2, 23] we examined the axioms of hydrodynamics

as the low energy, near-equilibrium dynamics of conserved currents, subject to the local

form of the second law being upheld. We argued there that a complete set of solutions to

these axioms results in 8 distinct classes of allowed hydrodynamic transport, in addition

to a class of forbidden terms whose presence would be deleterious to the second law. This

classification provided an explicit construction of all consistent hydrodynamic constitutive

relations at any order in derivatives. In this section we outline how to reproduce this

structure from effective actions in superspace.

Our classification scheme, dubbed the Eightfold Way, for obvious reasons, can be sum-

marized as follows:

• Class A: anomalous transport originating from both flavor and Lorentz anomalies in

conserved currents.

• Class B: Berry-like transport such as Hall viscosity in parity odd fluids, shear-vorticity

transport in parity-even systems, Tµν ∼ λ2(T )σρ(µω
ν)
ρ , etc.

• Class C: identically conserved entropy with no physical transport, as occurring in

systems with macroscopic ground state degeneracy.

• Class D: dissipative (entropy producing) transport, including familiar quantities such

as shear and bulk viscosities, conductivities, etc.

• Class HS : hydrostatic scalar transport which can be inferred from thermal equilib-

rium on curved spacetime with a global timelike Killing vector. It is described by

the simplest of effective actions, viz., an equilibrium partition function. Examples
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include ideal fluids, curvature couplings Tµν ∼ κ(T )Rµσνρuσ uρ, vorticity-squared

transport Tµν ∼ λ3(T )ωρ(µω
ν)
ρ , acceleration squared considered in section 6.3, etc.

• Class HS : hydrodynamic (non-dissipative) scalar transport with a free energy current

that is generated from a scalar functional. These include terms that vanish in equi-

librium but can nevertheless be inferred from a Landau-Ginzburg effective action.

An example is shear-squared transport Tµν ∼ λ1(T )σρ(µσ
ν)
ρ which we considered in

section 6.3, cf., (6.29).

• Class HV : hydrostatic transport, with the novelty that the free energy current is

transverse to the fluid flow. This class of terms arises in the context of anomalous

fluids.

• Class HV : hydrodynamic transport involving a transverse free energy current. This is

perhaps the least well-understood class with the simplest examples involving charged

fluids at second order in derivative expansion.

In addition we also defined a Class HF of hydrostatic forbidden terms, which follow

from the equilibrium partition function analysis of [39, 40]; these terms are forbidden from

appearing in any physical fluid as they violate the second law. In practice, since one tends

to present fluid dynamical constitutive relations in a particular fluid frame, one usually ends

up interpreting these HF terms as relations between transport coefficients. See section 14

of [2] for a concise summary of the classification and explicit examples.

It is important to note that of the 8 classes described above, only Class D terms lead

to entropy production. The remaining 7 classes are adiabatic and should be viewed as

non-dissipative transport. They were also argued to be captured by an effective action,

dubbed Class LT action, in [2, 23], which as we shall see bears a large degree of structural

similarity to the superspace construction described here.

In what follows, we will describe in the superspace formalism the effective action for

6 of these 8 classes, eschewing for the present, a discussion of Classes A and HV which

are associated with anomalies and require additional formalism that would obscure the

presentation but should be straightforward to implement (see section 8). This will prove the

theorem of section 4 upto anomalous transport, which we leave for a future investigation.

Elements of the following discussion will be an elaboration of concepts explained in [1].

More specifically, for Classes HS , HS combined into Class L the effective action is given

in (7.1), the Class D Lagrangian is given in (7.5), while he effective actions of the other

non-anomalous Classes B, C, and HV are given in (7.15), (7.20), and (7.24), respectively.

To the best of our understanding this demonstrates that all of allowed non-anomalous

hydrodynamic transport can be embedded into our formalism.

7.1 Class L (= Class HS ∪ Class HS)

The scalar classes HS and HS are ones where the free energy is aligned with the fluid

velocity. Moreover, the free energy can be generated from a single scalar Landau-Ginzburg

functional (a generalized pressure term). It is therefore simplest to discuss them at the

same time.
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As in [2] we define therefore Class L = Class HS ∪ Class HS and seek a scalar generating

functional for all the currents. This case is easy to understand without the need for

superspace; all we needed was a scalar Landau-Ginzburg function of the hydrodynamic

fields (see §6 and §7 of [2]). For neutral fluids under discussion we would construct a

Lagrangian functional which depends on βa and gab. The upgrade to superspace simply

lifts this functional to a superfield.

For Class L, we consider a general superspace Lagrangian as in (4.1) without usage of

g̊
(ψ)
IJ and g̊

(ψ)
IJ :

L(L)
wv =

ˆ
dθ dθ̄

√−̊g
z̊

L̊(L) [̊gIJ , β̊
I , D̊J ] . (7.1)

The superspace integral can be performed by variation with respect to the various fields,

and subsequent application of appropriate (covariant) derivatives. Keeping track for sim-

plicity only of the variation with respect to the sources {hab, hθθ̄,Fa,B∆} that we turned

on in the MMO limit, we find in general

L(L)
wv = ∂θ∂θ̄

(√−̊g
z̊

L̊(L) [̊gIJ , β̊
I , D̊I ]

) ∣∣∣∣
≡ √−g

{
1

2
Tab

(L)
(hab + (B∆, gab)β)−Na

(L)
(Fa − ∂aB∆) +

1

2
Tθθ̄

(L)
hθθ̄

}
+ . . .

=
√−g

{
1

2
Tab

(L)
hab −Na

(L)
Fa +

1

2
Tθθ̄

(L)
hθθ̄ + B∆ ∆

}
+ . . .

(7.2)

where the ellipses “. . .” denote ghost bilinears and terms at higher orders in sources, and

we defined

Tab
(L)
≡ 2 z̊√−̊g

δ

δ̊gab

{√−̊g L̊(L)

z̊

}∣∣∣∣ =
2√−g

δL(L)
wv

δhab
,

Tθθ̄
(L)
≡ z̊√−̊g

δ

δ̊gθθ̄

{√−̊g L̊(L)

z̊

}∣∣∣∣ =
2√−g

δL(L)
wv

δhθθ̄
,

Na
(L)
≡ − z̊√−̊g

δ

δÅa

{√−̊g L̊(L)

z̊

}∣∣∣∣ = − 1√−g
δL(L)

wv

δFa
.

(7.3)

In Class L, the Grassmann-odd components of the currents vanish. The adiabaticity equa-

tion in this class is therefore simply the ordinary-space adiabaticity equation, up to ghost

bilinears as usual:

∇a Na
(L)

=
1

2
Tab

(L)
£βgab + . . . . (7.4)

Therefore, ∆ = 0 as expected. All of this is consistent with the basic intuition that the

Class L terms are captured by an ordinary Landau-Ginzburg sigma model for the dynamical

part of the hydrodynamic pion Xµ.

7.2 Class D

This is the class of hydrodynamic constitutive relations containing the physical dissipative

transport. We have already seen in section 4 how the origin of entropy production is en-

coded in a (differential operator valued) super-tensor with certain symmetries. We will now
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add a few more details to this abstract discussion; the explicit examples of bulk and shear

viscosities in section 6.2 should provide the reader with intuition for these manipulations.

The Class D action is parameterized by a rank 4 super-tensor η̊IJKL:

L(D)
wv =

ˆ
dθ dθ̄

√−̊g
z̊

L̊(D)

with L̊(D) = − i
4

(−)(I+J)(K+L)+IJ+KL+K+L η̊((IJ)|(KL))
(D)

g̊
(ψ)
IJ g̊

(ψ)
KL .

(7.5)

where we remind the reader of the definitions g̊
(ψ)
IJ ≡ D̊θg̊IJ and g̊

(ψ)
IJ ≡ D̊θ̄g̊IJ . The

dissipation tensor has the following symmetry properties:

η̊((IJ)|(KL))
(D)

= (−)IJ η̊((JI)|(KL))
(D)

= (−)KL η̊((IJ)|(LK))
(D)

η̊((IJ)|(KL))
(D)

= (−)(I+J)(K+L) η̊((KL)|(IJ))
(D)

.
(7.6)

The first line is obvious since the super-tensor η̊IJKL
(D)

must have the correct graded sym-

metric index pairs to be contracted against the derivatives of the metric tensor. The second

line is what distinguishes Class D from Class B. The latter will be discussed in the next

subsection and will have the same structure but with a graded anti-symmetric η tensor.

Furthermore, the dissipative tensor satisfies an Onsager relation under CPT transfor-

mations:

η̊((IJ)|(KL))
(D)

= (−)(I+J)(K+L) [η̊((KL)|(IJ))
(D)

]CPT . (7.7)

To understand this requirement, let us consider the CPT transformation of the Lagrangian

density (7.5):

L̊(D)
CPT7−→ i

4
(−)(I+J)(K+L)+IJ+KL+K+L [η̊((IJ)|(KL))

(D)
]CPT g̊

(ψ)
IJ g̊

(ψ)
KL

=
i

4
(−)(I+J)(K+L)+IJ+KL+K+L+(I+J+1)(K+L+1) [η̊((IJ)|(KL))

(D)
]CPT g̊

(ψ)
KL g̊

(ψ)
IJ

= − i
4

(−)IJ+KL+K+L [η̊((KL)|(IJ))
(D)

]CPT g̊
(ψ)
IJ g̊

(ψ)
KL

(7.8)

from which we see (7.6) naturally follows such that L̊(D)
wv is CPT invariant. Note that

CPT invariance of L̊(D)
wv is consistent with the Lorentzian path integral: in the action iSwv

introduced in (4.1), which appears in the functional integral, the anti-linear action of CPT

(sending i 7→ −i) cancels the sign coming from the R-parity action on the super-integration

measure (sending dθ dθ̄ 7→ −dθ dθ̄).
We have already seen some examples of η̊IJKL

(D)
built using the projector P̊ IJ in sec-

tion 6.2. To second order in the gradient expansion, it suffices to consider super-tensors

parameterized by two non-negative definite scalar functions and an arbitrary (i.e., uncon-

strained) super-tensor involving a derivative operator [2]:

η̊IJKL
(D)

= ζ̊(T̊ ) T̊ P̊ IJ P̊KL + 2 η̊(T̊ ) T̊ (−)K(I+J) P̊K〈I P̊ J〉L

+
1

2

(
N̊ (IJ)(KL)[D̊] + (−)(I+J)(K+L) N̊ (KL)(IJ)[D̊]

) (7.9)

where the symmetrized traceless projection in superspace is defined in (6.16).
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There are a couple of important features to note about the effective action (7.5). Firstly

there is the explicit i in front of the Lagrangian, which signals dissipative contributions.

This is required to ensure that the full action i S
(D)
wv is CPT invariant. It is instructive

to compare this with the Martin-Siggia-Rose construction [12] for the Langevin dynamics

of a Brownian particle. A discussion in the framework of thermal equivariance can be

found in [6] (see also [3]). Secondly, this is the sector that leads to non-trivial entropy

production. As we have argued in section 4 all we need for the second law to hold is that

η(ab)(cd)
(D)

≡ η̊(ab)(cd)
(D)

| be a non-negative definite quadratic form, when interpreted as a map

from Sym2 7→ Sym2. This ensures positivity of entropy production (see (7.13) below). We

will demonstrate positivity below.

Let us analyze the dissipative Lagrangian more explicitly by doing the superspace

integral. For simplicity, we assume that η̊(IJ)(KL)
(D)

is simply a super-tensor (as opposed to

a derivative operator valued super-tensor). We can then compute directly from (7.5) the

action in ordinary space by taking super-derivatives. The result was already given in (6.8),

which we reproduce here:

L(D)
wv =− i

4

√−g
{

4

(
∂θ∂θ̄η̊

((θ̄c)|(θd))
(D)

+

[
1

2
gab(hab+g̃ab)−Faβa

]
η̊(θ̄c)(θd)

(D)

)
g̊

(ψ)

θ̄c
g̊

(ψ)
θd

+2∂θη̊
((ab)|(θd))
(D)

∂θ̄̊g
(ψ)
ab g̊

(ψ)
θd −4∂θη̊

((θθ̄)|(θd))
(D)

∂θ̄̊g
(ψ)

θθ̄
g̊

(ψ)
θd

+2∂θ̄η̊
((θ̄b)|(cd))
(D)

g̊
(ψ)

θ̄b
∂θ̊g

(ψ)
cd −4∂θ̄η̊

((θ̄b)|(θθ̄))
(D)

g̊
(ψ)

θ̄b
∂θ̊g

(ψ)

θθ̄

+
[
−2 η̊((θθ̄)|(cd))

(D)

(
∂θ̄̊g

(ψ)

θθ̄
∂θ̊g

(ψ)
cd +∂θ̊g

(ψ)

θθ̄
∂θ̄̊g

(ψ)
cd

)
+4 η̊((θ̄b)|(θd))

(D)

(
∂θ∂θ̄̊g

(ψ)

θ̄b
g̊

(ψ)
θd +g̊

(ψ)

θ̄b
∂θ∂θ̄̊g

(ψ)
θd

)
+η̊((ab)|(cd))

(D)
∂θ̄̊g

(ψ)
ab ∂θ̊g

(ψ)
cd +4 η̊(θθ̄)(θθ̄)

(D)
∂θ̄̊g

(ψ)

θθ̄
∂θ̊g

(ψ)

θθ̄

]}∣∣∣∣+ghosts

(7.10)

We can now isolate the terms which describe classical hydrodynamics and fluctuations.

The classical parts of the currents only get a contribution from the first term in the last

line of (7.10):

Tab
(D,class.)

= − i φ
0
T

2
η((ab)|(cd))

(D)
£β gcd ,

Na
(D,class.)

= 0 .

(7.11)

These classical terms (not involving X̃) are consistent with the general analysis of Class D

transport in classical hydrodynamics. This structure was already anticipated in [1].32

The fluctuation currents can a-priori get contributions from each term in (7.10) which

involves a source. While we will not write this in generality (the answer is obvious

from (7.10)), we note that it can be straightforwardly extracted for any given choice of

η̊IJKL. The resulting fluctuation currents provide a prediction by our formalism.

32Note in particular that a vanishing current Na
(D,class.)

is consistent with our assumption that η̊IJKL is

a tensor (not a tensor valued derivative operator).
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The second law. Setting 〈i φ0
T
〉 = 1, we can easily verify the standard adiabaticity

equation from (7.11):

∇aNa
(D,class.)

− 1

2
Tab

(D,class.)
£βgab = ∆ , (7.12)

where the total entropy production is

∆ ≡ 1

4
η((ab)|(cd))

(D)
£βgab £βgcd . (7.13)

Let us finally demonstrate how the second law follows, i.e., ∆ ≥ 0. From (7.13) it is already

clear that ∆ is a quadratic form. Therefore, all that needs to be shown is that η((ab)|(cd))
(D)

is a semi-positive definite map from symmetric two-tensors to symmetric two-tensors. We

will now argue that this follows simply from convergence of the path integral.

In the path integral the effective action appears in the form eiSwv,diss. . Consequently,

a well defined path integral requires Im(Swv,diss.) ≥ 0. From (7.10) we can extract the

imaginary part of the action. For this purpose, we turn off the fluctuations and set the

auxiliary sources {hθθ̄,FI ,B∆} to zero. This leaves us with an effective action in terms of

the physical source hab whose imaginary part is given by

Im(Swv,diss.[hab]) =
1

4

ˆ
ddσ
√−g η((ab)|(cd))

(D)
hab hcd (7.14)

which is a quadratic form as desired and originates from the last two lines of (7.10). Positiv-

ity of the above expression then requires that η((ab)|(cd))
(D)

is a semi-positive definite map on

symmetric two-tensors. Note that the derivative expansion implies that once we have estab-

lished the general form of entropy production (7.13) with (7.9), it is sufficient to constrain

the leading viscous coefficients (η, ζ ≥ 0). This is a compact version of Bhattacharyya’s

theorem [44, 45].

Let us note that demanding Im(Swv,diss.) ≥ 0 within the hydrodynamic limit is tan-

tamount to asking for the path integral to converge within the hydrodynamic expansion.

A-priori one could have allowed for the possibility that Im(Swv,diss.) has any sign within the

hydrodynamic regime, but receives non-hydrodynamic corrections that render the full path

integral convergent. If this were to be the case, we would find we are missing important

information within the effective field theory, and cannot use the effective actions to derive

any useful statements per se. Our analysis assumes that the hydrodynamic effective ac-

tions are complete in and of themselves, and do not require any additional non-perturbative

(from the viewpoint of the gradient expansion) information to complete them. On a related

note, one would also argue that these effective actions should not lead to non-perturbative

constraints that violate the rules of the gradient expansion.

To summarize our discussion, we have provided a complete derivation of the two state-

ments that constitute the second law in hydrodynamics: (i) the most general form of the

dissipative constitutive relations, and (ii) the positivity of total entropy production, ∆ ≥ 0.

We thus have an effective action description of the entire class of dissipative transport un-

covered in [2, 23].
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7.3 Class B

The Class B action is also parameterized by a rank 4 super-tensor η̊[(IJ)|(KL)]
(B)

which is

graded symmetric in the first two and second two pairs of indices, but is graded anti-

symmetric under swapping the two pairs. This is a straightforward generalization of the

discussion in [2]. However, now we have to ensure that the Lagrangian density is CPT even,

which means unlike in the case of the Class D terms we are not going to include explicit

factors of i. The only other choice we have is to use the ghost number zero field strength

component F̊θ̄θ which leads to the following action for Class B:

L(B)
wv =

ˆ
dθ dθ̄

√−̊g
z̊

L̊(B)

with L̊(B) =
1

4
(−)(I+J)(K+L)+IJ+KL+K+L F̊θ̄θ η̊

[(IJ)|(KL)]
(B)

g̊
(ψ)
IJ g̊

(ψ)
KL .

(7.15)

The Class B tensor has the following symmetry properties:

η̊[(IJ)|(KL)]
(B)

= (−)IJ η̊[(JI)|(KL)]
(B)

= (−)KL η̊[(IJ)|(LK)]
(B)

η̊[(IJ)|(KL)]
(B)

= −(−)(I+J)(K+L) η̊[(KL)|(IJ)]
(B)

.
(7.16)

where the second line distinguishes this type of transport from Class D. CPT transforma-

tions act as

η̊[(IJ)|(KL)]
(B)

= (−)(I+J)(K+L) [η̊[(KL)|(IJ)]
(B)

]CPT . (7.17)

Note that despite this CPT transformation, the Lagrangian (7.15) gives a CPT invariant

action due to the non-minimal coupling to F̊θ̄θ (which is by itself CPT invariant, but will

later on acquire a CPT breaking expectation value 〈F̊θ̄θ|〉 = 〈φ0
T
〉 = −i).

An abstract analysis completely analogous to the one we did for Class D in the previous

subsection can be performed. In particular, an equation of the same form as (7.10) holds

and leads to the following classical currents:

Tab
(B,class.)

≡ −(i φ0
T
)2

2
η[(ab)|(cd)]

(B)
£β gcd ,

Na
(B,class.)

≡ 0 .

(7.18)

The adiabaticity equation is satisfied for the classical currents with vanishing entropy

production:

∇aNa
(B,class.)

− 1

2
Tab

(B,class.)
£βgab = ∆ = 0 , (7.19)

due to the antisymmetry η[(ab)|(cd)]
(B)

= −η[(cd)|(ab)]
(B)

.
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7.4 Class HV

We call as Class HV the non-dissipative transport33 which is described by the following

Lagrangian:

L(HV )
wv =

ˆ
dθ dθ̄

√−̊g
z̊

L̊(HV )

with L̊(HV ) =
i

4
(−)M(I+J+K+L)+I(J+K+L)+J(K+L)+K+L+KL C̊M(IJ)(KL)

×
[ (

D̊M g̊
(ψ)
IJ + (F̊θM , g̊IJ)β

)
g̊

(ψ)
KL − g̊

(ψ)
IJ

(
D̊M g̊

(ψ)
KL + (F̊θ̄M , g̊KL)β

) ]
(7.20)

with the symmetry C̊M(IJ)(KL) = (−)(I+J)(K+L) C̊M(KL)(IJ). Note that the relative minus

sign in the bracket of (7.20) is essential for distinguishing this action from a Class D

action with derivative-valued dissipative tensor η. Note further that we have written

a combination of, on the one hand, terms involving derivatives of {̊g(ψ), g̊(ψ)}, and, on

the other hand, terms involving U(1)T field strengths. Each set of terms would also be

individually allowed, but lead to a somewhat unconventional structure of the currents. In

order to match with [2] we choose the parameterization (7.20).34

It is tedious (though easy) to keep track of even the fluctuation contributions in this

expression. For illustration, we only write the classical terms. These take the form

L(HV )
wv =

√−g
{

1

2
Tab

(HV ,class.)
hab −Fa Na

(HV ,class.)
+ fluctuations + ghosts

}
(7.21)

with

Tab

(HV ,class.)
=

1

2
(iφ0

T
)
[
∇fCf(ab)(cd) £βgcd+2Cf(ab)(cd)∇f£βgcd

]
+
i

2
Cf(ab)(cd) (∂fφ

0
T
)£βgab ,

Nf

(HV ,class.)
=

1

4
(iφ0

T
)Cf(ab)(cd) £βgab£βgcd . (7.22)

These currents precisely reproduce the discussion of [2].35 We can again explicitly verify

that the super-adiabaticity equation is upheld:

∇a Na
(HV ,class.)

=
1

2
Tab

(HV ,class.)
£βgab . (7.23)

Note that this equation holds even before setting 〈φ0
T
〉 = −i. This is, of course, required

since super-adiabaticity is a statement of U(1)T invariance of the theory independent of

spontaneous symmetry breaking.

33The reader should keep in mind that even the classical terms in Class HV transport are still very

much unexplored. The simplest known examples involve charged fluids at second order in the derivative

expansion [2]. We include a discussion of the expected structures here merely for completeness.
34For instance, dropping the terms in involving field strengths would still give us Class HV energy-

momentum tensors, but would shift the free energy entirely into ghost components of the free energy

super-current. This would also be a consistent presentation of this class of transport in superspace.
35As usual, after setting 〈φ0

T
〉 = −i.
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7.5 Class C

Let us finish with the most trivial class of transport, Class C, where there is no energy-

momentum transport at all; only the free energy current is non-zero (but identically con-

served). The action describing such transport is just:

L(C)
wv = −

ˆ
dθ dθ̄

√−̊g
z̊

ÅI N̊I
(C)

for any D̊IN̊
I
(C)

= 0 . (7.24)

This exact conservation guarantees that the action (7.24) is invariant under the symmetries

(in particular under U(1)T).

Evaluating the superspace integral, we find

L(C)
wv = ∂θ∂θ̄

{
−
√−̊g

z̊
ÅI N̊I

(C)

} ∣∣∣∣
=
√−g

{
−
(
∂θ∂θ̄Åa

)
Na

(C)
−
(
∂θ̄Åθ

)
∂θN̊

θ
(C)

+
(
∂θÅθ̄

)
∂θ̄N̊

θ̄
(C)

} ∣∣∣+ . . .

=
√−g

{
−Fa Na

(C)
− (φ0

T
− B∆) ∂θN

θ
(C)

+ B∆ ∂θ̄N
θ̄
(C)

}
+ . . .

(7.25)

where we are again employing the MMO limit and dropping ghost bilinears. The resulting

adiabatic constitutive relations simply yield an identically conserved Noether current and

a vanishing energy-momentum tensor.

8 Discussion

In this paper, we have endeavored to provide a comprehensive (and largely self-contained)

discussion of hydrodynamic effective field theories. The primary aim was to fill in some of

the details in our earlier discussion [1], and work in a fully superspace covariant formalism.

We have shown how to write down the effective action eq. (4.1) constrained by thermal

equivariance which captures not only the classical hydrodynamic transport, but also the

fluctuations about the hydrodynamic state.

Explicit computations backing these statements have been carried out in part in a par-

ticular limit, the MMO limit inspired from [54], where the emergent thermal U(1)T gauge

field is treated as a background gauge field. In this limit, we demonstrated how to construct

actions up to second order in the gradient expansion for neutral fluids. Furthermore, we

have extracted predictions for the hydrodynamic fluctuations that go hand-in-hand with

dissipative transport, for the shear and bulk viscosity. Clearly, it would be interesting to

verify these statements from a direct computation of the associated correlation functions

in a long-wavelength limit.

One of the important highlights of the construction relates to results that can be ob-

tained abstractly at a structural level. We have argued that entropy production can be

viewed as arising from an inflow mechanism operating in superspace. To appreciate this

statement better, we remind the reader that in the standard picture of classical hydrody-

namics, a local form of the second law is input as an axiom, with its origins left unexplained.

While one can readily understand that the dynamics in the near-equilibrium limit should

refer to conserved charges, the presence of an entropy current, or its Legendre transform,

the free energy current, is quite mysterious.
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The origins of entropy and how it gets produced in the low energy effective field theory

is a challenge from the microscopic perspective. In part, this has to do with the observation

that there is no obvious analog of entropy in the fine-grained microscopic sense, but such

a quantity has to emerge in the infra-red. This is well illustrated by the fluid/gravity

correspondence [14], where the conserved currents are well-defined (composite) operators

in the boundary field theory, but the entropy current is obtained from the pullback of the

area form on the black hole event horizon onto the boundary [74]. Despite the locality

inherent in the fluid/gravity map (see [15] for a review). There is still is a need to explain

the rationale behind the existence of a local entropy current. In [3] we argued that the

thermal equivariance provides us with a mechanism for understanding this emergence.

There was however an important question that was not satisfactorily answered at

that point: how could it be that the physical system leads to entropy production in the

macroscopic limit, and at the same time the entropy current be the conserved Noether

current of a gauge symmetry? The earlier arguments that this had to work had to do with

indirect arguments relating to the Jarzynski relation, etc. However, the cleanest answer to

this question is elegantly captured by the entropy inflow mechanism that we have described

here. As argued the thermal equivariance symmetry leads to a conservation law, the

super-adiabaticity equation which operates at the level of full superspace. Decomposing

this equation into the physical spacetime directions and the super-directions leads to a

presentation where one can explicitly see the origins of entropy production — it is sourced

in superspace.

We have referred to this picture as an inflow mechanism for entropy in analogy with

the manner inflow operates in the context of anomalies [75]. Starting with an anoma-

lous theory, one constructs an anomaly-free theory, by viewing the physical theory as the

boundary dynamics of a topological field theory (eg., the chiral edge states at the bound-

ary of a quantum Hall insulator). In the hydrodynamic effective field theories, the upgrade

to superspace with thermal equivariance, introduces a topological sector and associated

Grassmann-odd partners of the entropy current, which end up in effect sourcing physical

entropy production, when a field strength background is turned on. This suggests that

the Class D terms are analogous to Wess-Zumino-Witten terms in superspace. It would be

interesting to try to make this analogy more precise. Entropy inflow serves as an important

consistency check of our formalism. Importantly, it guarantees that there is no in-principle

obstacle to gauging the thermal U(1)T symmetry, which was one of our primary hypotheses.

Somewhat curiously there is no corresponding inflow of energy-momentum from super-

space at the classical level. This is of course necessary for the formalism to reproduce the

correct dynamics. We find that the non-fluctuation contributions cancel amongst them-

selves when we sum over all the Grassmann-odd directions in the equations of motion.

These components of the energy-momentum tensor however do end up contributing fluc-

tuation terms. This supports the hypothesis that the thermal U(1)T dynamics controls

primarily entropy production and associated fluctuations. It would be good to understand

this at an abstract level more generally.

There are several questions that we have not addressed in our formalism so far. One

obvious extension is to consider the presence of other conserved charges. For flavour sym-
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metry with source Aµ in the physical spacetime, the Goldstone modes include a flavour

group element c(σ), which maps points on the flavour bundle of the worldvolume onto

the physical target flavour bundle. The chemical potential is defined by pushing-forward

the worldvolume thermal twist Λβ. Incorporating the desired super-transformations one

upgrades c(σ) to a superfield c̊(z). This gives a worldvolume pull-back flavour gauge field

ÅI defined by the map {X̊µ, c̊} which may further be deformed by unaligning sources. The

crucial item to note is the U(1)T transformation on the flavour superfield, which is given

by (Λ̊, c̊)β = Λ̊ c̊
(

Λ̊β + β̊I ÅI

)
. Coupled with target space flavour symmetry acting on c̊,

we should be able to include this into our effective actions along the lines of the sigma

models constructed in [2].

The extension to flavour charges is necessary to address two of the classes of transport

that we have not tackled in our discussion: those relating to anomalies (Classes A and

HV ). We note here that the construction of anomalous effective actions provided us with

the first hints of the existence of the doubling of degrees of freedom [36]. A shadow of the

U(1)T symmetry was also seen in the construction of hydrostatic partition functions for

mixed anomalies in [43]. The close similarity between the constructions of the topological

sigma models for hydrodynamics, and the empirical analysis of Class LT Lagrangians in [2]

leads us to believe that the extension to recover the two classes should be straightforward;

it would however be useful to undertake the exercise explicitly.

The other missing element in our discussion is the precise nature of the gauge dynamics

for the U(1)T gauge field. We have given arguments in favour of this being described by

a topological BF system, which would be interesting to verify in detail. From a physical

perspective, the dynamical nature of the U(1)T gauge field allows us to probe phases of

the theory where the CPT symmetry is not spontaneously broken. Understanding the

dynamics is of course necessary to also argue that the physical hydrodynamic system with

dissipation is picked out by the vacuum that dynamically leads to the thermal gauge field

strength F̊θθ̄| acquiring a non-trivial expectation value, 〈i F̊θθ̄|〉 = 1.

As mentioned in the introduction, the formalism we have described in this work raises

many interesting and intriguing questions in holography and black hole physics. What is

the AdS counterpart of the emergent gauge super fields in CFT fluid dynamics? What

would be the gravity description of the fact that CPT is spontaneously broken by the ex-

pectation value of a super field strength which then in turn drives the entropy inflow? It

is tantalizing to speculate that the super field strength is in fact the order parameter char-

acterizing the presence of black hole horizons (with the opposite expectation saddle points

describing the white hole saddle points of gravity Schwinger-Keldysh path integral). It

would then follow that the superspace directions are the counterpart of black-hole interior

and the entropy inflow is the in-falling of lowest quasinormal mode. It would be nice to

make these ideas precise.

As mentioned in footnote 17 we have implicitly conflated the scale at which the U(1)T
symmetry emerges in the low energy theory with the scale at which CPT symmetry is

broken and dissipation ensues. It is however, more reasonable to anticipate that the U(1)T
symmetry arises at a higher energy scale. Once it does the notion of a local entropy current

becomes sensible (even if it is conserved). Dissipation then will arise at a lower scale
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and at this point we have entropy production and CPT symmetry breaking. The relative

separation between the scales is most likely given by the leading order dissipative coefficients

like viscosity (made suitably dimensionless, say η/s) This picture is suggested by the fact

that the adiabaticity equation with ∆ = 0 already holds in equilibrium, while dissipation

is a higher order effect involving superspace inflow. Further support also can be gleaned

from the fluid/gravity correspondence [15] — the U(1)T symmetry is naturally associated

with the emergence of a horizon, while CPT symmetry breaking relates to a choice of causal

boundary condition on the horizon, cf., [3]. A detailed verification of this picture is highly

desirable, and it should be possible once we understand U(1)T gauge dynamics.

Our discussion was primarily focused on the high temperature or stochastic limit,

which is sufficient for hydrodynamics. It would be interesting to ask how to understand the

thermal equivariance structure at finite temperatures. Likewise, one can imagine a parallel

discussion involving modular Hamiltonians for density matrices which are not necessarily

of the Gibbs form. In both cases one is forced to confront a symmetry structure that

has some intrinsic non-locality, which makes it an interesting challenge. The fluid/gravity

correspondence and recent discussions between entanglement and geometry also suggests

that there ought to be a similar structure hidden in the semi-classical gravitation theory

for real-time observables, as speculated in [3].

Finally, we note that the class of fluctuations that we have understood about hydro-

dynamics are those that are computed by the Schwinger-Keldysh contour, which are thus

only a subset of the full fluctuation relations. The response functions studied in hydro-

dynamics are related by the thermal KMS relations to other Wightman functions, which

are not computed on the Schwinger-Keldysh path integral contour, but rather on a multi-

timefolded, k-OTO contour (the Schwinger-Keldysh contour is the 1-OTO contour) [56].

How the hydrodynamic effective field theory incorporates this information, and whether

by a suitable upgrade one can construct effective field theories that capture more than the

post local-thermalization behaviour (eg., by having effective descriptions for higher OTO

correlators), remain fascinating open questions that are worth exploring.
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Part III

Thermal supergeometry: mathematical

details

A The thermal SK-KMS superalgebra

The SK-KMS superalgebra described in section 2 is generated by the SK supercharges

{QSK ,QSK} and the thermal supermultiplet of KMS operators {QKMS ,QKMS ,LKMS ,Q0
KMS
}

which satisfy the following algebra:

Q2
SK

= Q2

SK
= Q2

KMS
= Q2

KMS
= 0 ,

[QSK ,QKMS ]± =
[
QSK ,QKMS

]
±

=
[
QSK ,QSK

]
±

=
[
QKMS ,QKMS

]
±

= 0 ,[
QSK ,QKMS

]
±

=
[
QSK ,QKMS

]
±

= LKMS , (A.1)[
QKMS ,Q0

KMS

]
±

=
[
QKMS ,Q0

KMS

]
±

= 0 ,[
QSK ,Q0

KMS

]
±

= QKMS ,
[
QSK ,Q0

KMS

]
±

= −QKMS .

This is a graded superalgebra with a conserved ghost number charge, and can be understood

in terms of an equivariant cohomology algebra as described in earlier works [6].

The canonical way to interpret this structure is to extend the operator algebra of the

quantum system of interest to an operator superalgebra which lives in a two dimensional

superspace (locally Rd−1,1|2). The quadruplet of operators {Oav,OG ,OG
,Odif} associated

with a single-copy operator Ô is encapsulated into a single SK-superfield

O̊ ≡ Oav + θO
G

+ θ̄OG + θ̄θOdif . (A.2)

Here θ, θ̄ are the Grassmann coordinates in superspace with gh(θ) = 1 and gh(θ̄) = −1,

respectively.

In superspace, the operators {QSK ,QSK}, which are intrinsic to the Schwinger-Keldysh

formalism, are realized as derivations along the Grassmann-odd directions:

QSK −→ ∂θ̄ , QSK −→ ∂θ . (A.3)

These derivations induce the action of {QSK ,QSK} component-wise on superfields; for ex-

ample, we have
[
QSK , O̊

]
±

= ∂θ̄O̊ = O
G

+ θOdif . We refer to [5, 6] for more details. The

KMS operators can be best understood in terms of a quadruplet of thermal translation

operators. Let,

I̊KMS
0 = Q0

KMS
+ θ̄QKMS − θQKMS + θ̄θLKMS ,

I̊KMS = QKMS + θLKMS ,

I̊KMS
= QKMS + θ̄LKMS ,

L̊KMS = LKMS ,

(A.4)
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such that

I̊KMS
0 O̊ = I̊KMS O̊ = I̊KMS

O̊ = 0 . (A.5)

The connection between the SK-KMS algebra and the equivariant cohomology algebras

(see appendix B) can be made manifest by noting that the thermal operators transform

under the super-derivations into each other via,

I̊KMS
0

I̊KMS −I̊KMS

L̊KMS

∂θ̄ ∂θ

∂θ −∂θ̄

(A.6)

One can equivalently express this directly in terms of the super-commutation relations as:

∂2
θ̄ = ∂2

θ = (I̊KMS)2 = (̊IKMS
)2 = 0 ,[

QSK , I̊KMS

]
±

=
[
QSK , I̊

KMS
]
±

=
[
QSK ,QSK

]
±

=
[
I̊KMS, I̊KMS

]
±

= 0 ,[
QSK , I̊

KMS
]
±

=
[
QSK , I̊KMS

]
±

= L̊KMS , (A.7)[
L̊KMS, I̊KMS

0

]
±

=
[
I̊KMS

, I̊KMS
0

]
±

= 0 ,[
QSK , I̊KMS

0

]
±

= I̊KMS ,
[
QSK , I̊KMS

0

]
±

= −I̊KMS
.

B Review of equivariant cohomology

We briefly review here (the superspace formulation of) NT = 2 extended equivariant coho-

mology mainly to set-up some of the background structure and notation. Our discussion

will completely general and simply exemplifies the algebraic structures, which will be rele-

vant for the thermal Schwinger-Keldysh theories. These concepts were originally developed

in [67–71] and have been reviewed in our earlier paper [6] where the reader can find more

background and references.

B.1 Weil model

The essential idea in equivariant cohomology is to develop an algebraic formalism to tackle

cohomology on spaces with a group action (so that one is often interested in non-trivial

gauge invariant data). The first step is to construct appropriate cohomological charges and

representations for the gauge sector, which can be done by working in the universal covering

space of the group (parameterized algebraically by the space of gauge connections). Exploit-

ing the isomorphism between differential forms and fermions, one can package the relevant
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fields of the gauge sector (the Weil complex) into a super gauge field with components:

Åa ≡ Aa + θ̄
{
λa +DaG

}
+ θ
{
λ̄a +DaḠ

}
+ θ̄θ

{
Fa +DaB +

[
G, λ̄a

]
−
[
Ḡ, λa

]
+

1

2

[
G,DaḠ

]
− 1

2

[
Ḡ,DaG

]}
(B.1a)

Åθ̄ ≡ G+ θ̄
{
φ− 1

2
[G,G]

}
+ θ
{
B − 1

2

[
Ḡ,G

]}
− θ̄θ

{
η +

[
Ḡ, φ

]
− [G,B] +

1

2

[
G,
[
Ḡ,G

]]}
(B.1b)

Åθ ≡ Ḡ+ θ
{
φ̄− 1

2

[
Ḡ, Ḡ

]}
+ θ̄
{
φ0 −B − 1

2

[
Ḡ,G

]}
+ θ̄θ

{
η +

[
G, φ̄

]
−
[
Ḡ, φ0 −B

]
+

1

2

[
Ḡ,
[
Ḡ,G

]]}
. (B.1c)

All components of these gauge fields are valued in the Lie algebra of the equivariant gauge

group. For example, G ≡ Giti with {ti}i=1,...,n the generators of the Lie algebra.

The algebra is generated by two Weil charges, which are represented on superspace as

generators of translations in the Grassmann odd directions:

dW = ∂θ̄(. . .)| , dW = ∂θ(. . .)| . (B.2)

Further, we have interior contractions {Ik, I0
k , Ik}, which project in the gauge directions.

The defining equations for these operators are the following non-vanishing actions:

IkGj = −δjk , IkBj = −1

2
f jk` Ḡ

` , (B.3)

IkḠj = −δjk , IkBj =
1

2
f jk`G

` , (B.4)

I0
kB

j = −δjk . (B.5)

These equations should be interpreted as follows: the ‘Faddeev-Popov ghosts’ {Gi, Bi, Ḡi}
are generators of the gauge directions with different ghost numbers ({1, 0,−1}, respec-

tively); the interior contractions project along them. A Lie derivative operation (which

generates gauge transformations) can now be defined in terms of the interior contractions

and the Weil charges:

Lj ≡
[
dW , Ij

]
±

=
[
dW , Ij

]
±
. (B.6)

The generators introduced above generate a graded algebra:

d2
W

= d
2

W
=
[
dW , dW

]
±

= 0[
dW , Ij

]
±

=
[
dW , Ij

]
±

= Lj , [dW , Ij ]± =
[
dW , Ij

]
±

= 0[
dW , I0

j

]
±

= Ij ,
[
dW , I0

j

]
±

= −Ij
[dW ,Lj ]± =

[
dW ,Lj

]
±

= 0[
Ii, Ij

]
±

= fkij I0
k[

Li, Ij
]
±

= −fkij Ik , [Li, Ij ]± = −fkij Ik ,
[
Li, I0

j

]
±

= −fkij I0
k

(B.7)
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This algebra can immediately be lifted to superspace by defining the following super-

interior contractions and super-Lie derivative:

I̊0
k ≡ I0

k + θ̄ Ik − θ Ik + θ̄θLk ,
I̊k ≡ Ik + θLk ,
I̊k ≡ Ik + θ̄Lk ,
L̊k ≡ Lk .

(B.8)

The graded algebra in superspace can be written as:[
dW , I̊0

k

]
±

= ∂θI̊0
k = −I̊k ,

[
dW , I̊0

k

]
±

= ∂θ̄I̊0
k = I̊k ,[

dW , I̊k
]
±

= ∂θ̄I̊k =
[
dW , I̊k

]
±

= ∂θI̊k = L̊k ,[
dW , I̊k

]
±

=
[
dW , I̊k

]
±

=
[
I̊0
j , I̊0

k

]
±

= 0 ,

(B.9)

This is simply an explicit way of writing the simple statement that the Weil charges

{dW , dW} act as super derivations {∂θ̄, ∂θ} on the super operations (B.8).

B.2 Cartan model

A slightly different model of equivariant cohomology is the Cartan model, where one trades

{dW , dW} for the covariant Cartan charges {dC , dC}. In superspace, one would phrase this

as the statement that {∂θ̄, ∂θ} are being traded for super-covariant derivatives {D̊θ̄, D̊θ},
which generate the action of Cartan charges via

dC = D̊θ̄(. . .)| , dC = D̊θ(. . .)| . (B.10)

The super-covariant derivatives are defined with respect to the gauge superfield as usual:

D̊I = ∂I + [ÅI , · ] . (B.11)

After passing to the Cartan model, it is consistent to fix a gauge where Gi = Ḡi = Bi = 0.

We will refer to this as Wess-Zumino gauge. In this gauge, one can then check that the

Cartan charges can be written as:

dC = dW + φk Ik + (φ0)k Ik + ηk I0
k ,

dC = dW + φ
k Ik .

(B.12)

From this representation one can easily check the property that they square to gauge

transformations along the covariant field strength components:

d2
C

= φk Lk , d
2

C
= φ

k Lk . (B.13)

In superspace, the full Cartan algebra can be stated succinctly as follows:

D̊2
θ̄ = L̊

F̊θ̄θ̄
, D̊2

θ = L̊
F̊θθ

,
[
D̊θ̄, D̊θ

]
±

= L̊
F̊θθ̄

,[
D̊θ, L̊Λ̊

]
±

= L̊D̊θΛ̊ ,
[
D̊θ̄, L̊Λ̊

]
±

= L̊D̊θ̄Λ̊ ,
[
L̊Λ̊1

, L̊Λ̊2

]
±

= L̊[Λ̊1,Λ̊2] .
(B.14)
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C U(1)T connection and representation theory

We now turn to the structure of the U(1)T symmetry and the machinery associated with

thermal equivariance. As in the main text we take zI = {σa, θ, θ̄} as the coordinates on

the superspace. Here {σa} denotes Grassmann-even co-ordinates of the ordinary spacetime

whereas {θ, θ̄} are Grassmann odd. The essential structure that adapts such a superspace

to the purposes of thermal field theory is a background super-vector β̊I(z), which we will

call as the thermal super-vector.

The notation and nomenclature are supposed to be suggestive — it will later turn out

that, in fluid dynamics the thermal vector roughly points along the local fluid velocity and

its norm is the inverse of local temperature (viz., the length of local thermal circle after

a local Wick rotation in the fluid rest frame). We take β̊I to have the same Grassmann

parity as zI . Thus, β̊a is Grassmann-even whereas β̊θ and β̊θ̄ are Grassmann odd.

Let us also note that in the presence of flavor, we will need a Grassmann even thermal

twist Λ̊β(z) which is the flavor twist imposed as we go around the local thermal circle after

Wick rotation. Under a local flavor rotation Ů(z), it transforms as Λ̊β 7→ Ů−1 Λ̊β Ů −
Ů−1 β̊I ∂I Ů . In a flavor basis where the rest frame temporal component of the gauge

field is zero, Λ̊β(z) can be thought of as the local flavor chemical potential divided by

local temperature. For details on how these structures play a role in conventional fluid

dynamics, please see [2].

C.1 Thermal commutator

Say we have a tensor superfield T̊ I...J... which transforms in the flavor representation.

This means under an infinitesimal super-diffeomorphism ξ̊I and flavor transformation Λ̊(F ),

T̊ I...J... transforms as36

T̊ I...J... 7→ T̊ I...J... −
{

£ξ̊T̊ I...J... −
[
Λ̊(F ), T̊ I...J...

]}
(C.1)

where £ξ is the left super-Lie derivative (see [61] for details).

We can then introduce a thermal bracket which acts via infinitesimal thermal transla-

tions and flavor twist, viz.,

(Λ̊, T̊ I...J...)β ≡ Λ̊
{

£βT̊ I...J... −
[
Λ̊β, T̊ I...J...

]}
(C.2)

where the superfield Λ̊ = Λ̊(z) is the infinitesimal parameter which parameterizes the

thermal translation.

The result of a thermal bracket (Λ̊, T̊ I...J...)β is another tensor superfield which trans-

forms in the same tensor/flavor representation as T̊ I...J.... For example, under flavor

transformations if we have T̊ I...J... 7→ Ů−1T̊ I...J...Ů , then it follows that (Λ̊, T̊ I...J...)β 7→
Ů−1(Λ̊, T̊ I...J...)βŮ .

36We will use anti-hermitian basis for flavors and use [ , ] to denote flavor adjoint action.
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The set of such infinitesimal thermal translations form a super Lie algebra, viz.,(
Λ̊1, (Λ̊2, T̊ I...J...)β

)
β
− (−)Λ̊1Λ̊2

(
Λ̊2, (Λ̊1, T̊ I...J...)β

)
β

=
(

(Λ̊1, Λ̊2)β, T̊ I...J...
)
β

(C.3)

where

(Λ̊1, Λ̊2)β ≡ Λ̊1£βΛ̊2 − (−)Λ̊1Λ̊2 Λ̊2£βΛ̊1 . (C.4)

Further, we can show that a super-Jacobi identity holds, viz.,(
Λ̊1, (Λ̊2, Λ̊3)β

)
β
− (−)Λ̊1Λ̊2

(
Λ̊2, (Λ̊1, Λ̊3)β

)
β

=
(

(Λ̊1, Λ̊2)β, Λ̊3

)
β
, (C.5)

which can be rewritten in a cyclic form:

(−)Λ̊3Λ̊1

(
Λ̊1, (Λ̊2, Λ̊3)β

)
β

+ (−)Λ̊1Λ̊2

(
Λ̊2, (Λ̊3, Λ̊1)β

)
β

+ (−)Λ̊2Λ̊3

(
Λ̊3, (Λ̊1, Λ̊2)β

)
β

= 0 .

(C.6)

We will denote this group of infinitesimal thermal translations as U(1)T.

Note that from (C.4) we see that the U(1)T parameter superfield Λ̊ does not quite

transform like a scalar superfield under thermal translations. In fact, it transforms like

a U(1)T thermal twist analogous to how Λβ transforms as a flavor thermal twist with

Λβ 7→ U−1ΛβU − U−1£βU under a flavor transformation U . We will call a field which

transforms as (C.4) under U(1)T as a U(1)T adjoint superfield.

C.2 U(1)T connection

The first item in our agenda is to understand such U(1)T adjoint superfields and formulate

a U(1)T connection, curvature etc. We begin by introducing a superspace one-form gauge

field ÅI associated with U(1)T:

Å = ÅI dz
I = Åa dσ

a + Åθ dθ + Åθ̄ dθ̄ . (C.7)

We will also define the corresponding two-form super-field strengths F̊IJ via

F̊IJ ≡ (1− 1

2
δIJ)

{
∂IÅJ − (−)IJ∂JÅI + (ÅI , ÅJ)β

}
.

Here, the thermal bracket is taken by treating ÅI as a U(1)T adjoint superfield, i.e.,

(ÅI , ÅJ)β ≡ ÅI£βÅJ − (−)IJ ÅJ£βÅI . (C.8)

The extra factor of half in (C.8) is introduced relative to the usual definition to save us

various factors of half later on. Note that the factor of half is relevant only when both the

superspace indices are Grassmann odd and equal. Often it is useful to write this definition

in the form

(1 + δIJ)F̊IJ ≡ ∂IÅJ − (−)IJ∂JÅI + (ÅI , ÅJ)β .

Finally, we define a non-covariant combination, which will sometimes be useful:

B̊θθ̄ ≡ ∂θÅθ̄ +
1

2
(Åθ, Åθ̄)β . (C.9)
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Let us pause for a moment to count the number of independent (real space) fields that

we have introduced. Clearly, the total number of fields in the super gauge connection (C.7)

is 12. Let us hence give 12 names to these independent fields so we can refer to them more

easily. We organize these 12 fields as follows:

• Faddeev-Popov triplet. Out of the 12 fields, there are 3 combinations which are

not U(1)T covariant. We identify them as

Åθ̄| ≡ GT
, Åθ| ≡ GT

, B̊θθ̄| ≡ BT
. (C.10)

• Vafa-Witten quintet. A further 5 fields are given by

F̊θ̄θ̄| ≡ φ , F̊θθ| ≡ φ , F̊θθ̄| ≡ φ0 ,

D̊θ̄F̊θθ̄| ≡ ηT , D̊θF̊θθ̄| ≡ ηT
, (C.11)

where we defined the U(1)T covariant derivative (on a flat superspace Rd−1,1|2)

D̊I F̊JK ≡ ∂I F̊JK + (ÅI , F̊JK)β . (C.12)

This covariant derivative has a number of useful properties which we will discuss later

in great detail.

• Vector quartet. Finally, we have 4 covariant vectors:

Åa| ≡ Aa , F̊θ̄a| ≡ λa , F̊θa| ≡ λa , D̊θF̊θ̄a| ≡ Fa . (C.13)

This provides a brief and abstract discussion of the components of the gauge superfield

that we use. We will return to it in more details in appendix E.

However, before turning to this discussion, it is useful to understand features of the

U(1)T representations and adjoint fields a bit better. We will for the most part be interested

only in objects transforming as in (C.2) which we refer to as 0-adjoints, and the gauge

multiplet, which will transform as 1-adjoints or simply adjoints (see below). However,

other representations labeled by an integer appear to be admissible, and are detailed in

appendix F.

D Superspace representations: adjoint superfield

In this appendix we work out the detailed superspace expansions of adjoint superfields and

their derivatives, elaborating in part on the material described in [6].
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D.1 Basic definitions and component fields

Given a U(1)T adjoint superfield F̊, we can define a covariant derivative on it via

D̊I F̊ ≡ ∂I F̊ + (ÅI , F̊)β . (D.1)

The superfield D̊I F̊ is a U(1)T adjoint valued super-one-form. The thermal bracket for

adjoint superfields is defined via

(̊F, F̊′)β ≡ F̊ £βF̊
′ − (£βF̊) F̊′ . (D.2)

for arbitrary U(1)T adjoint fields F̊, F̊′. The bracket appearing in (D.1) acts in the same way.

We can use this to define the covariant components of F̊ via

F ≡ F̊| , Fψ ≡ D̊θF̊| , Fψ ≡ D̊θ̄F̊| , F̃ ≡ D̊θD̊θ̄F̊| . (D.3)

We will often focus just on these covariant components of superfields and write them in a

vectorial form:

F̊ :


F

Fψ
Fψ
F̃

 . (D.4)

The action of various covariant derivative operators can then simply be written as a map

between such column vectors of covariant superfield components. The conversion of such

a vector into an explicit superspace expression is given by

F̊=F+θ̄
{
Fψ−(G

T
,F)β

}
+θ
{
Fψ−(G

T
,F)β

}
+θ̄θ

{
F̃−(B

T
,F)β+(G

T
,Fψ)β−(G

T
,Fψ)β+

1

2
(G

T
,(G

T
,F)β)β−

1

2
(G

T
,(G

T
,F)β)β

}
.

(D.5)

The two representations of the superfield F̊ given above, are equivalent.

Given two U(1)T adjoint superfields F and F′, their thermal bracket (F,F′)β is also a

U(1)T adjoint superfield with components

(̊F, F̊′)β :


(F,F′)β

(F,F′ψ)β + (Fψ,F
′)β

(F,F′
ψ

)β + (Fψ,F
′)β

(F, F̃′)β + (F̃,F′)β + (Fψ,F
′
ψ)β − (Fψ,F

′
ψ

)β

 (D.6)

The covariant derivative D̊I then distributes over this thermal bracket, viz.,

D̊I (̊F, F̊′)β = (D̊I F̊, F̊′)β + (−)IF(̊F, D̊I F̊′)β. (D.7)
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D.2 Gauge transformation and WZ gauge

Next, we are interested in how this superfield transforms under U(1)T super gauge trans-

formations. Given a gauge parameter superfield Λ̊ we will define the transformation of the

U(1)T adjoint superfield to be

F̊ 7→ exp
[
(Λ̊, · )β

]
F̊

≡ F̊ + (Λ̊, F̊)β +
1

2!

(
Λ̊, (Λ̊, F̊)β

)
β

+
1

3!

(
Λ̊,
(

Λ̊, (Λ̊, F̊)β

)
β

)
β

+ . . .
(D.8)

The gauge transformation parameter Λ̊ is again an adjoint superfield whose superspace

expansion is built atop its covariant components {Λ,Λψ,Λψ, Λ̃}, analogously to (D.5).

Let us, for simplicity, consider first the subset of gauge transformation with the bottom

component of Λ̊ vanishing, i.e., Λ = 0. Then, the super-gauge transformation of the adjoint

superfield truncates to

F̊ 7→ F̊ + (Λ̊, F̊)β +
1

2!

(
Λ̊, (Λ̊, F̊)β

)
β
, (D.9)

since

(
Λ̊,
(

Λ̊, (Λ̊, . . .)β

)
β

)
β

= 0 when Λ = 0. This is easily worked out to give

F̊ 7→ F̊


G

T
7→G

T
−Λψ,

G
T
7→G

T
−Λψ,

B
T
7→B

T
−Λ̃+ 1

2(Λψ,GT
)β− 1

2(Λψ,GT
)β

 with


F

Fψ

Fψ

F̃

 fixed. (D.10)

Thus the super-gauge transformed superfield can be obtained by absorbing the gauge

transformation into shifts of Faddeev-Popov (FP) fields {G
T
, G

T
, B

T
} appearing in the

superfield expansion of F̊ keeping the basic quartet fields fixed.

For this reason, we will henceforth refer this subset of transformations as FP boosts.

We will call the complementary subset of gauge transformations which leave invariant

{G
T
, G

T
, B

T
} as the FP rotations. This is akin to how the Poincaré group action on

massive spinning particle states can be constructed by thinking of it as composed of a

little group of rest-frame rotations dressed with translations/boosts. Analogously, the

group of U(1)T super-gauge transformations can be thought of as a FP rotations having

Λ 6= 0 dressed with FP boosts that shift {G
T
, G

T
, B

T
}. More precisely, we think of the

transformations of super-fields using the method of induced representations whereby FP

rotations that leave {G
T
, G

T
, B

T
} invariant can be used to induce the whole group of U(1)T

gauge transformations.

The first step in doing this is to use the FP boosts to set the fields {G
T
, G

T
, B

T
} = 0.

This amounts to a partial gauge fixing and we will call a gauge with {G
T
, G

T
, B

T
} = 0 as

a Wess-Zumino gauge. This step is analogous to using the boosts to go to the rest frame

in the Poincaré group example. Given a {G
T
, G

T
, B

T
}, the simplest FP boost which takes
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us to Wess-Zumino gauge has {Λ = 0,Λψ = G
T
,Λψ = G

T
, Λ̃ = B

T
} which gives

ΛFP ≡ θ GT
+ θ̄ G

T
+ θ̄θ B

T
(D.11)

This is the analogue of the boost which takes a given momentum to its rest frame. In

Poincaré case, such a boost is obviously not unique: one can always add in a rest frame

rotation from the little group and the new boost is as good as the old. By a similar logic,

ΛFP can be composed with any little U(1)T gauge transformation which leaves {G
T
, G

T
, B

T
}

invariant and it would still give a Wess-Zumino gauge. In the Wess-Zumino gauge obtained

using ΛFP , the adjoint superfield has a simple superspace expansion:

(̊F)WZ = F + θ̄ Fψ + θ Fψ + θ̄θ F̃ (D.12)

This shows that basic quartet fields are analogous to components of a tensor measured

after going to the rest frame using a standard set of boosts.

The next step in the method of induced representations is to construct the ‘little group’,

viz., the set of all FP rotations which preserve {G
T
, G

T
, B

T
} = 0. This is easily seen to be

the transformations with {Λ 6= 0,Λψ = 0,Λψ = 0, Λ̃ = 0}. A more super-covariant way of

characterizing FP rotations is to define them as the set of Λ̊ with

DθΛ̊| = D̊θ̄Λ̊| = DθD̊θ̄Λ̊| = 0 .

Note however that D̊θ̄DθΛ̊| = (φ0
T
,Λ)β 6= 0 as we shall explicitly see below. Thus, If

α represents one of the basic quartet fields {F,Fψ,Fψ, F̃}, its transformation under FP

rotations is given by the infinite series

α 7→ α+ (Λ, α)β +
1

2!
(Λ, (Λ, α)β)β +

1

3!

(
Λ, (Λ, (Λ, α)β)β

)
β

+ . . . (D.13)

We show in appendix F.1 that the algebra of gauge transformations closes and work out

the composition rule for U(1)T transformations.

D.3 Covariant derivatives and Bianchi identities

Having understood gauge transformations and the WZ gauge G
T

= G
T

= B
T

= 0, we can

now without loss of generality work in this gauge. This has the salubrious feature that the

non-covariant gauge potentials appearing in the FP-triplet are no longer floating around

in the computations.

Superspace covariant derivatives acting on a covariant adjoint superfield give a covari-

ant superfield of the same U(1)T adjoint type with a similar superspace expansion built

out of a new quartet of fields. It is thus convenient to represent the action of superspace

covariant derivatives by how they change the basic quartets rather than to repeat the full

superspace expansion again and again. We let

Da = ∂a + (Aa, ·)β .

– 69 –



J
H
E
P
1
0
(
2
0
1
8
)
1
9
4

The action of any super-covariant derivative maps a superfield into a new superfield with

covariant components as follows:

D̊a :


F

Fψ
Fψ
F̃

 7→


DaF

DaFψ + (λa,F)β
DaFψ + (λ̄a,F)β

DaF̃ + (Fa,F)β + (λ̄a,Fψ)β − (λa,Fψ)β

 , (D.14a)

D̊θ̄ :


F

Fψ
Fψ
F̃

 7→


Fψ
(φ

T
,F)β
F̃

(φ
T
,Fψ)β − (η

T
,F)β

 , (D.14b)

D̊θ :


F

Fψ
Fψ
F̃

 7→


Fψ
(φ0

T
,F)β − F̃

(φ
T
,F)β

(φ0
T
,Fψ)β − (φ

T
,Fψ)β + (η

T
,F)β

 . (D.14c)

These maps can be used to evaluate graded commutators of U(1)T super-covariant

derivatives to give

D̊ID̊J F̊− (−)IJ D̊JD̊I F̊ = (1 + δIJ)(F̊IJ , F̊)β. (D.15)

or more explicitly

[D̊a, D̊b ]̊F = (F̊ab, F̊)β , [D̊θ, D̊a ]̊F = (F̊θa, F̊)β , [D̊θ̄, D̊a ]̊F = (F̊θ̄a, F̊)β ,

{D̊θ, D̊θ̄}F̊ = (F̊θθ̄, F̊)β , D̊2
θ F̊ = (F̊θθ, F̊)β , D̊2

θ̄ F̊ = (F̊θ̄θ̄, F̊)β . (D.16)

To verify this, it is useful to directly compose the above maps, which gives:

D̊θD̊θ̄ :


F

Fψ
Fψ
F̃

 7→


F̃

(φ0
T
,Fψ)β − (φ

T
,Fψ)β + (η

T
,F)β

(φ
T
,Fψ)β

(φ0
T
, F̃)β − (φ

T
, (φ

T
,F)β)β + (η

T
,Fψ)β



D̊θ̄D̊θ :


F

Fψ
Fψ
F̃

 7→


(φ0
T
,F)β − F̃

(φ
T
,Fψ)β

(φ0
T
,Fψ)β − (φ

T
,Fψ)β + (η

T
,F)β

(φ
T
, (φ

T
,F)β)β − (η

T
,Fψ)β



D̊2
θ :


F

Fψ
Fψ
F̃

 7→


(φ
T
,F)β

(φ
T
,Fψ)β − (η

T
,F)β

(φ
T
,Fψ)β

((φ0
T
, φ

T
)β,F)β + (φ

T
, F̃)β + (η

T
,Fψ)β



D̊2
θ̄ :


F

Fψ
Fψ
F̃

 7→


(φ
T
,F)β

(φ
T
,Fψ)β

(φ
T
,Fψ)β − (η

T
,F)β

(φ
T
, F̃)β − (η

T
,Fψ)β



(D.17)

and similarly for double derivatives involving D̊a. The essential identities are summarized

in table 2.
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D.4 SK-KMS superalgebra

Finally, it is useful to define an abstract set of operations that illustrate explicitly the

structure of the NT = 2 superalgebera we are working with. This can be done by writing

down a set of operators that map adjoint-superfields as follows:

dSK :


F

Fψ
Fψ
F̃

 7→


Fψ
0

F̃

0

 , d̄SK :


F

Fψ
Fψ
F̃

 7→


Fψ
−F̃
0

0

 . (D.18a)

ιKMS :


F

Fψ
Fψ
F̃

 7→


0

−£βF

0

−£βFψ

 , ιKMS
0 :


F

Fψ
Fψ
F̃

 7→


0

0

0

£βF



ιKMS :


F

Fψ
Fψ
F̃

 7→


0

0

−£βF

£βFψ

 , `KMS :


F

Fψ
Fψ
F̃

 7→


£βF

£βFψ
£βFψ
£βF̃


(D.18b)

The notation is meant to suggest the origins of these map: SK standing for Schwinger-

Keldysh and KMS for the corresponding thermal periodicity conditions.

These maps generate an extended equivariant algebra, called the SK-KMS superalgebra,

which takes the following form:

d2
SK

= d̄2
SK

=
[
dSK , d̄SK

]
±

= 0

[dSK , ι
KMS]± =

[
d̄SK , ι

KMS
]
±

= −`KMS , [dSK , ι
KMS]± =

[
d̄SK , ι

KMS
]
±

= 0

[dSK , ι
KMS
0 ]± = −ιKMS ,

[
d̄SK , ι

KMS
0

]
±

= ιKMS

[dSK , `
KMS]± =

[
d̄SK , `

KMS
]
±

= 0

[ιKMS, ιKMS]± = [`KMS, ιKMS]± = [`KMS, ιKMS]± = [`KMS, ιKMS
0 ]± = 0 .

(D.19)

The U(1)T covariant derivative maps can be written as the following linear combinations

of (D.18a) and (D.18b):

DSK = dSK − φT
ιKMS − η

T
ιKMS
0 ,

DSK = d̄SK − φ0
T
ιKMS − φ

T
ιKMS + η

T
ιKMS
0 .

(D.20)

From this representation it is also straightforward to check the following:

D2
SK

= φ
T
`KMS − η

T
ιKMS , D2

SK
= φ

T
`KMS − η

T
ιKMS + (φ0

T
, φ

T
)β ι

KMS
0 ,[

DSK ,DSK

]
±

= φ0
T
`KMS + η

T
ιKMS + η

T
ιKMS + (φ

T
, φ

T
)β ι

KMS
0 .

(D.21)
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E Superspace representations: gauge multiplet

We now turn to a detailed analysis of the superspace U(1)T gauge field with components

{Åa, Åθ̄, Åθ}. This analysis will involve understanding the covariant field strength derived

from the gauge field. Since the field strengths transform as adjoint superfields, the results

of appendix D will be useful.

E.1 Component fields

We now want to define the component fields by projecting the superfields and their Grass-

mann odd derivatives (projecting Grassmann even derivatives just gives the derivatives of

the component fields and does not yield new component fields). Following earlier analysis

of the SK-KMS superalgebra [6] (also see above) we can associate a supercharge with every

Grassmann odd derivative as we will explain shortly. As explained in appendix B, the

Weil charges {QSK ,QSK} are associated with ordinary derivatives {∂θ̄, ∂θ}, while {Q,Q}
associated with covariant derivatives {D̊θ̄, D̊θ} are the Cartan supercharges.

We will define the action of these supercharges on a particular component field as

follows. First, we lift the component field to superspace, i.e., construct a superspace ex-

pression that when projected down to {θ = 0, θ̄ = 0} subspace gives the component field

of interest. Next, we apply the appropriate Grassmann odd derivative on the superspace

expression and project back to the {θ = 0, θ̄ = 0} subspace. Thus, by this procedure

we construct the Weil supercharges that are nilpotent but not covariant, whereas Cartan

supercharges are covariant but not nilpotent. As is common with covariant derivatives,

Cartan charges square to U(1)T transformations along projected super-field strengths. If

one thinks of topological invariance as a twisted supersymmetry a la Parisi-Sourlas, then

the Cartan supercharges can alternately be interpreted as twisted supercharges.

It is convenient to choose a complete set of component fields by projecting down co-

variant expressions in superspace. Once such a set is chosen the action of supercharges can

directly be read off using the superspace identities derived in appendix D. We summarize

the results of this exercise in table 3.

Let us explain how this table is constructed with an example. Say we would like to

figure out how the Weil supercharge QSK acts on the field λ̄a. As described above, the

Weil supercharge QSK is associated with ∂θ̄ and using the second row of table 3, λa is

defined by the projection λ̄a ≡ F̊θa|. Thus, we conclude QSK acting on λ̄a gives ∂θ̄F̊θa|.
In order to write this in terms of component fields, we have to rewrite ∂θ̄F̊θa| in terms of

defining combinations appearing in the second row of table 3 (with possible Grassmann

even derivatives acting on the defining combinations):

QSK λ̄a ≡ ∂θ̄F̊θa| = D̊θ̄F̊θa − (Aθ̄, F̊θa)β|
= −D̊aF̊θθ̄ − D̊θF̊θ̄a − (Aθ̄, F̊θa)β|
= −Daφ

0
T
−Fa − (G

T
, λ̄a)β .

(E.1)

In the first line we have used the definition of the covariant derivative and in the second

line we have invoked the Bianchi identity. The final line then follows from definitions in
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Å
a
|

λ
a

+
D
a
G

T
λ̄
a

+
D
a
G

T
λ
a

λ̄
a

Q
u

ar
te

t
λ
a

F̊
θ̄
a
|

−
D
a
φ

T
−

(G
T
,λ
a
) β

F a
−

(G
T
,λ
a
) β

−
D
a
φ

T
F a

F a
D̊ θ

F̊
θ̄
a
|

−
D
a
η
−

(G
T
,F

a
) β

−
(φ

T
,λ
a
) β
−

( G
T
,F

a
) β

−
D
a
η

−
(φ

T
,λ
a
) β

λ̄
a

F̊
θ
a
|

−
D
a
φ

0 T
−
F a
−

(G
T
,λ̄
a
) β

−
D
a
φ

T
−

(G
T
,λ̄
a
) β

−
D
a
φ

0 T
−
F a

−
D
a
φ

T

V
af

a
W

it
te

n
φ

T
F̊
θ̄
θ̄
|

−
(G

T
,φ

T
) β

−
η
−

(G
T
,φ

T
) β

0
−
η

G
h

os
t

of
G

h
os

t
η

D̊ θ̄
F̊
θ
θ̄
|

(φ
T
,φ

0 T
) β
−

(G
T
,η

) β
(φ

T
,φ

T
) β
−

(G
T
,η

) β
(φ

T
,φ

0 T
) β

(φ
T
,φ

T
) β

Q
u

in
te

t
φ

0 T
F̊
θ
θ̄
|

η
−

(G
T
,φ

0 T
) β

η̄
−

(G
T
,φ

0 T
) β

η
η̄

η̄
D̊ θ

F̊
θ
θ̄
|

(φ
T
,φ

T
)
−

(G
T
,η̄

) β
(φ

T
,φ

0 T
)
−

(G
T
,η̄

) β
(φ

T
,φ

T
) β

(φ
T
,φ

0 T
) β

φ
T

F̊
θ
θ
|

−
η̄
−

(G
T
,φ

T
) β

−
(G

T
,φ

T
) β

−
η̄

0

T
y
p

e
F

ie
ld

S
u

p
er

sp
ac

e
Q

S
K
≡
∂
θ̄
(.
..

)|
Q

S
K
≡
∂
θ
(.
..

)|
Q
≡
D̊ θ̄

(.
..

)|
Q
≡
D̊ θ

(.
..

)|
D

efi
n

it
io

n

F
ad

d
ee

v
P

op
ov

G
T

A
θ̄
|

φ
T
−

1 2
(G

T
,G

T
) β

B
T
−

1 2
(G

T
,G

T
) β

0
0

G
h

os
t

B
T

B̊
θ
θ̄
|

η
+

1 2
(G

T
,φ

T
) β

−
1 2
(G

T
,φ

T
) β

0
0

T
ri

p
le

t
−

1 2
(G

T
,B

T
+
φ

0 T
+

1 2
(G

T
,G

T
) β

) β
−

1 2
(G

T
,B

T
−

1 2
(G

T
,G

T
) β

) β

G
T

A
θ
|

φ
0 T
−
B

T
−

1 2
(G

T
,G

T
) β

φ
T
−

1 2
(G

T
,G

T
) β

0
0

V
ec

to
r

Å
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the second row of table 3. Every entry in that table can be derived similarly by using

superspace definitions and identities from appendix D.

There is a more direct but tedious method of evaluating ∂θ̄F̊θa| using superspace Taylor

expansion. For this we will have to first compute the superspace Taylor expansion of the

gauge fields in terms of the defining combinations. Let us show how this is done by working

out the superspace Taylor expansion of Åa. We need

Åa| ≡ Åa

∂θ̄Åa| = F̊θ̄a + ∂aAθ̄ + (Åa,Aθ̄)β| = λa +DaGT

∂θÅa| = F̊θa + ∂aAθ + (Åa,Aθ)β| = λ̄a +DaGT

∂θ∂θ̄Åa| = ∂θ

[
F̊θ̄a + ∂aAθ̄ + (Åa,Aθ̄)β

]
|

= D̊θF̊θ̄a − (Aθ, F̊θ̄a)β + ∂a∂θAθ̄ + (Åa, ∂θAθ̄)β + (Aθ̄, ∂θÅa)β|

= Fa − (G
T
, λa) +Da

[
B

T
− 1

2
(G

T
, G

T
)β

]
+ (G

T
, λ̄a +DaGT

)β

= Fa +DaBT
+ (G

T
, λ̄a)β − (G

T
, λa) +

1

2
(G

T
, DaGT

)β −
1

2
(G

T
, DaGT

)β .

(E.2)

Similar computation can be repeated for superfields Aθ̄ and Aθ. Only the θ̄θ component

computations are slightly involved. They evaluate to

∂θ∂θ̄Aθ̄| = ∂θ

[
F̊θ̄θ̄ −

1

2
(Aθ̄,Aθ̄)β

]
| = D̊θF̊θ̄θ̄ − (Aθ, F̊θ̄θ̄)β + (Aθ̄, ∂θAθ̄)β|

= −D̊θ̄F̊θθ̄ − (Aθ, F̊θ̄θ̄)β + (Aθ̄, ∂θAθ̄)β|

= −
{
η
T

+ (G
T
, φ

T
)β −

(
G

T
, B

T
− 1

2
(G

T
, G

T
)β

)
β

}
= −

{
η
T

+ (G
T
, φ

T
)β − (G

T
, B

T
)β +

1

2
(G

T
, (G

T
, G

T
)β)β

}
,

∂θ∂θ̄Aθ| = ∂θ

[
F̊θθ̄ − (Aθ,Aθ̄)β

]
|

= D̊θF̊θθ̄ − (Aθ, F̊θθ̄)β + (Aθ, ∂θAθ̄)β +

(
Aθ̄, F̊θθ −

1

2
(Aθ,Aθ)β

)
β

|

= D̊θF̊θθ̄ + (Aθ̄, F̊θθ)β − (Aθ, F̊θθ̄ − ∂θAθ̄ − (Aθ,Aθ̄)β)β|

= η
T

+ (G
T
, φ

T
)β −

(
G

T
, φ0

T
−B

T
− 1

2
(G

T
, G

T
)β

)
β

= η
T

+ (G
T
, φ

T
)β − (G

T
, φ0

T
−B

T
)β +

1

2
(G

T
, (G

T
, G

T
)β)β .

(E.3)

We can now put it all together to get the superspace Taylor expansion. For any superfield

f̊, we have

f̊ = f|+ θ (∂θf|) + θ̄ (∂θ̄f|) + θ̄θ (∂θ∂θ̄f|) . (E.4)
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Thus, we can use the above calculations to deduce the expressions for the U(1)T gauge

superfield:

Åa≡Aa+θ̄{λa+DaGT
}+θ

{
λ̄a+DaGT

}
+θ̄θ

{
Fa+DaBT

+(G
T
, λ̄a)β−(G

T
,λa)+

1

2
(G

T
,DaGT

)β−
1

2
(G

T
,DaGT

)β

}
(E.5a)

Åθ̄ ≡GT
+θ̄

{
φ

T
− 1

2
(G

T
,G

T
)β

}
+θ

{
B

T
− 1

2
(G

T
,G

T
)β

}
−θ̄θ

{
η
T
+(G

T
,φ

T
)β−(G

T
,B

T
)β+

1

2
(G

T
,(G

T
,G

T
)β)β

}
(E.5b)

Åθ ≡GT
+θ

{
φ

T
− 1

2
(G

T
,G

T
)β

}
+θ̄

{
φ0

T
−B

T
− 1

2
(G

T
,G

T
)β

}
+θ̄θ

{
η
T
+(G

T
,φ

T
)β−(G

T
,φ0

T
−B

T
)β+

1

2
(G

T
,(G

T
,G

T
)β)β

}
(E.5c)

We can then compute ∂θ̄F̊θa| by feeding this Taylor expansion into the definition of F̊θa

and getting its superspace Taylor expansion. While this is straightforward but tedious to

do by hand, we have checked that it can be easily coded in Mathematica and checked that

the data reported in table 3 is reproduced.

Clearly, the component maps defined in appendix D for adjoint superfields, provide a

much more efficient way of writing down and manipulating superspace Taylor expansions.

Let us therefore now introduce component map notation for the field strengths associated

with the gauge field.

E.2 Gauge transformation and WZ gauge

We now consider a super-connection ÅI whose gauge transformation is given by the series

ÅI 7→ ÅI ≡ ÅI + (Λ̊, ÅI)β − ∂IΛ̊ +
1

2!

(
Λ̊, (Λ̊, ÅI)β − ∂IΛ̊

)
β

+
1

3!

(
Λ̊,
(

Λ̊, (Λ̊, ÅI)β − ∂IΛ̊
)
β

)
β

+
1

4!

(
Λ̊,

(
Λ̊,
(

Λ̊, (Λ̊, ÅI)β − ∂IΛ̊
)
β

)
β

)
β

+ . . .

(E.6)

Here, we defined the thermal brackets on ÅI as if they were U(1)T adjoint superfields, since

the inhomogeneous transformation of the potential is already accounted for.

We will again begin by focusing on the FP boosts with a gauge parameter (D.11) (i.e.,

setting Λ = 0). Then the above series truncates to

ÅI 7→ ÅI + (Λ̊, ÅI)β − ∂IΛ̊ +
1

2!

(
Λ̊, (Λ̊, ÅI)β − ∂IΛ̊

)
β

+
1

3!

(
Λ̊,
(

Λ̊, (Λ̊, ÅI)β − ∂IΛ̊
)
β

)
β

.
(E.7)
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since

(
Λ̊,
(

Λ̊, (Λ̊, . . .)β

)
β

)
β

= 0 when Λ = 0. We apply this to the superspace expansions

given in (E.5) and learn that the transformation amounts to the shifts:

ÅI 7→ ÅI


G

T
7→G

T
−Λψ,

G
T
7→G

T
−Λψ,

B
T
7→B

T
−Λ̃+ 1

2(Λψ,GT
)β− 1

2(Λψ,GT
)β

 with


Åa

λa
λ̄a
Fa

&


φ

T

η
T

φ0
T

η
T

φ
T

 fixed.

(E.8)

As before, the super-gauge transformed ÅI can be obtained by absorbing the gauge trans-

formation into shifts of {G
T
, G

T
, B

T
} appearing in the superfield expansion of ÅI . Note that

these shifts match with the shifts found in the adjoint superfield discussion (appendix D),

thus ensuring the consistency of our framework. The basic vector quartet and Vafa-Witten

quintet fields do not transform under these FP boosts.

As in the case of adjoint superfield, one can pass to Wess-Zumino gauge via

(ÅI)WZ ≡ ÅI + (ΛFP , ÅI)β − ∂IΛFP +
1

2!

(
ΛFP , (ΛFP , ÅI)β − ∂IΛFP

)
β

+
1

3!

(
ΛFP ,

(
ΛFP , (ΛFP , ÅI)β − ∂IΛFP

)
β

)
β

(E.9)

with Λ̊FP given in (D.11) such that we get {G
T
, G

T
, B

T
}WZ = 0. In such a gauge, the

superspace expansion again simplifies and we obtain

(Åa)WZ ≡ Åa + θ̄ λa + θ λ̄a + θ̄θ Fa ,
(Aθ̄)WZ ≡ θ̄ φT

− θ̄θ η
T
,

(Aθ)WZ ≡ θ̄ φT
+ θ̄ φ0

T
+ θ̄θ η

T
.

(E.10)

In the Wess-Zumino gauge, FP rotations act on Åa as

Åa 7→ Åa+(Λ,Åa)β−∂aΛ+
1

2!

(
Λ,(Λ,Åa)β−∂aΛ

)
β

+
1

3!

(
Λ,
(

Λ,(Λ,Åa)β−∂aΛ
)
β

)
β

+. . .

(E.11)

The fields {λa, λ̄a,Fa} and the Vafa-Witten quintet are U(1)T adjoint superfields which

transform via the series we encountered before, viz.,

α 7→ α+ (Λ, α)β +
1

2!
(Λ, (Λ, α)β)β +

1

3!

(
Λ, (Λ, (Λ, α)β)β

)
β

+ . . . (E.12)

The fields {G
T
, G

T
, B

T
}WZ do not transform under FP rotations and remain zero.

E.3 Super field strengths

For the rest of this section, we will conveniently work in WZ gauge. Also, we will focus on

component vectors of covariant superfields, such that transformations are simple.
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We repeat for convenience the definitions of the covariant field strengths and of the

non-covariant combination that defines BT:

(1 + δIJ) F̊IJ ≡ ∂IÅJ − (−)IJ∂JÅI + (ÅI , ÅJ)β ,

B̊θθ̄ ≡ ∂θAθ̄ +
1

2
(Aθ,Aθ̄)β ,

(E.13)

and remind the reader that indices I, J take values in {a, θ, θ̄}. Note that under an exchange

of θ and θ̄, we have B̊θθ̄ 7→ F̊θθ̄ − B̊θθ̄.

The individual components of the above superfields can be simply summarized as

column vectors:

F̊ab :


F̊ab

Daλb −Dbλa
Daλ̄b −Dbλ̄a

DaFb −DbFa + (λa, λ̄b)β − (λ̄a, λb)β

 (E.14a)

F̊θ̄a :


λa

−DaφT

Fa
DaηT + (φ

T
, λ̄a)β

 , F̊θa :


λ̄a

−Daφ
0
T
−Fa

−DaφT

(φ0
T
, λ̄a)β −DaηT

− (φ
T
, λa)β

 (E.14b)

F̊θ̄θ̄ :


φ

T

0

−η
T

0

 , F̊θθ̄ :


φ0

T

η
T

η
T

(φ
T
, φ

T
)β

 , F̊θθ :


φ

T

−η
T

0

(φ0
T
, φ

T
)β

 (E.14c)

These expressions can be worked out in a similar fashion as described for the gauge field

components in the last subsection. See also table 3 for a summary of the same.

E.4 Covariant derivatives and Bianchi identities

We now turn to the derivatives of ÅI which give the super field strengths. The super field

strengths and their super-covariant derivatives transform as U(1)T adjoint superfields and

the discussion of appendix D applies to them without any changes. Thus, we will just

quote the basic components that make up the relevant superfields and refer the reader

to the previous subsection for details about superspace expansion, gauge transformation,

going to the Wess-Zumino gauge etc.

We then define covariant derivatives of these field strengths in the same way as we did

for adjoint superfields:

D̊I F̊JK ≡ ∂I F̊JK + (ÅI , F̊JK)β . (E.15)

These covariant derivatives are not all independent as they must satisfy Bianchi identities

which take the form

(−)KI(1 + δJK)D̊I F̊JK + (−)IJ(1 + δKI)D̊J F̊KI + (−)JK(1 + δIJ)D̊KF̊IJ = 0 . (E.16)
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We can also write these identities component-wise:

D̊cF̊ab + D̊aF̊bc + D̊bF̊ca = 0 = D̊θF̊θ̄a + D̊θ̄F̊θa + D̊aF̊θθ̄
D̊θ̄F̊ab −

(
D̊aF̊θ̄b − D̊bF̊θ̄a

)
= 0 = D̊θF̊ab −

(
D̊aF̊θb − D̊bF̊θa

)
D̊θ̄F̊θ̄a + D̊aF̊θ̄θ̄ = 0 = D̊θF̊θa + D̊aF̊θθ ,
D̊θ̄F̊θθ̄ + D̊θF̊θ̄θ̄ = 0 = D̊θF̊θθ̄ + D̊θ̄F̊θθ ,

D̊θ̄F̊θ̄θ̄ = 0 = D̊θF̊θθ .

(E.17)

If the non-covariant field B̊θθ̄ is involved, we find that there are also identities of the form

∂θB̊θθ̄ +
1

2
(Aθ, B̊θθ̄ +

1

2
(Aθ,Aθ̄)β)β +

1

2
(Aθ̄, F̊θθ)β = 0 ,

∂θ̄(F̊θθ̄ − B̊θθ̄) +
1

2
(Aθ̄, F̊θθ̄ − B̊θθ̄ +

1

2
(Aθ,Aθ̄)β)β +

1

2
(Aθ, F̊θ̄θ̄)β = 0 ,

(E.18)

satisfied by derivatives of B̊θθ̄. The second identity can equivalently be written as

D̊θ̄F̊θθ̄ = ∂θ̄B̊θθ̄ +
1

2
(Aθ̄, F̊θθ̄ + B̊θθ̄ −

1

2
(Aθ,Aθ̄)β)β −

1

2
(Aθ, F̊θ̄θ̄)β . (E.19)

It will be convenient to write simple component maps for these operations. Using the

fact that field strengths transform as adjoint superfields, their derivative components follow

immediately from eqs. (D.14a), (D.14b), (D.14c):

D̊θF̊θ̄a :


Fa

(φ0
T
, λa)β −DaηT − (φ

T
, λ̄a)β

(φ
T
, λa)β

(φ0
T
,Fa)β + (φ

T
, DaφT

)β + (η
T
, λa)β

 , (E.20a)

D̊θ̄F̊θθ̄ = −D̊θF̊θ̄θ̄ :


η
T

(φ
T
, φ0

T
)β

(φ
T
, φ

T
)β

(φ
T
, η

T
)β − (η

T
, φ0

T
)β

 (E.20b)

D̊θF̊θθ̄ = −D̊θ̄F̊θθ :


η
T

−(φ
T
, φ

T
)β

(φ
T
, φ0

T
)β

−(φ
T
, η)β

 (E.20c)

D̊θ̄F̊θa :


−Daφ

0
T
−Fa

(φ
T
, λ̄a)β

(φ0
T
, λ̄a)β −DaηT

− (φ
T
, λa)β

−(φ
T
, DaφT

)β − (η
T
, λ̄a)β

 . (E.20d)

These derivatives satisfy the super Bianchi identities enumerated in (E.17). Further U(1)T
super-covariant derivatives and identities can all be read off as such from our discussion

for a general U(1)T adjoint superfield.
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E.5 Double covariant derivatives of super field strengths

We can proceed further and define additional covariant derivatives of the covariant field

strengths via D̊ID̊J F̊KL ≡ ∂I(D̊J F̊KL) + (ÅI , D̊J F̊KL)β. The double covariant derivatives

in Grassmann directions can be worked out explicitly by using

D̊ID̊J F̊KL − (−)IJD̊JD̊I F̊KL = (1 + δIJ)(F̊IJ , F̊KL)β . (E.21)

Let us evaluate these relations again explicitly for future reference. First, consider the

derivatives on F̊θθ, F̊θ̄θ̄ and F̊θθ̄:

D̊2
θ F̊θθ = 0 = D̊2

θ̄ F̊θθ − (F̊θ̄θ̄, F̊θθ)β

D̊θ̄D̊θF̊θθ = 0 = D̊θD̊θ̄F̊θθ − (F̊θθ̄, F̊θθ)β

D̊2
θ F̊θ̄θ̄ − (F̊θθ, F̊θ̄θ̄)β = 0 = D̊2

θ̄ F̊θ̄θ̄

D̊θ̄D̊θF̊θ̄θ̄ − (F̊θθ̄, F̊θ̄θ̄)β = 0 = D̊θD̊θ̄F̊θ̄θ̄
D̊2
θ F̊θθ̄ − (F̊θθ, F̊θθ̄)β = 0 = D̊2

θ̄ F̊θθ̄ − (F̊θ̄θ̄, F̊θθ̄)β

D̊θ̄D̊θF̊θθ̄ − (F̊θθ, F̊θ̄θ̄)β = 0 = D̊θD̊θ̄F̊θθ̄ − (F̊θ̄θ̄, F̊θθ)β .

(E.22)

Similarly, the double derivative acting on F̊θa and F̊θ̄a result in

D̊2
θ F̊θa − (F̊θθ, F̊θa)β = 0 = D̊2

θ̄ F̊θa − (F̊θ̄θ̄, F̊θa)β

D̊θ̄D̊θF̊θa = D̊aD̊θF̊θθ̄ + (F̊θθ, F̊θ̄a)β = −D̊θD̊θ̄F̊θa + (F̊θθ̄, F̊θa)β

D̊2
θ F̊θ̄a − (F̊θθ, F̊θ̄a)β = 0 = D̊2

θ̄ F̊θ̄a − (F̊θ̄θ̄, F̊θ̄a)β

−D̊θ̄D̊θF̊θ̄a + (F̊θθ̄, F̊θ̄a)β = D̊θD̊θ̄F̊θ̄a = D̊aD̊θ̄F̊θθ̄ + (F̊θ̄θ̄, F̊θa)β ,

(E.23)

and the double derivative acting on F̊ab evaluates to

D̊2
θ F̊ab − (F̊θθ, F̊ab)β = 0 = D̊2

θ̄ F̊ab − (F̊θ̄θ̄, F̊ab)β

−D̊θ̄D̊θF̊ab + (F̊θ̄θ̄, F̊ab)β = D̊θD̊θ̄F̊ab = D̊aD̊θF̊θ̄b + (F̊θa, F̊θ̄b)β .− (a↔ b)
(E.24)

To get the corresponding component vectors, we can again use the adjoint maps (D.14a),

(D.14b), (D.14c). This yields for example:

D̊2
θ F̊θ̄a :


(φ

T
, λa)β

−(φ
T
, DaφT

)β − (η
T
, λa)β

(φ
T
,Fa)β

((φ0
T
, φ

T
)β, λa)β + (φ

T
, DaηT + (φ

T
, λ̄a)β)β + (η

T
,Fa)β

 . (E.25)

F Properties of the U(1)T KMS gauge group

In this appendix we collect results of various investigations undertaken to understand the

structure of the U(1)T gauge group. Since U(1)T describes thermal diffeomorphisms, we

expect a very close relation to the representation theory of Diff(S1).

The discussion below is in two distinct parts. In section F.1 we argue that despite

the intricate structure of the U(1)T algebra and the connection to diffeomorphisms, one
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can follow the usual logic behind the Baker-Campbell-Hausdorff formula, which eventually

allows us to compose U(1)T transformations. In section F.2 we then describe our attempts

to understand the general representations of the U(1)T algebra and demonstrate some

connections to usual ideas in deformation quantization. As we will see, there are various

suggestive connections, though we should add that we have not fully appreciated all the

details here. We include this as part of our discussion mainly for completeness (and hope

that it may prove useful for others undertaking related investigations).

F.1 Composing U(1)T transformations

The aim of this section is to give a Baker-Campbell-Hausdorff formula for U(1)T trans-

formations acting on adjoint superfields. We begin with the U(1)T transformation on the

adjoint superfield:

F̊ 7→ F̊ + (Λ̊, F̊)β +
1

2!

(
Λ̊, (Λ̊, F̊)β

)
β

+
1

3!

(
Λ̊,
(

Λ̊, (Λ̊, F̊)β

)
β

)
β

+ . . .

≡ exp
(
adΛ̊

)
· F̊ ,

(F.1)

where we have defined adΛ̊ as an operator which acts via thermal bracket: adΛ̊ ·F̊ ≡ (Λ̊, F̊)β.

Jacobi identity then gives the commutation relation

adΛ̊ · adΛ̊′ − adΛ̊′ · adΛ̊ = ad(Λ̊,Λ̊′)β
= adadΛ̊·Λ̊′

. (F.2)

We have taken both Λ̊ and Λ̊′ to be Grassmann even in the above expression.

Say we perform a U(1)T transformation with a parameter Λ̊(2) followed by a U(1)T
transformation with a parameter Λ̊(1). The question we want to address is the following:

can the result be written as a U(1)T transformation along a parameter Λ̊(1⊕2)? That is,

we want a Λ̊(1⊕2) satisfying

exp
(
adΛ̊(1)

)
· exp

(
adΛ̊(2)

)
· F̊ = exp

(
adΛ̊(1⊕2)

)
· F̊ . (F.3)

We will answer this question in affirmative and derive a Baker-Campbell-Hausdorff

(BCH) formula for Λ̊(1⊕2) which takes the form

Λ̊(1⊕2) = Λ̊(1) + Λ̊(2) +
1

2
(Λ̊(1), Λ̊(2))β +

1

12

(
Λ̊(1) − Λ̊(2), (Λ̊(1), Λ̊(2))β

)
β

− 1

24

(
Λ̊(2), (Λ̊(1), (Λ̊(1), Λ̊(2))β)β

)
β

+ . . .

(F.4)

We have checked this form explicitly in Mathematica to the order shown.

We will now give a derivation of this expression. The derivation here adopts the

standard derivation of BCH formula for Lie algebra commutators for the thermal brackets,

sidestepping some of the manipulations in the standard Lie algebra proof that have no

analogues in thermal brackets. We will begin with the following theorem.
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Theorem 1. The following identities hold:

exp
(
adΛ̊

)
· exp

(
−adΛ̊

)
· F̊ = F̊ ,

exp
(
adΛ̊

)
· adΛ̊′ · exp

(
−adΛ̊

)
· F̊ = adexp(adΛ̊)·Λ̊′ · F̊ ,

exp
(
−adΛ̊(t)

)
· d
dt

exp
(

adΛ̊(t)

)
· F̊ = ad 1−exp

(
−ad

Λ̊(t)

)
ad

Λ̊(t)

· d
dt

Λ̊(t)

· F̊.
(F.5)

In the last identity, Λ̊(t) denotes a parameterized set of adjoint superfields.

Proof. The main elements of the proofs will be to use the definition of the adjoint action,

commutation relations and certain simple identities.

1. A direct expansion of l.h.s. in the first identity gives

exp
(
adΛ̊

)
· exp

(
−adΛ̊

)
· F̊ =

∞∑
p,q=0

(−)q

p!q!

(
adΛ̊

)p+q · F̊
= F̊ .

(F.6)

Here we have used identity
∑∞

p,q=0
(−)qxp+q

p! q! = 1. It is straightforward to generalize this to

exp
(
τ1 adΛ̊

)
· exp

(
τ2 adΛ̊

)
· F̊ = exp

(
(τ1 + τ2) adΛ̊

)
· F̊ . (F.7)

2. Next we turn to the second identity. We have

exp
(
adΛ̊

)
· adΛ̊′ · exp

(
−adΛ̊

)
· F̊ =

∞∑
p,q=0

(−)q

p! q!

(
adΛ̊

)p · adΛ̊′ ·
(
adΛ̊

)q
. (F.8)

Using the commutation relation for ad operators, adΛ̊ · adΛ̊′ = adΛ̊′ · adΛ̊ + adadΛ̊·Λ̊′
(re-

peatedly, we can show that

(
adΛ̊

)p · adΛ̊′ =

p∑
k=0

(
p

k

)
ad

(adΛ̊)
k·Λ̊′ ·

(
adΛ̊

)p−k
(F.9)

so that

exp
(
adΛ̊

)
· adΛ̊′ · exp

(
−adΛ̊

)
· F̊

=
∞∑

k,p,q=0

(−)q

k!(p− k)!q!
ad

(adΛ̊)
k·Λ̊′ ·

(
adΛ̊

)p−k+q · F̊

=

∞∑
k=0

1

k!
ad

(adΛ̊)
k·Λ̊′ ·

∞∑
p,q=0

(−)q

p!q!

(
adΛ̊

)p+q · F̊
= adexp(adΛ̊)·Λ̊′ · F̊ .

(F.10)
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3. To prove the third identity, we begin by examining

ˆ 1

0
dτ exp

(
(1− τ)adΛ̊(t)

)
· ad d

dt
Λ̊(t) · exp

(
τadΛ̊(t)

)
· F̊

=

ˆ 1

0
dτ

∞∑
p,q=0

(1− τ)pτ q

p!q!

(
adΛ̊(t)

)p
· ad d

dt
Λ̊(t) ·

(
adΛ̊(t)

)q
· F̊

=

∞∑
p,q=0

1

(p+ q + 1)!

(
adΛ̊(t)

)p
· ad d

dt
Λ̊(t) ·

(
adΛ̊(t)

)q
· F̊

=

∞∑
k=1

k−1∑
p=0

1

k!

(
adΛ̊(t)

)p
· ad d

dt
Λ̊(t) ·

(
adΛ̊(t)

)k−p−1
· F̊

=
d

dt

∞∑
k=1

1

k!

(
adΛ̊(t)

)k
· F̊ =

d

dt
exp

(
adΛ̊(t)

)
· F̊ .

(F.11)

Applying on both sides exp
(
−adΛ̊(t)

)
· and then using the second identity, we get

ˆ 1

0
dτ ad

exp
(
−τ adΛ̊(t)

)
· d
dt

Λ̊(t)
· F̊ = exp

(
−adΛ̊(t)

)
· d
dt

exp
(

adΛ̊(t)

)
· F̊ . (F.12)

Performing the τ integral then gives the required identity.

Using the above derived identities we will now show by an explicit construction that

there is a Λ̊(1⊕2)(t) satisfying

exp
(
t1 adΛ̊(1)

)
· exp

(
t2 adΛ̊(2)

)
· F̊ = exp

(
adΛ̊(1⊕2)(t)

)
· F̊ . (F.13)

Setting t1 = t2 = 1 would then give us the required BCH formula. We have

exp
(
−adΛ̊(1⊕2)(t)

)
· ∂
∂ti

exp
(

adΛ̊(1⊕2)(t)

)
· F̊ = ad 1−exp

(
−ad

Λ̊(1⊕2)(t)

)
ad

Λ̊(1⊕2)(t)

· ∂
∂ti

Λ̊(1⊕2)(t)

· F̊ .

(F.14)

A direct evaluation gives

∂

∂t1
Λ̊(1⊕2)(t) =

 adΛ̊(1⊕2)(t)

exp
(

adΛ̊(1⊕2)(t)

)
− 1

 · Λ̊(1)

∂

∂t2
Λ̊(1⊕2)(t) =

 adΛ̊(1⊕2)(t)

1− exp
(
−adΛ̊(1⊕2)(t)

)
 · Λ̊(2) .

(F.15)

These are the basic generating differential equations for BCH series. For example, setting

either t1 or t2 to unity and integrating, we can write down an integral version of the BCH
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formula as

Λ̊(1⊕2) = Λ̊(1) +

ˆ 1

0
dt2

 log
{

exp
(
adΛ̊(1)

)
· exp

(
t2 adΛ̊(2)

)}
1− exp

(
−t2 adΛ̊(2)

)
· exp

(
−adΛ̊(1)

)
 · Λ̊(2)

= Λ̊(2) +

ˆ 1

0
dt1

 log
{

exp
(
t1adΛ̊(1)

)
· exp

(
adΛ̊(2)

)}
exp

(
t1 adΛ̊(1)

)
· exp

(
adΛ̊(2)

)
− 1

 · Λ̊(1)

(F.16)

We can find more useful expressions for example by working in the limit when the initial

transformations are along infinitesimal parameters. For example if a linear approximation

in either Λ̊(1) or Λ̊(2) is required, we can directly use the differential equations in (F.15)

to write

Λ̊(1⊕2) = Λ̊(2) +

[
adΛ̊(2)

exp
(
adΛ̊(2)

)
− 1

]
· Λ̊(1) +O

(
Λ̊(1)

)2

= Λ̊(1) +

[
adΛ̊(1)

1− exp
(
−adΛ̊(1)

)] · Λ̊(2) +O
(

Λ̊(2)
)2

(F.17)

For our purposes, it is desirable to seek a quadratic approximation that would be exact

if either of Λ̊(k)’s turn to be a FP boost. This can be achieved by feeding the above linear

approximation back into (F.15). We get

Λ̊(1⊕2) = Λ̊(1) +

ˆ 1

0
dτ

 adΛ̊(1),Lin(τ)

1− exp
(
−adΛ̊(1),Lin(τ)

)
 · Λ̊(2) +O

(
Λ̊(2)

)3

with Λ̊(1),Lin(τ) ≡ Λ̊(1) + τ

[
adΛ̊(1)

1− exp
(
−adΛ̊(1)

)] · Λ̊(2)

(F.18)

and

Λ̊(1⊕2) = Λ̊(2) +

ˆ 1

0
dτ

 adΛ̊(2),Lin(τ)

exp
(

adΛ̊(2),Lin(τ)

)
− 1

 · Λ̊(1) +O
(

Λ̊(1)
)3

with Λ̊(2),Lin(τ) ≡ Λ̊(2) + τ

[
adΛ̊(2)

exp
(
adΛ̊(2)

)
− 1

]
· Λ̊(1)

(F.19)

We turn now to the case where both Λ̊(1) and Λ̊(2) are small and we want to organize

BCH formula in terms of the number of Λ̊(1) or Λ̊(2) that occurs in every term. This can

be done by setting t1 = t2 = τ such that

d

dτ
Λ̊(1⊕2)(τ) =

[
∂

∂t1
Λ̊(1⊕2)(t) +

∂

∂t2
Λ̊(1⊕2)(t)

]
t1=t2=τ

=

 adΛ̊(1⊕2)(τ)

exp
(

adΛ̊(1⊕2)(τ)

)
− 1

 · Λ̊(1) +

 adΛ̊(1⊕2)(τ)

1− exp
(
−adΛ̊(1⊕2)(τ)

)
 · Λ̊(2)

(F.20)
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Invoke now the expansions

z

exp(z)− 1
= 1− z

2
+
∞∑
k=1

B2k

(2k)!
z2k

z

1− exp(−z)
= 1 +

z

2
+
∞∑
k=1

B2k

(2k)!
z2k

(F.21)

where B2k are the (2k)th Bernoulli numbers.37 This then gives

d

dτ
Λ̊(1⊕2)(τ) = Λ̊(1) + Λ̊(2) − 1

2
adΛ̊(1⊕2)(τ) ·

(
Λ̊(1) − Λ̊(2)

)
+
∞∑
k=1

B2k

(2k)!

(
adΛ̊(1⊕2)(τ)

)2k
·
(

Λ̊(1) + Λ̊(2)
) (F.22)

The BCH formula is just the solution of this equation with the initial condition

Λ̊(1⊕2)(τ = 0) = 0. Setting Λ̊(1⊕2)(τ) =
∑∞

j=1 τ
jΛ

(1⊕2)
(S),j in the above expression and com-

paring the factors of τ j on either side, we get a recursion relation

(j + 1) Λ
(1⊕2)
(S),j+1 =

(
Λ̊(1) + Λ̊(2)

)
δj,0 −

1

2
ad

Λ
(1⊕2)
(S),j

·
(

Λ̊(1) − Λ̊(2)
)

+

2k≤j∑
k=1

∑
pi∈Z+

B2k

(2k)!
δj,
∑2k
i=1 pi

(
2k∏
i=1

ad
Λ

(1⊕2)
(S),pi

)
·
(

Λ̊(1) + Λ̊(2)
) (F.23)

which, when solved recursively, gives

Λ
(1⊕2)
(S),1 = Λ̊(1) + Λ̊(2)

Λ
(1⊕2)
(S),2 = −1

4
adΛ̊(1)+Λ̊(2) ·

(
Λ̊(1) − Λ̊(2)

)
=

1

2
(Λ̊(1), Λ̊(2))β

Λ
(1⊕2)
(S),3 = −1

6
ad 1

2
(Λ̊(1),Λ̊(2))β

·
(

Λ̊(1) − Λ̊(2)
)

+
B2

3× 2!

(
adΛ̊(1)+Λ̊(2)

)2
·
(

Λ̊(1) + Λ̊(2)
)

=
1

12

(
Λ̊(1) − Λ̊(2), (Λ̊(1), Λ̊(2))β

)
β

Λ
(1⊕2)
(S),4 = −1

8
ad 1

12(Λ̊(1)−Λ̊(2),(Λ̊(1),Λ̊(2))β)
β

·
(

Λ̊(1) − Λ̊(2)
)

+
B2

4× 2!
adΛ̊(1)+Λ̊(2) · ad 1

2
(Λ̊(1),Λ̊(2))β

·
(

Λ̊(1) + Λ̊(2)
)

=
1

24
× 1

4

(
Λ̊(1) − Λ̊(2),

(
Λ̊(1) − Λ̊(2), (Λ̊(1), Λ̊(2))β

)
β

)
β

− 1

24
× 1

4

(
Λ̊(1) + Λ̊(2),

(
Λ̊(1) + Λ̊(2), (Λ̊(1), Λ̊(2))β

)
β

)
β

= − 1

48

(
Λ̊(2), (Λ̊(1), (Λ̊(1), Λ̊(2))β)β

)
β
− 1

48

(
Λ̊(1), (Λ̊(2), (Λ̊(1), Λ̊(2))β)β

)
β

= − 1

24

(
Λ̊(2), (Λ̊(1), (Λ̊(1), Λ̊(2))β)β

)
β

(F.24)

Thus, we obtain the first few terms of BCH formula quoted in the beginning of this section.

37The first few Bernoulli numbers are B2 = 1
6
, B4 = − 1

30
, B6 = 1

42
,B8 = − 1

30
, and B10 = 5

66
.
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F.2 U(1)T representation theory

The basic action of U(1)T was explained at the level of the Lie algebra in appendix C. We

briefly comment now on some representations of this symmetry algebra.

We start by defining a tower of U(1)T representations which we call as k-adjoint rep-

resentations. A generic k-adjoint superfield φ̊(k) transforms as

(Λ̊, φ̊(k))β ≡ Λ̊ £β φ̊(k) − k φ̊(k)£βΛ̊ . (F.25)

We will refer to k as the adjoint weight. We will refer to fields transforming in the k-adjoint

representation as thermal primaries of level k.

Let us briefly mention some examples. Comparison with eq. (C.4) reveals that the

U(1)T gauge parameters are 1-adjoint as one would expect. Similarly, field strengths are

1-adjoint. The generic tensor superfields studied in (C.2) were 0-adjoint. Another 1-adjoint

field which plays an important role in the discussion is z̊ defined as

z̊ ≡ 1 + β̊IÅI . (F.26)

We remind the reader that this field enters into our measure owing to the U(1)T covariant

pullbacks employed. One can easily check that z̊ transforms covariantly in the 1-adjoint

representation.

The adjoint weight is additive in the sense that φ̊(k)φ̊(`) transforms in the (k+`)-adjoint

and U(1)T gauge transformations act distributively on such products:

(Λ̊, φ̊(k)φ̊(`))β = (Λ̊, φ̊(k))βφ̊(`) + (Λ̊, φ̊(`))βφ̊(k)

= Λ̊ £β

(
φ̊(k)φ̊(`)

)
− (k + `)φ̊(k)φ̊(`) £β Λ̊ .

(F.27)

We have written these expressions assuming that φ̊(k) and φ̊(`) are Grassmann-even super-

fields and thus refrained from writing various Grassmann parity induced signs in the above

expressions.

Properties of thermal bracket. We define the thermal bracket between k-adjoint and

`-adjoint fields as

(φ̊(k), φ̊(`))β ≡ k φ̊(k)£β φ̊(`) − ` φ̊(`)£β φ̊(k) . (F.28)

One can easily verify that (φ̊(k), φ̊(`))β transforms as a (k+`−1)-adjoint. This definition of

the thermal bracket satisfies the following three properties (which are the defining axioms

of a Poisson bracket):

(i) (φ̊(k), φ̊(`))β = −(φ̊(`), φ̊(k))β ,

(ii) (φ̊(k), (φ̊(`), φ̊(m))β)β + (φ̊(`), (φ̊(m), φ̊(k))β)β + (φ̊(m), (φ̊(k), φ̊(`))β)β = 0 ,

(iii) (φ̊(k), φ̊(`)φ̊(m))β = (φ̊(k), φ̊(`))β φ̊(m) + (φ̊(k), φ̊(m))β φ̊(`).

It is natural to define an operator wT, which gives the adjoint weight of any thermal

primary, i.e.,

wTφ̊(k) = k φ̊(k) . (F.29)
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In terms of this operator, the formal similarity between thermal bracket and a Poisson

bracket can be made more manifest:

(φ̊(k), φ̊(`))β =
(
wTφ̊(k)

)(
£βφ̊(`)

)
−
(

£βφ̊(k)

)(
wTφ̊(`)

)
. (F.30)

Let us now consider covariant derivatives on k-adjoint fields. We define the U(1)T
covariant derivative in the k-adjoint representation as

D̊I φ̊(k) ≡ ∂I φ̊(k) + (ÅI , φ̊(k))β , (F.31)

where ÅI can be viewed as a 1-adjoint for the purpose of defining the bracket on the

right hand side according to the general definition (F.28). The U(1)T covariant derivative

respects the adjoint weight, for D̊I φ̊(k) is again a k-adjoint, and it furthermore distributes

over both the thermal bracket and usual products:

D̊I(φ̊(k), φ̊(`))β = (DI φ̊(k), φ̊(`))β + (φ̊(k), D̊I φ̊(`))β ,

D̊I(φ̊(k)φ̊(`)) = φ̊(`)D̊I φ̊(k) + φ̊(k)D̊I φ̊(`) .
(F.32)

Thermal descendants. Given a k-adjoint field φ̊(k), we would like to understand the

properties of £βφ̊(k). Let us try to figure out the induced action of wT on £βφ̊(k) by

computing the following object in two ways:

wT(φ̊(k), φ̊(`))β =wT

[
kφ̊(k) £β φ̊(`)−`φ̊(`) £β φ̊(k)

]
= k2φ̊(k) £β φ̊(`)−`2φ̊(`) £β φ̊(k)+kφ̊(k)wT£β φ̊(`)−`φ̊(`)wT£β φ̊(k) ,

wT(φ̊(k), φ̊(`))β = (k+`−1)(φ̊(k), φ̊(`))β

= k2φ̊(k) £β φ̊(`)−`2φ̊(`) £β φ̊(k)+k(`−1)φ̊(k) £β φ̊(`)−`(k−1)φ̊(`) £β φ̊(k) .

(F.33)

By comparison of these two expressions, we conclude that the following should hold:

wT£β φ̊(k) = (k − 1)£β φ̊k + αk φ̊(k) , (F.34)

where α is some undetermined object (which must be independent of k). It appears tempt-

ing to fix α = 0, but we have not managed to convince ourselves that this is the only

possibility (eg., adjoint weight counting would also allow for the possibility of α = z̊−1).

We leave this a curious observation that should be better understood.

Deformation quantization. For amusement, let us try to quantize the thermal bracket.

We first write the thermal bracket in suggestive notation as follows:

(φ̊(k), φ̊(`))β = φ̊(k)

(←−
wT

−→
£β −

←−
£β
−→
wT

)
φ̊(`) . (F.35)

Next, we introduce a star product:

φ̊(k) ? φ̊(`) ≡ φ̊(k) exp

[
i~
2

(←−
wT

−→
£β −

←−
£β
−→
wT

)]
φ̊(`) (F.36)
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This allows us to define the following deformation of the thermal bracket:

(φ̊(k), φ̊(`))
?
β ≡

1

i~

(
φ̊(k) ? φ̊(`) − φ̊(`) ? φ̊(k)

)
≡ 2

~
φ̊(k) sin

[
~
2

(←−
wT

−→
£β −

←−
£β
−→
wT

)]
φ̊(`)

= (φ̊(k), φ̊(`))β −
1

3!

(
~
2

)2

φ̊(k)

(←−
wT

−→
£β −

←−
£β
−→
wT

)3
φ̊(`) +O(~5) .

(F.37)

By associativity of the star product, this deformed bracket continues to satisfy the Jacobi

identity.

It is interesting to speculate that this deformed thermal bracket plays a role in the

thermal equivariant algebra at finite temperatures β ∼ ~ (recall from section 2 that we

primarily focus on the high temperature limit). This idea has been previously considered

in the deformation quantization literature, see for eg., [76] and subsequent developments

in [77, 78].
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Part IV

Hydrodynamic sigma models:

mathematical details

G Superspace representations: position multiplet

As we saw before, the U(1)T gauge theory naturally comes with a U(1)T gauge field quartet,

a Faddeev-Popov ghost triplet, and a gauge parameter quintet. We will now formulate the

gauged sigma-model of a Brownian brane. This requires introducing a position multiplet

consisting of an embedding coordinate of the brane in the target space and its completion

into a superfield.

G.1 Basic definitions

As indicated in the main text we should upgrade physical spacetime to a super-geometry

with Grassmann odd coordinates Θ, Θ̄. We collect these together with the position super-

field into

X µ̆ = {Xµ,Θ, Θ̄} .
We will take the spacetime to be endowed with a (non-dynamical) metric gµ̆ν̆(X ρ̆) and

a Christoffel connection Γµ̆ν̆ρ̆(X) with a curvature Rµ̆ν̆ρ̆λ̆(X). We will furthermore fix a-

priori some metric components. Our choice is described in the main text (3.3) which we

reproduce here for convenience:

gµΘ = gµΘ̄ = 0 , gΘΘ̄ = −gΘ̄Θ = i , gµν = gµν(Xρ) . (G.1)

This is a canonical choice in the literature on supermanifolds [61]. The target space

super-connection ∇µ̆ is simply derived from the usual Christoffel symbol (upgraded to

superspace).

In hydrodynamics, we think of the physical spacetime as the target space of the Brow-

nian brane parameterized by a worldvolume spacetime with coordinates σa. The thermal

supergeometry structure discussed earlier implies that we should upgrade the Brownian

particle worldvolume to a superspace with super-coordinates zI = {σa, θ, θ̄} such that

X µ̆ = X µ̆(zI). Note that the Brownian brane preserves the full twisted supersymmetry

of the target space. This is in contrast to usual supersymmetry where at least half the

supersymmetries are broken by the worldline. This is also related to the fact that there

are no additional goldstino-like Grassmann odd modes living on the Brownian brane.

Let us work in RNS formalism where we ignore the target space twisted supersymmetry

along with {Θ, Θ̄} and focus only on worldvolume supersymmetry and superspace. Equiva-

lently, we can make the super-static gauge choice (3.7), viz., {Θ(σa, θ, θ̄)=θ, Θ̄(σa, θ, θ̄)= θ̄},
thus aligning the target space Grassmann odd directions to the Grassmann odd directions

in the world-volume. We will work out the implications of this super-static gauge choice

in appendix I. With this assumption, pullbacks along Θ’s are trivial. We can then develop

an RNS formalism involving just the worldvolume twisted superspace.
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For readers familiar with string theory, some clarifying comments are in order. In usual

perturbative string theory in RNS formalism, target space supersymmetry is eventually

restored by a series of tricks on the worldsheet: doing a GSO projection, constructing spin-

fields, picture-changing, summing over spin structures etc. The corresponding procedure

in D-branes (or for that matter, any RR background) is however unknown. D-branes are

usually dealt with by taking target space supersymmetry seriously from the beginning and

shifting to Green-Schwarz (GS) formalism instead. For strings, GS formalism brings its

own problems: it obscures worldsheet supersymmetry (or more precisely, it buries it into

κ-symmetry) and in turn, target space Lorentz invariance which then needs to be dealt

with by either passing to light-cone or pure-spinor gauge. It is unclear, as of now, how these

issues translate to the twisted sigma-models we are interested in. We will just plough ahead

and work with Brownian branes in RNS formalism hoping that the usual obstructions are

alleviated when considering twisted supersymmetry.

Target space tensors can viewed as worldvolume superfields once we have the super-

embedding X̊uA. The bottom components of these tensors when are projected to {θ = 0,

θ̄ = 0} subspace will be the basic target tensor superfield. To simplify notation we will

routinely drop their arguments, for example we write, gµν ≡ gµν(X)| = gµν(X|) and

similarly for any other target super-tensor field.

In general, we define the Lie derivative along the thermal super-vector, β̊ as

£βT̊
µ̆···

ρ̆··· ≡ β̊I∂I
(
T̊ µ̆···ρ̆···

)
(G.2)

for T̊ µ̆···ρ̆··· being any partially pulled back tensor superfield which is not in U(1)T adjoint.

The superspace Lie derivative is the standard one defined in [61]. We define the U(1)T
super-covariant derivative of the sigma-model position superfield X̊ µ̆ via

D̊IX̊ µ̆ ≡ ∂IX̊ µ̆ + (ÅI , X̊
µ̆)β = ∂IX̊

µ̆ + ÅI β̊
J∂JX̊

µ̆ . (G.3)

An advantage of the super-static gauge choice (3.7) together with the gauge-fixing of the

thermal super-vector (2.5) is that D̊θΘ = D̊θ̄Θ̄ = 1 and all other derivatives of the target

space Grassmann coordinates vanish. As a result for the most part we can simplify the

discussion to focus only target space tensors with only ordinary space components.

On a general partially pulled back target space tensor superfield T̊ µ̆···ρ̆··· the fully

covariant derivative will be defined as38

D̊I T̊ µ̆···ρ̆··· ≡ ∂I T̊ µ̆···ρ̆··· + Γµ̆ν̆λ̆(X̊) D̊IX̊ λ̆ T̊ ν̆···ρ̆··· + . . .

− Γν̆ ρ̆λ̆(X̊) D̊IX̊ λ̆ T̊ µ̆···ν̆··· + . . .+ (ÅI , T̊
µ̆···

ρ̆···)β

= d̊I T̊
µ̆···

ρ̆··· + (ÅI , T̊
µ̆···

ρ̆···)β ,

(G.4)

where target space connection terms are absorbed into the partial pullback derivative:

d̊I T̊
µ̆···

ρ̆···≡ ∂I T̊ µ̆···ρ̆···+Γµ̆ν̆λ̆(X̊) ∂IX̊
λ̆ T̊ ν̆···ρ̆···+. . .−Γν̆ ρ̆λ̆(X̊) ∂IX̊

λ̆ T̊ µ̆···ν̆···+. . . (G.5)

38There are various signs to keep track of in actual computations since we have now Grassmann indices

in both target spacetime and the worldvolume. We will refrain from writing these down explicitly unless

absolutely necessary.
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Furthermore, the thermal bracket (· , ·)β is defined on any tensors other than X̊ µ̆ by

(Λ̊, T̊ µ̆···ρ̆···)β ≡ Λ̊ β̊I d̊I T̊
µ̆···

ρ̆··· (G.6)

for Λ̊ in the adjoint of U(1)T the tensor T̊ µ̆···ρ̆···(X̊) is partially pulled back tensor superfield

which is not in the adjoint of U(1)T.

Note that the bracket ( · , ·)β defined with covariant derivatives as in (G.5) still satisfies

a Jacobi identity, despite involving a covariant derivative. That is, for super tensor fields

Å, B̊, C̊ all in the adjoint of U(1)T we have the thermal bracket (leaving Grassmann index

and contraction signs implicit):

(Åµ̆···ρ̆··· , B̊
ν̆···
λ̆···)β ≡ Å

µ̆···
ρ̆···

(
β̊J d̊J B̊

ν̆···
λ̆···

)
− (−)AB B̊ν̆···

λ̆···

(
β̊J d̊J Å

µ̆···
ρ̆···

)
, (G.7)

which implies:

(−)AC (Åµ̆1···
µ̆2···, (B̊ν̆1···

ν̆2··· , C̊
ρ̆1···
ρ̆2··· )β)β + (−)CB (C̊ ρ̆1···

ρ̆2··· , (Åµ̆1···
µ̆2···, B̊

ν̆1···
ν̆2···)β)β

+ (−)BA (B̊ν̆1···
ν̆2··· , (C̊ ρ̆1···

ρ̆2··· , Å
µ̆1···
µ̆2···)β)β = 0 .

(G.8)

It is useful to note that adding the Γµ̆ν̆ρ̆(X̊) terms in the definition of D̊I makes D̊I
target-space metric compatible, viz.,

D̊Igµ̆ν̆(X̊) ≡ ∂Igµ̆ν̆(X̊) + ÅI β̊
J∂Jgµ̆ν̆(X̊)

− gµ̆ρ̆(X̊) Γρ̆ν̆λ̆(X̊) D̊IX̊ λ̆ − gρ̆ν̆(X̊) Γρ̆µ̆λ̆(X̊) D̊IX̊ λ̆

= D̊IX̊ λ̆
{
∇λ̆gµ̆ν̆(X̊)

}
= 0

(G.9)

where we used target space metric-compatibility of ∇λ̆ in the last step. In fact, on any tar-

get space tensor we observe that D̊I acts via (D̊IX̊ ν̆)∇ν̆ , where∇ is the conventional, metric

compatible, covariant derivative on the target space. By similar reasoning we also find:

d̊Igµ̆ν̆(X̊) = dIX̊
λ̆
(
∇λ̆gµ̆ν̆(X̊)

)
= 0 . (G.10)

G.2 Component fields the WZ gauge

We now turn to the component fields of X̊ µ̆. Working in super-static gauge has the advan-

tage that the Grassmann coordinates have simple expansions given in (3.7). So one only

needs to worry about the superspace expansion of X̊µ. They are covariantly defined via

Xµ ≡ X̊µ| , Xµ

ψ
≡ D̊θX̊µ| , Xµ

ψ ≡ D̊θ̄X̊µ| , X̃µ ≡ D̊θD̊θ̄X̊µ| . (G.11)

The superspace expansion of these identities reads

X̊µ = Xµ + θ̄
{
Xµ
ψ −GT

β.∂Xµ
}

+ θ
{
Xµ

ψ
−G

T
β.∂Xµ

}
+ θ̄θ

{
X̃µ − ΓµνλX

ν
ψ
Xλ
ψ +G

T
β.∂(Xµ

ψ
−G

T
β.∂Xµ)−G

T
β.∂(Xµ

ψ −GT
β.∂Xµ)

−B
T
β.∂Xµ −G

T
G

T
β.∂(β.∂Xµ)

}
(G.12)
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We note that these expressions are written for simplicity after imposing the gauge condi-

tion (2.5) on the thermal super-vector β̊I and hence, β.∂ ≡ βa∂a here and below.

The super-gauge transformation on the position superfield is given by

X̊µ 7→ X̊µ + £Λ̊βX̊
µ +

1

2!
£Λ̊β£Λ̊βX̊

µ +
1

3!
£Λ̊β £Λ̊β£Λ̊βX̊

µ + . . . (G.13)

where the Lie-derivative acts via £Λ̊βX̊
µ ≡ βa∂aX̊µ. This series truncates when Λ̊ is a FP

boost:

X̊µ 7→ X̊µ + £Λ̊βX̊
µ +

1

2!
£Λ̊β£Λ̊βX̊

µ. (G.14)

This works out to

X̊µ 7→ X̊µ


G

T
7→G

T
−Λψ,

G
T
7→G

T
−Λψ,

B
T
7→B

T
−Λ̃+ 1

2(Λψ,GT
)β− 1

2(Λψ,GT
)β

 with


Xµ

Xµ
ψ

Xµ

ψ

X̃µ

 fixed. (G.15)

Thus, FP boosts shift only the FP triplets as expected. In particular, in WZ gauge, we have

(X̊µ)WZ ≡ Xµ + θ̄ Xµ
ψ + θ Xµ

ψ
+ θ̄θ

(
X̃µ − ΓµνλX

ν
ψ
Xλ
ψ

)
(G.16)

When we discuss the target space symmetries we will see that the Christoffel connection

piece is induced in the top-component for reasons of spacetime covariance under the partial

pullback; see the end of appendix I.

G.3 Covariant derivatives and Bianchi identities

The superfields D̊IX̊µ and its further derivatives transform as target space vector and our

previous discussion of such fields can directly be used to give their superspace expansion,

gauge transformation etc. The only required data is the basic quartet of components which

make up the target space vector superfield under question. We give below the building

components for D̊IX̊µ:

D̊aX̊µ :


DaX

µ

DaX
µ
ψ + (λa, X

µ)β

DaXψ
µ + (λ̄a, X

µ)β

DaX̃
µ + (Fa, Xµ)β + (λ̄a, X

µ
ψ)β − (λa, X

µ

ψ
)β +RµνασX

α
ψ

(DaX
σ)Xν

ψ

 ,

(G.17a)

D̊θ̄X̊µ :


Xµ
ψ

(φ
T
, Xµ)β
X̃µ

(φ
T
, Xµ

ψ
)β − (η

T
, Xµ)β

 , (G.17b)

D̊θX̊µ :


Xµ

ψ

(φ0
T
, Xµ)β − X̃µ

(φ
T
, Xµ)β

(φ0
T
, Xµ

ψ
)β +RµνασX

α
ψ
Xσ
ψXψ

ν − (φ
T
, Xµ

ψ)β + (η
T
, Xµ)β

 . (G.17c)
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Further super-covariant derivatives of target space vector superfields D̊IX̊µ give vector

superfields. Using (G.4), we thus define the double covariant derivative on the position

superfield via

D̊ID̊JX̊µ ≡ ∂I(D̊JX̊µ) + (ÅI , D̊JX̊µ)β + Γµνα(X̊) (∂IX̊
α)(D̊JX̊ν) . (G.18)

These derivatives can then be computed directly, and we have for example

D̊θD̊θ̄X̊µ :



X̃µ

(φ0
T
,Xµ

ψ)β+RµνασX
α
ψ
Xσ
ψX

ν
ψ−(φ

T
,Xµ

ψ
)β+(η

T
,Xµ)β

(φ
T
,Xµ

ψ)β+ 1
2R

µ
νασX

α
ψ
Xσ
ψ
Xν
ψ

(φ0
T
, X̃µ)β+RµνασX

α
ψ
Xσ
ψX̃

ν−(φ
T
,(φ

T
,Xµ)β)β− 1

2R
µ
νασX

α
ψ
Xσ
ψ

(φ
T
,Xν)β+(η

T
,Xµ

ψ)β

+
[
(Xψ.∇Rµνασ)Xα

ψ
Xσ
ψ−RµνασXα

ψ (φ
T
,Xσ)β+RµνασX

α
ψ

(
(φ0

T
,Xσ)β−X̃σ

)]
Xν
ψ


(G.19a)

D̊θ̄D̊θX̊µ :



(φ0
T
,Xµ)β−X̃µ

(φ
T
,Xµ

ψ
)β+ 1

2R
µ
νασX

α
ψX

σ
ψX

ν
ψ

(φ0
T
,Xµ

ψ
)β+RµνασX

α
ψ
Xσ
ψX

ν
ψ
−(φ

T
,Xµ

ψ)β+(η
T
,Xµ)β

(φ
T
,(φ

T
,Xµ)β)β+ 1

2R
µ
νασX

α
ψX

σ
ψ(φ

T
,Xν)β−(η

T
,Xµ

ψ
)β

−
[
(Xψ.∇Rµνασ)Xα

ψ
Xσ
ψ−RµνασXα

ψ
(φ

T
,Xσ)β+RµνασX

α
ψX̃

σ
]
Xν
ψ


(G.19b)

These double super-covariant derivatives obey the commutation relations

D̊ID̊JX̊µ − (−)IJD̊JD̊IX̊µ = (1 + δIJ)(F̊IJ , X̊
µ)β (G.20)

or more explicitly

D̊2
θX̊

µ − (F̊θθ, X̊
µ)β = 0 = D̊2

θ̄X̊
µ − (F̊θ̄θ̄, X̊

µ)β

D̊θ̄D̊θX̊µ + D̊θD̊θ̄X̊µ = (F̊θθ̄, X̊
µ)β

D̊θ̄D̊aX̊µ − D̊aD̊θ̄X̊µ = (F̊θ̄a, X̊
µ)β

D̊θD̊aX̊µ − D̊aD̊θX̊µ = (F̊θa, X̊
µ)β

(G.21)

Also the triple covariant derivative on the position superfield is defined via (G.4). This

immediately yields the identity

D̊ID̊JD̊KX̊µ − (−)IJD̊JD̊ID̊KX̊µ

= (1 + δIJ)(F̊IJ , D̊KX̊µ)β +Rµναβ(X̊) (D̊IX̊α)(D̊JX̊β)(D̊KX̊ν).
(G.22)
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Explicitly, we find, for example,39

[D̊a, D̊b]D̊KX̊µ = (F̊ab, D̊KX̊µ)β +Rµναβ(X̊) (D̊aX̊α)(D̊bX̊β)(D̊KX̊ν) ,

[D̊a, D̊θ]D̊KX̊µ = (F̊aθ, D̊KX̊µ)β +Rµναβ(X̊) (D̊aX̊α)(D̊θX̊β)(D̊KX̊ν) ,

[D̊a, D̊θ̄]D̊KX̊µ = (F̊aθ̄, D̊KX̊µ)β +Rµναβ(X̊) (D̊aX̊α)(D̊θ̄X̊β)(D̊KX̊ν) ,

{D̊θ, D̊θ̄}D̊KX̊µ = (F̊θθ̄, D̊KX̊µ)β +Rµναβ(X̊) (D̊θX̊α)(D̊θ̄X̊β)(D̊KX̊ν) ,

D̊2
θD̊KX̊µ = (F̊θθ, D̊KX̊µ)β +

1

2
Rµναβ(X̊) (D̊θX̊α)(D̊θX̊β)(D̊KX̊ν) ,

D̊2
θ̄D̊KX̊µ = (F̊θ̄θ̄, D̊KX̊µ)β +

1

2
Rµναβ(X̊) (D̊θ̄X̊α)(D̊θ̄X̊β)(D̊KX̊ν) ,

D̊θ̄D̊θD̊θ̄X̊µ = (F̊θθ̄, D̊θ̄X̊µ)β − (F̊θ̄θ̄, D̊θX̊µ)β − D̊θF̊θ̄θ̄ β.∂X̊µ

+Rµναβ(X̊) (D̊θX̊α)(D̊θ̄X̊β)(D̊θ̄X̊ν) ,

(G.24)

Let us now turn to the case of four covariant derivatives acting on X̊µ. The basic

commutator identity in this case is

D̊ID̊JD̊KD̊LX̊µ − (−)IJD̊JD̊ID̊KD̊LX̊µ

= (1 + δIJ)(F̊IJ , D̊KD̊LX̊µ)β +Rµναβ(X̊) (D̊IX̊α)(D̊JX̊β)(D̊KD̊LX̊ν).
(G.25)

In particular,

D̊2
θ(D̊θD̊θ̄X̊µ) = (F̊θθ, D̊θD̊θ̄X̊µ)β +

1

2
Rµναβ(X̊)(D̊θX̊α)(D̊θX̊β)(D̊θD̊θ̄X̊ν) ,

D̊2
θ̄(D̊θD̊θ̄X̊µ) = (F̊θ̄θ̄, D̊θD̊θ̄X̊µ)β +

1

2
Rµναβ(X̊) (D̊θ̄X̊α)(D̊θ̄X̊β)(D̊θD̊θ̄X̊ν) ,

{D̊θ, D̊θ̄}(D̊θD̊θ̄X̊µ) = (F̊θθ̄, D̊θD̊θ̄X̊µ)β +Rµναβ(X̊) (D̊θ̄X̊α)(D̊θX̊β)(D̊θD̊θ̄X̊ν) .

(G.26)

These identities can be used to simplify various expressions in the effective action as we

compute higher derivative terms.

H Superspace representations: metric and curvature

The target space metric and curvature tensor can be viewed as superfields by means of

expanding their dependence on X̊µ. We pull them back to the worldvolume to obtain

corresponding data which enters explicitly into the hydrodynamic effective actions. We give

the corresponding superspace expansions for the pullback metric superfield and curvature,

which were used in the explicit analysis of section 5.

39When dealing with curvatures, we often use the Bianchi identity in the form

1

2
RµναβX

α
ψX

β
ψX

ν
ψ = −RµναβXα

ψX
β

ψ
Xν
ψ (G.23)

and similarly for other Grassmann-odd contractions of the same schematic form.
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H.1 Metric superfield

The worldvolume metric superfield, we recall, is covariantly pulled back as in (3.5). We

will give the components in the super-static gauge where Θ(z) = θ and Θ̄(z) = θ̄. Note

also the symmetry properties are those of a super-tensor:

g̊IJ = (−)IJ g̊JI =⇒ g̊θθ̄ = −̊gθ̄θ (H.1)

Working out the components using the superfield expansion of D̊IX̊µ we end up with:

g̊ab :



gµν(DaXµ)(DaXν)

gµν(DaXµ)(DbX
ν
ψ+(λb,X

ν)β)+gµν(DbX
µ)(DaXν

ψ+(λa,Xν)β)

gµν(DaXµ)(DbXψ
ν+(λ̄b,X

ν)β)+gµν(DbX
µ)(DaXψ

ν+(λ̄a,Xν)β)

hab+ gµν(DaXµ)
(
DbX̃

ν+(Fb,Xν)β+(λ̄b,X
ν
ψ)β−(λb,X

ν
ψ

)β+RνκασXα
ψ

(DbX
σ)Xκ

ψ

)
+ gµν(DbX

µ)
(
DaX̃ν+(Fa,Xν)β+(λ̄a,Xν

ψ)β−(λa,Xν
ψ

)β+RνκασXα
ψ

(DaXσ)Xκ
ψ

)
+gµν(DaXψ

µ+(λ̄a,Xµ)β)(DbX
ν
ψ+(λb,X

ν)β)+gµν(DbXψ
µ+(λ̄b,X

µ)β)(DaXν
ψ+(λa,Xν)β)


(H.2a)

g̊θ̄a :



gµνX
µ
ψ(DaXν)

−gµνXµ
ψ(DaXν

ψ+(λa,Xν)β)+gµν(φ
T
,Xµ)βDaX

ν

−gµνXµ
ψ(DaXψ

ν+(λ̄a,Xν)β)+gµνX̃µDaXν

hθ̄a+ gµνX
µ
ψ

(
DaX̃ν+(Fa,Xν)β+(λ̄a,Xν

ψ)β−(λa,Xν
ψ

)β+RνκασXα
ψ

(DaXσ)Xκ
ψ

)
+gµν((φ

T
,Xµ

ψ
)β−(η

T
,Xµ)β)DaXν−gµνX̃µ(DaXν

ψ+(λa,Xν)β)

+gµν(φ
T
,Xµ)β(DaXψ

ν+(λ̄a,Xν)β)


(H.2b)

g̊θa :



gµνX
µ

ψ
(DaXν)

−gµνXµ

ψ
(DaXν

ψ+(λa,Xν)β)+gµν
(

(φ0
T
,Xµ)β−X̃µ

)
DaXν

−gµνXµ

ψ
(DaXψ

ν+(λ̄a,Xν)β)+gµν(φ
T
,Xµ)βDaX

ν

hθa+ gµνX
µ

ψ

(
DaX̃ν+(Fa,Xν)β+(λ̄a,Xν

ψ)β−(λa,Xν
ψ

)β+RνκασXα
ψ

(DaXσ)Xκ
ψ

)
+gµν

(
(φ0

T
,Xµ

ψ
)β+RµκασXα

ψ
Xσ
ψXψ

κ−(φ
T
,Xµ
ψ)β+(η

T
,Xµ)β

)
DaXν

−gµν(φ
T
,Xµ)β(DaXν

ψ+(λa,Xν)β)

+gµν
(

(φ0
T
,Xµ)β−X̃µ

)
(DaXψ

ν+(λ̄a,Xν)β)


(H.2c)

g̊θθ̄ :



i + gµνX
µ

ψ
Xν
ψ

−gµνXµ

ψ
(φ

T
,Xν)β+gµν

(
(φ0

T
,Xµ)β−X̃µ

)
Xν
ψ

−gµνXµ

ψ
X̃ν+gµν(φ

T
,Xµ)βX

ν
ψ

hθθ̄+ gµνX
µ

ψ
((φ

T
,Xν
ψ

)β−(η
T
,Xν)β)

+gµν
(

(φ0
T
,Xµ

ψ
)β+RµκασXα

ψ
Xσ
ψXψ

κ−(φ
T
,Xµ
ψ)β+(η

T
,Xµ)β

)
Xν
ψ

−gµν(φ
T
,Xµ)β(φ

T
,Xν)β+gµν

(
(φ0

T
,Xµ)β−X̃µ

)
X̃ν


(H.2d)

In the above expressions we have indicated the source deformations explicitly, since will

end up varying with respect to these to obtain the physical components of the energy-

momentum tensor. Ignoring all the terms with non-zero ghost number, we end up with the

expressions used in section 5.
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H.2 Curvature superfield

We define the partially pulled back curvature superfield as:

(1 + δIJ)RµνIJ(X̊) ≡ Rµναβ(X̊) (D̊IX̊α)(D̊JX̊β). (H.3)

It admits a superfield expansion which can be inferred from the component maps (we

only write out the superspace components):

Rµνθ̄θ̄ :


1
2
RµνασXα

ψX
σ
ψ

−RµνασXα
ψ (φ

T
,Xσ)β

−
[
(Xψ .∇Rµνασ)Xα

ψ
Xσ
ψ+RµνασXα

ψX̃
σ
]

−(Xψ .∇R
µ
νλσ) Xλ

ψ(φ
T
,Xσ)β−Rµνλσ

[
X̃λ(φ

T
,Xσ)β+Xλ

ψ(η
T
,Xσ)β−(φ

T
,Xλ
ψ

)βX
σ
ψ

]

 (H.4a)

Rµνθθ :



1
2
RµνασXα

ψ
Xσ
ψ

−
[
(Xψ .∇R

µ
νασ)Xα

ψ
Xσ
ψ+RµνασXα

ψ

(
(φ0

T
,Xσ)β−X̃σ

)]
−RµνασXα

ψ
(φ

T
,Xσ)β

(φ0
T
, 1
2
RµνασXα

ψ
Xσ
ψ

)β−(φ
T
,RµνασXα

ψ
Xσ
ψ)β+ 1

2
RµκασRκνγξ

(
Xα
ψ
Xσ
ψX

γ

ψ
Xξ

ψ
−Xα

ψ
Xσ
ψ
Xγ

ψ
Xξ
ψ

)
−(Xψ .∇R

µ
νλσ) Xλ

ψ(φ
T
,Xσ)β−Rµνλσ

[
X̃λ(φ

T
,Xσ)β−Xλ

ψ
(η

T
,Xσ)β−(φ

T
,Xλ
ψ

)βX
σ
ψ

]


(H.4b)

Rµνθθ̄ :


RµνασXα

ψ
Xσ
ψ

(Xψ .∇Rµνασ)Xα
ψ
Xσ
ψ−R

µ
νασXα

ψ
(φ

T
,Xσ)β−RµνασXα

ψ

(
(φ0

T
,Xσ)β−X̃σ

)
(Xψ .∇R

µ
νασ)Xα

ψ
Xσ
ψ−R

µ
νασXα

ψ (φ
T
,Xσ)β−RµνασXα

ψ
X̃σ

(φ
T
, 1
2
RµνασXα

ψ
Xσ
ψ

)β−(φ
T
, 1
2
RµνασXα

ψX
σ
ψ)β+ 1

4
RµκασRκνγξ

(
Xα
ψX

σ
ψX

γ

ψ
Xξ

ψ
−Xα

ψ
Xσ
ψ
Xγ
ψX

ξ
ψ

)
−(Xψ .∇R

µ
νλσ)Xλ

ψ(φ0
T
,Xσ)β−Rµνλσ

[
X̃λ(φ0

T
,Xσ)β+Xλ

ψ
(η

T
,Xσ)β−Xλ

ψ(η
T
,Xσ)β−(φ0

T
,Xλ
ψ

)βX
σ
ψ

]


(H.4c)

I Gauge fixing and super-diffeomorphisms

We now turn to the worldvolume and target space symmetries which we have used in

our construction. We will begin with a discussion of the worldvolume and then examine

the target space issues. In both cases we will explain the rationale behind some of the

choices we made in the main text, and how they serve to determine the structure of our

hydrodynamic effective actions.

I.1 Worldvolume symmetries

We would naively anticipate that the theory we write down should have worldvolume su-

perdiffeomorphisms as a symmetry. This would imply that the worldvolume coordinates

zI = (σa, θ, θ̄) transform as zI 7→ zI + F̊I(zJ) for some arbitrary superfield F̊. We how-

ever find that this is too constraining, and relax the symmetries slightly to allow only

worldvolume reparameterizations of the form:

zI 7→ zI + f I(σ) . (I.1)
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This turns out to be sufficient to allow for a clean representation of the NT = 2 thermal

equivariance structures. While it would be interesting to explore why the full set of super-

diffeomorphisms need to be truncated thus, we will not do so here. We will now see,

however, that our gauge choices almost enforce this constraint.

As explained in the text we are going to use some of this reparameterization freedom to

gauge fix the thermal super-vector β̊I as in (2.5) which we reproduce here for convenience:

β̊θ = β̊θ̄ = 0 = ∂θβ̊
a = ∂θ̄β̊

a , (I.2)

that is, β̊I = (βa, 0, 0). We therefore can only allow f I(σ) that leave this choice invariant.

Since we have a distinguished timelike vector in ordinary space, we expect the full set of

usual diffeomorphisms to reduce to those that preserve the foliation induced by the vector

field, along with additional constraints in superspace.

Let us see this explicitly. Note that under (I.1) the thermal super-vector transforms

via a Lie drag which reads

β̊I 7→ β̊I + (−)J
(
fJ∂J β̊

I − β̊J∂J f I
)
. (I.3)

The first two equations of (I.2) which refer to the superspace components of β̊I imply that

βa∂af
θ = βa∂af

θ̄ = 0 =⇒ fθ = fθ(σ⊥) , f θ̄ = f θ̄(σ⊥) (I.4)

where σ⊥ coordinatize the space perpendicular to the thermal vector βa. In fact, had we

further gauge fixed βa = δa0 , then we would conclude that σ⊥ = σi and (I.4) would imply

that fθ = fθ(σi) , f θ̄ = f θ̄(σi).

We now turn to the second set of constraints in (I.2). These imply

∂θ(£βf
a) = ∂θ̄(£βf

a) = 0 . (I.5)

In fact, demanding invariance of the full superfield β̊a gives the slightly stronger constraint

£β̊f̊
a = £β̊f̊

a = 0 . (I.6)

This is enforced since we want to have this background vector unchanged under coordinate

transformations. All told we simply require that the super-vector field f̊a(σ) commute with

β̊a, i.e., [β̊a, f̊ b] = 0.

Let us now use this information to see what the covariant data in the worldvolume

connection is. As noted in the text the connection is a-priori a new piece of data owing to

the fact that the U(1)T covariant pullback of the target spacetime metric does not uniquely

determine a worldvolume connection. We should thus determine which components trans-

form covariantly so that we may employ them in the construction of our actions. A general

connection on the worldvolume transforms under (I.1) as

C̊IJK 7→ C̊IJK + (−)I(J+K)∂J∂Kf
I + covariant pieces . (I.7)

Given our restrictions on the super-diffeomorphism function f I(σ) we learn that the fol-

lowing components transform covariantly:

C̊i0J , C̊
θ
0J , C̊

θ̄
0J , C̊

I
θJ , C̊

I
θ̄J . (I.8)
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We will have use for the fact that the last two terms identified above are covariant in our

construction. In fact, in the bulk of the discussion we use this to allow the introduction

of the fields g̊
(ψ)
IJ and g̊

(ψ)
IJ whose covariance follows from the simple identities (see eq. (J.7)

below):

g̊
(ψ)
IJ ≡ D̊θg̊IJ = D̊θg̊IJ + (−)IK C̊KθI g̊KJ + (−)K(I+J)+IJ C̊KθJ g̊IK

g̊
(ψ)
IJ ≡ D̊θ̄g̊IJ = D̊θ̄g̊IJ + (−)IK C̊Kθ̄I g̊KJ + (−)K(I+J)+IJ C̊Kθ̄J g̊IK

(I.9)

We note that integration by parts of the Grassmann odd derivatives in the definition

of {̊g(ψ)
IJ , g̊

(ψ)
IJ } is allowed. In particular, we have D̊θS̊ = D̊θS̊ for any scalar superfield S̊,

such that the boundary term occurring when integrating by parts is zero. For example,

one has:

ˆ
ddσdθdθ̄

√−̊g
z̊

g̊
(ψ)
IJ T̊ JI =

ˆ
ddσdθdθ̄

√−̊g
z̊

D̊θ̄

(̊
gIJ T̊ JI

)
︸ ︷︷ ︸

=0

−(−)I+J
ˆ
ddσdθdθ̄

√−̊g
z̊

g̊IJ D̊θ̄
(
T̊ JI

)
(I.10)

for any tensor superfield T̊ IJ .

I.2 Target space symmetries

Let us now turn to the target space symmetries. The target space super-coordinates

X̊ µ̆ = (X̊µ,Θ, Θ̄) transform under spacetime super-diffeomorphisms along with the trans-

formation induced by the worldvolume super-diffeomorphisms (I.1). One has

X̊ µ̆ 7→ X̊ µ̆ + Ĥ µ̆ , Ĥ µ̆ = H̊ µ̆ + (−)I f I∂IX̊
µ̆ (I.11)

where the index µ̆ ∈ {µ,Θ, Θ̄}. Under this transformation the target space super-metric

transforms as usual via

gµ̆ν̆ 7→ gµ̆ν̆ + (−)ν̆ρ̆gµ̆ρ̆∂ν̆Ĥ
ρ̆ + (−)µ̆(ν̆+ρ̆)gν̆ρ̆∂µ̆Ĥ

ρ̆ − gµ̆ν̆∂ρ̆Ĥ
ρ̆ . (I.12)

As discussed in the text we wish to use this freedom to impose the super-static gauge

where we pick:

X̊Θ(zI) ≡ Θ̊(zI) = θ , X̊Θ̄(zI) ≡ ˚̄Θ(zI) = θ̄ . (I.13)

This can always be done by suitably constraining H̊ µ̆ in terms of the worldvolume diffeo-

morphism parameter f I , and poses no real constraint for our considerations for it demands

ĤΘ = ĤΘ̄ = 0 . (I.14)

Our gauge condition (G.1) only constrains H̊µ and we find:

∂θ

(
H̊µ + f I∂IX̊

µ
)

= ∂θ̄

(
H̊µ + f I∂IX̊

µ
)

= 0 . (I.15)

These arise from the first set of gauge fixing conditions for the super-metric in (G.1). The

second choice gΘΘ̄ = i in addition to the above implies

∂µĤ
µ = 0 . (I.16)
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The fact that the ordinary space metric only has a bottom component is also solved by

demanding that Ĥµ be independent of Θ̊, ˚̄Θ. All told we find that

ĤΘ = ĤΘ̄ = 0 , Ĥµ = Ĥµ(X̊ν) , ∂µĤ
µ = 0 , Ĥ µ̆ = H̊ µ̆ + f I∂IX̊

µ̆ . (I.17)

It is instructive to ask how the top component of X̊µ transforms under (I.11). We have

X̃µ = ∂θ∂θ̄X̊
µ|

X̃µ 7→ X̃µ + ∂θ∂θ̄Ĥ
µ|

= X̃µ + ∂ρ∂νĤ
µ ∂θX̊

ρ ∂θ̄X̊
ν |+ ∂νĤ

µ∂θ∂θ̄X̊
ν |

= X̃µ + ∂νĤ
µ X̃ν + ∂ρ∂νĤ

µXρ

ψ
Xν
ψ

(I.18)

Now we note that the ghost bilinear term has a non-covariant piece analogous to the one in

the transformation of the connection on the target spacetime (compare with (I.7)). While

Ĥµ has no dependence on the target space Grassmann coordinates, worldvolume Grass-

mann dependence is induced through X̊µ. All this then implies is that the combination

appearing in the top component of (3.1), viz.,

X̃µ − ΓµρσX
ρ

ψ
Xσ
ψ , (I.19)

is covariant under (I.11). One can similarly check that g̃ab transforms covariantly as a

worldvolume tensor.

J Fixing the worldvolume connection

We start with a set of axioms for the U(1)T covariant worldvolume theory and ask how

does one fix the connection C̊IJK on the worldvolume. Our aim is to define a worldvolume

covariant derivative D̊I which agrees with D̊I when acting on scalar superfields, and fur-

thermore allows for covariant integration by parts. The key reason why there is no obvious

canonical connection owes the fact that we pullback the spacetime metric in a U(1)T co-

variant fashion and the target space superfield X̊ µ̆ transforms non-trivially under U(1)T.

Recall that we define40

g̊IJ = gµ̆ν̆ D̊IX̊
µ̆D̊JX̊

ν̆ ,

D̊IX̊
µ̆ = D̊IX̊ µ̆ = ∂IX̊

µ̆ + (ÅI , X̊
µ̆)β .

(J.1)

We have made explicit that insofar as X̊ µ̆ is concerned we have no issue as it transforms as

a scalar under worldvolume superdiffeomorphisms. Without further ado, let us then record

our basic assumptions for the worldvolume superspace.

40We suppress all signs associated with super-index contractions in this appendix. That is, we only give

Grassmann signs explicitly for uncontracted indices.
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Axioms.

A1. There is a superspace on the worldvolume with intrinsic coordinates zI and the

pullback superfield X̊ µ̆ exists.

A2. Using target space superdiffeomorphisms we can fix the gauge Θ = θ, Θ̄ = θ̄.

A3. ∃ β̊I and using worldvolume superdiffeomorphisms we can fix a gauge such that

β̊θ = β̊θ̄ = 0 and ∂θβ̊
I = ∂θ̄β̊

I = 0.

A4. ∃ ÅI on the worldvolume and a spacetime metric gµ̆ν̆ = gµ̆ν̆(X̊ µ̆). We furthermore

gauge fix the spacetime metric to obey (3.3).

A5. Commutator condition: [
D̊I , D̊J

]
±
X̊ µ̆ = (F̊IJ , X̊

µ̆)β . (J.2)

A6. Measure compatibility:

D̊J

(√−̊g
z̊

)
= 0 . (J.3)

Given this, our task is to ascertain whether there is a connection on the worldvolume which

retains U(1)T covariance. The first four axioms are reasonably innocuous and don’t pose

any constraints. The discussion in appendix I makes clear that the gauge fixing constraints

can be imposed immediately.

We would like to ensure the existence of a connection satisfying A5 and A6. A5

simply encodes compatibility with U(1)T covariance. Note that we are not demanding

that the worldvolume connection is compatible with the pullback metric. Clearly, measure

and metric compatibility cannot simultaneously hold with U(1)T covariant pullback as is

clear from (J.3). Measure compatibility A6 is all we need in order to be able to perform

standard integration by parts inside superspace integrals, as we will show.

Let us record some useful intermediate lemmas that focus our attention on the salient

features of the worldvolume connection.

L1. Determining Ω̊IJ
µ̆ ≡ D̊ID̊JX̊

µ̆ is equivalent to prescribing a worldvolume connection.

L2. Our axioms A1-A6 only require us to fix the (graded) antisymmetric part of the

connection and its trace, but leave the (graded) symmetric part undetermined.

L3. Given the pullback metric we can evaluate its derivatives and check that

D̊Ag̊IJ = gµ̆ν̆

(
Ω̊AI

µ̆ D̊JX̊
ν̆ + (−)AI D̊IX̊

µ̆ Ω̊AJ
ν̆
)

[
D̊A, D̊B

]
±
g̊IJ = gµ̆ν̆

(
Υ̊ABI

µ̆ D̊JX̊
ν̆ + (−)IJ Υ̊ABJ

µ̆ D̊IX̊
ν̆
)

where Υ̊ABI
µ̆ ≡ D̊AΩ̊BI

µ̆ − (−)ABD̊BΩ̊AI
µ̆

(J.4)
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L4. If we demand that g̊IJ transforms as a 0-adjoint and the commutator condition A5

holds, then we learn that

gµ̆ν̆

(
Υ̊ABI

µ̆ D̊JX̊
ν̆ + (−)IJ Υ̊ABJ

µ̆ D̊IX̊
ν̆
)

= F̊AB £βg̊IJ (J.5)

Let us now unpack and explain these statements one by one and present a prescription

to fix the derivative D̊. On occasion we will also use the basic non-covariant derivative D̊
on the worldvolume. One can consider the restriction of D̊ as acting on scalars to define the

derivative operator D̊, which acts on arbitrary worldvolume tensors or partially pulled back

target space tensors as a covariant derivative where the all connection terms discarded:

D̊J ≡ D̊J

∣∣
Γρ̆µ̆ν̆=C̊IJK=0

. (J.6)

Indeed, this definition provides a natural generalization of ∂I in the U(1)T covariant theory.

It is simply given by the covariant derivative restricted to spacetime with flat connection

(which is how one could recover ∂a from ∇a in usual geometry without equivariant gauge

group). For instance, on arbitrary tensors with worldvolume indices we would write D̊I ≡
∂I + (ÅI , · )β, i.e., it acts like D̊I , but without the connection terms:

D̊I T̊ JK ≡ D̊I T̊ JK + (−)IJ C̊J IL T̊ LK − (−)IJ T̊ JL C̊LIK , (J.7)

where T̊ JK is a generic super-tensor.

Consider now the derivative of the pull-back metric (J.1):41

D̊I g̊JK = gµ̆ν̆(X̊)
(
D̊ID̊JX̊

µ̆ D̊KX̊
ν̆ + (−)IJ D̊JX̊

µ̆ D̊ID̊KX̊
ν̆
)
. (J.9)

The result (J.9) can be equivalently phrased in terms of the behaviour of the derivative

acting on the dual tetrad basis e̊Iµ̆ which satisfy

D̊JX̊
µ̆ e̊µ̆

I = δJ
I , e̊µ̆

I D̊IX̊ ν̆ = δµ̆
ν̆ . (J.10)

Taking a worldvolume covariant derivative of the tetrad and calculating in two different

ways we infer the following:

D̊J e̊µ̆
I = (−)Jµ̆ e̊µ̆

K D̊JD̊KX̊
ν̆ e̊ν̆

I

D̊J e̊µ̆
I = D̊J e̊µ̆I − (−)Jµ̆ Γν̆ µ̆ρ̆(X̊) D̊JX̊

ρ̆ e̊ν̆
I + (−)I(J+µ̆) C̊IJK e̊µ̆

K

= ∂J e̊µ̆
I + (ÅJ , e̊µ̆

I)− (−)Jµ̆ Γν̆ µ̆ρ̆(X̊) D̊JX̊
ρ̆ e̊ν̆

I + (−)I(J+µ̆) C̊IJK e̊µ̆
K ,

(J.11)

where we have indicated for clarity the various derivative operators at our disposal. We

can then solve for the worldvolume connection:

C̊IJK = e̊µ̆
I Γµ̆ν̆ρ̆(X̊) D̊JX̊

ν̆ D̊KX̊
ρ̆ − (−)IJD̊J e̊µ̆I D̊KX̊

µ̆ + (−)IJ D̊J e̊µ̆
I D̊KX̊

µ̆

= e̊µ̆
I Γµ̆ν̆ρ̆(X̊) D̊JX̊

ν̆ D̊KX̊
ρ̆ + e̊ν̆

I D̊JD̊KX̊
ν̆ − e̊µ̆I D̊JD̊KX̊

µ̆ (J.12)

41In this calculation, the part where the derivative hits gµ̆ν̆(X̊) evaluates to zero since the target space

metric can be chosen to have a metric compatible connection:

D̊Igµ̆ν̆(X̊) = D̊IX̊
ρ̆ ∇ρ̆gµ̆ν̆(X̊) = 0 . (J.8)
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We can thus see a relation between C̊IJK and D̊JD̊KX
µ̆: determining the worldvolume

connection C̊IJK is equivalent to fixing the tetrad condition D̊J D̊KX
µ̆, as anticipated in

lemma L1. In the following, we will have to impose certain consistency conditions to fix

either of these two objects. Often, we will also use (J.12) in the form:

D̊JD̊KX̊
µ̆ = D̊JD̊KX̊

µ̆ − C̊IJK D̊IX̊
µ̆ + D̊JX̊

ν̆ D̊KX̊
ρ̆ Γµ̆ν̆ρ̆(X̊) . (J.13)

Let us first assume that we have a tetrad condition encoded in a new superfield Ω̊, viz.,

D̊ID̊JX̊
µ̆ ≡ Ω̊IJ

µ̆ . (J.14)

We shall now constrain the form of Ω̊ by imposing the axioms A5 and A6.

The commutator condition. Imposing that (J.2) holds will constrain our choice of Ω̊.

It is easy to check that

Ω̊IJ
µ̆ − (−)IJ Ω̊JI

µ̆ ≡ F̊IJ β
I ∂IX̊

µ̆ =
1

z̊
F̊IJ β̊

KD̊KX̊
µ̆ (J.15)

where we use (4.2) to infer the identities:

D̊I z̊ = F̊IJ β
J , βID̊IX̊

µ̆ = z̊βI∂IX̊
µ̆ . (J.16)

Measure compatibility. The axiom (J.3) can be rewritten as

0 = D̊I

(√−̊g
z̊

)
=

√−̊g
z̊

[
1

2
gµ̆ν̆

(
D̊ID̊JX̊

µ̆ g̊JK D̊KX̊
ν̆ + D̊JX̊

µ̆ g̊JK D̊ID̊KX
ν̆
)
− 1

z̊
F̊IJ β

J

]
=

√−̊g
z̊

[
Ω̊IJ

µ̆ e̊µ̆
J − 1

z̊
F̊IJ β

J

]
,

(J.17)

where we used (J.16). From this, we infer

Ω̊IJ
µ̆ e̊µ̆

J =
1

z̊
F̊IJ β

J . (J.18)

A general solution for Ω̊IJ
µ̆ satisfying (J.15) and (J.18) may now be parameterized in

the following form:

Ω̊IJ
µ̆ =

1

2 z̊

(
βI F̊JM + (−)IJ βJ F̊IM + (−)M(1+J)βM F̊IJ

)
g̊MN D̊NX̊

µ̆ + ω̊IJ
µ̆ (J.19)

for some ω̊IJ
µ̆. The rationale for splitting off the pieces involving the field strength is that

these are determined by the U(1)T gauge structure alone, and in fact suffice to ensure that

our axioms A5 and A6 are met. A short computation reveals that all we need is for the

tensor ω̊IJ
µ̆ to be graded symmetric and super-traceless in it worldvolume indices:

A5 =⇒ ω̊IJ
µ̆ = (−)IJ ω̊JI

µ̆ ,

A6 =⇒ ω̊IJ
µ̆e̊µ̆

J = 0 .
(J.20)
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With this parameterization one can furthermore check that:

D̊I e̊µ̆
I =−e̊ν̆M ω̊MN

ν̆ e̊µ̆
N = 0

D̊I g̊JK =
1

z̊

(
F̊IJβK+(−)JK F̊IK βJ

)
+ gµ̆ν̆

(
ω̊IJ

µ̆ D̊KX
ν̆+(−)JK ω̊IK

ν̆ D̊JX
µ̆
) (J.21)

We thus see that the general connection satisfying measure compatibility and the

commutator condition is parametrized by ω̊IJ
µ̆ satisfying (J.20). While we could work

with a general connection of this type, it is helpful to make a particular choice for explicit

computations. We will make the canonical choice ω̊IJ
µ̆ = 0 which implies that

D̊ID̊JX̊
µ̆ =

1

2 z̊

(
βI F̊JM + (−)IJ βJ F̊IM + (−)M(I+J)βM F̊IJ

)
g̊MN D̊NX̊

µ̆ (J.22)

which, using (J.13), fixes C̊IJK . Since the difference of two connections is covariant we can

easily incorporate non-zero ω̊IJ
µ̆ if necessary. The choice of setting ω̊IJ

µ̆ = 0 is inspired by

the observation that then the connection is determined solely in terms of the U(1)T data

and the reference thermal super-vector on the worldvolume. This appears most natural

since the failure of the standard tetrad condition is due to our covariant pullback of target

spacetime data.

In the main text we will work with (J.22) or equivalently with:

C̊IJK = e̊µ̆
I Γµ̆ν̆ρ̆(X̊) ∂JX̊

ν̆ D̊KX̊
ρ̆ + e̊ν̆

I D̊JD̊KX̊
ν̆

− 1

2 z̊
e̊µ̆
I
(
βJ F̊KM + (−)JK βK F̊JM + (−)M(1+K)βM F̊JK

)
g̊MN D̊NX̊

µ̆ .
(J.23)

It turns out that there is an alternate way to motivate (J.23) which is closely inspired

by the manner in which the Christoffel connection is determined. Consider the following

worldvolume derivative:

D̊(F)

I T JK ≡ D̊IT JK +
1

z̊
(−)JM F̊IMβ

JT MK −
1

z̊
(−)L(1+J)+JK F̊IKβ

LT JL . (J.24)

and similarly for tensors with more indices. This strange derivative supplements the flat

worldvolume derivative with a connection set in terms of the U(1)T field strength and

thermal vector. One can check that our choice for C̊IJK in (J.23) is equivalent to the choice:

C̊IJK =
1

2
g̊IL

[
D̊(F)

J g̊LK + (−)JK D̊(F)

K g̊JL − D̊
(F)

L g̊JK

]
=

1

2
g̊IL

[
D̊J g̊LK + (−)JK D̊K g̊JL − D̊Lg̊JK

]
+

1

z̊

(
F̊IJ β̊K + (−)JK F̊IK β̊J

) (J.25)

That is, we choose the connection which looks like the superspace Christoffel connection

supplemented with thermal equivariance data to ensure that we have correctly accounted

for the U(1)T covariance of the pullback. Reinstating Grassmann signs for index contrac-

tions yields (5.17).
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Integration by parts. For illustration, we now show how the properties of the world-

volume connection that we imposed above, allow for integration by parts. For a generic

0-adjoint vector V̊I = V̊ µ̆ e̊µ̆
I , observe that (J.21) impliesˆ √−̊g

z̊
D̊IV̊

I =

ˆ √−̊g
z̊

(
D̊I V̊

µ̆
)
e̊µ̆
I

=

ˆ √−̊g
z̊

[
D̊IX

ν̆ ∂ν̆ V̊
µ̆ + D̊IX

ν̆ Γ̊µ̆ν̆ρ̆ V
ρ̆
]
e̊µ̆
I

=

ˆ √−̊g
z̊

D̊IX
ν̆
(
∇ν̆ V̊ µ̆

)
e̊µ̆
I =

ˆ √−g ∇µV̊ µ = 0 ,

(J.26)

using the partially pulled back derivative defined in (G.5). In the last step we used the trans-

formation of the measure as one passes from the worldvolume to the target space theory:

ddX dΘ dΘ̄
√
−g̊ = ddσ dθ dθ̄

√
−̊g det[∂IX̊

µ̆]

det[D̊IX̊ µ̆]
= ddσ dθ dθ̄

√−̊g
z̊

. (J.27)

Eq. (J.26) is, of course, just a way of stating the ability to integrate by parts in the world-

volume theory.

K Superspace expansion of further fields in the MMO limit

We collect here some more involved superspace expansions of superfields in the MMO limit.

This is relevant for the calculations in section 5.

Non-covariant derivatives of the metric. To construct the worldvolume connec-

tion (J.25), we need the non-covariant derivatives D̊K g̊IJ of the metric, recalling that

D̊I ≡ ∂I + (ÅI , · )β is in some sense a U(1)T covariant partial derivative:

D̊θg̊ab = −θ̄
(
hab + g̃ab − (φ0

T
− B∆, gab)β

)
D̊θ̄g̊ab = θ (hab + g̃ab + (B∆, gab)β)

D̊θg̊θ̄a =
(
X̃µ + (B∆, Xµ)β

)
∂aX

µ + θ̄θ
(
φ0

T
− B∆, (X̃µ + (B∆, Xµ)β ∂aX

µ
)
β

D̊θ̄g̊θ̄a = D̊θg̊θa = 0

Dθ̄g̊θa = (Jν − (B∆, Xν)β) ∂aX
ν − θ̄θ (B∆, Jµ − (B∆, Xµ)β)∂aX

µ)β

D̊θg̊θθ̄ = −θ̄ (hθθ̄ + g̃θθ̄)

D̊θ̄g̊θθ̄ = θ (hθθ̄ + g̃θθ̄)

(K.1)

The worldvolume connection. Using the above expansions, we can now write the

connection (J.25) in the MMO limit. In components, the non-zero parts of the connection

read as follows:

C̊cab = Γcab+θ̄θ

{
1

2
gcd
[
2∇(a(hb)d+g̃b)d)+2(F(a,gb)d)β−∇d(hab+g̃ab)−(Fd,gab)β

]
− i

2
ecν

(
X̃ν+(B∆,X

ν)β

)(
2∇(a

[
∂b)X

µ (Jµ−(B∆,Xµ)β)
]
+hab+g̃ab−(φ0

T
−B∆,gab)β

)
− i

2
ecν (Jν−(B∆,X

ν)β)
(

2∇(a

[
∂b)X

µ
(
X̃µ+(B∆,Xµ)β

)]
−hab−g̃ab+(B∆,gab)β

)
+2
[
iX̃c

(
F(a+∂(aφ

0
T

)
−iJcF(a

]
βb)+gcd

(
β(a∇dFb)−β(a∇b)Fd

)}
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C̊caθ = θ̄

{
− 1

2
gcd
(
hda+g̃da−(φ0

T
−B∆,gda)β

)
+gcd∂[a

[
∂d]X

µ (Jµ−(B∆,Xµ)β)
]

+
i

2
ecµ (Jµ−(B∆,X

µ)β) ∂aX
ν(X̃ν+Jν)+

[
Fc+∂cφ0

T
−iJcφ0

T

]
βa

}
C̊caθ̄ = θ

{
1

2
gcd (hda+g̃da+(B∆,gda)β)+gcd∂[a

[
∂d]X

µ
(
X̃µ+(B∆,Xµ)β

)]
− i

2
ecµ

(
X̃µ+(B∆,X

µ)β

)
∂aX

ν(X̃ν+Jν)+
[
−Fc+iX̃cφ0

T

]
βa

}
C̊θab =− i

2
θ

{
−2∇(a

[
∂b)X

µ
(
X̃µ+(B∆,Xµ)β

)]
+hab+g̃ab+(B∆,gab)β

−2[Faβb+Fbβa]

}
(K.2a)

C̊θ̄ab =
i

2
θ̄

{
−2∇(a

[
∂b)X

µ (Jµ−(B∆,Xµ)β)
]
−hab−g̃ab+(φ0

T
−B∆,gab)β

+2
[(
Fa+∂aφ

0
T

)
βb+

(
Fb+∂bφ0

T

)
βa
]}

C̊cθθ̄ =
1

2
ecµ

(
X̃µ−Jµ+2(B∆,X

µ)β

)
+θ̄θ

{
∂bX

µ
(
X̃µ−Jµ+2(B∆,Xµ)β

)
×

×
[
−igab(hθθ̄+g̃θθ̄)−

1

2

(
hab+g̃ab−2ie(a

ρ e
b)
σ (Jρ−(B∆,X

ρ)β)
(
X̃σ+(B∆,X

σ)β

))]
+

1

2
gab
[(
φ0

T
−B∆,(X̃ν+(B∆,Xν)β)∂bX

ν
)
β

+(B∆,(Jν−(B∆,Xν)β)∂bX
ν)β

−∂b(hθθ̄+g̃θθ̄)
]
−
[
Fc(Jd−X̃d)−∂cφ0

T
X̃d+iφ0

T

(
JcX̃d−X̃c Jd

)]
βd

}
C̊θaθ =

i

2
φ0

T
βa+θ̄θ

{
iX̃c∇[a

[
∂c]X

µ (Jµ−(B∆,Xµ)β)
]

− i
2

(
hac+g̃ac−(φ0

T
−B∆,gac)β

)
ecν

(
X̃µ+(B∆,X

ν)β

)
− i

2
∂a(hθθ̄+g̃θθ̄)+

1

2
hθθ̄∂aX

ν
(
X̃ν+Jν+2(B∆,Xν)β

)
+
i

2
(B∆,∂aX

ν (Jν−(B∆,Xν)β))β−
i

2
(φ0

T
−B∆,∂aX

ν
(
X̃ν+(B∆,Xν)β

)
)β

−φ0
T
βa
(
hθθ̄+iβdFd

)
+iX̃d

(
Fd+∂dφ

0
T

)
βa−iJdβdFa+iφ0

T
(hab+g̃ab)β

b+iφ0
T

T̃

T
βa

}
C̊θ̄aθ̄ =− i

2
φ0

T
βa−θ̄θ

{
−iJc∇[a

[
∂c]X

µ
(
X̃µ+(B∆,Xµ)β

)]
− i

2
(hac+g̃ac+(B∆,gac)β)ecν (Jν−(B∆,X

ν)β)

+
i

2
∂a(hθθ̄+g̃θθ̄)+

1

2
hθθ̄∂aX

ν
(
X̃ν+Jν+2(B∆,Xν)β

)
+
i

2
(B∆,∂aX

ν (Jν−(B∆,Xν)β))β−
i

2
(φ0

T
−B∆,∂aX

ν
(
X̃ν+(B∆,Xν)β

)
)β

−φ0
T
βa
(
hθθ̄+iβdFd

)
+iJdFd βa−iX̃dβd

(
Fa+∂aφ

0
T

)
+iφ0

T
(hab+g̃ab)β

b+iφ0
T

T̃

T
βa

}
C̊θθθ̄ =− i

2
θ

{(
X̃µ+(B∆,X

µ)β

)(
X̃µ−Jµ+2(B∆,Xµ)β

)
+2(hθθ̄+g̃θθ̄)−2φ0

T
X̃dβd

}
C̊θ̄ θ̄θ =

i

2
θ̄

{
−(Jµ−(B∆,X

µ)β)
(
X̃µ−Jµ+2(B∆,Xµ)β

)
+2(hθθ̄+g̃θθ̄)−2φ0

T
Jdβd

}
(K.2b)
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Note the following simple identity for the supertrace of the connection:

(−)I C̊I Ic ≡ θ̄θ (−)I C̃I Ic ,

(−)I C̃I Ic =
1

2
gab
[
2∇(a(hc)b + g̃c)b) + 2(F(a, gc)b)β −∇b(hac + g̃ac)− (Fb, gac)β

]
+ βa∇[cFa] + i ∂chθθ̄ .

(K.3)

Derivatives of field strengths. For the discussion of dissipative transport (such as

section 6.2) we need covariant derivatives of field strengths. In the MMO limit, these take

the following form:

D̊aF̊θb = θ̄

{
−∇a(Fb+∂bφ0

T
)−iφ0

T
(Fa+∂aφ

0
T
)βb−

i

2
φ0

T
βa(Fb+∂bφ0

T
)

+
i

2
φ0

T

(
2∇(a

[
∂b)X

µ(Jµ−(B∆,Xµ)β)
]
+hab+g̃ab−(φ0

T
−B∆,gab)β

)}
D̊aF̊θ̄b = θ

{
∇aFb−iφ0

T
Faβb−

i

2
φ0

T
βaFb

− i
2
φ0

T

(
2∇(a

[
∂b)X

µ(X̃µ+(B∆,Xµ)β)
]
−hab−g̃ab+(B∆,gab)β

)}
D̊aF̊θθ̄ = D̊aF̊θ̄θ = ∂aφ

0
T
+θ̄θ

{
(Fa,φ0

T
)β+iφ0

T
∂a(hθθ̄+g̃θθ̄)

+Fb
[ i

2
ebµ (Jµ−(B∆,X

µ)β) ∂aX
ν(X̃ν+Jν)

]
−(Fb+∂bφ0

T
)
[ i

2
ebµ

(
X̃µ+(B∆,X

µ)β

)
∂aX

ν(X̃ν+Jν)
]

+(Fc−iφ0
T
X̃c)∇[a

[
∂c]X

µ (Jµ−(B∆,Xµ)β)
]

+(Fc+∂cφ0
T
−iφ0

T
Jc)∇[a

[
∂c]X

µ
(
X̃µ+(B∆,Xµ)β

)]
+

[
−1

2
Fc+ i

2
φ0

T
ecν

(
X̃ν+(B∆,X

ν)β

)](
hac+g̃ac−(φ0

T
−B∆,gac)β

)
+

[
1

2
(Fc+∂cφ0

T
)− i

2
φ0

T
ecν (Jν−(B∆,X

ν)β)

]
(hac+g̃ac+(B∆,gac)β)

+φ0
T

(
iJdβdFa−iX̃dβd(Fa+∂aφ

0
T
)
)]}

D̊θ̄F̊θa =−(Fa+∂aφ
0
T
)− i

2
(φ0

T
)2βa+θ̄θ

{
(B∆,Fa+∂aφ

0
T
)β−(X̃µ−Jµ+2(B∆,X

µ)β)ebµ ∂[aFb]

+
i

2
(Fa+∂aφ

0
T
)
[(
X̃µ+(B∆,X

µ)β

)(
X̃µ−Jµ+2(B∆,Xµ)β

)
+2(hθθ̄+g̃θθ̄)−2φ0

T
X̃dβd

]
+
i

2
Fa
[
−(Jµ−(B∆,X

µ)β)
(
X̃µ−Jµ+2(B∆,Xµ)β

)
+2(hθθ̄+g̃θθ̄)−2φ0

T
Jdβd

]
−(Fc+∂cφ0

T
)

[
1

2
gcd (hda+g̃da+(B∆,gda)β)+gcd ∂[a

[
∂d]X

µ
(
X̃µ+(B∆,Xµ)β

)]
− i

2
ecµ

(
X̃µ+(B∆,X

µ)β

)
∂aX

ν(X̃ν+Jν)−
[
Fc−iX̃cφ0

T

]
βa

]
+φ0

T
C̃θ̄ θ̄a

}
D̊θF̊θ̄a =Fa+

i

2
(φ0

T
)2βa+θ̄θ

{
(φ0

T
−B∆,Fa)β+(X̃µ−Jµ+2(B∆,X

µ)β)ebµ ∂[aFb]

− i
2
Fa
[
−(Jµ−(B∆,X

µ)β)
(
X̃µ−Jµ+2(B∆,Xµ)β

)
+2(hθθ̄+g̃θθ̄)−2φ0

T
Jdβd

]
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− i
2

(Fa+∂aφ
0
T
)
[(
X̃µ+(B∆,X

µ)β

)(
X̃µ−Jµ+2(B∆,Xµ)β

)
+2(hθθ̄+g̃θθ̄)−2φ0

T
X̃dβd

]
−Fc

[
− 1

2
gcd
(
hda+g̃da−(φ0

T
−B∆,gda)β

)
+gcd ∂[a

[
∂d]X

µ (Jµ−(B∆,Xµ)β)
]

+
i

2
ecµ (Jµ−(B∆,X

µ)β) ∂aX
ν(X̃ν+Jν)+

[
Fc+∂cφ0

T
−iJcφ0

T

]
βa

]
−φ0

T
C̃θθa

}
(K.4)

D̊θ̄F̊θθ̄ = θ

{
(B∆,φ

0
T
)β−

1

2
Fa eaµ

(
X̃µ−Jµ+2(B∆,X

µ)β

)
+
i

2
φ0

T

[(
X̃µ+(B∆,X

µ)β

)(
X̃µ−Jµ+2(B∆,Xµ)β

)
+2(hθθ̄+g̃θθ̄)−2φ0

T
X̃dβd

]}
D̊θF̊θθ̄ = θ̄

{
(φ0

T
−B∆,φ

0
T
)β−

1

2
(Fa+∂aφ

0
T
)eaµ

(
X̃µ−Jµ+2(B∆,X

µ)β

)
− i

2
φ0

T

[
−(Jµ+(B∆,X

µ)β)
(
X̃µ−Jµ+2(B∆,Xµ)β

)
+2(hθθ̄+g̃θθ̄)−2φ0

T
Jdβd

]}
(K.5)

Shear tensor. Now, we wish to compute the shear tensor and its square as it appears

in (6.29). We start by computing the components of

D̊I ůJ ≡ (−)K
(
D̊I ů

K
)
g̊KJ . (K.6)

We find:

D̊aůb =∇aub+θ̄θ
{
∇aũb+gbc (Fa,uc)β+(hbc+g̃bc)∇auc+

(
β(a∇bFc)−β(a∇c)Fb

)
uc

+
1

2
uc
[
2∇(a(hc)b+g̃c)b)+2(F(a,gc)b)β−∇b(hac+g̃ac)−(Fb,gac)β

]}
D̊aůθ = θ̄

{
(Jµ−(B∆,Xµ)β)∂cX

µ∇auc+∇(a

[
(Jµ−(B∆,Xµ)β)∂c)X

µ
]
uc

+
1

2
ud
(
hda+g̃da−(φ0

T
−B∆,gda)β

)
−uc

(
Fc+∂cφ0

T

)
βa+

1

T
(Fa+∂aφ

0
T
)

}
D̊aůθ̄ = θ

{(
X̃µ+(B∆,Xµ)β

)
∂cX

µ∇auc+∇(a

[(
X̃µ+(B∆,Xµ)β

)
∂c)X

µ
]
uc

− 1

2
ud (hda+g̃da+(B∆,gda)β)+ucFcβa−

1

T
Fa
}

D̊θůa = θ̄

{
−T̃ βa+gac (φ0

T
−B∆,u

c)β−
1

2
ud
(
hda+g̃da−(φ0

T
−B∆,gda)β

)
+
i

2
∂aX

µ (Jµ−(B∆,Xµ)β) uc ∂cX
ν(X̃ν+Jν)+uc ∂[c

[
∂a]X

µ (Jµ−(B∆,Xµ)β)
]

− 1

T

[
Fc+∂cφ0

T
− iφ

0
T

2
(Jµ−(B∆,Xµ)β) ∂cX

µ

]}
D̊θ̄ůa = θ

{
T̃ βa+gac (B∆,u

c)β+
1

2
ud (hda+g̃da+(B∆,gda)β)

− i
2
∂aX

µ
(
X̃µ+(B∆,Xµ)β

)
uc ∂cX

ν(X̃ν+Jν)+uc ∂[c

[
∂a]X

µ
(
X̃µ+(B∆,Xµ)β

)]
+

1

T

[
Fa−

iφ0
T

2

(
X̃µ+(B∆,Xµ)β

)
∂aX

µ

]}
(K.7a)

D̊θůθ̄ =
φ0

T

2T
+θ̄θ

{
−βaeµa

(
X̃µ+(B∆,Xµ)β

)
T̃− φ0

T

2T 2
T̃+

(
φ0

T
−B∆,

(
X̃µ+(B∆,Xµ)β

)
∂cX

µ uc
)
β
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− 1

2
ua
[(
φ0

T
−B∆,(X̃µ+(B∆,Xµ)β)∂aX

µ)
)
β

+(B∆,(Jµ−(B∆,Xµ)β)∂aX
µ))β

]
+

1

2
(u.∂)(hθθ̄+g̃θθ̄)−

φ0
T

T
(β.F)+(β.F)ua eµa (Jµ−(B∆,Xµ)β)

}
D̊θ̄ůθ =

φ0
T

2T
+θ̄θ

{
−βaeµa (Jµ−(B∆,Xµ)β) T̃− φ0

T

2T 2
T̃−(B∆, (Jµ−(B∆,Xµ)β)∂cX

µ uc)β

+
1

2
ua
[(
φ0

T
−B∆,(X̃µ+(B∆,Xµ)β)∂aX

µ)
)
β

+(B∆,(Jµ−(B∆,Xµ)β)∂aX
µ))β

]
− 1

2
(u.∂)(hθθ̄+g̃θθ̄)−

φ0
T

T
(β.F)+βc(Fc+∂cφ0

T
)ua eµa

(
X̃µ+(B∆,Xµ)β

)}
D̊θůθ = D̊θ̄ůθ̄ = 0 (K.7b)

This implies for Σ̊IJ defined as

Σ̊IJ = D̊I ůJ + (−)IJ D̊J ůI (K.8)

one finds the explicit expressions

Σ̊ab = 2∇(aub)+θ̄θ

{
2∇(aũb)+2g(ac (Fb),uc)β+2(h(ac+g̃(ac)∇b)uc+

(
βa∇[bFc]+βb∇[aFc]

)
uc

+uc [∇c(hab+g̃ab)+(Fc,gab)β]

}
Σ̊aθ = θ̄

{
−T̃ βa+(Jµ−(B∆,Xµ)β)∂cX

µ∇auc+uc∇c [∂aX
µ (Jµ−(B∆,Xµ)β)]

−uc
(
Fc+∂cφ0

T

)
βa+gac (φ0

T
−B∆,u

c)β

}
Σ̊aθ̄ = θ

{
T̃ βa+

(
X̃µ+(B∆,Xµ)β

)
∂cX

µ∇auc+uc∇c
[
∂aX

µ
(
X̃µ+(B∆,Xµ)β

)]
+ucFcβa+gac (B∆,u

c)β

}
Σ̊θθ̄ = θ̄θ

{
(u.∂)(hθθ̄+g̃θθ̄)+(β.F)ua eµa (Jµ−(B∆,Xµ)β)−βc(Fc+∂cφ0

T
)ua eµa

(
X̃µ+(B∆,Xµ)β

)
+βaeµa

(
Jµ−X̃µ+2(B∆,Xµ)β

)
T̃

+
(
φ0

T
−B∆,u

c
)
β

(
X̃µ+(B∆,Xµ)β

)
∂cX

µ+(B∆,u
c)β (Jµ−(B∆,Xµ)β)∂cX

µ

}
(K.9)

Note that the projected trace of Σ̊IJ is the same as the usual (metric) trace in superspace:

(−)P+Q+PQ P̊PQ Σ̊PQ = 2ϑ+θ̄θ

{
(u.∇)

[
P ab(hab+g̃ab)

]
+

2

T
(T̃+ucFc)ϑ+2i(u.∂)hθθ̄

}
= (−)P+Q+PQ g̊PQ Σ̊PQ

= 2D̊I ů
I ≡ 2ϑ̊ . (K.10)
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Let us also write down the projector with indices up and down:

P̊I
J ≡ g̊IK P̊

KJ

P̊a
b = P ba + θ̄θ P ca u

d(hcd + g̃cd)u
b

P̊θ
a = θ̄ (Jµ − (B∆, X

µ)β) ebµ ub u
a

P̊θ̄
a = θ

(
X̃µ + (B∆, X

µ)β

)
ebµ ub u

a

P̊a
θ = P̊a

θ̄ = 0

P̊θ
θ = P̊θ̄

θ̄ = −1

(K.11)

Note that the Grassmann-odd directions count in the super-trace, for example: the metric

trace g̊I
I = d − 2, whereas P̊I

I = d − 3, as one can readily verify (d denotes the number

of spacetime dimensions of the physical fluid). This finally let’s us compute the superfield

version of the graded symmetric, transverse shear tensor:

σ̊IJ ≡
1

2
(−)M(1+J+N)+N P̊I

M P̊J
N

(
Σ̊MN−

2

d−1
g̊MN ϑ̊

)
σ̊ab =σab+θ̄θP

e
(aP

f
b)

{(
hc(e+g̃c(e

)
∇f)u

c+
1

2
umun(hmn+g̃mn)∇euf

+
1

2
(u.∇)(hef+g̃ef )+ug(hfg+g̃fg)u

d∇due+g(ec (Ff),u
c)β

+
1

2
uc (Fc,gef )β−

ϑ

d−1
(hef+g̃ef )− 1

d−1
Pef ϑ̃

}
σ̊aθ =

1

2
θ̄ P ba

{
(u.∇) [(Jµ−(B∆,Xµ)β)∂bX

µ]+(Jµ−(B∆,Xµ)β)∂cX
µ (∇buc+uc ab)

− 2ϑ

d−1
∂bX

µ (Jµ−(B∆,Xµ)β)

}
σ̊aθ̄ =

1

2
θP ba

{
(u.∇)

[(
X̃µ+(B∆,Xµ)β

)
∂bX

µ
]
+
(
X̃µ+(B∆,Xµ)β

)
∂cX

µ (∇buc+uc ab)

− 2ϑ

d−1
∂bX

µ
(
X̃µ+(B∆,Xµ)β

)}
σ̊θθ̄ =−σ̊θ̄θ =− i

d−1
ϑ+θ̄θ

1

2

{
(u.∇)

[
hθθ̄+g̃θθ̄+(u.X̃)(u.J)

]
− 1

d−1

[
2ϑ
(
hθθ̄+g̃θθ̄+(u.X̃)(u.J)

)
+2i ϑ̃

]}
(K.12)

where 2ϑ̃ can be read off as the top component of (K.10). Note that this definition of shear

tensor is not super-traceless. However, its bottom component σ̊ab| reduces to the usual

shear tensor, which is traceless in ordinary spacetime.
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