
J
H
E
P
1
0
(
2
0
1
8
)
1
9
1

Published for SISSA by Springer

Received: June 26, 2018

Revised: September 11, 2018

Accepted: October 21, 2018

Published: October 30, 2018

Linear-T resistivity at high temperature

Hyun-Sik Jeong,a Chao Niua,b and Keun-Young Kima

aSchool of Physics and Chemistry, Gwangju Institute of Science and Technology,

123 Cheomdan-gwagiro, Gwangju 61005, South Korea
bDepartment of Physics and Siyuan Laboratory, Jinan University,

Guangzhou 510632, China

E-mail: hyunsik@gist.ac.kr, chaoniu09@gmail.com, fortoe@gist.ac.kr

Abstract: The linear-T resistivity is one of the characteristic and universal properties of

strange metals. There have been many progresses in understanding it from holographic

perspective (gauge/gravity duality). In most holographic models, the linear-T resistivity

is explained by the property of the infrared geometry and valid at low temperature limit.

On the other hand, experimentally, the linear-T resistivity is observed in a large range

of temperatures, up to room temperature. By using holographic models related to the

Gubser-Rocha model, we investigate how much the linear-T resistivity is robust at higher

temperature above the superconducting phase transition temperature. We find that strong

momentum relaxation plays an important role to have a robust linear-T resistivity up to

high temperature.

Keywords: Holography and condensed matter physics (AdS/CMT), Gauge-gravity cor-

respondence

ArXiv ePrint: 1806.07739

Open Access, c© The Authors.

Article funded by SCOAP3.
https://doi.org/10.1007/JHEP10(2018)191

mailto:hyunsik@gist.ac.kr
mailto:chaoniu09@gmail.com
mailto:fortoe@gist.ac.kr
https://arxiv.org/abs/1806.07739
https://doi.org/10.1007/JHEP10(2018)191


J
H
E
P
1
0
(
2
0
1
8
)
1
9
1

Contents

1 Introduction 1

2 Superconductor based on the Gubser-Rocha model 3

2.1 Model: action and ansatz 3

2.2 Linear-T resistivity in strange metal phase 5

2.3 Linear-T resistivity above the critical temperature 9

3 Generalization of the Gubser-Rocha model 9

3.1 Conformal to AdS2 ×Rp−1 IR geomety: δ =
√

2
p(p−1) 11

3.2 AdS2 ×Rp−1 IR geomety: 0 ≤ δ <
√

2
p(p−1) 14

4 Conclusion 16

A Resistivity in terms of µ/β and T/β 17

1 Introduction

One of the interesting features in strongly correlated systems is the universality in transport

phenomena across very different systems. In particular, various strange metals such as

cuprates, pnictides, and heavy fermions exhibit the linear in temperature (T ) resistivity

(ρ) [1] with a remarkable degree of universality,1

ρ ∼ T . (1.1)

It is in contrast to ordinary metals explained by the Fermi liquid theory, where ρ ∼ T 2.

However, because of the difficulty in analyzing strong correlation, a complete and

systematic understanding of this problem is still lacking. The gauge/gravity duality or

holographic methods [1, 14, 15] is one of the effective ways to study strongly correlated

systems by mapping them to the dual weakly interacting systems.

In most holographic methods, the linear-T resistivity is explained by the property

of the infrared (IR) geometry. See for example [4–7, 16–22]. In these approaches one

first classifies scaling IR geometries in terms of critical exponents such as the dynamical

critical exponent (z), hyperscaling violating exponent (θ) and charge anomalous parameter

(ζ). The geometries are supported by various matter fields and couplings. It has been

shown [5, 23–25] that the resistivity can be computed only by horizon data, the values

1As other examples of universal properties, there are the Hall angle [2–7] at finite magnetic field and

Home’s law in superconductors [8–13].
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of metric and matter fields at the horizon. Furthermore, by considering low temperature

limit, the resistivity has been shown to scale as

ρ ∼ T g(z,θ,ζ) , (1.2)

where g is some function of critical exponents. The effect of the parameters of the system

such as chemical potential (µ), momentum relaxation (β), and couplings are encoded both

in the critical exponents and the proportionality constants. As a result, the resistivity is

governed by the critical exponents characterizing the critical points in condensed matter

systems.

However, this approach has a limitation. The result (1.2) is valid only at small tem-

perature. Mathematically, T must be very small compared with any other scales in given

models. For example, T/µ� 1 and T/β � 1 etc. On the other hand, phenomenologically,

the linear-T resistivity is observed in a large range of temperatures, up to room temper-

ature ∼ 300K. Because the phenomenological values of µ and β are not unambiguously

identified in holographic set-up, we are not sure whether the conditions T/µ � 1 and

T/β � 1 are sufficient to describe the linear-T behavior in strange metal phase. For exam-

ple, it is still possible that the strange metal regime must be realized up to T/µ . 1 and

the condition T/µ� 1 is too restrictive in holographic set-up. This question is also related

with a theoretical question: how much robust is the linear-T resistivity as temperature

goes up?

To investigate this issue, in this paper, i) we extend the analysis of holographic resistiv-

ity at small temperature to arbitrary finite temperature and ii) we propose a way to specify

the temperature range we need to investigate. We use an internal scale in the model, the

superconducting transition (critical) temperature (Tc) as a reference scale. Experimental

results show that the strange metal phase with a linear-T resistivity must survive up to

T/µ > Tc/µ. This condition may not be compatible with small temperature limit that

most holographic methods [4, 6, 7, 17–21] rely on.

In this paper, we focus on the Gubser-Rocha model [26] and its variants [17, 27, 28] for

two reasons. First, it is an interesting holographic realization of a general (non-holographic)

mechanism explaining the linear-T resistivity based on three conditions (See [17] for more

details): i) weak momentum relaxation, which gives a connection between resistivity and

shear viscosity (η), ρ ∼ η, ii) the KSS (Kovtun, Son, Starinets) shear viscosity (η) to

entropy density (s) ratio bound i.e. η ∼ s, iii) s ∼ T as in the strange metal phase of the

cuprates. However, the Gubser-Rocha model has realized this mechanism only at small

temperature. Because of the aforementioned reason in the previous paragraph, it will be

interesting to see how much robust this general mechanism is when temperature goes up.

Second, the Gubser-Rocah model allows an analytic solution. Note that, in the stud-

ies [4, 6, 7, 17–21], the solutions are valid only at small temperature and cannot be used

to investigate the resistivity at arbitrary temperature. To obtain the finite temperature

solutions, we should introduce certain potential terms giving asymptotically UV AdS ge-

ometry [29–31]. In these cases, most holographic models do not allow analytic solutions

at finite temperature and we should resort to numerical methods. One exception is the

Gubser-Rocha model of which analytic solution has been obtained in [17, 27, 28].

– 2 –
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However, contrary to the previous analysis in [17], where weak momentum relaxation

is essential, we focus on strong momentum relaxation, which is partly inspired by [32].

In [32], it is argued that if the momentum is relaxed quickly, which is an extrinsic so non-

universal effect, transport can be governed by diffusion of energy and charge, which is an

intrinsic and universal effect. Thus, the universality of linear-T resistivity may appear in

the incoherent regime (the regime of strong momentum relaxation).2

Indeed, in this paper, we find that the linear-T resistivity becomes more robust when

momentum relaxation becomes stronger. We also show that the linear-T resistivity can

survive above the superconducting phase transition only when the momentum relaxation

is strong enough. We extend our analysis further to i) higher dimensional systems in p+ 1

spacetime with p ≥ 4 and ii) solutions with different IR geometries [18]. There are two

types of IR geometries depending on the strength of couplings and potentials in the action:

one is conformal to AdS2 × Rp−1 and the other is just AdS2 × Rp−1. In these extended

analysis, we also confirm that strong momentum relaxation enhances linear-T resistivity.

This paper is organized as follows. In section 2, we introduce the Gubser-Rocha model

and its modification by the axion fields which gives momentum relaxation. In normal phase,

we compute the resistivity analytically and identify the condition under which the linear-

T is realized. To study the temperature dependence of the resistivity above the critical

temperature, we add the simplest ‘superconductor’ sector, a massive complex scalar. In

section 3, we extend the analysis in section 2 to higher dimension and solutions with

different IR geometries. In section 4, we conclude.

2 Superconductor based on the Gubser-Rocha model

2.1 Model: action and ansatz

We study a 3+1 dimensional holographic superconductor model based on a Einstein-

Maxwell-Dilaton-Axion theory:

S =S1 + S2 + S3 =

∫
d4x
√
−g (L1 + L2 + L3) ,

L1 =R− 1

4
eφF 2 − 3

2
(∂φ)2 +

6

L2
coshφ ,

L2 =− 1

2

2∑
I=1

(∂ψI)
2 , L3 = −|DΦ|2 −m2|Φ|2 ,

(2.1)

where L is the AdS radius, Dµ := ∇µ − iqAµ and the gravitational constant is chosen

to be 16πG = 1. The first term S1 is the Einstein-Maxwell-Dilaton model which we

call the ‘Gubser-Rocha model’ [26]. This model constitutes of three fields: metric, U(1)

gauge field, and a scalar field so called the ‘dilaton’. The metric and gauge field are

minimum holographic ingredients for a quantum field theory at finite temperature and

density. The dilaton was originally introduced to avoid a finite entropy at zero temperature.

2There is another proposal that the linear-T resistivity may appear in weak momentum relaxation regime

in the case of weakly-pinned charge density waves (CDWs), where the resistivity is governed by incoherent,

diffusive processes which do not drag momentum and can be evaluated in the clean limit [33–35].
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It turns out, with the dynamics of the dilaton, the entropy density (s) becomes proportional

to temperature (T ): s ∼ T [26]. The second term S2, which is called the ‘axion’ is

added to break translation invariance so that momentum is relaxed and the resistivity is

finite [27, 28, 36]. In [17], instead of axion, a graviton mass term [37] was included which

also plays a role of introducing momentum relaxation. The third term S3 is the complex

scalar field dual to the superconducting order parameter [38].3

The action (2.1) yields the equations of motion

Rµν −
1

2
gµν

[
R− 1

4
eφF 2 − 3

2
(∂φ)2 +

6

L2
coshφ− 1

2

2∑
I=1

(∂ψI)
2−|DΦ|2 −m2|Φ|2

]

=
1

2
eφFµδFν

δ +
3

2
∂µφ∂νφ+

1

2

2∑
I=1

(∂µψI∂νψI) +
1

2

(
DµΦD∗νΦ∗ +DνΦD∗µΦ∗

)
, (2.2)

∇2φ− 1

12
eφF 2 +

2

L2
sinh(φ) = 0 ,

∇µ(eφFµν)− iqΦ∗(∂ν − iqAν)Φ + iqΦ(∂ν + iqAν)Φ∗ = 0 ,

∇2ψI = 0 , D2Φ−m2Φ = 0 ,

and we use the following ansatz:

ds2 = gttdt
2 + gzzdz

2 + gxxdx2 + gyydy
2

=
L2

z̃2

[
−(1− z̃)U(z̃)dt̃2 +

dz̃2

(1− z̃)U(z̃)
+ V (z̃)dx̃2 + V (z̃)dỹ2

]
,

A = L(1− z̃)a(z̃)dt̃ , φ =
1

2
log[1 + z̃ ϕ(z̃)] , Φ = z̃ η(z̃),

ψ1 = β̃ x̃ , ψ2 = β̃ ỹ ,

(2.3)

where

z̃ :=
z

zh
, t̃ :=

t

L2zh
, x̃ :=

x

L2zh
, ỹ :=

y

L2zh
, β̃ := β zh . (2.4)

Here, we choose the holographic coordinate z̃ such that the black hole horizon is located

at z̃ = 1 and the boundary is at z̃ = 0. Our coordinate system is related to [27, 28] by

z = 1/r and the specific form of ansatz (2.3) is chosen for convenience in numerical analysis

for superconducting phase. For simplicity, we set L = 1 from here on.

Suppose that the IR physics of a system is well described by hydrodynamics with

a minimal shear viscosity (η ∼ s), which is typical in strongly correlated systems with

holographic duals. If this system lose momentum weakly by coupling to random disorder

the resistivity turns out to be proportional to viscosity. i.e. ρ ∼ η ∼ s. Finally, for a system

with s ∼ T such as the strange metal phase of the cuprates, ρ ∼ T [17]. The Gubser-Rocha

model is a holographic realization of this mechanism although it has a dynamical exponent

z →∞ and a hyperscaling violating exponent θ → −∞ with the fixed θ/z = −1.

3See [39] for linear-T resistivity in p-wave holographic superconductor models without momentum re-

laxation.
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2.2 Linear-T resistivity in strange metal phase

For normal phase, Φ = 0 (η(z̃) = 0), the analytic solution is available [27, 28]

U(z̃) =
1 + (1 + 3Q̃)z̃ + z̃2(1 + 3Q̃(1 + Q̃)− 1

2 β̃
2
)

(1 + Q̃z̃)3/2
, V (z̃) = (1 + Q̃z̃)3/2 , (2.5)

a(z̃) =

√
3Q̃(1 + Q̃)

(
1− β̃

2

2(1+Q̃)2

)
1 + Q̃z̃

, ϕ(z̃) = Q̃ , (2.6)

where Q̃ is a parameter which will be expressed in terms of physical parameters such as

temperature (T ), chemical potential (µ) or momentum relaxation parameter (β). The

temperature and chemical potential read

T =
g′tt(z)

4π
√
gttgzz

∣∣∣
zh

=
1

zh

6(1 + Q̃)2 − β̃2

8π(1 + Q̃)3/2
=:

1

zh
T̃ , (2.7)

µ = At(0) =
1

zh

√√√√3Q̃(1 + Q̃)

(
1− β̃

2

2(1 + Q̃)2

)
=:

1

zh
µ̃ , (2.8)

where the last equalities define T̃ = Tzh and µ̃ = µzh. The conductivity can be com-

puted [5, 23, 25, 40] as

σDC := eφ − A′2 gxx e
2φ

β2 gtt gzz

∣∣∣
z→zh

=

√
1 + Q̃+

√
1 + Q̃

(β̃/µ̃)2
, (2.9)

where Q̃ may be a function of T̃ , β̃ or µ̃, β̃ from (2.7) or (2.8).

Variables with tilde are scaled by zh and convenient for numerical analysis. We want

to fix chemical potential so express the conductivity in terms of T and β at fixed µ. For

this purpose we define

T̄ :=
T

µ
=
T̃

µ̃
=

6(1 + Q̃)2 − β̃2

4
√

6π
√
Q̃(1 + Q̃)2(2(1 + Q̃)2 − β̃2)

, (2.10)

β̄ :=
β

µ
=
β̃

µ̃
=

√
2(1 + Q̃)β̃2

3Q̃(2(1 + Q̃)2 − β̃2)
, (2.11)

where we used (2.4), (2.7) and (2.8). By combining (2.10) and (2.11) we can obtain Q̃ as a

function of T̄ and β̄ analytically, i.e. Q̃(T̄ , β̄). Thus, the electric conductivity (2.9) can be

expressed in terms of T̄ and β̄. However, because the analytic expression of Q̃(T̄ , β̄) is too

complicated and not so illuminating, we do not show it here. Instead, we display its plots

in figure 1 and report its asymptotic form, (2.12)–(2.14), at some limits which are relevant

for our study.

Because we are interested in the temperature dependence of Q̃ we make a log-log plot

(log Q̃ - log T̄ ) at fixed β̄ to read off the power of T̄ in figure 1. The solid curves correspond

– 5 –
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˜
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Figure 1. log Q̃ vs log T̄ . The solid curves correspond to β̄ = 0.1, 5, 10, 20 (Red, Green, Blue,

Purple). The black dashed line represents (2.14).

to β̄ = 0.1, 5, 10, 20 (Red, Green, Blue, Purple). Interestingly, the power turns out to be

the same, Q̃ ∼ T̄
−2

, at both small T̄ and large T̄ while there is a change in the middle.

This change is bigger for large β̄. Figure 1 can be understood by the following analytic

expansions of Q̃(T̄ , β̄).

Q̃ ∼ 3(1 + β̄
2
)2

8π2(2 + 3β̄
2
)T̄

2
, (T̄ � 1) , (2.12)

Q̃ ∼ 3

16π2T̄
2 , (T̄ � 1 or β̄ � 1) , (2.13)

Q̃ ∼ β̄
2

8π2T̄
2 , (β̄ � 1) . (2.14)

Eqs. (2.12) and (2.13) agree with figure 1 at small T̄ and large T̄ . In T̄ � 1 limit, the

slopes are the same, but the starting points are varying with β̄, as shown in (2.12). In

T̄ � 1 limit, all curves coincide regardless of β̄ as shown in (2.13). Another interesting

limit is the strong momentum relaxation limit β̄ � 1, (2.14), which is displayed as the

dashed lines in figure 1. Note that eq. (2.14) is valid for a larger range of T̄ for a bigger β̄,

which will play an important role in our later discussion for linear-T resistivity.

In the above limits, (2.12)–(2.14), the conductivity (2.9) behaves as

σDC ∼
√
Q̃

(
1 +

1

β̄
2

)
∼

√
3
(

1 + β̄
2
)2

2πβ̄
2
√

4 + 6β̄
2

1

T̄
, (T̄ � 1) , (2.15)

σDC ∼ 1 +
1

β̄
2 , (T̄ � 1) (2.16)

for given β̄ and

σDC ∼
1

β̄
2

√
1 + Q̃ ∼ 1

β̄
2

√(
1 +

3

16π2T̄
2

)
, (β̄ � 1) , (2.17)

σDC ∼
√
Q̃ ∼ β̄

2
√

2πT̄
, (β̄ � 1) (2.18)

– 6 –
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for given T̄ . We find that the resistivity (ρ = 1/σDC) is linear to temperature in two cases:

T̄ � 1 (2.15) and β̄ � 1 (2.18). The former has something to do with a result in [17] and

the latter is one of our main results.

In [17], in order to propose a universal mechanism of the linear-T resistivity, weak

momentum relaxation and low temperature limit are considered. It corresponds to the

case for both T̄ � 1 and β̄ � 1 from (2.15) and (2.17)

ρ =
1

σDC
∼ 4πβ̄

2

√
3
T̄ , (2.19)

which reproduces ρ ∼ β̄
2
T̄ in [17] and here we identify a precise numerical coefficient.

However, from this asymptotic behavior in the limit T̄ � 1, it is not clear how much

linear-T resistivity robust at higher (but still low) temperature,4 for example, at T̄ . 1.

To check it we make an exact plot of the resistivity, the inverse of (2.9), without any

approximation in figure 2(a), where β̄ = 0.1. The red curve is the exact resistivity, the

horizontal dashed lines are the inverse of (2.16) and the dotted lines are (2.19). We see

that the linear-T behavior of resistivity is not so robust at small temperature.

However, from (2.18) we find that there is another mechanism for linear-T resistivity:

strong momentum relaxation. To check it we make exact plots of the resistivity for β̄ = 1

(figure 2(b)) and β̄ = 10 (figure 2(c)). As β̄ increases, linear-T behavior is retained for

higher temperature. Note that, for β̄ & 1, (2.19) is not a good approximation at small

temperature. Instead, we have to use (2.15) or (2.18) which correspond to the dotted lines

in figure 2(b) and (c) respectively. Figure 2(d) is presented for comparison for different

β̄s. As shown in (2.18), the linear-T comes from the Q̃ ∼ 1/T̄
2
, (2.14). To have a robust

linear-T resistivity at higher T̄ , the temperature dependence of Q̃ should be stable for a

long range of T̄ , which is shown as dashed lines in figure 1.

There is another way to see (2.18). The limit β̄ � 1 corresponds to µ̃→ 0 at fixed β̃,

so (2.8) implies

β̃ ∼
√

2(1 + Q̃) , (2.20)

or Q̃ = 0 or Q̃ = −1. We discard the last two cases because Q̃ = 0 means the dilaton

vanishes and Q̃ = −1 is thermodynamically unstable [28]. Thus, from (2.7),

T̄

β̄
=
T̃

β̃
∼ 1

2
√

2π

√
1 + Q̃

, (2.21)

and

σDC ∼
√

1 + Q̃ ∼ β̄

2
√

2π T̄
, (2.22)

which agrees to (2.18).

The saturation of the resistivity at large temperature has nothing to do with the Mott-

Ioffe-Regel limit. This large temperature behaviour can be understood by dimensional

4We will clarify the meaning of ‘low temperature’ later in terms of the superconducting phase transition

temperature.
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(a) β̄ = 0.1
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(b) β̄ = 1

0.0 0.5 1.0 1.5 2.0
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ρ

(c) β̄ = 10

0.0 0.5 1.0 1.5 2.0
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0.6

0.8

1.0
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T/μ

ρ

(d) β̄ = 0.1, 1, 10

Figure 2. Resistivity vs temperature at fixed β̄ = 0.1, 1, 10. The horizontal dashed lines are

the inverse of (2.16). The dotted lines are (2.19) (a), the inverse of (2.15) (b) and the inverse

of (2.18) (c).

analysis. The dimension of the electric field is [E] = 2 and the dimension of a current

density in p spacetime dimensions is [J ] = p − 1. Thus, the dimension of the resistivity

[ρ] = 3− p so the high temperature behaviour of the resistivity is ρ ∼ T 3−p, which agrees

with (3.21). In our case, p = 3 so the resistivity becomes constant at high temperature.

In summary, the resistivity is in general

ρ =
1√

1 + Q̃

β̄
2

1 + β̄
2 , (2.23)

and, for large β̄, it is well approximated as

ρ ∼ 2
√

2π

β̄
T̄

(
T̄ .

β̄

2
√

2π

)
,

ρ ∼ β̄
2

(1 + β̄
2
)
∼ 1

(
T̄ &

β̄

2
√

2π

)
.

(2.24)

These are different from (2.19), which is valid only at very small T̄ in [17]. The critical

temperature T̄ = β̄/(2
√

2π) is determined by an approximate condition ρ ∼ 1.

– 8 –
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However, note that in strange metal, linear-T behavior is shown up to room temper-

ature. Is the room temperature small or large? To build a theoretical model for strange

metal, we need to quantify how ‘small’ temperature is ‘small’ compared to which quantity.

For this purpose, it will be good to find some intrinsic scale in the model. We will choose

our reference scale as the critical temperature (Tc), the superconducting phase transition

temperature. In the next section we find the critical temperature and use it to quantify

‘small’ or ‘large’ temperature.

2.3 Linear-T resistivity above the critical temperature

Now let us consider the superconducting phase. Above the critical temperature, there is

only one solution with Φ = 0 but below the critical temperature, there are two available

solutions, one with Φ = 0 and the other with Φ 6= 0. When there are two solutions, we

need to choose one solution with a lower free energy, which is the case with Φ 6= 0. In this

case, the complex scalar Φ falls off as

Φ = ϕ1z + ϕ2z
2 + · · · , (2.25)

near boundary at z = 0, if m2 = −2. If we choose ϕ1 as a source ϕ2 corresponds to

the condensate of the scalar operator. For spontaneous symmetry breaking we impose

the boundary condition ϕ1 = 0. We refer to [11, 12] for further technical details on

superconductor with momentum relaxation, where a different model so called linear axion

model was considered but the method of analysis is similar.

The critical temperature depends on q and β̄ and we show how the critical temperature

is changed by the red vertical dotted lines in figure 3 for q = 6 and q = 20. Here q is a

charge defined in the covariant derivative in (2.1). The critical temperature is lower for

smaller q and bigger β̄. We use the critical temperature (Tc) as our reference and T > Tc
(T < Tc) is identified with a high (low) temperature.

We find that if the momentum relaxation is strong (large β̄), the linear-T resistivity

can survive at high temperarue as shown in (c) and (f) of figure 3. In addition, if q is small

Tc becomes small so it also helps that linear-T resistivity is realized at ‘high’ temperature.

3 Generalization of the Gubser-Rocha model

The advantage of the Gubser-Rocha model studied in section 2 is that the analytic solution

is available. Interestingly, it has been shown in [18] that this model can be generalized in

two ways and still allows analytic solutions. First, we may consider arbitrary spacetime

dimension. Second, we may have the case in which the IR geometry is not conformal to

AdS2 ×Rp−1.
Let us consider a Einstein-Maxwell-Dilaton-Axion action [18] given by

S =

∫
dp+1x

√
−g

[
R− 1

2
∂φ2 − 1

4
Z(φ)F 2 + V (φ)− 1

2

p−1∑
i=1

∂ψ2
i

]
, (3.1)
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Figure 3. Resistivity vs temperature of the superconductor model with q = 6 (top) and q = 10

(bottom). The vertical red dotted line displays the phase transition temperature, which is higher

for bigger q and smaller β̄. For bigger β̄, the linear-T resistivity survives above the phase transition

as shown in figures (c) and (f).

where the couplings Z(φ) and V (φ) are assumed to have the following specific forms:

Z(φ) = e−(p−2)δφ , V (φ) = V1e
((p−2)(p−1)δ2−2)φ

2(p−1)δ + V2e
2φ
δ−pδ + V3e

(p−2)δφ , (3.2)

with

V1 =
8(p− 2)(p− 1)3δ2

(2 + (p− 2)(p− 1)δ2)2
, V2 =

(p− 2)2(p− 1)2(p(p− 1)δ2 − 2)δ2

(2 + (p− 2)(p− 1)δ2)2
,

V3 = −2(p− 2)2(p− 1)2δ2 − 4p(p− 1)

(2 + (p− 2)(p− 1)δ2)2
.

(3.3)

Here δ is a free parameter. The action (3.1) is reduced to the Guber-Rocha model

in (2.1) if p = 3 and δ =
√

1/3.5 The equations of motion read

Rµν =
1

2
∂µφ∂νφ+

1

2

p−1∑
i=1

∂µψi∂νψi +
Z(φ)

2
Fµ

ρFνρ −
Z(φ)F 2

4(p− 1)
gµν −

V (φ)

p− 1
gµν ,

0 = ∇µ(Z(φ)Fµν) , 0 = ∇2ψi , i = 1 . . . p− 1 ,

0 = �φ+ V ′(φ)− 1

4
Z ′(φ)F 2.

(3.4)

With the following ansatz for the solution

ds2 = −D(r)dt2 +B(r)dr2 + C(r)d~x2i , A = At(r)dt , ψi = βxi , (3.5)

5For direct comparison with (2.1) we need to rescale the scalar field as φ→ −
√

3φ.
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the solutions are given by

ds2 = −f(r)h(r)
−4

2+(p−2)(p−1)δ2 dt2 + h(r)
4

(p−2)(2+(p−2)(p−1)δ2)

[
dr2

f(r)
+ r2dΣ2

p−1

]
,

f(r) = r2
(
h(r)

4(p−1)

(p−2)(2+(p−1)(p−2)δ2) −
rph
rp
h(rh)

4(p−1)

(p−2)(2+(p−1)(p−2)δ2)

)
−
β2
(

1− rp−2
h
rp−2

)
2(p− 2)

,

h(r) = 1 +
Q

rp−2
, (3.6)

eφ = h(r)
−2(p−1)δ

2+(p−2)(p−1)δ2 ,

At(r) = 2
√

(p− 1)Q

√
(p− 2)r2+ph h(rh)

2(2−(p−2)2(p−1)δ2)
(p−2)(2+(p−1)(p−2)δ2) − rphβ

2

2h(rh)

(p− 2)rp−1h h(r)
√

2 + (p− 2)(p− 1)δ2

(
1−

rp−2h

rp−2

)
,

where rh is the horizon position. The conductivity can be expressed in terms of the

horizon data

σDC := C
p−3
2 Z +

q2

β2Y C
p−1
2

∣∣∣
r→rh

, (3.7)

where q is the charge density

q :=
A′tZ

(BD)
1
2C

−(p−1)
2

∣∣∣
r→rh

. (3.8)

Note that the UV geometry is always asymptotically AdS spacetime. If δ = 0 the

solution is simply AdS-RN and the IR geometry is AdS2 ×Rp−1. There is a specific value

δ =
√

2
p(p−1) , with which the IR geometry is conformal to AdS2 × Rp−1 [18]. After first

investigating the former we will consider the latter.

3.1 Conformal to AdS2 ×Rp−1 IR geomety: δ =
√

2
p(p−1)

For p = 3, (3.6) is the same as (2.3) with (2.5) by a coordinate transformation (2.4) and

footnote 4. Thus, this case amounts to the high dimensional extension of the Gubser-Rocha

model. The temperature and chemical potential read

T =
1

4π

|D′|√
DB

∣∣∣∣
rh

= rh
2p (1 + Q̃)

2
p−2 − β̃2

8π(1 + Q̃)
p

2(p−2)

=: rh T̃ , (3.9)

µ = At(∞) = rh

√√√√ p

p− 2
Q̃(1 + Q̃)

4−p
p−2

(
1− β̃

2

2(p− 2)(1 + Q̃)
2
p−2

)
=: rh µ̃ , (3.10)

where

Q̃ :=
Q

rp−2h

, β̃ :=
β

rh
. (3.11)
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In order to compute the conductivity as a function of T and β at fixed µ, we define

T̄ :=
T

µ
=
T̃

µ̃
=

2p(p− 2)(1 + Q̃)
2
p−2 − (p− 2)β̃

2

4
√

2p π

√
Q̃(1 + Q̃)

2
p−2

(
2(p− 2)(1 + Q̃)

2
p−2 − β̃2

) , (3.12)

β̄ :=
β

µ
=
β̃

µ̃
=

√√√√√ 2(p− 2)2(1 + Q̃)β̃
2

p Q̃
(

2(p− 2)(1 + Q̃)
2
p−2 − β̃2

) , (3.13)

where we used (3.9), (3.10) and (3.11).

From the formula (3.7), the conductivity is

σDC = rp−3h

(1 + Q̃)
1+ 4−p

4−2p +
(p− 2)2(1 + Q̃)

(p−2)2−(p−4)
2(p−2)(p−1)

β̄
2

 , (3.14)

and the dimensionless conductivity (σ̄DC) scaled by the chemical potential (3.10) is de-

fined as

σ̄DC :=
σDC

µp−3
=

√1 + Q̃+
(p− 2)2

√
1 + Q̃

2−(p−3)p
(p−2)(p−1)

β̄
2


(

β̄
2

2(p− 2)
+

(p− 2)(1 + Q̃)

p Q̃

)p−3
2

,

(3.15)

Here we used the chemical potential µ expressed in terms of β̄ and Q̃:

µ = rh

√√√√ p

p− 2
Q̃(1 + Q̃)

4−p
p−2

(
1− p Q̃ β̄

2

2(p− 2)2(1 + Q̃) + p Q̃ β̄
2

)
. (3.16)

which is obtained from (3.10) by using (3.13).

The conductivity (3.15) is a function of β̄ and Q̃(T̄ , β̄). Like in section 2, because the

analytic expression of Q̃(T̄ , β̄) is very complicated and not so illuminating we only consider

its asymptotic form in some limits.

Q̃ ∼
p
(

(p− 2)2 + β̄
2
)2

8π2(p− 2)
(

2(p− 2)2 + p β̄
2
) 1

T̄
2 , (T̄ � 1) , (3.17)

Q̃ ∼ p(p− 2)

16π2T̄
2 , (T̄ � 1 or β̄ � 1) , (3.18)

Q̃ ∼ β̄
2

8(p− 2)π2T̄
2 , (β̄ � 1) . (3.19)
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In the above limits the conductivity (3.15) behaves as

σ̄DC ∼
√
Q̃

(
1 +

(p− 2)2

β̄
2 δp,3

)(
p− 2

p
+

β̄
2

2(p− 2)

) p−3
2

(T̄ � 1)

∼
p2(p− 2)

(
(p− 2)2 + β̄

2
)(

1− 2
p +

β̄
2

2(p−2)

) p
2

π
(

2(p− 2)2 + p β̄
2
)2

(
1 +

(p− 2)2

β̄
2 δp,3

)
1

T̄
, (3.20)

σ̄DC ∼

(
1 +

(p− 2)2

β̄
2

)(
p− 2

p Q̃

) p−3
2

∼

(
1 +

(p− 2)2

β̄
2

)(
4π

p

)p−3
T̄
p−3

, (T̄ � 1) (3.21)

for given β̄ and

σ̄DC ∼
1

β̄
2

(p− 2)
p+1
2 (1 + Q̃)

(p−7)p2+2(7p−2)
2(p−2)(p−1)

(p Q̃)
p−3
2

∼ (4π)p+1

β̄
2

(p− 2)2
(

1 + (p−2)p

16π2T̄
2

) 4+(p−2)(p−1)p
2(p−2)(p−1)

pp−3
(

(p− 2)p+ 16π2T̄
2
)2 T̄

p+1
, (β̄ � 1) (3.22)

σ̄DC ∼

√
β̄
2(p−3)

2p−3(p− 2)p−3

√
Q̃ ∼

√
β̄
2(p−2)

2p(p− 2)p−2
1

π T̄
, (β̄ � 1) (3.23)

for given T̄ .

There are two ways to obatin the linear-T resistivity(ρ = 1/σ̄DC) regardless of the

dimension p: T̄ � 1 (3.20) and β̄ � 1 (3.23). The latter (strong momentum relaxation) is

robust for a large range of temperature, which is the property we want. To trace the origin

of this linear-T behavior, let us revisit the structure of the conductivity (σ̄DC) defined

in (3.15). Without simplifying the expression as in (3.15), the conductivity reads

σ̄DC :=
σDC

µp−3
=

(1 + Q̃)
1+ 4−p

4−2p + (p−2)2(1+Q̃)
(p−2)2−(p−4)
2(p−2)(p−1)

β̄
2


√

p
p−2Q̃(1 + Q̃)

4−p
p−2

(
1− p Q̃ β̄

2

2(p−2)2(1+Q̃)+p Q̃ β̄
2

) p−3
(3.24)

with (3.14) and (3.16). First, in the numerator (σDC), the first term is always dominant in

the limit β̄ � 1. Note that even though the second term in the numerator is suppressed

by β̄
2

we also have to check β̄ dependence in Q̃, (3.19), to see if the first term is indeed

dominant. Next, the parenthesis in the denominator is simplified as 2(p− 2)2/(p β̄
2
) in the

limit β̄ � 1. Thus,

σ̄DC ∼
Q̃

1+ 4−p
4−2p√

p
p−2Q̃ Q̃

4−p
p−2

(
2(p−2)2

p β̄
2

) p−3 =

√
β̄
2(p−3)

2p−3(p− 2)p−3

√
Q̃ , (3.25)
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Figure 4. Resistivity vs temperature at fixed β̄ = 1, 10, 20 for p = 4 (top) and p = 5 (bottom).

The dashed curves (right side) are the inverse of (3.21). The dotted lines (left side) are the inverse

of (3.20) for β̄ = 1, 10 and the inverse of (3.23) for β̄ = 20.

which agrees with (3.23). In short, the origin of the linear-T dependence of σ̄DC for strong

momentum relaxation comes from the combination of σDC (3.14) and µ (3.16).

The exact plots of the resistivity (3.15) are shown in figure 4 for p = 4, 5 and β̄ =

1, 10, 20. As expected, the large β̄ gives a robust linear-T resistivity. The slop at small

temperature agrees with (3.20) (or (3.23) for β̄ = 10, 20). At large temperature, the

resistivity decreases as 1/T (p = 4) and 1/T 2(p = 5) respectively as shown in (3.21).

3.2 AdS2 ×Rp−1 IR geomety: 0 ≤ δ <
√

2
p(p−1)

Let us turn to the case with an arbitrary δ ∈
[
0,
√

2
p(p−1)

)
, where δ = 0 corresponds to the

AdS-RN balck hole and δ =
√

2
p(p−1) corresponds to the Gubser-Rocha model in higher

dimensions. The temperature and chemical potential read

T = rh
2
(
p(1 + Q̃)− 4(p−1)Q̃

2+(p−2)(p−1)δ2

)
(1 + Q̃)

2p−(p−2)2(p−1)δ2

(p−2)(2+(p−2)(p−1)δ2) − β̃2

8π(1 + Q̃)
2(p−1)

(p−2)(2+(p−2)(p−1)δ2)

=: rh T̃ , (3.26)

µ = rh

√√√√√4(p− 1) Q̃(1 + Q̃)
4−2(p−2)2(p−1)δ2

(p−2)(2+(p−2)(p−1)δ2)

(p− 2)(2 + (p− 2)(p− 1)δ2)

1− β̃
2

2(p− 2)(1 + Q̃)
2p−(p−2)2(p−1)δ2

(p−2)(2+(p−2)(p−1)δ2)


=: rh µ̃ . (3.27)
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Figure 5. Resistivity (ρ) vs temperature. β̄ = 0.1(a), 10(b) for p = 3. Various colors represent

different δs. i.e. δ = 1√
3
, 55
100 ,
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100 ,

40
100 ,

30
100 ,

20
100 , 0 (red, orange, yellow, green, blue, purple, black).

Similarly to (3.12) and (3.13) we can define T̄ and β̄, of which analytic expression is

complicated and we do not present here. The conductivity (3.7) reads

σDC = rp−3h

(1 + Q̃)
2(p−3+(p−2)2(p−1)δ2)

(p−2)(2+(p−2)(p−1)δ2) +
(p− 2)2(1 + Q̃)

2(3−p+(p−2)2(p−1)δ2)

(p−2)(2+(p−2)(p−1)δ2)

β̄
2

 , (3.28)

and the dimensionless conductivity is defined by

σ̄DC :=
σDC

µp−3
=


√

1 + Q̃

(p−2)(p−1)(p+1)δ2−2(p−3)

2+(p−2)(p−1)δ2

+
(p− 2)2

√
1 + Q̃

(p−2)2(p2−1)δ2−2(p−3)(p+2)

(p−2)(2+(p−2)(p−1)δ2)

β̄
2


×

(
β̄
2

2(p− 2)
+

(p− 2)(1 + Q̃)(2 + (p− 2)(p− 1)δ2)

4(p− 1) Q̃

) p−3
2

. (3.29)

We make a plot of the resistivity (1/σ̄DC) for several δs in figure 5. Also in this case, we

can see a qualitative tendency that the strong momentum relaxation gives a more robust

linear-T resistivity at higher temperature up to residual resistivity at zero temperature.

The residual resistivity at zero temperature is

ρ ∼ β̄
2

1 + β̄
2

(1 + 3δ2 + 2β̄
2
)−

√(
1 + 3δ2 + 2β̄

2
)2
− (3δ2 − 1)(3 + 3δ2 + 6β̄

2
)

2β̄
2 − 2−

√
4 + (10− 6δ2)β̄

2
+ 4β̄

4


2δ2

1+δ2

,

(3.30)

for p = 3. This can be obtained by plugging Q̃(δ, β̄) in (3.29), where Q̃ is computed by
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requiring T = 0 in (3.26). The expression is simplifed in two limits:

ρ ∼
(

1− 3δ2

4

) 2δ2

1+δ2

β̄
2
, (β̄ � 1) , (3.31)

ρ ∼
(

1− 3δ2

3− δ2

) 2δ2

1+δ2

. (β̄ � 1) (3.32)

In strong momentum relaxation, the residual resistivity is independent of β̄, and is only a

function of δ. Only for δ =
√

1
3 corresponding to the Gubser-Rocha model, ρ = 0 at zero

temperature. For δ = 0 corresponding to the AdS-RN black hole case, ρ = β̄
2
/(1 + β̄

2
) at

all temperature.

4 Conclusion

In this paper, we have studied resistivity in extended classes of the Gubser-Rocha model

with momentum relaxation. The IR geometry of these models is AdS2×Rp−1 or conformal

to AdS2 × Rp−1. For the former, there is a residual resistivity at zero temperature, while

for the latter, the resistivity vanishes at zero temperature.

Investigating the linear-T resistivity at higher temperature is important because linear-

T resistivity is observed even in room temperature well above the superconducting phase

transition temperature (critical temperature). However, most holographic studies have

been focused on the ‘low’ temperature limit. To our knowledge, our work is the first

holographic study considering linear-T resistivity at higher temperature regime above the

critical temperature. We have shown that, in the Gubser-Rocha model and its several

variants, if momentum relaxation becomes strong enough, the linear-T resistivity in holo-

graphic models becomes more robust up to higher temperature and is realized above the

critical temperature. Our result is also contrast to the well known result in [17] where week

momentum relaxation is essential.

To see how much this observation is universal, it will be important to investigate other

holographic models such as scaling geometries in [18, 21]. In these cases, only the solutions

at low temperature limit were known analytically and the critical exponents for linear-T

resistivity have been specified. For finite temperature regime, we should resort to numerical

solutions with UV completing potentials. It seems that strong momentum relaxation plays

an important role for linear-T resistivity also in these models [41].

Our model is a particularly interesting model to investigate the Homes’ law [7, 8].

Homes’ law is a universal relation between superfluid density at zero temperature ρs(T = 0),

critical temperature (Tc), and DC electric conductivity right above the critical temperature

(σDC(Tc)):

ρs(T = 0) = CσDC(Tc)Tc , (4.1)

where C is a material independent universal number. There have been some works to

understand the Home’s law from holographic perspective [10–13]. In those works Homes’

law was observed within some parameter windows, but more fundamental understanding
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is still lacking. Most superconducting materials exhibiting Homes’ law also show linear-

T resistivity in normal phase. Indeed, the linear-T resistivity was proposed to play a

fundamental role in Homes’ law [8]. Because our holographic model turns out to have

linear-T resistivity in normal phase, contrary to the models in [10–13], it will be a proper

set-up to study Homes’ law.

Another interesting property we may investigate in our model is a conjectured universal

lower bound

Ce :=
2πTD

v2B
, (4.2)

where D is a heat diffusion constant, T is temperature, vB is the butterfly veloc-

ity [21, 28, 32, 42–44]. At zero temperature limit in strong momentum relaxation regime,

for the case with IR geometry conformal to AdS2 × Rp−1, Ce is 1 [28] and for the case

AdS2×Rp−1 case, Ce is expected between 1/2 and 1 as shown in [44]. However, this analy-

sis is valid only at zero temperature limit, so how much it is robust at high temperature is

not clear. Given that shear viscosity to entropy density ratio KSS (Kovtun-Son-Starinets)

bound is robust at high temperature, it will be interesting to see if Ce is also robust at

high temperature.
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A Resistivity in terms of µ/β and T/β

In this appendix, we compute the resistivity at fixed β, i.e. σDC = σDC(µ/β, T/β). For

simplicity, only p = 3 has been considered. Let us first define

T̂ :=
T

β
=
T̄

β̄
, µ̂ :=

µ

β
=

1

β̄
, (A.1)

which can be obtained by using (2.10) and (2.11). The conductivity (2.9) reads

σDC =

√
1 + Q̃

(
1 + µ̂2

)
, (A.2)
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Figure 6. Resistivity vs temperature at fixed µ̂ = 0, 0.1, 1. The horizontal dashed lines are (A.7)

and the dotted lines are (A.6).

where Q̃ is a function of T̂ and µ̂ and its asymptotic forms are

Q̃ ∼ 3(1 + µ̂2)2

8π2(2µ̂2 + 3)T̂ 2
, (T̂ � 1) , (A.3)

Q̃ ∼ 3 µ̂2

16π2T̂ 2
, (T̂ � 1 or µ̂� 1) , (A.4)

Q̃ ∼ 1

8π2T̂ 2
− 1 , (µ̂� 1) . (A.5)

In the above limits the conductivity (A.2) behaves as

σDC ∼
√
Q̃
(
1 + µ̂2

)
∼
√

3
(
1 + µ̂2

)2
2π
√

4µ̂2 + 6

1

T̂
, (T̂ � 1) , (A.6)

σDC ∼ 1 + µ̂2 , (T̂ � 1) (A.7)

for given µ̂ and

σDC ∼
√

1 + Q̃ ∼ 1

2
√

2π T̂
, (µ̂� 1) , (A.8)

σDC ∼
√
Q̃ µ̂2 ∼

√
3 µ̂3

4πT̂
, (µ̂� 1) (A.9)

for given T̂ . There are three limits showing linear-T resistivity: T̂ � 1, µ̂� 1 and µ̂� 1.

We make a resistivity (the inverse of (A.2)) plot for µ̂ = 0.1, 1, 10 in figure 6. The two

guide lines, dotted lines and dashed lines, are the inverse of (A.6) and (A.7) respectively.

As µ̂ increases (momentum relaxation becomes weaker compared to chemical potential),

the resistivity curves move away from two guide lines. For small µ̂, ρ ∼ 2
√

2πT̂ , (A.8) is a

good approximation for resistivity up to T̂ ∼ 1/2
√

2π.
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