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1 Introduction

1.1 Charged matter in string theory and F-theory

While string theory can produce a vast range of consistent supergravity theories in four

and higher space-time dimensions, there are nonetheless constraints on what kinds of low-

energy theories can arise from string theory. These constraints are particularly strong in

higher dimensions, and have recently been explored in 10D [1], 8D [2, 3], and 6D [4–12].

More generally, the set of low-energy theories that look consistent but cannot be realized

in string theory have been referred to as the “swampland” [13, 14].

A particularly interesting question that is relevant in every dimension is: what kinds of

light or massless matter fields can arise in compactifications of string theory? A priori, one

might think that a matter field could transform under any representation of a gauge group
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G in a consistent low-energy theory of gravity. This is not the case, however, at least in

higher dimensions with supersymmetry. The highest dimension in which matter fields can

arise in any representation other than the adjoint in a supersymmetric theory is 6D. In this

paper, we consider possible charges for massless fields charged under a gauge group in a 6D

supergravity theory that has only a single U(1) factor, like the familiar four-dimensional

theory of electromagnetism.

In six dimensions, for supersymmetric theories of gravity with nonabelian gauge groups,

there are strong constraints on the possible matter representations that can arise. For

theories with fewer than 9 tensor multiplets, anomaly cancellation conditions alone restrict

the set of possible nonabelian gauge groups and charged matter fields to a finite set [5,

15]. In six dimensions, F-theory [16–18] (see [2, 19, 20] for recent reviews and further

background on F-theory) gives the most general class of known supersymmetric string

vacuum constructions, and recent work has focused on what kinds of matter representations

can be realized for massless fields in 6D F-theory models. The simplest F-theory models give

only a simple generic set of massless matter fields; for an SU(N) gauge group, these fields

are in just the singlet, fundamental, adjoint, and two-index antisymmetric representations.

A few more exotic representations can be constructed in F-theory (see [8, 21] for recent

work and further references), but the constraints both from anomaly cancellation and from

F-theory on the allowed representations are generally quite strong. For example, it seems

that in F-theory no massless matter field can transform in any representation of SU(2) of

dimension higher than 5.

For abelian charges, however, the story is quite different and less well understood. As

far as low-energy consistency conditions go, there seems to be an infinite family of 6D su-

pergravity models with a U(1) gauge group, even in theories without tensor multiplets, in

which the abelian charges q can be arbitrarily large [10]. On the other hand, from the finite-

ness of the set of elliptic Calabi-Yau threefolds [5, 22], it is clear that there is a finite upper

bound on the largest abelian charge qmax that can be realized in any F-theory construction.

This raises the natural question of what is the largest abelian charge that can arise in a

6D F-theory vacuum with a single-factor U(1) gauge group. Little is known about the

answer to this question. The most well understood F-theory U(1) models [23] have abelian

charges of only q = 1, 2. Explicit F-theory models with abelian charge q = 3 were first

found in [24] and constructed more generally in [25], along with some explicit models with

abelian charge q = 4. The F-theory models with larger abelian charges, however, contain

increasingly complicated singularity structures, and are hard to analyze analytically.

In this paper, we use an indirect method to show that F-theory must allow the con-

struction of 6D supergravity theories with a U(1) gauge group and massless fields with large

abelian charges. Our strategy is to explicitly construct F-theory models with nonabelian

gauge groups that, according to field theory arguments, can be Higgsed to U(1) groups ad-

mitting large charges. With this technique, we show that F-theory admits abelian charges

as large as q = 21.

In section 1.2, we describe our strategy in further detail. In section 2.1, we discuss

some general aspects of Higgsing processes and present a specific Higgsing chain that is

used throughout the rest of the analysis. Section 2.2 reviews the 6D anomaly cancellation
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conditions for SU(N) and U(1) gauge groups, which are then used in section 2.3 to constrain

the scope of F-theory models considered. We then turn to explicit constructions of the F-

theory models with nonabelian gauge groups. Section 3 focuses on F-theory models on a

P
2 base, which allow us to demonstrate that abelian charges q = 1 through 7 are realized in

F-theory. In section 4, we discuss F-theory models on Hirzebruch surfaces Fn bases. These

models allow us to realize the largest abelian charges found in this paper. We conclude in

section 5 by presenting some open questions and directions for future work.

1.2 General strategy

Ideally, one would establish that a certain charge can be realized in F-theory by finding an

explicit U(1) model admitting the desired charge. However, constructing F-theory models

with large charges is a challenging enterprise. Weierstrass models admitting charges1 larger

than q = ±2 involve algebraically complex non-UFD structures. As one attempts to obtain

larger and larger charges, the Weierstrass models become more and more unwieldy. The

currently known F-theory models with just a U(1) gauge group only admit charges ±1

through ±4, and there are few, if any, tractable techniques available for systematically

constructing models with arbitrarily large charges.

Given these difficulties, we use an indirect approach to determine that any other spe-

cific charges must be realized in F-theory. Our strategy is to explicitly realize F-theory

models with nonabelian gauge groups that can be Higgsed down to a U(1) gauge symmetry

admitting large charges. In particular, we focus on 6D F-theory models having an SU(N)

gauge group and at least two adjoint hypermultiplets. As described in section 2.1, such

a low-energy SU(N) supergravity model can be Higgsed down to a U(1) model. If the

SU(N) model can be realized in F-theory, it must be therefore possible to deform it to

the corresponding U(1) F-theory model. In other words, constructing the SU(N) model

in F-theory demonstrates that the corresponding U(1) model must exist in F-theory, even

if we cannot determine the exact deformations necessary to Higgs the SU(N) symmetry.

And if field-theoretic considerations show that the U(1) theory has hypermultiplets with

large charges, those large charges must be realizable in F-theory.

We therefore focus on constructing explicit SU(N) Weierstrass models. The Higgsing

process, which can be understood purely from field-theoretic considerations, then implies

that certain U(1) charges can be realized. Thus, we can establish that particular charges

occur in F-theory without explicitly constructing U(1) F-theory models. Of course, this

strategy has some limitations. While we can show that certain charges occur in F-theory,

we cannot prove that certain charges are ruled out in F-theory. As a result, we will not be

able to establish an upper bound on the charges in F-theory. Nevertheless, this technique

demonstrates that the highest possible charge must be at least ±21, significantly larger

than the charges that have currently been realized in explicit F-theory models. Even if

they cannot rule out certain charges, these SU(N) models provide new information about

the possible charge spectra in F-theory.

1Note that in 6D a matter hypermultiplet containing a field of charge q > 0 also contains a field of

charge −q.

– 3 –



J
H
E
P
1
0
(
2
0
1
8
)
1
8
2

Note that in this paper when we speak of “large” U(1) charges, we mean relative to

the natural unit of charge in the theory. In most cases we deal with the natural unit of

charge is the greatest common divisor of the nonzero massless charges, and is generally 1

in the units we use. We discuss this issue a little further in section 2.2.

2 The Higgsing process, anomalies, and F-theory models in 6D

In this section we go over some basic aspects of the Higgsing process, constraints from

anomaly cancellation, and F-theory models for 6D supergravity theories. In general, 6D

supergravity theories have some number T of tensor multiplets, a gauge group G, and

hypermultiplet matter fields transforming in some representation R of G. Here, we focus

primarily on theories with zero or one tensor multiplets (T = 0, 1), and gauge groups of the

form SU(N), U(1), or products of such factors. In particular, we are interested in starting

with a theory having a gauge group SU(N) and at least two matter fields in the adjoint

representation, which can be broken by Higgsing processes down to a theory with a U(1)

gauge group and various charged matter representations.

2.1 The Higgsing process

We begin with a few generalities on Higgsing processes in 6D theories with N = (1, 0)

supersymmetry. While there are some differences, such processes can be understood in

analogy with Higgsing processes in N = 1 4D gauge theories. In the latter context,

a process in which a field or fields φi acquire nonzero expectation values and break a

gauge group G can be described either in terms of supersymmetric D-term constraints or

geometric invariant theory. In the former context, the field expectation values must satisfy

the conditions
∑

i φ
†
iT

Aφi = 0, where each generator TA acts on the fields φi according to

the appropriate representation. In the context of geometric invariant theory, the vacua are

parameterized by gauge-invariant polynomials in the fields φi [26]. From each point of view

one can see that a gauge group can be broken by Higgsing on a single field in the adjoint

representation; for example, from the D-term point of view this follows from the fact that

TA acts through the adjoint action, so that the D-term conditions automatically vanish.

On the other hand, one needs two fields in the fundamental representation to break SU(N)

through Higgsing, since a single nonzero VEV cannot solve the D-term constraints for all

generators, and cannot be used to form a gauge-invariant polynomial.

Our ultimate goal is to break gauge groups, such as SU(N), down to U(1) in a way

that generates large charges. To accomplish this, we use a specific SU(N) → U(1) Higgsing

process described in [10]. The preserved U(1) corresponds to the SU(N) generator

diag(1, 1, . . . , 1,−N + 1), (2.1)

which is written in the fundamental representation. The details of this Higgsing process

are summarized below for convenience. In most instances, we consider the resulting charge

spectrum when an SU(N) gauge group undergoes this exact Higgsing process. Even when

we consider alternative Higgsing processes, the steps outlined below form part of the Hig-

gsing sequence.
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The starting point for this Higgsing process is a 6D supergravity theory with an SU(N)

gauge symmetry and at least two hypermultiplets in the adjoint representation. Giving a

generic VEV to one of the adjoint hypermultiplets breaks SU(N) to its Cartan subgroup,

U(1)N−1. We can describe how a hypermultiplet is charged under this U(1)N−1 symmetry

using a charge vector ~q = (q1, . . . , qN−1), where qi denotes the charge under the ith U(1).

After giving a VEV to the first adjoint multiplet, an SU(N) representation R branches to

a collection of U(1)N−1 charge vectors corresponding to the weight vectors of R.

We then want to give VEVs to hypermultiplets charged under the U(1)n−1 symmetry

to break it to a single U(1). This is not possible if one uses the remnant hypermultiplets

from only the first adjoint hypermultiplet. Most of the degrees of freedom in this first

adjoint hypermultiplet are eaten, and those that remain after the Higgsing are neutral

under the U(1)N−1 symmetry. But all the degrees of freedom from the second adjoint

hypermultiplet still remain, and many of them are charged under the U(1)N−1 symmetry.

After giving the VEV to the first adjoint hypermultiplet, the second adjoint hypermultiplet

branches to N2 −N charged hypermultiplets whose charge vectors ~q = (q1, . . . , qN1
) under

U(1)N−1 are the SU(N) root vectors.2 We can work in the Dynkin basis, where the root

vectors for the simple roots are the rows of the Cartan matrix:

α1 = (2,−1, 0, 0, . . .)

α2 = (−1, 2,−1, 0, . . .)

α3 = (0,−1, 2,−1, . . .) (2.2)

...

αN−1 = (0, . . . , 0,−1, 2)

We can now give VEVs to the charged hypermultiplets whose charge vectors are the

simple roots α2 through αN−1 (along with their negative counterparts to satisfy the D-term

constraints). This breaks the U(1)N−1 symmetry down to a single U(1) corresponding to

the direction in root space orthogonal to α2 through αN−1. In the Dynkin basis, this

direction is given by the vector (N − 1, N − 2, . . . , 2, 1).

This explicit description of the Higgsing processs allows us to calculate the resulting

U(1) charges. For instance, the fundamental representation of SU(N) consists of weights

of the form

[1, 0, 0, . . .], [−1, 1, 0, 0 . . .], [0,−1, 1, 0 . . .], . . . [0, . . . , 0,−1, 1]. (2.3)

When one takes the inner product of these weights with (N−1, N−2, . . . , 2, 1), the highest

weight [1, 0, 0 . . .] leads to charge N − 1, while the other weights lead to charge −1. These

charges agree with the diagonal entries in (2.1), at least up to sign and normalization,

indicating that we have preserved the desired generator. Hypermultiplets in a representa-

tion R include fields in both R and R, and the hypermultiplets charged under the final

2In addition to these N2 −N charged hypermultiplets, there are N − 1 neutral hypermultiplets coming

from the second adjoint hypermultiplet.
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U(1) include fields with both positive and negative charges. Therefore, a fundamental

hypermultiplet branches to U(1) hypermultiplets in the following way:

→ (q = N− 1) + (N − 1)× (q = 1). (2.4)

Note that this result can also be derived easily in the fundamental basis; if the unbroken

adjoint field takes the form diag(1, 1, . . . ,−N + 1), then clearly a field in the fundamen-

tal representation breaks up into N − 1 fields of charge (q = 1) and one field of charge

(q = N− 1). All the calculations here can be carried out in a straightforward fashion in

either basis; the Dynkin basis may be more useful for generalization to other groups.

Similar calculations show that other SU(N) representations branch as3

Adj → 2(N − 1)× (q = N) + (N − 1)2 × (q = 0) (2.5)

→ (N − 1)× (q = N− 2) +
(N − 1)(N − 2)

2
× (q = 2) (2.6)

→
(N − 1)(N − 2)

2
× (q = N− 3) +

(N − 1)(N − 2)(N − 3)

6
(q = 3) (2.7)

Table 1 summarizes the charges coming from different SU(N) representations under

this Higgsing process.4 Already, one can make interesting observations about the charge

spectra. Many of the SU(N) gauge groups lead to massless charged spectra that skip over

certain charges. For instance, consider Higgsing an SU(8) model with hypermultiplets in

the representations listed in table 1. The resulting U(1) charge spectrum includes all of the

charges from ±1 to ±8 except for charge ±4. This fact might naively seem to contradict the

completeness hypothesis [28, 29], which states that all possible charges must be realized in

the Hilbert space of a theory. However, as discussed in [10], the charge spectra we consider

here involve only massless states, whereas the completeness hypothesis considers both

massless and massive states. Massless U(1) charge spectra that seem to skip over charges

therefore do not directly contradict the completeness hypothesis. Nevertheless, one might

be tempted to conjecture that F-theory U(1) models obey some massless equivalent of

the completeness conjecture in which all charges between ±1 and some large value occur.

Examples such as the SU(8) model above, which we explicitly construct in F-theory in

section 4, contradict these sort of conjectures.

It is important to note that this Higgsing process can be seen directly and explicitly in

SU(3) and SU(4) F-theory models [25]. In appendix B, we give a specific example in which

an a U(1) F-theory model with charge ±4 matter is unHiggsed to an SU(4) model admitting

3Even though these formulas allow one to compute all of the resulting spectra in this paper by hand,

many of the calculations of specific spectra quoted later were also performed using LieART [27] as an

additional check.
4While we restrict our attention to the representations listed in table 1, one could consider other repre-

sentations, namely the symmetric representation. Under the Higgsing process that we have described here,

the symmetric representation would give charges as large as ±(2N − 2). However, if we require that there

are at least two adjoints, the largest SU(N) model that we have been able to obtain using techniques similar

to those in [8] is SU(5), at least for a P
2 base. Therefore, including symmetric matter does not provide

an obvious way of obtaining significantly larger charges, although it would be interesting to systemically

explore the charges possible when one includes the symmetric representation; we leave this for future work.
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Gauge
Fundamental Adjoint

Two-Index Three-Index

Group Antisymmetric Antisymmetric

SU(2) ±1 0, ±2 — —

SU(3) ±1, ±2 0, ±3 — —

SU(4) ±1, ±3 0, ±4 ±2 —

SU(5) ±1, ±4 0, ±5 ±2, ±3 —

SU(6) ±1, ±5 0, ±6 ±2, ±4 ±3

SU(7) ±1, ±6 0, ±7 ±2, ±5 ±3, ±4

SU(8) ±1, ±7 0, ±8 ±2, ±6 ±3, ±5

Table 1. U(1) charges realized by Higgsing SU(N) according to the Higgsing process on two

adjoints described in the text. Each entry denotes the charges coming from a hypermultiplet in

a particular representation of SU(N). Note that hypermultiplets include fields in a representation

R and its conjugate R̄, allowing one to obtain both positive and negative charges from a single

hypermultiplet. Dashes indicate representations that either do not occur for a particular gauge

group or are equivalent to some other representation. Not all of the representations listed in this

table appear in the F-theory models considered later.

two adjoint hypermultiplets. The explicit realization of this Higgsing/unHiggsing process

provides additional confirmation of the general arguments presented above. Of course,

our ultimate goal is determine whether larger charges can be realized in F-theory. Table 1

already suggests that SU(N) models should lead to charges beyond those currently realized

in F-theory U(1) models. But before we can establish that certain U(1) charges occur in

F-theory, we must show that the corresponding SU(N) models can be realized in F-theory.

We turn to this issue next.

2.2 Anomaly cancellation conditions for SU(N) and U(1) models

Clearly, knowing the types of SU(N) models that can be realized tells us information about

the possible U(1) charges. We therefore must determine which 6D SU(N) supergravity

models can be realized in F-theory. In particular, larger SU(N) models allow us to obtain

larger U(1) charges, so we are most interested in determining the largest suitable SU(N)

models that occur in F-theory with at least two hypermultiplets of adjoint matter. A

worthwhile first step is to determine the 6D SU(N) supergravity models that satisfy the

anomaly cancellation conditions. All F-theory constructions should satisfy these conditions,

allowing us to narrow the scope of F-theory models to investigate. Of course, a model

that satisfies the anomaly cancellation conditions may not have an F-theory realization.

Nevertheless, the anomaly analysis provides interesting insights into the SU(N) F-theory

models and their implications for the U(1) charge spectra.

6D (1,0) supergravity theories have chiral spectra and may therefore suffer from anoma-

lies. These anomalies can be canceled via the Green-Schwarz mechanism [30, 31], which

uses tree-level diagrams involving tensors to cancel contributions from chiral fermions.

However, the massless spectrum must satisfy certain conditions for the anomalies to can-
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cel. Suppose that our theory has one graviton multiplet, T tensor multiplets, V vector

multiplets, and H hypermultiplets. Gravitational anomalies are canceled only if

H − V + 29T = 273. (2.8)

Gauge anomalies need to be canceled as well. Let us first focus on cases where the

gauge group is SU(N) to simplify the anomaly cancellation conditions. Suppose that

there are xR full hypermultiplets in the R representation of SU(N). The gauge anomaly

conditions depend on two vectors, a and b, living in a lattice Γ of signature (1, T ) with

an inner product denoted by ·. Gravitational anomaly cancellation imposes the condition

that a · a = 9− T . Gauge and mixed gauge-gravitational anomalies cancel if the following

equations are satisfied:

−a · b =
1

6

(

∑

R

xRAR −Aadj

)

, (2.9)

0 =
∑

R

xRBR −Badj, (2.10)

b · b =
1

3

(

∑

R

xRCR − Cadj

)

. (2.11)

Here we have used the group theory coefficients AR, BR, and CR defined by the relations

TrR F 2 = AR trF 2 TrR F 4 = BR trF 4 + CR

(

trF 2
)2

, (2.12)

where tr represents a trace in the fundamental representation and TrR represents a trace

in the R representation.

If the gauge group is the product of SU(N) factors, there is an additional anomaly

constraint. Suppose we consider two of the SU(N) factors, SU(N)i and SU(N)j , with

corresponding vectors bi and bj . Let x(Ri,Rj) denote the number of hypermultiplets in the

representation (Ri, Rj) of SU(N)i × SU(N)j . Then, the additional anomaly constraint

takes the form

bi · bj =
∑

(Ri,Rj)

x(Ri,Rj)ARi
ARj

. (2.13)

For theories with a U(1) gauge group, the anomaly conditions take a similar but simpler

form [32, 33],

a · b̃ = −
1

6

∑

i

q2i , (2.14)

b̃ · b̃ =
1

3

∑

i

q4i . (2.15)

Here qi is the U(1) charge of the ith charged multiplet and b̃ is again a vector in the

lattice Γ. When there are multiple U(1) factors, or abelian and nonabelian factors there

are further conditions analogous to (2.13), but we will not need those here.
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Note that for every spectrum that satisfies the abelian anomaly equations, there is

an infinite family of solutions, which can be achieved by multiplying all charges by n

and multiplying the anomaly coefficient b̃ by n2. While these may seem to be equivalent

theories, under a simple rescaling of the charge, the different value of b̃ in the anomaly

lattice distinguishes the theories. This is related to the fact that in some F-theory models

determining the charge unit can be subtle. For example, as discussed in [10], there are

two distinct F-theory models with no tensor multiplets that have 108 charges q = ±1 and

q = ±2 respectively. The values of b̃ differ between these theories by a factor of 4. This can

be seen in F-theory from the fact that an unHiggsing of the U(1) model gives a nonabelian

theory with gauge group SO(3) instead of SU(2).

2.3 6D F-theory models

While the anomaly cancellation equations are a low-energy condition, the a and b parame-

ters have a geometric interpretation in F-theory. a can be viewed as the canonical class KB

of the base of the F-theory model’s elliptic fibration. b, meanwhile, can be viewed as the

homology class of the divisor on which the SU(N) gauge group is tuned. The inner product

· then represents the intersection product between homology classes. In fact, one can solve

the gauge and mixed anomaly conditions solely in terms of properties of the gauge divisor,

such as its self-intersection n = b · b and its arithmetic genus

g = 1 +
1

2
b · (a+ b) (2.16)

In other words, the charged spectrum can be determined without specifying the base. Here,

we restrict our attention to the fundamental, the adjoint, the two-index antisymmetric, and

three-index antisymmetric representations. The resulting charged matter spectra for SU(2)

through SU(9) are given in table 2 [34, 35].

The gravitational anomaly condition, however, requires more global information. The

number of tensor multiplets and neutral hypermultiplets depends on the specific base cho-

sen. Moreover, some bases have non-Higgsable clusters [36] which contribute to the number

of vector multiplets. Thus, even if there is no matter charged under both the SU(N) group

and the non-Higgsable gauge group, the non-Higgsable cluster can affect the gravitational

anomaly condition. Therefore, to definitively determine which SU(N) models that come

from F-theory are consistent with anomalies, we need to consider specific bases.

2.3.1 F-theory models with T = 0 (compactifications on P
2)

We start by considering SU(N) F-theory models on P
2. Models on P

2 have zero tensor

multiplets, and thus the vectors a and b live in a one-dimensional lattice. Alternatively, one

can say that the basis of homology classes of P2 consists of a single element H with self-

intersection number 1. There are no genus-two algebraic curves on P
2, but quartic curves

on P
2 have genus g = 3. Thus, if we are willing to have extra adjoint hypermultiplets, we

can construct appropriate SU(N) models on P
2.

For quartic curves, g = 3 and n = 16. Suppose we assume that there are no three-

index antisymmetric hypermultiplets. The three-index antisymmetric representation is
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Gauge
Fundamental Adjoint

Two-Index Three-Index

Group Antisymmetric Antisymmetric

SU(2) 16− 16g + 6n g — —

SU(3) 18− 18g + 6n g — —

SU(4) 16− 16g + 4n g 2− 2g + n —

SU(5) 16− 16g + 3n g 2− 2g + n —

SU(6) 16− 16g + 2n+ r g 2− 2g + n− r 1
2r

SU(7) 16− 16g + n+ 5r g 2− 2g + n− 3r r

SU(8) 16− 16g + 9r g 2− 2g + n− 4r r

SU(9) 16− 16g − n+ 14r g 2− 2g + n− 5r r

Table 2. Charged matter multiplicities for SU(N) gauge groups. The multiplicities are given in

terms of the arithmetic genus g and the self-intersection n = b · b of the SU(N) divisor. Entries

with a dash indicate representations that are not relevant for the gauge group in question. Note

that r is a free integer.

somewhat exotic from an F-theory perspective, as the corresponding models are more

challenging to construct and involve additional fine-tuning of the Weierstrass coefficients.

For instance, SU(N) models constructed using Tate’s algorithm [34, 37] typically admit

only the fundamental, two-index antisymmetric, and adjoint representations. Restricting

our attention to these representations is therefore a natural first step in the analysis. Under

this assumption, table 2 suggests that for N larger than 6, the SU(N) model has a negative

number of fundamental hypermultiplets. And for higher degree curves, the number of

fundamental hypermultiplets becomes negative for even smaller values of N . This result

would naively suggest that SU(6) is the largest consistent SU(N) group on P
2 admitting

at least two adjoint hypermultiplets.

But if we relax the assumption that there are no three-index antisymmetric multiplets,

one can obtain higher values of N . For instance, there is an anomaly-free SU(7) model

on P
2 with three 48 hypermultiplets, four 35 multiplets, four 7 hypermultiplets, and nine

singlets. However, obtaining SU(8) groups and beyond on P
2 with a sufficient number

of adjoints appears difficult and likely impossible: even when we consider all four of the

representations mentioned, one cannot obtain a suitable SU(8) model or beyond without

having a negative number of fundamental or two-index antisymmetric multiplets.5 To

obtain higher SU(N), we must consider bases other than P
2.

2.3.2 F-theory models with T = 1 (compactifications on Fn)

Models on Fn have one tensor multiplet, and a and b live on a two-dimensional lattice.

The basis for the homology classes consists of two elements, S and F , with

S · S = −n S · F = 1 F · F = 0. (2.17)

5Even including the two-index symmetric representation does not make such a model possible.
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Additionally, we define a homology class S̃ ≡ S + nF , with

S̃ · S̃ = n S̃ · S = 0 S̃ · F = 1. (2.18)

The canonical class is KB = −2S − (n+ 2)F .

Unlike P
2, at least some of the Fn have algebraic curves of genus two. Our analysis

will rely in particular on smooth curves of class 2S̃ on F3, which have self-intersection

n = 12. As can be verified with (2.16), such curves have genus g = 2, and SU(N) groups

tuned on these curves admit two adjoint hypermultiplets. Note that the curve S with self-

intersection S ·S = −3 on F3 gives a non-Higgsable cluster: an SU3 gauge algebra with no

matter. Since S · S̃ = 0, there is no jointly charged matter, and this non-Higgsable cluster

plays no role in the model except that it contributes an additional 8 vector multiplets to

V , which increases the number of matter hypermultiplets available and is relevant in some

extreme cases as we encounter below.

If we assume there are no hypermultiplets of three-index antisymmetric matter, table 2

suggests that the largest SU(N) we can tune on 2S̃ on F3 is SU(6). Beyond this, the

number of fundamental hypermultiplets would become negative. However, if we include

three-index antisymmetric matter, the anomaly cancellation conditions allow for groups as

large as SU(9) on 2S̃. The SU(9) model, with a charged spectrum of

2× 80+ 2× 84, (2.19)

will not be discussed much here for a few different reasons. First, the 84 representation is

difficult (perhaps impossible) to obtain in F-theory; if it can be realized, this representation

would likely involve complicated mechanisms that may not be visible in the Weierstrass

model [8, 21, 38]. Moreover, this SU(9) model would not give interesting charges under the

Higgsing process of section 2.1. Even though the resulting spectrum naively includes charge

±9 matter, the resulting charges are all multiples of 3, and the true maximum charge of

the resulting spectrum, in the natural charge units, is ±3. But the SU(8) model on 2S̃ can

be cleanly realized in F-theory, as discussed further in section 4.

3 Explicit F-theory models on P
2 (charges q = 1 through 7)

So far, we have shown that certain SU(N) spectra satisfy the anomaly cancellation condi-

tions and can be Higgsed down to U(1). But a model that satisfies the anomaly cancellation

conditions may not necessarily be realized in F-theory. Therefore, we now turn to explicit

F-theory constructions of SU(N) models. This section focuses on F-theory models on a P
2

base, which have no tensor multiplets. In section 4, we discuss F-theory models with Fn

bases, which admit one tensor multiplet.

3.1 SU(5) and SU(6) (charges 1 through 6)

As noted earlier, the fundamental, two-index antisymmetric, and adjoint representations

of SU(N) are relatively easy to realize in F-theory. The anomaly analysis in section 2.2

suggests that, at least for our purposes, the largest consistent SU(N) groups admitting
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only these representations are SU(5) and SU(6) in theories with no tensor multiplets.

According to table 1, Higgsing these SU(N) models leads to charges ±1 through ±6.

Thus, by explicitly constructing the appropriate SU(5) and SU(6) F-theory models, we can

demonstrate that charges ±1 through ±6 can be realized in F-theory.

We construct these F-theory models over a P
2 base. In order to obtain the two adjoint

hypermultiplets necessary for the Higgsing process, we must tune the SU(N) symmetries

on a curve σ = 0 of genus g ≥ 2. As mentioned previously, there are no algebraic curves

of genus 2 on P
2, but quartic curves on P

2 have genus 3. We therefore let σ be a smooth

quartic curve i.e. a curve with homology class 4H. The resulting SU(N) models have three

adjoint hypermultiplets, one more than necessary to Higgs the gauge group down to U(1).

Fortunately, there is already a known recipe to construct SU(N) models with only the

three representations mentioned above. The simplest construction of a model with gauge

group SU(N) proceeds by tuning the coefficients ai in the “Tate form” y2 + a1yx+ a3y =

x3 + a2x
2 + a4x + a6 in a way that automatically guarantees the appropriate Kodaira

singularity type for SU(N) [18, 34, 37]; the models constructed in this way have precisely

the three representations we want. A more general approach to tuning Weierstrass models

with SU(N) gauge groups directly was developed in [39]; because we will be interested

in models with other representations we follow that approach here. The expressions are

different for even and odd N , so let us focus on the SU(5) model first. According to the

formulas in [39], the SU(5) Weierstrass model is6

y2 = x3 +

(

−
1

3
Φ2 +

1

2
φ0ψ2σ

2 + f3σ
3

)

x

+

(

2

27
Φ3 −

1

6
Φφ0ψ2σ

2 −
1

3
Φf3σ

3 +
1

4
ψ2
2σ

4

)

, (3.1)

where Φ is given by

Φ =
1

4
φ2
0 + φ1σ. (3.2)

The homology classes for the various parameters are

[σ] = 4H [Φ] = −2KB = 6H

[φ0] = −KB = 3H [ψ2] = −3KB − 2[σ] = H (3.3)

[f3] = −4KB − 3[σ] = 0H [φ1] = −2KB − [σ] = 2H . (3.4)

The discriminant meanwhile is given by

∆ ≡ 4f3 + 27g2 =
1

16
σ5
[

φ4
0ψ2 (φ1ψ2 − φ0f3) +O(σ)

]

(3.5)

∆ is proportional to σ5, while f and g are not proportional to σ. Moreover, the split

condition [34, 37, 40] is satisfied, as Φ
∣

∣

σ=0
is a perfect square. The Kodaira classification [18,

34, 41–43] therefore indicates that we have tuned an I5 singularity on σ = 0, signaling the

6The original expressions include a g5σ
5 term in the g for the Weierstrass model. However, g5 would be

ineffective for [σ] = 4H. To address this issue, we simply set g5 to zero, which does not cause any problems

in the Weierstrass model.
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expected presence of an SU(5) gauge group. Additionally, the only other component of the

discriminant is an I1 locus, suggesting that there are no other nonabelian gauge factors.

To verify the SU(5) model’s matter spectrum, we first note that, because σ is a smooth

curve of genus 3, there are three adjoint (24) hypermultiplets. The remaining charged

hypermultiplets are localized at codimension-two loci in the P
2 base with enhanced fiber

singularities. Enhancements occur at φ0 = σ = 0 and ψ2(φ1ψ2 − φ0f3) = σ = 0. At

φ0 = σ = 0, the singularity type enhances from I5 to I∗1 , indicating that the [φ0] · [σ] = 12

points where φ0 = 0 and σ = 0 intersect support two-index antisymmetric (10) multiplets.

Finally, at the ψ2(φ1ψ2−φ0f3) = σ = 0 loci, the singularity type enhances to I6. Therefore,

the 16 ψ2(φ1ψ2 − φ0f3) = σ = 0 points support fundamental (5) multiplets. In summary,

the charged spectrum for the SU(5) model is

3× 24+ 12× 10+ 16× 5, (3.6)

in line with the expectations from the anomaly cancellation conditions.

The Higgsing procedure outlined in section 2.1 leads to a charged U(1) spectrum of

16× (q = 5) + 16× (q = 4) + 48× (q = 3) + 72× (q = 2) + 64× (q = 1). (3.7)

This spectrum satisfies the U(1) anomaly cancellation conditions with b̃ = 5 × 4 × [σ], as

expected from the analysis in [10], where it was shown that this kind of Higgsing of an

SU(N) model gives a U(1) model with anomaly coefficient b̃ = N(N − 1)[σ] . We have

therefore explicitly constructed an SU(5) model in F-theory that can be Higgsed down to

a U(1) model with charges ±1 through ±5. This demonstrates that charges ±1 through

±5 can be realized in F-theory.

Now let us turn to the SU(6) theory, which allows us to demonstrate that charge ±6

matter can be realized in F-theory. There are in fact two ways to obtain an SU(6) model.

The first approach is to set ψ2 to 0 in (3.1), giving

y2 = x3 +

(

−
1

3
Φ2 + f3σ

3

)

x+

(

2

27
Φ3 −

1

3
Φf3σ

3

)

. (3.8)

This Weierstrass model again corresponds to the Tate form, and also matches that derived

from the expressions in [39].7 The discriminant is now

∆ = −
1

16
f2
3σ

6
[

(

φ2
0 + 4φ1σ

)2
− 64f3σ

3
]

. (3.9)

The σ6 factor indicates the expected presence of an SU(6) gauge symmetry on σ = 0.

Meanwhile, [f3] is 0H, so the f2
3 factor does not represent an additional nonabelian gauge

group. Thus, the gauge group is simply SU(6).

The matter content analysis resembles that for SU(5). Since σ = 0 is still a genus 3

curve, there are three adjoint (35) hypermultiplets. And the φ0 = σ = 0 loci still contribute

twelve two-index antisymmetric (15) multiplets. However, there are no codimension-two

7Again, a g6σ
6 term has been dropped because g6 would be ineffective.
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loci where the singularity type enhances from I6 to I7, indicating that there are no funda-

mental (6) hypermultiplets. The charged matter spectrum is therefore

3× 35+ 12× 15, (3.10)

in agreement with the anomaly cancellation conditions. The corresponding U(1) spectrum

is

20× (q = 6) + 60× (q = 4) + 120× (q = 2). (3.11)

This spectrum hints that ±6 matter can be realized in F-theory, although one might argue

that this model truly contains ±1, ±2, and ±3 matter because of the common factor

between the charges.8 As expected, the spectrum satisfies the U(1) anomaly conditions

with b̃ = 6× 5× [σ].

The SU(5) and SU(6) examples considered so far demonstrate that matter with charges

±1 through ±5, and possibly ±6, can be realized in F-theory. At this point, there seems

to be an obstruction to tuning larger SU(N) gauge groups. All the ways of enhancing

the SU(6) singularity of (3.8) force (f, g,∆) to simultaneously vanish on σ = 0, indicating

that σ = 0 would no longer support an SU(N) symmetry. This observation is in line

with the expectations from anomaly cancellation: for P
2 models with only fundamental,

adjoint, and two-index antisymmetric matter, the largest possible consistent gauge group

is SU(6). SU(6) is also the largest SU(N) that can be tuned on a quartic in P
2 using

the Tate tuning approach. Naively, this might suggest that our approach can at best

demonstrate that charges ±1 through ±6 occur in F-theory. But these results depend on

the artificial assumption that we consider only the fundamental, adjoint, and two-index

antisymmetric representations. While the constructions become more complicated, there

are still consistent F-theory models with the three-index antisymmetric representation,

allowing us to show that charges larger than ±6 can be realized in F-theory.

3.2 SU(6) and SU(7) with three-index antisymmetric matter (charges 6 and

7)

Let us now consider models admitting the three-index antisymmetric representation. The

anomaly conditions suggest that, when one includes three-index antisymmetric matter, an

SU(N) gauge symmetry on a quartic on P
2 can be as large as SU(7). According to table 1,

the resulting U(1) symmetry would support charge ±7 matter. Thus, if we can explicitly

construct this SU(7) model in F-theory, we know that charge ±7 matter can be realized in

F-theory.

To actually find this SU(7) F-theory model, we must consider the second method for

obtaining an SU(6) Weierstrass model from (3.1). Instead of setting ψ2 to zero, we let

φ1 = f3β φ0 = βψ2, (3.12)

8In later examples, charge ±6 matter appears in spectra without a common factor, more rigorously

establishing that charge ±6 matter can be realized in F-theory.
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where [β] = 2H. The Weierstrass model is now

y2 = x3 +

(

−
1

3
Φ2 +

1

2
βψ2

2σ
2 + f3σ

3

)

x

+

(

2

27
Φ3 −

1

6
Φβψ2

2σ
2 −

1

3
Φf3σ

3 +
1

4
ψ2
2σ

4

)

(3.13)

with

Φ = β

(

1

4
βψ2

2 + f3σ

)

, (3.14)

and the discriminant is

∆ = −
1

16
σ6
[

β3ψ4
2

(

ψ2
2 + f2

3β
)

+O(σ)
]

. (3.15)

The σ6 factor indicates that we have tuned an SU(6) symmetry on σ = 0, and since

σ = 0 has genus g = 3, there are three adjoint (35) hypermultiplets in the spectrum. At

ψ2 = σ = 0, the singularity type enhances from I6 to I∗2 , so these four points contribute

four hypermultiplets of two-index antisymmetric (15) matter. The eight ψ2
2 + f3β = σ = 0

points, where the singularity types enhances from I6 to I7, contribute eight hypermultiplets

of fundamental (6) matter. But there is a third codimension-two locus, β = σ = 0, where

the singularity type enhances from I6 to IV ∗, a behavior not seen in the previous models.

These eight points contribute eight half-hypermultiplets of three-index antisymmetric (20)

matter. In summary, the total charged spectrum is

3× 35+ 8×
1

2
20+ 4× 15+ 8× 6. (3.16)

The resulting U(1) spectrum would be

20×(q = 6)+8×(q = 5)+20×(q = 4)+80×(q = 3)+40×(q = 2)+40×(q = 1). (3.17)

As expected, this U(1) spectrum satisfies the anomaly conditions with b̃ = 6 × 5 × [σ].

With this explicit SU(6) model, we have unambiguously shown that charge ±1 through ±6

can be realized in F-theory. Importantly, the greatest common factor of the charges is 1,

indicating that the U(1) model would genuinely have charge ±6 matter.

We can then derive an SU(7) Weierstrass model by letting

ψ2 = f3δ β = −δ2, (3.18)

where [δ] = H. The Weierstrass model is now

y2 = x3 +

(

−
1

3
Φ2 −

1

2
f2
3 δ

4σ2 + f3σ
3

)

x

+

(

2

27
Φ3 +

1

6
Φf2

3 δ
4σ2 −

1

3
Φf3σ

3 +
1

4
f2
3 δ

2σ4

)

(3.19)

with

Φ = f3δ
2

(

1

4
f3δ

4 − σ

)

, (3.20)
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and the discriminant is

∆ =
1

16
f3
3σ

7
[

2f2
3 δ

8 − 13f3δ
4σ + 64σ2

]

. (3.21)

The σ7 factor indicates that the gauge group is SU(7), while the f3
3 does not signal the

appearance of an extra gauge factor since [f3] = 0H. Again, there are three adjoint (48)

hypermultiplets because σ = 0 is a genus-3 curve. The only codimension-two singularities

occur at δ = σ = 0, where the I7 singularity type enhances to III∗. Each δ = σ = 0 point

therefore contributes a three-index antisymetric (35) hypermultiplet and a fundamental

(7) hypermultiplet. The charged matter spectrum is therefore

3× 48+ 4× 35+ 4× 7, (3.22)

in line with the expectations from the anomaly conditions.The corresponding U(1) charge

spectrum would be

24× (q = 7) + 4× (q = 6) + 60× (q = 4) + 80× (q = 3) + 24× (q = 1), (3.23)

which, as expected, satisfies the U(1) anomaly conditions with b̃ = 7×6× [σ]. The explicit

SU(7) F-theory construction therefore shows that charge ±7 matter can be realized in

F-theory.

For the four types of representations considered so far, SU(7) is the largest SU(N) gauge

group that can be tuned on a quartic on P
2. The anomaly conditions suggest that models

with N > 7 would have a negative number of two-index antisymmetric multiplets and

would therefore be inconsistent. However, by again expanding the scope of constructions

considered, we can obtain charges larger than ±7. In particular, we then focus on models

with Fn bases, for which anomaly cancellation suggests one can obtain a satisfactory SU(8)

group with two adjoint matter hypermultiplets.

4 Explicit F-theory models on Fn (charges up to q = 21)

4.1 SU(8) with three-index antisymmetric matter (charge 8)

So far, we have considered curves on P
2 of genus three, which give us one more adjoint

hypermultiplet than needed for the Higgsing process. In principle, we require only a genus-

two curve to perform the Higgsing. While there are no algebraic curves of genus two on

P
2, there are algebraic genus-two curves on some of the Fn, as mentioned in section 2.3.2.

For example, a curve σ = 0 of homology class 2S̃ = 2S + 6F on F3 has genus

g = 1 +
1

2
[σ] · (KB + [σ]) = 1 + S̃ · F = 2. (4.1)

The smaller genus allows us to obtain larger SU(N) groups on 2S̃, which in turn suggest

higher charges should exist in F-theory.

In particular, we can tune SU(8) on 2S̃, implying that charge ±8 matter can occur in

F-theory. To construct the explicit model, we introduce a coordinate u of homology class S̃
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and a coordinate v of homology class S. We start with an SU(6) Weierstrass model, which

can be constructed by using the formulas in [39] and accounting for the fact that certain

parameters are reducible, which leads in particular to the explicit appearance of powers of

v in f and g:

f = −
1

48
v2
[

α4β4v2 + 8α2β3νv2σ + 8β
(

2βν2v2 + α2φ2

)

σ2 + 16 (9βλ+ νφ2)σ
3
]

, (4.2)

g =
1

864
v2
[

α6β6v4 + 12α4β5νv4σ +
(

12α4β3φ2v
2 + 48α2β4ν2v4

)

σ2

+
(

72α2β2(3βλ+ νφ2)v
2 + 64β3ν3v4

)

σ3

+
(

24α2φ2
2 + 96βν(9βλ+ νφ2)v

2
)

σ4 + 864λσ5φ2

]

. (4.3)

The discriminant is proportional to σ6v4, indicating that we have an SU(6) symmetry on

σ = 0 and an SU(3) symmetry tuned on v = 0. The SU(3) symmetry is the well-known

non-Higgsable cluster on F3, and since [v] = S, there is no matter charged under both the

SU(6) and SU(3) gauge groups, as discussed above. We take the various parameters (which

are locally functions of the coordinates u, v) to have homology classes

[β] = 2F [α] = S + 3F [ν] = 2F [λ] = 0F [φ2] = 0F. (4.4)

Note that λ and φ2 are essentially constants.

We can now enhance the SU(6) symmetry to SU(7) by letting

β = δ2 α = δξv φ2 = 3κ20 λ = ρ0κ
3
0 ν = κ0

(

3δ2ρ0 + ξ
)

, (4.5)

where

[δ] = F [ξ] = 2F [κ0] = 0F [ρ0] = 0F. (4.6)

The discriminant is now

∆ = v4σ7

[

1

8
v6δ8κ70ξ

4
(

6ρ0δ
2 − ξ

)

+O(σ)

]

. (4.7)

To obtain an SU(8) model, we therefore must let

ξ = 6ρ0δ
2. (4.8)

This redefinition gives us an SU(8) tuned on σ = 0. In fact, we can set ρ0 and κ0 to 1

without loss of generality, giving us a Weierstrass model of the form

y2 = x3 − 3v2δ2
(

9δ18v6 + 18δ12v4σ + 15δ6v2σ2 + 4σ3
)

x

+ 3v2
(

18δ30v10 + 54δ24v8σ + 72δ18v6σ2 + 48δ12v4σ3 + 15δ6v2σ4 + σ5
)

. (4.9)

The discriminant is now

∆ = 27v4σ8
(

9δ12v4 + 14δ6v2σ + 9σ2
)

. (4.10)
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The σ8 factor indicates that we have successfully tuned an SU(8) gauge group, while the

v4 factor represents the expected non-Higgsable SU(3) symmetry.

There are no hypermultiplets charged under the SU(3) symmetry, but there are hy-

permultiplets charged under the SU(8). Since σ = 0 is a genus-two curve, there are two

hypermultiplets in the adjoint (63) representation of SU(8). Additionally, the singularity

type enhances from I8 to II∗ at σ = δ = 0. Each of the two σ = δ = 0 points therefore

supports hypermultiplets in the 56+28+8. In summary, the spectrum of hypermultiplets

charged under the SU(8) is

2× 63+ 2× 56+ 2× 28+ 2× 8, (4.11)

which agrees with the SU(8) anomaly cancellation conditions. If this SU(8) is Higgsed

according to the Higgsing procedure of section 2.1, the resulting charge spectrum becomes

14× (q = 8) + 2× (q = 7) + 14× (q = 6) + 42× (q = 5)

+ 70× (q = 3) + 42× (q = 2) + 14× (q = 1), (4.12)

satisfying the U(1) anomaly conditions for b̃ = 8 × 7 × 2S̃. Therefore, our explicit SU(8)

construction demonstrates that charge ±8 matter can be realized in F-theory.

4.2 Alternative Higgsings of SU(8) (charges 9, 10, 11, 12, 14)

In fact, one can obtain charges larger than ±8 through alternative Higgsings of this SU(8)

model. We will not perform an exhaustive investigation of all possible Higgsing chains,

instead focusing on a few specific Higgsing processes that roughly follow the pattern

SU(8)
Higgs on 56

−−−−−−−→ SU(5)× SU(3)
Higgs on (24,1),(1,8)
−−−−−−−−−−−−−→ U(1)×U(1)

Higgs on (q1,q2)
−−−−−−−−−−→ U(1)

(4.13)

Admittedly, this procedure is somewhat ad-hoc, suggesting that other Higgsing processes

might produce even larger charges.

We start by giving VEVs to two full hypermultiplets of three-index antisymmetric (56)

matter in the SU(8) model considered above.9 This VEV breaks the SU(8) symmetry to

SU(5)× SU(3), and the SU(8) representations branch as10

56 →
(

10,1
)

+ (10,3) +
(

5,3
)

+ (1,1) (4.14)

63 → (24,1) +
(

5,3
)

+
(

5,3
)

+ (1,8) + (1,1) (4.15)

28 → (10,1) + (5,3) +
(

1,3
)

(4.16)

8 → (5,1) + (1,3) . (4.17)

9D-term constraints for this breaking suggest we must give VEVs to two hypermultiplets instead of just

one, just as for the Higgsing on two fundamental matter representations as described in section 2.1.
10Note that the branching patterns distinguish between representations and their conjugates. Even

though full hypermultiplets still contain fields in R and R, it is important to keep track of representations

and their conjugates for jointly charged matter. For instance, (5,3) is not the conjugate representation of

(5,3), and the two represent different types of hypermultiplets.
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The two (5,3) hypermultiplets coming from the two 56 multiplets are eaten during the

Higgsing process. Thus, after noting that hypermultiplets in conjugate representations are

essentially the same, the SU(5)× SU(3) spectrum is

2× (10,3) + 4×
(

5,3
)

+ 2× (5,3)

+ 2× (24,1) + 2× (1,8) + 4× (10,1) + 2× (5,1) + 4× (1,3) . (4.18)

As expected, this spectrum is consistent with the anomaly conditions for SU(5) and SU(3)

models tuned on two distinct divisors in the homology class 2S̃. In fact, we construct an

explicit F-theory realization of this SU(5)× SU(3) model in appendix A.

Since there are two SU(5) adjoint hypermultiplets and two SU(3) adjoint hypermul-

tiplets, we can now Higgs the SU(5) and SU(3) groups individually using the Higgsing

process in section 2.1. The end result is a U(1) × U(1) gauge group. Hypermultiplets

charged under this U(1) × U(1) symmetry are labeled as (q1, q2), where q1 and q2 denote

the charges under the two U(1) symmetries. However, note that a (q1, q2) hypermulti-

plet includes fields with charges (q1, q2) and (−q1,−q2). The branching patterns for the

SU(5) × SU(3) representations are similar to the individual SU(5) and SU(3) branching

described in section 2.1. But it is important to note that charges coming from a conjugate

representation R are the negative of those coming from R. To illustrate the effects of this

fact, consider the branching patterns for the (5,3) and (5,3) representations. First con-

sidering the SU(5) and SU(3) representations individually, the rules in section 2.1 suggest

that the 5, 3, and 3 representations branch as

5 → 4× (q = 1) + (q = −4) (4.19)

3 → 2× (q = 1) + (q = −2) (4.20)

3 → 2× (q = −1) + (q = 2). (4.21)

Note that we have kept track of the signs of the charges, and the signs for the charges coming

from 3, and 3 are negatives of each other. From these individual branching patterns, the

(5,3) representation should branch as

(5,3) → (−4,−2) + 2× (−4, 1) + 4× (1,−2) + 8× (1, 1) . (4.22)

In contrast, the (5,3) representation should branch as

(

5,3
)

→ (−4, 2) + 2× (−4,−1) + 4× (1, 2) + 8× (1,−1) . (4.23)

These branching patterns are distinct from one another. For instance (−4,−2) and (−4, 2)

represent different types of multiplets, as the relative sign between the q1 and q2 charges

differs. It is therefore important to distinguish between representations and their conjugates

when considering the branching patterns.
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In the end, the branching patterns for the SU(5)× SU(3) hypermultiplets are

(10,3) → 4× (−3,−2) + 8× (−3, 1) + 6× (2,−2) + 12× (2, 1) (4.24)

(5,3) → (−4,−2) + 2× (−4, 1) + 4× (1,−2) + 8× (1, 1) (4.25)
(

5,3
)

→ (−4, 2) + 2× (−4,−1) + 4× (1, 2) + 8× (1,−1) (4.26)

(24,1) → 4× (5, 0) + 4× (−5, 0) + 16× (0, 0) (4.27)

(1,8) → 2× (0, 3) + 2× (0,−3) + 4× (0, 0) (4.28)

(10,1) → 4× (−3, 0) + 6× (2, 0) (4.29)

(5,1) → (−4, 0) + 4× (1, 0) (4.30)

(1,3) → (0,−2) + 2× (0, 1) . (4.31)

To find the charged U(1)× U(1) spectrum, we must account for the fact that some of the

(±5, 0) and (0,±3) multiplets are eaten as part of the Higgsing process. Additionally, we

are free to identify (q1, q2) and (−q1,−q2) hypermultiplets. Taking these facts into account,

the charged U(1)×U(1) spectrum is

8× (3, 2) + 16× (3,−1) + 12× (2,−2) + 24× (2, 1)

+ 2× (4, 2) + 4× (4,−1) + 8× (1,−2) + 16× (1, 1)

+ 4× (4,−2) + 8× (4, 1) + 16× (1, 2) + 32× (1,−1)

+ 8× (5, 0) + 4× (0, 3) + 16× (3, 0) + 24× (2, 0)

+ 2× (4, 0) + 8× (1, 0) + 4× (0, 2) + 8× (0, 1) . (4.32)

This spectrum satisfies the U(1) × U(1) anomaly cancellation conditions described in, for

instance, [32, 33].

Finally, we can Higgs U(1)×U(1) down to a single U(1) by giving a VEV to a charged

hypermultiplet. Suppose we give a VEV to a hypermultiplet with charge (q′1, q
′
2). A

hypermultiplet with U(1)×U(1) charge (q1, q2) would then have a U(1) charge given by

q = q′2q1 − q′1q2. (4.33)

Of course, the overall sign of q is not too important, since U(1) charged hypermultiplets

with charge q have fields with charges +q and −q. Note that, at least for the charged

U(1) spectrum, we need not worry about the eaten degrees of freedom, as they would have

charge q = 0. For particular (q′1, q
′
2), the resulting U(1) charges can be higher than ±8, as

we illustrate with three examples:

Higgsing on charge (1, 2) matter. If we give a VEV to (q′1, q
′
2) = (1, 2) matter, the

resulting U(1) charges are 2q1 − q2. Therefore, the (4,−2) matter in the U(1) × U(1)

spectrum would become charge ±10 matter, while the (4,−1) matter would become charge

±9 matter. Indeed, the resulting charged U(1) spectrum is

12× (q = 10) + 4× (q = 9) + 2× (q = 8) + 24× (q = 7) + 30× (q = 6)

+ 40× (q = 4) + 60× (q = 3) + 12× (q = 2) + 24× (q = 1). (4.34)

This spectrum satisfies the U(1) anomaly conditions with b̃ = 86× 2S̃.
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Higgsing on charge (4,−1) matter. Alternatively, if we Higgs on (q′1, q
′
2) = (4,−1)

matter, the resulting U(1) charges are q1+4q2. Then, the (0, 3) matter becomes charge ±12

matter, while the (3, 2) matter becomes charge ±11 matter. The charged U(1) spectrum is

6× (q = 12) + 8× (q = 11) + 16× (q = 9) + 12× (q = 8) + 8× (q = 7)

+ 36× (q = 6) + 24× (q = 5) + 14× (q = 4)

+ 48× (q = 3) + 24× (q = 2) + 24× (q = 1), (4.35)

which satisfies the U(1) anomaly equations with b̃ = 116× 2S̃.

Higgsing on charge (3, 2) matter. Finally, if we Higgs on (q′1, q
′
2) = (3, 2) matter,

the resulting U(1) charges are 2q1 − 3q2. The (4,−2) matter would becomes charge ±14

matter. The charged U(1) spectrum is

4× (q = 14) + 4× (q = 11) + 20× (q = 10) + 20× (q = 9) + 10× (q = 8)

+ 20× (q = 6) + 40× (q = 5) + 40× (q = 4)

+ 8× (q = 3) + 10× (q = 2) + 40× (q = 1), (4.36)

which satisfies the U(1) anomaly cancellation conditions with b̃ = 134× 2S̃.

To summarize, various Higgsing of the explicit SU(8) F-theory model above lead to

charges ±9, ±10,±11,±12, and ±14 (in addition to charges ±1 through ±8). Therefore,

these charges should be realizable in F-theory. Unluckily, the Higgsing processes considered

here do not produce charge ±13 matter. But, given the ad-hoc nature of this Higgsing

process, it is likely that charge ±13 can be realized through some other means.

4.3 SU(5)×SU(4) (charges 15, 16, 20, 21)

Even higher charges can be obtained by enhancing the SU(5) × SU(3) gauge group to

SU(5)× SU(4). To obtain an explicit F-theory model realizing this SU(5)× SU(4) group,

we take the SU(5)× SU(3) Weierstrass model described in appendix A and set

ǫ = 3δ2. (4.37)

The Weierstrass model is now

y2 = x3 − 3v2δ2
(

144v6δ18 − 360v4δ12σ + 105v2δ6σ2 + 10σ3
)

x (4.38)

+ 3v2
(

1152v10δ30 − 4320v8δ24σ + 3960v6δ18σ2 − 330v4δ12σ3 + 150v2δ6σ4 + σ5
)

,

where, as above, [v] = S,[δ] = F , and [σ] = 2S̃. The discriminant meanwhile is

∆ = 27v4
(

9σ − 4v2δ6
) (

σ − 36v2δ6
)4

σ5, (4.39)

signaling an SU(5)×SU(4) gauge group with each factor tuned on a divisor in the class 2S̃.

The only codimension-two locus with enhanced singularities is σ = δ = 0, where the

singularity type enhances to II∗. By the Katz-Vafa analysis [44], in which one breaks the
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248 representation of E8 to SU(5) × SU(4) representations, each of the two σ = δ = 0

points contributes

(10,1) + (10,4) + (5,6) + (1,4) +
(

5,4
)

(4.40)

hypermultiplets. Since both the SU(5) and SU(4) are tuned on genus-two curves, there

are also two (24,1) hypermultiplets and two (1,15) hypermultiplets. Thus, the charged

SU(5)× SU(4) spectrum is

2×
[

(10,1) + (10,4) + (5,6) + (1,4) +
(

5,4
)

+ (24,1) + (1,15)
]

. (4.41)

It is interesting to note that there is no anomaly-consistent model with this gauge group and

b coefficients without the exotic (10,4) matter. Solving the anomaly equations for generic

matter fields and including only bifundamental (5,4) fields would give rise to negative

multiplicities for some matter content. Thus, this seems to be the only Weierstrass model

that realizes these gauge groups on curves in the class 2S̃.

We can now give VEVs to the adjoint hypermultiplets as in section 2.1, breaking

SU(5)× SU(4) to U(1)×U(1). The SU(5)× SU(4) representations branch as follows:

(10,4) → 4× (−3,−3) + 12× (−3, 1) + 6× (2,−3) + 18× (2, 1) , (4.42)

(5,6) → 3× (−4,−2) + 3× (−4, 2) + 12× (1,−2) + 12× (1, 2) , (4.43)
(

5,4
)

→ 3× (−4,−1) + 1× (−4, 3) + 12× (1,−1) + 4× (1, 3) , (4.44)

(10,1) → 4× (−3, 0) + 6× (2, 0) , (4.45)

(1,4) → 1× (0,−3) + 3× (0, 1) , (4.46)

(24,1) → 4× (5, 0) + 16× (0, 0) + 4× (−5, 0) , (4.47)

(1,15) → 3× (0, 4) + 9× (0, 0) + 3× (0,−4) . (4.48)

Accounting for the hypermultiplets eaten during the Higgsing process, the charged U(1)×

U(1) spectrum is11

8× (3, 3) + 24× (3,−1) + 12× (−2, 3) + 36× (2, 1)

+ 6× (4, 2) + 6× (4,−2) + 24× (−1, 2) + 24× (1, 2)

+ 6× (4, 1) + 2× (4,−3) + 24× (−1, 1) + 8× (1, 3) (4.49)

+ 8× (3, 0) + 12× (2, 0) + 2× (0, 3) + 6× (0, 1) + 8× (5, 0) + 6× (0, 4) .

We now give a VEV to the charge (4,−3) matter, which breaks U(1)× U(1) down to

a single U(1). The charges are given by q = 3q1 + 4q2, leading to a charged spectrum of

8× (q = 21) + 6× (q = 20) + 12× (q = 16) + 16× (q = 15) + 2× (q = 12)

+ 24× (q = 11) + 36× (q = 10) + 8× (q = 9) + 24× (q = 6)

+ 48× (q = 5) + 12× (q = 4) + 24× (q = 1). (4.50)

11Note that we have changed some of the signs by identifying hypermultiplets of charge (−q1,−q2) with

those of charge (q1, q2).
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The spectrum satisfies the U(1) anomaly equations with b̃ = 372 × 2S̃. The spectrum

includes charges as large as ±15, ±16, ±20, and ±21. Moreover, the charges above do not

share any common factors, showing that the model genuinely realizes these large charges.

Therefore, the largest charge that can be realized in F-theory must be at least charge

q = ±21.

5 Open questions and further directions

By combining explicit Weierstrass constructions of 6D supergravity theories having non-

abelian gauge groups with the basic physics of Higgsing processes, we have shown that

F-theory can give rise to charges as large as q = ±21 in 6D supergravity models with

an abelian U(1) gauge group. We list here some questions and open problems for further

research in this direction.

• While we have shown that charges up to q = 21 are possible, we have not proven

that this is the upper bound. It would be interesting to explore whether more exotic

constructions can give even higher U(1) charges in 6D F-theory models, and/or to

prove an upper bound on the charges allowed through F-theory constructions.

• We have noted that the constructions up to charge q = 6 follow from simpler F-theory

models with less exotic singularity types. It would be nice to understand if there is

a qualitative difference between the geometric structure needed for charge q ≤ 6 and

that needed for charge q > 6.

• Since the abelian anomaly conditions allow for an infinite set of solutions with U(1)

gauge group and increasingly large charges, even for models with no tensor multiplets

(T = 0) [10], while only a finite number of F-theory models are possible, one may look

for new quantum consistency conditions on the low-energy theory that may place an

upper bound on the U(1) charge allowed in a consistent theory.

• For nonabelian gauge groups such as SU(N), the Kodaira constraint from F-theory [5]

imposes a strict upper bound on the anomaly coefficient b, namely −12a ≥ Nb,

meaning that −12a − Nb lies in the positivity cone of the theory. It is tempting to

speculate that there is a natural geometric constraint on the anomaly coefficient b̃ for

an abelian U(1) factor; the large size of these coefficients for some of the constructions

here, however (e.g. 744S̃ for the model with abelian charges q = ±21), makes it clear

that if there is such a bound it is quite large. It would be nice to either prove

the existence of such a bound from geometry or give a convincing argument for the

absence of such a bound.

• The constructions here are indirect and rely on the physical mechanism of Higgsing.

To the best of our knowledge the largest q that has been explicitly constructed in a

Weierstrass model for a 6D theory with only a U(1) gauge group is q = 4 [25]. It would

be good to have explicit constructions of the Weierstrass models for higher abelian

charges and to investigate the singularity structure of the corresponding geometries.
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• In particular, we have focused here on breaking SU(N) gauge groups to achieve high

abelian charges. It would be interesting to explore whether breaking other groups

such as exceptional groups E7, E6, F4 could also give large abelian charges. Because

the constructions used here rely on exotic matter representations of SU(N), and such

exotic matter representations cannot be realized in a straightforward fashion for the

exceptional groups [8], it may be harder to get large charges from other nonabelian

groups; nonetheless, this avenue should be explored more thoroughly. (See also the

following related point.)

• In the constructions in this paper we have relied on the presence of nonabelian theories

with exotic matter that has an explicit construction through a Weierstrass model

without non-resolvable (4, 6) codimension 2 points that may be associated with

superconformal field theories. It is possible that there may be consistent abelian

models with even higher charges that are related in a similar way to “unHiggsed”

nonabelian models with exotic matter that gives rise to (4, 6) singularities in the

geometry. For example, similar to the SU(5) × SU(4) model in the last section,

one may consider trying to construct a model with SU(6) × SU(3) gauge group and

matter in the (15,3) representation. According to the logic of [8], such a model

would have a singularity corresponding to an extended Ê8 Dynkin diagram, which

necessitates a (4, 6) point. Even if this model is not consistent as a nonabelian model,

the Higgsed model with an abelian factor may still be a valid F-theory construction.

There has also been some recent suggestion that some exotic matter of this type

may give a consistent F-theory model as the singular features of the (4, 6) point

can be compensated by T-brane degrees of freedom [21]. These questions would be

interesting to understand further.

• The general structure of abelian charges when the gauge group has both an abelian

and nonabelian factor like SU(N) × U(1) has been investigated in [9, 45, 46]. It

could be interesting to study the range of charges that may be realized in explicit

constructions with such gauge groups.

• While the constructions here were carried out in 6 dimensions, where we have the

strongest analytic control over F-theory and the low-energy constraints are strongest,

in principle the Weierstrass constructions that lead to large q charges should be

equally valid in four dimensions, although the story is complicated by the presence

of fluxes and the superpotential. It would be interesting to attempt explicit con-

structions of four-dimensional F-theory models that give vacua with an abelian U(1)

gauge theory and similar large charges.

• The abelian charges constructed here are much larger than those realized in most

other approaches to string compactification. It would be interesting to systematically

analyze other constructions such as heterotic, type II and M theory on G2 to see if a

clear upper bound on abelian charges can be demonstrated in those frameworks.
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A Explicit SU(5)×SU(3) Weierstrass model

The f and g for the SU(5) × SU(3) Weierstrass model obtained by Higgsing the SU(8)

model above are

f = −3v2

[

9δ12v6
(

δ2 − ǫ
)4

+ 18δ8σv4
(

δ2 − 2ǫ
) (

δ2 − ǫ
)2

+ 3δ4σ2v2
(

5δ4 − 8δ2ǫ+ 6ǫ2
)

+ 2σ3
(

2δ2 + ǫ
)

]

(A.1)

and

g = 3v2

[

18δ18v10
(

δ2 − ǫ
)6

+ 54δ14σv8
(

δ2 − 2ǫ
) (

δ2 − ǫ
)4

+ 18δ10σ2v6
(

δ2 − ǫ
)2 (

4δ4 − 10δ2ǫ+ 9ǫ2
)

+ 6δ6σ3v4
(

8δ6 − 21δ4ǫ+ 15δ2ǫ2 − 5ǫ3
)

+ 15δ2σ4v2
(

δ4 + ǫ2
)

+ σ5

]

. (A.2)

As before, the homology classes of v, σ and δ are respectively S, 2S̃ and F . The homology

class of ǫ is 2F . One recovers the original SU(8) model when ǫ is taken to 0. In principle,

one can obtain these expressions by tuning f and g, as in [38]: one expands f and g as

series in σ and tunes the various parameters to force the discriminant to vanish to higher

and higher orders.

The discriminant is

∆ = −27v4σ5
(

12δ4v2ǫ− σ
)3
[

9σ2 + 9v4
(

δ3 − δǫ
)4

+ 2σv2
(

7δ2 − 16ǫ
) (

δ2 − ǫ
)2
]

. (A.3)

The v4 factor in the discriminant reflects the expected SU(3) non-Higgsable gauge group.

Indeed, there are no codimension-two singularities along v = 0 where the singularity type

enhances, indicating that no matter is charged under the non-Higgsable SU(3). However,

the discriminant also has a σ5 factor and a (σ − 12δ4v2ǫ)3 factor. One can verify that f

and g are not proportional to σ or (σ − 12δ4v2ǫ) and that the SU(N) split conditions are

satisfied. These two factors in the discriminant therefore signal the presence of an SU(5)
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group and an additional SU(3) group, which together form the SU(5) × SU(3) symmetry

coming from the Higgsed SU(8).

Since the SU(5) and SU(3) groups both occur on curves of genus two, there are two

hypermultiplets of (24,1) matter and two hypermultiplets of (1,8) matter. There are also

four types of codimension-two loci that contribute charged matter. On σ = ǫ− δ2 = 0, the

I5 singularity type for the SU(5) symmetry enhances to I∗1 . This locus therefore contributes

four hypermultiplets of (10,1) matter. On σ − 12δ4v2ǫ = ǫ − 3δ2 = 0, the I3 singularity

type for the SU(3) symmetry enhances to I4, indicating that this locus contributes four

hypermultiplets of (1,3) matter. Note that while the singularity type does enhance from

I3 to II on σ − 12δ4v2ǫ = 5ǫ+ δ2 = 0, this locus does not contribute any charged matter.

The remaining codimension-two loci correspond to intersections between σ = 0 and

σ−12δ4v2ǫ = 0. Before describing the matter supported at these loci, it is worth mentioning

a subtle point regarding the SU(3). We can interpret the I3 singularity on σ− 12δ4v2ǫ = 0

as either an SU(3) or an SU(3) gauge group. In other words, we can freely conjugate

the SU(3) symmetry, which will change the field-theoretic interpretation of the matter

content. The (1,3) hypermultiplets would be unaffected by this conjugation, as a single

(1,3) hypermultiplet contains fields in both the (1,3) and (1,3) representations. But

the jointly charged representations would be affected by this conjugation. For instance, a

(10,3) hypermultiplet would become a (10,3) after conjugation, and vice versa. Similarly,

a (5,3) hypermultiplet would become a (5,3) hypermultiplet.

With this in mind, we can analyze the loci where the two curves intersect. At σ =

ǫ = 0, the singularity type enhances to I8 or A7. This locus therefore supports four

hypermultiplets bifundamental matter. But without performing an explicit resolution, we

cannot determine whether this locus supports four hypermultiplets of (5,3) matter or (5,3)

matter. Meanwhile, the singularity type enhances to III∗ at δ = ǫ = 0. The Katz-Vafa

method would suggest that, to determine the matter content, we should break the adjoint

(133) representation of E7 into SU(5)× SU(3) representations:

133 → (24,1)+(1,8)+(10,3)+(10,3)+(5,3)+(5,3)+(5,1)+(5,1)+2×(1,1). (A.4)

Naively, the δ = ǫ = 0 locus would therefore seem to support two hypermultiplets of (10,3)

matter, two hypermultiplets of (5,3) matter, and two hypermultiplets of (5,1) matter.

However, the Higgsing patterns described in section 4.2 suggests we should obtain (10,3)

matter, not (10,3). To match the Katz-Vafa result with the field theory expectations, we

should therefore conjugate the SU(3). The δ = ǫ = 0 locus then supports (10,3) matter,

two hypermultiplets of (5,3) matter, and two hypermultiplets of (5,1) matter, exactly as

expected from the SU(8) branching patterns. Moreover, the σ = ǫ = 0 should support four

hypermultiplets of (5,3) matter. The complete charged spectrum for SU(5)×SU(3) is thus

2× (10,3) + 4× (5,3) + 2× (5,3)

+ 2× (24,1) + 2× (1,8) + 4× (10,1) + 2× (5,1) + 4× (1,3), (A.5)

which exactly matches expectations.
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B Explicit Higgsing of SU(4)

While it is difficult to construct U(1) models with large charges, there are previous con-

structions admitting smaller charges. As a result, the Higgsing process of section 2.1 can

be seen explicitly in F-theory for small SU(N). In this appendix, we focus on the Higgs-

ing of SU(4) down to U(1) with charge ±4 matter. Explicit F-theory constructions with

charge ±4 matter were described in [25], and models admit an unHiggsing that is the exact

analogue of the SU(4) → U(1) Higgsing process.

We start with an explicit charge-4 U(1) model on an F3 base. The Weierstrass tuning

(along with the section components, which we do not list here) was originally given in [25]:

f =−
1

3

(

s25−3s1s8
)(

a21
(

d21−3d0d2
)

−a1b1d0d1+b21d
2
0

)

−
1

3

(

s22−3s1s3
)(

a21d
2
2+b21

(

d21−2d0d2
))

+
1

6
(2s2s5−3s1s6)

(

a21d1d2+a1b1
(

d21−2d0d2
)

+b21d0d1
)

+
1

6
(a1d1+b1d0)

(

2b1d2
(
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, (B.1)
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1
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(
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)3

−
1

2

(

d0d
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(

d31−3d0d1d2
)
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(
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(
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(
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(
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(
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(
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. (B.2)

We take the parameters to have the homology classes given in table 3. Note that d0 and s1

have trivial homology classes and are thus constants. Additionally, the homology classes

suggest that many of the parameters are reducible. While not necessary, one can explicitly

address this by setting

d1 = vd̃1 d2 = v2d̃2 s5 = vs̃5 s6 = s̃6 s8 = v2s̃8, (B.3)

where [v] = S. Performing these redefinitions makes the SU(3) non-Higgsable cluster

(NHC) on F3 explicitly visible in the Weierstrass model. There are no nonabelian gauge

groups other than this NHC, and there is no matter charged under the nonHiggsable SU(3).

Based on the matter analysis from section 4.3 of [25], the charged matter spectrum of the

model is

6× (q = 4) + 32× (q = 3) + 60× (q = 2) + 96× (q = 1). (B.4)

We can then unHiggs the U(1) symmetry to SU(4) by setting a1 → 0, s2 → 0, s3 → 0.

One can verify that these tunings cause the generating section for the U(1) to coincide with

the zero section, suggesting that the U(1) has been unHiggsed to some nonabelian gauge

group. The discriminant now takes the form

∆ = −
1

16
b41v

4d30s
2
1

[

s̃46

(

d̃2s̃
2
6 − d̃1s̃6s̃8 + d0s̃

2
8

)

v4 +O(b1)
]

. (B.5)
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Parameter Homology Class

a1 3F

b1 2S̃ = 2S + 6F

d0 0S + 0F

d1 2S + 3F

d2 4S + 6F

s1 0S + 0F

s2 F

s3 2F

s5 2S + 4F

s6 2S + 5F

s8 4S + 8F

Table 3. Homology classes for the parameters of the charge-4 Weierstrass model on F3.

Because s1 and d0 are constants, the d30 and s21 factors in the discriminant do not represent

any new nonabelian gauge groups. Meanwhile, the v4 factors corresponds to the expect

SU(3) NHC on F3. But the b41 factor represents a new SU(4) gauge group.12 The U(1)

has therefore been unHiggsed to an SU(4) tuned on b1 = 0. Since [b1] = 2S̃, b1 = 0

is a genus-two curve, and the spectrum includes two hypermultiplets in the adjoint (15)

representation. Additionally, the codimension-two locus s̃6 = b1 = 0 contributes ten 10

hypermultiplets, while the locus (d̃2s̃
2
6 − d̃1s̃6s̃8 + d0s̃

2
8) = b1 = 0 contributes thirty-two 4

hypermultiplets. This charged spectrum agrees exactly with anomaly cancellation.

We therefore see that the F-theory charge-4 model admits a U(1) → SU(4) unHiggsing.

Therefore, the corresponding SU(4) → U(1) unHiggsing also occurs in F-theory, providing

further evidence that the SU(N) → U(1) Higgsing of section 2.1 should be valid more

generally.
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