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1 Introduction

Black holes play an essential role in understanding quantum gravity. In string theory,

Strominger and Vafa [1] provided the first microscopic interpretation of the Bekenstein-

Hawking entropy for BPS black holes, which later developed into the holographic duality

between string theory on AdS3 × S3 × M4 and two-dimensional conformal field theories

(CFTs). A similar attempt towards understanding real world black holes was initiated with

the Kerr/CFT correspondence [2]. Kerr/CFT conjectured the existence of a holographic

dual to (near) extremal black holes, the latter of which have been reported to exist in

nature [3]. The near-horizon region of four-dimensional extremal Kerr black holes (NHEK)

features a U(1)L× SL(2, R)R isometry group [4], a property shared by a three dimensional

geometry dubbed warped AdS3 (WAdS3) [5]. WAdS3 appears in several contexts: as a

section of NHEK at fixed polar angle, as a factor in the near horizon geometry of six-

dimensional black strings and five-dimensional black holes [6–10], and as a solution to

some three dimensional theories of gravity [5, 11–17]. Holographic dualities for WAdS3
spacetimes provide simpler toy models for the Kerr/CFT correspondence. Furthermore,

since neither NHEK nor WAdS3 are asymptotically AdS, the proposed dualities explore

holography beyond AdS spacetimes.

Without resorting to string theory, the Kerr/CFT correspondence and related pro-

posals for WAdS3 have been successful in reproducing universal properties of black holes

such as the Bekenstein-Hawking entropy and greybody factors [2, 7, 18–20]. Despite its

name, however, there is strong evidence that the dual field theory in Kerr/CFT is not a
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local QFT [21]. To gain a better understanding of these theories it is useful to embed

the Kerr/CFT correspondence in string theory [8, 22]. In this context, Kerr/CFT can

be understood as an irrelevant deformation induced by a (h, h̄) = (2, 1) operator [8, 22–

24]. Relatedly, a geometry containing a WAdS3 factor can be obtained from string theory

on AdS3 via marginal deformations of the worldsheet [25–27], or a sequence of solution-

generating transformations [23, 24, 28]. For example, a TsT transformation [29, 30] mixing

U(1) currents from the AdS3 and an S3 factor can be interpreted as a marginal worldsheet

deformation that leads to a WAdS3 geometry [31]. We will see that this transformation

corresponds to an irrelevant (2,1) deformation of the dual CFT.

While generally difficult to deal with, recently a class of irrelevant and Lorentz invari-

ant deformations has been shown to be integrable [32, 33]. In particular, the so-called T T̄

deformation of a two-dimensional CFT interpolates between an IR fixed point and a non-

local QFT in the UV. The holographic description of the deformed theory depends on the

single or double trace character of the deformation, as well as on the sign of its dimensionful

coupling µ. For example, in [34] a double trace deformation with µ < 0 was argued to be

dual to AdS3 with a finite cutoff at radius rc ∝ 1/
√

|µ|. In contrast, refs. [35, 36] considered

a single trace deformation which, unlike its double trace analog, changes the background

metric. The single trace T T̄ deformation corresponds to a marginal deformation of string

theory that interpolates between AdS3 and linear dilaton backgrounds [37]. The latter

are vacua of Little String Theory which features a Hagedorn spectrum that matches the

spectrum found in the deformed theory [35, 36]. For related work on T T̄ deformations see

e.g. [38–48].

Integrable deformations of two-dimensional CFTs are not restricted to Lorentz invari-

ant operators. In particular, the irrelevant deformations relevant to holography for NHEK

and WAdS3 spacetimes must necessarily break Lorentz invariance. The simplest example

of such deformations is the (2,1) T J̄ deformation proposed in [49] where J̄ is a U(1)R
current.1 The T J̄ deformation is solvable and breaks the global SL(2, R)L × SL(2, R)R
symmetries of the CFT down to U(1)L × SL(2, R)R. The resulting theory is nonlocal, a

feature shared by the holographic duals to NHEK and WAdS3 beyond the matching of

global symmetries. In analogy to the T T̄ deformation, double trace T J̄-deformed CFTs

were shown to be dual to AdS3 [50] with modified boundary conditions similar to [51].

However, in order to get a toy model of Kerr/CFT it is also necessary to deform the bulk

metric to WAdS3. To obtain WAdS3 we therefore consider a single trace T J̄ deformation

along the lines of [35, 36].

In this paper, we study a toy model of Kerr/CFT in string theory via an irrelevant

(2, 1) deformation. Our starting point is string theory on AdS3 × S3 × M4 backgrounds

supported by NS-NS flux. The theory features (2,1) vertex operators that correspond to

observables in the dual two-dimensional CFT. These operators are given by [52]

Aa(x, x̄) =
1

2

∫

d2z
[

∂xJ(x; z)∂x + 2∂2
xJ(x; z)

]

Φ1(x, x̄; z, z̄)k̄
a(z̄), (1.1)

1Here we study (2,1) instead of the (1,2) deformations originally considered in [49, 50]. This convention is

chosen to maximize the overlap with previous work on string theory on warped AdS3×S
3 backgrounds [31].
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where (x, x̄) are the coordinates of the dual CFT, (z, z̄) are the coordinates on the world-

sheet, J(x; z) is an x-dependent linear combination of SL(2, R)L worldsheet currents while

k̄a(z̄) is an SU(2)R worldsheet current, and Φ1(x, x̄; z, z̄) is an SL(2, R)L × SL(2, R)R
primary.

In the dual CFT, we conjecture that the (2,1) vertex operator (1.1) corresponds to a

single trace TK̄ deformation where K̄ is one of the SU(2) currents in the dual field theory.

As evidence, we show that the single trace deformation satisfies the appropriate OPEs with

other conserved currents of the dual CFT. These OPEs are similar to those satisfied by the

double trace deformation, except for terms proportional to the central extensions. We will

see that the TK̄ deformation reduces to a marginal deformation of string theory bilinear

in worldsheet currents [31]. Furthermore, by placing the deformed theory on the cylinder

we derive its finite-size spectrum. Denoting by λ the dimensionful deformation parameter,

EL(λ) and ER(λ) the left and right-moving energies, P (λ) the deformed momentum, and

Q̄(λ) the expectation value of the U(1)R current, we find

2P (λ) ≡ EL(λ)− ER(λ) = EL(0)− ER(0) = 2P (0), (1.2)

EL(λ) =
λq̄ + k|w|R

2λ2
−

1

2λ2

√

(λq̄ + k|w|R)2 − 4k|w|Rλ2EL(0) , w < 0, (1.3)

Q̄(λ) = q̄ − 2λEL(λ). (1.4)

In eq. (1.3) w is the spectral flow parameter, i.e. the string winding number, q̄ is the charge

of the undeformed U(1)R symmetry, and k = ℓ2AdS/ℓ
2
s where ℓAdS and ℓs are the AdS and

string scales, respectively.

On the gravity side, we show that the deformed theory corresponds to a string theory

propagating on the warped AdS3×S3 background originally found in [31]. The deformation

breaks the SL(2, R)L × SL(2, R)R × SU(2)L × SU(2)R isometry of AdS3 × S3 down to

U(1)L × SL(2, R)R and SU(2)L × U(1)R. Furthermore, the warped AdS3 × S3 geometry

reduces to null warped AdS3 after dimensional reduction. Thus, the single trace TK̄

deformation reproduces the kind of spacetimes and symmetries featured in the near horizon

limit of extremal black holes.

The paper is organized as follows. In section 2 we review aspects of string theory

on AdS3. In particular we review the construction of vertex operators corresponding to

the conserved currents in the dual CFT. The conjectured single trace TK̄ deformation is

considered in section 3. Therein we show that the deformation is marginal on the worldsheet

and that it describes strings on a warped AdS3 spacetime. Finally, in section 4 we derive

the finite-size spectrum of the dual CFT via spectral flow.

Note added. While this work was in progress we learned of ref. [53] which has some

overlap with our work.

2 String theory on AdS3

In this section we review some of the basic ingredients of string theory on AdS3 that are

necessary to construct the single trace TK̄ deformation. We begin by considering the
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currents of the worldsheet theory and then use these to write down the currents in the dual

conformal field theory.

2.1 Action and worldsheet currents

Let us consider string theory on the following background

AdS3 × S3 ×M4, (2.1)

supported by NS-NS flux. The compact, four-dimensional manifold M4 in eq. (2.1) does

not play a role in our story and is henceforth omitted from the discussion. The background

metric and B fields are respectively given by

ds2 = k

{

dφ2 + e2φdγdγ̄ +
1

4

[

dθ2 + sin2 θ dϕ2 + (dψ + cos θ dϕ)2
]

}

, (2.2)

B =
k

4

{

2e2φdγ̄ ∧ dγ + cos θ dψ ∧ dϕ
}

, (2.3)

where
(

φ, γ = γ1 + γ0, γ̄ = γ1 − γ0
)

denote the Poincaré coordinates of AdS3, (ψ,ϕ, θ)

parametrize the S3 as a Hopf fibration, and the ratio of the AdS (ℓAdS) and string (ℓs)

scales is assumed to be large k = ℓ2AdS/ℓ
2
s ≫ 1. The bosonic part of the worldsheet action

is thus given by

S = k

∫

d2z

{

∂φ∂̄φ+ e2φ∂̄γ∂γ̄ +
1

4

[

∂θ∂̄θ + ∂ϕ∂̄ϕ+
(

∂̄ψ + 2 cos θ ∂̄ϕ
)

∂ψ
]

}

, (2.4)

where we have set the string length to ℓs = 1, and (∂, ∂̄) denote derivatives with respect

to the worldsheet coordinates (z, z̄).

The action (2.4) features both left and right-moving SL(2, R) × SU(2) Kac-Moody

symmetries. Following the conventions of [31] we denote quantities in the right-moving

sector with a bar. The left-moving SL(2, R)L worldsheet currents are given by

j−(z)=−k e2φ∂γ̄, j3(z)=−k
(

e2φγ∂γ̄ − ∂φ
)

, j+(z)=−k
(

e2φγ2∂γ̄ − 2γ∂φ− ∂γ
)

, (2.5)

and satisfy the OPEs

j+(z)j−(w) ∼
k

(z − w)2
+

2j3(w)

z − w
, (2.6)

j3(z)j3(w) ∼ −
k/2

(z − w)2
, (2.7)

j3(z)j±(w) ∼ ±
j±(w)

z − w
, (2.8)

where ∼ denotes equality up to regular terms. On the other hand the right-moving SU(2)R
currents read

k̄3(z̄) = −i
k

2

(

∂̄ψ + cos θ ∂̄ϕ
)

, k̄±(z̄) =
k

2
e∓iψ

(

∂̄θ ± i sin θ ∂̄ϕ
)

. (2.9)
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Their OPEs are given by

k̄a(z̄)k̄b(w̄) ∼
k
2η

ab

(z̄ − w̄)2
+

ifabcηcdk̄
d(w̄)

z̄ − w̄
, (2.10)

where ηab and fabc are respectively the Cartan-Killing metric and structure constant

of SU(2).

Similarly, the currents for the SL(2, R)R and SU(2)L symmetries, namely j̄i(z̄) and

ka(z), are obtained from eqs. (2.5) and (2.9) by the following substitutions

∂ ↔ ∂̄, γ ↔ γ̄, ψ ↔ ϕ. (2.11)

2.2 Spacetime currents

We now turn to the conserved currents of the CFT dual to string theory on AdS3, specifi-

cally to the vertex operators for the stress energy tensor and SU(2)R currents. Following [52]

we refer to these currents as “spacetime” currents, in contrast to the worldsheet currents

considered in the previous section. The spacetime currents depend on auxiliary variables

(x, x̄) that are interpreted as living on the boundary of AdS3, i.e. these are the coordinates

of the dual CFT. First, we introduce the following parametrization of the left-moving

SL(2, R)L currents [52]

J(x; z) = 2xj3(z)− j+(z)− x2j−(z), (2.12)

whose OPE follows from eqs. (2.6)–(2.8) and is given by

J(x; z)J(y;w) ∼ k
(x− y)2

(z − w)2
+

1

z − w

[

(x− y)2∂y + 2(x− y)
]

J(y;w). (2.13)

The right moving operator J̄(x̄; z̄) is obtained by letting ji(z) → j̄i(z̄) and x → x̄ in

eq. (2.12). Crucially, J(x; z) carries worldsheet dimension (1, 0) and spacetime dimension

(−1, 0). The latter follows from the fact that −
∮

dzj3(z), −
∮

dzj+(z), and −
∮

dzj−(z)

correspond to the L0, L+1, and L−1 modes of the spacetime SL(2, R)L symmetry.

A fundamental ingredient in the construction of vertex operators is the field Φh(x, x̄;

z, z̄) defined by [52]

Φh(x, x̄; z, z̄) =
1

π

[

1

(γ − x)(γ̄ − x̄)eφ + e−φ

]2h

. (2.14)

This operator is a primary under the SL(2, R)L×SL(2, R)R symmetries of both the world-

sheet and spacetime CFTs. Φh(x, x̄; z, z̄) may be interpreted as a bulk-to-boundary prop-

agator whose worldsheet and spacetime dimensions are respectively given by (∆,∆) and

(h, h) with ∆ = −h(h− 1)/(k − 2). Its OPE with the SL(2, R)L current J(x; z) reads

J(x; z)Φh(y, ȳ;w, w̄) ∼
1

z − w

[

(x− y)2∂y − 2(x− y)
]

Φh(y, ȳ;w, w̄), (2.15)

with a similar expression in terms of right-moving coordinates valid for its OPE

with J̄(x̄; z̄).
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Finally, the left-moving component of the stress energy tensor in the dual CFT is given,

up to BRST exact terms, by

T (x) = −
1

2k

∫

d2z
[

∂xJ(x; z)∂x + 2∂2
xJ(x; z)

]

Φ1(x, x̄; z, z̄)J̄(x̄; z̄). (2.16)

As expected, this is a vertex operator with spacetime dimension (2, 0). Similarly, the

spacetime SU(2)R currents are given in terms of the worldsheet currents k̄a(z̄) by

K̄a(x̄) = −
1

k

∫

d2zk̄a(z̄)Φ1(x, x̄; z, z̄)J(x, z). (2.17)

It is not difficult to check that K̄a(x̄) is an operator of dimension (0, 1). The spacetime

currents discussed above are conserved within correlation functions and satisfy OPEs that

lead to spacetime left and right-moving Virasoro-SU(2)-Kac-Moody algebras. In particular,

we have

T (x)T (y) ∼
3kI

(x− y)4
+

2T (y)

(x− y)2
+

∂yT (y)

x− y
, (2.18)

T̄ (x̄)K̄a(ȳ) ∼
K̄a(ȳ)

(x̄− ȳ)2
+

∂ȳK̄
a(ȳ)

x̄− ȳ
, (2.19)

K̄a(x̄)K̄b(ȳ) ∼
k
2η

abI

(x̄− ȳ)2
+

ifabcηcdK̄
d(ȳ)

x̄− ȳ
, (2.20)

and similarly for the T̄ (x̄) and Ka(x) currents. The central charge and level in eqs. (2.18)

and (2.20) are proportional to I, a multiple of the identity operator defined in [52] by

I =
1

k2

∫

d2zJ(x; z)φ1(x, x̄; z, z̄)J̄(x̄; z̄). (2.21)

Note that eq. (2.21) can take different values in different sectors of the theory [54].

2.3 Holographic dual

String theory on AdS3 × S3 ×M4 supported by NS-NS flux is conjectured to be dual to a

deformation of the symmetric product orbifold [55]

(

M6k

)p
/Sp, (2.22)

where M6k is a CFT with central charge c = 6k that depends on the details of the internal

manifold M4. In eq. (2.22) k denotes the level of the current algebra and p counts the

number of fundamental strings necessary to generate the background (2.2) (in contrast, k

counts the number of NS5 branes). The total central charge of dual CFT is ctotal = 6kp, in

agreement with the worldsheet derivation of refs. [52, 56]. In particular, it has been argued

that (2.22) lies in the same moduli space as the D1D5 CFT.

At critical values of k — k = 3 for the bosonic string, k = 1 for the superstring —

there is evidence that the dual theory is at the orbifold point [57, 58]. In contrast, for

generic values of k the holographic dual is expected to be a deformation of the symmetric

product.
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3 Warped AdS3 from TK̄

In this section we propose a single trace generalization of the TK̄ deformation studied

in [49]. We find that this operator satisfies the appropriate OPEs with other conserved

currents of the CFT dual to string theory on AdS3. We show that the deformation is

marginal on the worldsheet and that the target spacetime is deformed to null warped AdS3
upon dimensional reduction.

3.1 A single trace TK̄ deformation

As discussed in section 1, deformations of two-dimensional CFTs by Lorentz-violating

operators of weight (2, 1) play an important role in understanding the holographic duals

to extremal Kerr black holes and warped AdS3 spacetimes [21–24]. Among the family of

(2, 1) operators, deformations built from the a left-moving stress tensor and a right-moving

U(1)R current appear to be the simplest. CFTs deformed by these operators have been

shown to be integrable in [49]. Their holographic duals were studied in [50] where the

deforming operator was assumed to be double trace. In this picture, the bulk theory is still

described by an asymptotically AdS3 spacetime, but with modified boundary conditions

similar to those of [51]. In order to deform the bulk metric to WAdS3 we need to find a

single trace deformation.

Let us consider possible TK̄ deformations where K̄ is a U(1)R current in the SU(2)R
symmetry of the dual CFT. Clearly, this operator features spacetime dimension (2, 1).

Besides breaking the Lorentz symmetry of the spacetime CFT, this deformation also breaks

the affine SU(2)R symmetry down to an affine U(1)R. There are two kinds of vertex

operators one may study. One is a deformation by the double trace operator T (x)K̄a(x̄).

This is not a local deformation of the worldsheet CFT and similar in spirit to what has

been already been discussed in [50].

To get a single trace deformation, we consider an alternative vertex operator of dimen-

sion (2, 1) that corresponds to a local deformation of the worldsheet theory. This operator

can be built from the components making up the stress tensor and one of the SU(2)R
currents [52]. After a convenient normalization the single trace TK̄ operator is given by

Aa(x, x̄) =
1

2

∫

d2z
[

∂xJ(x; z)∂x + 2∂2
xJ(x; z)

]

Φ1(x, x̄; z, z̄)k̄
a(z̄). (3.1)

Aa(x, x̄) differs from the left moving component of the stress tensor given in eq. (2.16) on

the last term, where the SL(2, R)R current J̄(x̄) has been replaced by the SU(2)R current

k̄a(z̄). Both currents have worldsheet dimension (0, 1) but feature different spacetime di-

mensions respectively given by (0,−1) and (0, 0). Following the lines of reasoning in [35],

we conjecture that eq. (3.1) corresponds to a single trace generalization of the TK̄ defor-

mation of [49]. More precisely, if we deform the dual symmetric product CFT (2.22), the

deformation is expected to be of the form of
∑

i Ti(x)K̄i(x̄), where Ti(x) and K̄i(x̄) are

currents on a single copy of M6k.

As evidence we show that, up to the central extensions, Aa(x, x̄) shares the same

form of the OPEs with the stress tensor and SU(2)R currents. Indeed, its OPE with the

– 7 –
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left-moving component of the stress tensor T (x) is given by

T (x)Aa(y, ȳ) ∼
3kK̄a(ȳ)

(x− y)4
+

2Aa(y, ȳ)

(x− y)2
+

∂yA
a(y, ȳ)

x− y
, (3.2)

where we used the OPEs given in eqs. (2.13) and (2.15), as well as [52]

lim
z→w

Φ1(x, x̄; z, z̄)Φ1(y, ȳ;w, w̄) = δ(2)(x− y)Φ1(y, ȳ;w, w̄) +O(z − w, z̄ − w̄). (3.3)

Note that in eq. (3.2) we have ignored a term equal to (x − y)−3k∂y K̄
a(ȳ) which is not

identically zero but vanishes within correlation functions, consistent with the conservation

of K̄a(x̄). A similar term, namely (x−y)−3k ∂yI, appears in the T (x)T (y) OPE where I is

a multiple of the identity operator (2.21) whose derivatives also vanish within correlation

functions. One difference between the OPEs of T (x) with the single and double trace

TK̄ deformations is found on their central extensions. The spacetime central charge in

the T (x)[T (y)K̄a(y)] OPE is given by 6kI, cf. eq. (2.18), where I is proportional to the

identity but takes different values on different sectors of the theory [54]. In contrast, the

central charge in the T (x)Aa(x, x̄) OPE is simply 6k.

There are two more OPEs we can compute which show that the single trace operator

Aa(x, x̄) behaves as desired. On the one hand we find that, up to contact terms, the OPE

with the right moving component of the stress tensor T̄ (x̄) is given by

T̄ (x̄)Aa(y, ȳ) ∼
Aa(y, ȳ)

(x̄− ȳ)2
+

∂ȳA
a(y, ȳ)

x̄− ȳ
, (3.4)

as expected. On the other hand, using the OPEs of the worldsheet SU(2)R currents given

in eq. (2.10) we obtain

K̄a(x̄)Ab(y, ȳ) ∼
1
2kη

abT (y)

(x̄− ȳ)2
+

ifabcηcdA
d(y, ȳ)

x̄− ȳ
, (3.5)

where once again we have ignored all contact terms. The presence of the latter in the OPEs

in eqs. (3.4) and (3.5) is due to the derivatives acting on Φ1(x, x̄; z, z̄) in the definition of

Aa(x, x̄). As before, we note that there is a difference in the central extension between the

OPEs of K̄a(x̄) with the single and double trace TK̄ deformations. In the former the level

is given by kI, cf. eq. (2.20), while in the latter the level is instead given by k.

Thus, we expect the single trace generalization of the TK̄ deformation on the dual

CFT to be given by
∫

d2xAa(x, x̄). (3.6)

A crucial property of eq. (3.6), that is also shared by the single trace T T̄ deformation

considered in [35], is that the (x, x̄) dependence of the integrand is contained entirely in

Φ1(x, x̄; z, z̄). Indeed, using eq. (2.12) we find,

∫

d2xAa(x, x̄) = −

∫

d2x

∫

d2zj−(z)k̄a(z̄)Φ1(x, x̄; z, z̄), (3.7)
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where we have dropped total derivative terms which include potential short-distance singu-

larities in the worldsheet coordinates originating from the j−(z)Φ1(x, x̄; z, z̄) OPE. Thus,

since
∫

d2xΦ1(x, x̄; z, z̄) =
1
π

∫

d2x′(x′x̄′ + 1)−2 is a number, the single trace TK̄ deforma-

tion corresponds to a marginal deformation of the worldsheet theory that is given by

δS(a) =
2iλ

k

∫

d2xAa(x, x̄) = −
2iλ

k

∫

d2zj−(z)k̄a(z̄), (3.8)

where we have absorbed
∫

d2xΦ1(x, x̄; z, z̄) into λ. The coefficient of the deformation is

chosen to guarantee that the deformed action considered in the next section is real and

remains proportional to k, the latter of which is large in the semiclassical limit.

3.2 Null warped AdS3

The deformation (3.8) breaks the SL(2, R)L×SU(2)R symmetries of the action (2.4). Here

we choose to align the SU(2) index in (3.8) along the U(1) fibre of the 3-sphere, i.e. we

deform the worldsheet action by A3(x, x̄). Thus, the worldsheet action becomes

S′ = S + δS(3) (3.9)

= k

∫

d2z

{

∂φ∂̄φ+ e2φ∂γ̄
[

∂̄γ + λ(∂̄ψ + cos θ ∂̄ϕ)
]

+
1

4

(

∂̄ψ + 2 cos θ ∂̄ϕ
)

∂ψ

+
1

4

(

∂θ∂̄θ + ∂ϕ∂̄ϕ
)

}

.

(3.10)

The deformed action (3.10) corresponds to a string theory on the warped background

ds2 = k

{

dφ2 + e2φdγ̄ [dγ + λ(dψ + cos θ dϕ)] +
1

4

[

dθ2 + sin2 θ dϕ2 + (dψ + cos θ dϕ)2
]

}

(3.11)

B =
k

4

{

2e2φdγ̄ ∧ [dγ + λ(dψ + cos θ dϕ)] + cos θ dψ ∧ dϕ
}

. (3.12)

The deformed metric (3.11) preserves only the U(1)L×SL(2, R)R×SU(2)L×U(1)R subset of

the original SL(2, R)L×SL(2, R)R×SU(2)L×SU(2)R isometries. The background described

in eqs. (3.11) and (3.12) was originally obtained in ref. [31] via the solution-generating

TsT transformation of [29, 30] accompanied by an additional shift in the coordinates.

More explicitly, starting from the AdS3 × S3 background given in eqs. (2.2) and (2.3), one

first T-dualizes along the γ direction, shifts ψ to ψ − 2λ
k
γ, T-dualizes along γ again and,

crucially, shifts γ to γ+ λ
2ψ. We have thus shown that this generalized TsT transformation

is equivalent to the TK̄ deformation of the worldsheet action.

Dimensional reduction on the 3-sphere yields a null warped AdS3 background

ds2 = k
{

dφ2 + e2φdγdγ̄ − λ2e4φdγ̄dγ̄
}

. (3.13)

Thus, the single trace TK̄ deformation of string theory on AdS3 leads to one member of the

family of metrics ubiquitous in the study of the near horizon limit of extremal black holes.
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The emergence of null warped AdS3, as opposed to the timelike or spacelike solutions,

follows from the fact that the original background was chosen to be AdS3 in Poincaré

coordinates. Indeed, as explained in [31], a TsT transformation of a BTZ background yields

spacelike warped AdS3 black strings. This amounts to a deformation on the worldsheet

by an operator of the form
∫

dz2j1(z)k̄3(z̄). The boundary conditions and asymptotic

symmetries of supergravity on this background were further discussed in ref. [51].

Finally recall that the holographic duals to extremal black holes are expected to have

the following two features, a geometry containing WAdS3 in the bulk, and a (2, 1) deforma-

tion in the boundary. The fact that our construction of the TK̄ deformation meets both

expectations makes it a promising toy model of Kerr/CFT. It also gives us a strong hint

that the TK̄ deformation may play an important role in understanding, or even defining,

the nonlocal QFTs dual to (near) extremal black holes.

4 String theory spectrum

In this section we derive the finite-size spectrum of the TK̄-deformed theory via spectral

flow. In particular, we show that the single trace deformation reproduces the general form

of the spectrum derived on the field theory side in [49] up to a shift in the U(1)R charge.

4.1 The undeformed spectrum on the cylinder

To begin, let us put the dual CFT on the cylinder. This is accomplished by compactifying

the boundary of the original background metric (2.2) such that

(γ, γ̄) ∼ (γ + 2πR, γ̄ + 2πR). (4.1)

In this case eq. (2.2) no longer describes the AdS3 vacuum in Poincaré coordinates but

rather the massless BTZ black hole.

Now recall that string theory on an AdS3 background features both discrete and contin-

uous representations of SL(2, R), as well as “flowed” representations obtained via spectral

flow [59]. The latter are parametrized by an additional integer w which may be interpreted

as the winding number of long strings corresponding to the continuous representation.

Nevertheless, for either short or long strings, the flowed representations can be obtained

by imposing the following boundary conditions on the worldsheet coordinates

γ(σ + 2π) = γ(σ) + 2πwR, γ̄(σ + 2π) = γ̄(σ) + 2πwR. (4.2)

In the background (2.2) these boundary conditions lead to the following shift in the Ln
and L̄n modes of the worldsheet stress tensor [59]

Ln = Ln + wR j−n , L̄n = L̄n − wR j̄−n . (4.3)

That these shifts are proportional to the modes of the j−(z) and j̄−(z̄) SL(2, R) currents

is to be expected, as the latter generate shifts in the γ and γ̄ coordinates. In particular,
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this means that the zero mode charges of j−(z) and j̄−(z̄) correspond to the spacetime

momentum p and p̄ conjugate to γ and γ̄, i.e. we have

j−0 = −
1

2π

∫

dz j−(z) = p, j̄−0 = −
1

2π

∫

dz̄ j̄−(z̄) = p̄. (4.4)

As a result of the spectral flow, the Virasoro constraints receive a linear dependence on the

momenta. The constraints on a state parametrized by the SL(2, R) weight j at level N are

thus given by

0 = L0 − 1 = −
j(j − 1)

k
+∆S3×M4 +N − 1 + wRp, (4.5)

0 = L̄0 − 1 = −
j̄(j̄ − 1)

k
+ ∆̄S3×M4 + N̄ − 1− wRp̄, (4.6)

where we assumed that k ≫ 1, the first term in each equation is proportional to the Casimir

of SL(2, R), and ∆S3×M4 , ∆̄S3×M4 denote the contributions of S3 ×M4.

As discussed in [59], the physical spectrum contains both discrete representations D±,w
j

with 1/2 < j < (k − 1)/2 and principal continuous representations Cwj,α with j = 1/2 + is

and s ∈ R. When w < 0 (in our conventions) the left moving energy EL ≡ p is bounded

from below for both the continuous and the discrete highest weight representation D+,w
j .2

4.2 The deformed spectrum on the plane

Once the TK̄ deformation is turned on, the string theory spectrum receives corrections

that depend on the dimensionless coupling constant λ/R. One way to derive the spectrum

is to note that the deformed equations of motion and Virasoro constraints derived from the

action (3.10) are equivalent to the corresponding undeformed quantities derived from (2.4)

after a nonlocal field redefinition [31, 60, 61]. This corresponds to a nonlocal change of the

spacetime coordinates given by

∂̄γ̂ = ∂̄γ + λ
(

∂̄ψ + cos θ ∂̄ϕ
)

, (4.7)

∂γ̂ = ∂γ − λ2e2φ∂γ̄, (4.8)

∂ψ̂ = ∂ψ + 2λe2φ∂γ̄, (4.9)

∂̄ψ̂ = ∂̄ψ. (4.10)

In terms of γ̂ and ψ̂ the deformed background fields (3.11) and (3.12) reduce to their

undeformed, λ = 0 versions, but with modified boundary conditions,

γ̂(σ + 2π) = γ̂(σ)− 2π
λ

k
(q̄ − λp) , (4.11)

ˆ̄γ(σ + 2π) = ˆ̄γ(σ), (4.12)

ψ̂(σ + 2π) = ψ̂(σ) + 4π
λ

k
p, (4.13)

2We thank Amit Giveon and Monica Guica for discussions on this point.
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where, following the conventions established in [31], q̄/2 is the zero mode charge of the

k̄3(z̄) current3

k̄30 ≡
i

2π

∫

dz̄ k̄3(z̄) =
q̄

2
. (4.14)

The twisted boundary conditions in eq. (4.11)–(4.13) induce a shift in the left and

right-moving SL(2, R) and SU(2) currents. This is equivalent to spectral flow of the current

algebra. In particular, the Ln and L̄n modes of the worldsheet stress-energy tensor become

Ln = Ln −
λ

k

(

q̄ − λp
)

j−n , (4.15)

L̄n = L̄n +
1

k

(

λ2p2δn − 2λp k̄3n

)

. (4.16)

Thus, the Virasoro constraints of the deformed theory on the plane are given by

0 = L0 − 1 = −
j(j − 1)

k
+∆S3×M4 +N − 1−

λp

k
(q̄ − λp) , (4.17)

0 = L̄0 − 1 = −
j̄(j̄ − 1)

k
+ ∆̄S3×M4 + N̄ − 1−

λp

k
(q̄ − λp) . (4.18)

After the deformation, the theory remains invariant under the right-moving SL(2, R)R
symmetry. Thus, for highest weight representations of SL(2, R)R with h̄ = j̄ the deformed

conformal weight is given by

h̄(λ) =
1

2
+

√

(

h̄(0)−
1

2

)2

− λpq̄ + λ2p2. (4.19)

Note that the spacetime conformal weight also depends on the spacetime momentum p.

This is a generic feature of holography for NHEK and WAdS3 spacetimes and a hint of

the nonlocality of the dual field theory. For more details on the spectrum on the plane

see ref. [31].

4.3 The deformed spectrum on the cylinder

In analogy to the discussion of the previous section, to obtain the spectrum of the deformed

theory on the cylinder we need to perform an additional spectral flow. This amounts to

an additional change of boundary conditions beyond that considered in eq. (4.2). We thus

arrive at the following twisted boundary conditions

γ̂(σ + 2π) = γ̂(σ) + 2πwR− 2π
λ

k
(q̄ − λp) , (4.20)

ˆ̄γ(σ + 2π) = ˆ̄γ(σ) + 2πwR, (4.21)

ψ̂(σ + 2π) = ψ̂(σ) + 4π
λ

k
p. (4.22)

3Note that up to normalization, the momenta p, p̄, and the k30 charge q̄ are also the charges of the

corresponding spacetime currents.
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The aforementioned nonlocality in the change of spacetime coordinates is reflected in

eqs. (4.20) and (4.22) in different ways. As noted above there is the dependence on the

momentum p and the charge q̄, which are nonlocal in the coordinates. Furthermore, the

beginning and end of the string do not differ by a multiple of 2πR for generic λ.

The new boundary conditions are equivalent to spectral flow on both the left and

right-moving SL(2, R) sectors, as well as the right-moving SU(2)R sector. In particular,

they lead to the following shifts in the modes of the worldsheet stress energy tensor and

k̄3(z̄) current

Ln = Ln +

[

wR−
λ

k

(

q̄ − λp
)

]

j−n , (4.23)

L̄n = L̄n − wR j̄−n +
1

k

(

λ2p2δn − 2λp k̄3n

)

, (4.24)

K̄3
n = k̄3n − λp δn,0, (4.25)

where k̄3n denotes the modes of the k̄3(z̄) current. Thus, in the deformed theory on the

cylinder the Virasoro constraints read

0 = L0 − 1 = −
j(j − 1)

k
+∆S3×M4 +N − 1 + wRp−

λp

k
(q̄ − λp) , (4.26)

0 = L̄0 − 1 = −
j̄(j̄ − 1)

k
+ ∆̄S3×M4 + N̄ − 1− wRp̄−

λp

k
(q̄ − λp) , (4.27)

where we have used the fact that the zero mode charges of the j−(z) and k̄3(z̄) currents

are respectively given by p and q̄/2.

On the cylinder, the left and right moving energies EL(λ) and ER(λ), as well as the

U(1)R charge Q̄(λ), are identified as the zero modes of the following currents,4

EL(λ) ≡ j−0 = p, (4.28)

ER(λ) ≡ −j̄−0 = −p̄, (4.29)

Q̄(λ) ≡ 2K̄3
0 = q̄ − 2λEL(λ). (4.30)

We can now solve the Virasoro constraints before and after the deformation, and express

the deformed energies in terms of the undeformed ones. In terms of these variables the

spectrum of the TK̄-deformed theory may be conveniently written as

(

1− gw
)

EL(λ) = EL(0), ER(λ)− gw EL(λ) = ER(0), (4.31)

where gw is proportional to the spectral flow induced by the deformation and is given by

gw =
1

k

λ

wR

[

q̄ − λEL(λ)
]

. (4.32)

4As shown in [31], the spacetime charge associated with translations along ψ is given by q̄ which remains

quantized after the deformation.

– 13 –



J
H
E
P
1
0
(
2
0
1
8
)
1
6
5

The solution to EL(λ) in eq. (4.31) depends on the sign of the spectral flow parameter w

and reads

EL(λ) =























λq̄ + k|w|R

2λ2
−

1

2λ2

√

(λq̄ + k|w|R)2 − 4k|w|Rλ2EL(0) , w < 0,

λq̄ − kwR

2λ2
+

1

2λ2

√

(λq̄ − kwR)2 + 4kwRλ2EL(0) , w > 0.

(4.33a)

(4.33b)

As discussed towards the end of section 4.1 only the branch with w < 0 is physical.

In contrast to the left-moving energy EL(λ), the following combination of charges

remain unchanged after the deformation

2P (λ) ≡ EL(λ)− ER(λ) = EL(0)− ER(0) = 2P (0), (4.34)

ER(λ) +
1

4kwR
Q̄(λ)2 = ER(0) +

1

4kwR
Q̄(0)2, (4.35)

where P (λ) = P (0) denotes the momentum along the γ1 direction.

To summarize, the TK̄ deformation leads to a deformed spectrum characterized by

the left-moving energy (4.33a), the right-moving energy (4.34), and the U(1) charge (4.30).

We conclude with the following observations on the spectrum:

i. In our conventions, the field theory spectrum obtained in [49] is given by5

(1− g) ẼL(µ) = ẼL(0), ẼR(µ)− g ẼL(µ) = ẼR(0), g =
µ

2R
q̄, (4.36)

where µ is the deformation parameter. Eq. (4.36) takes the same form of eq. (4.31),

with µ → 2
wk

λ and a shift in q̄ given by q̄ → q̄ − λEL(λ).

ii. The angular momentum P (λ), which must take discrete values, is unchanged after

the deformation. This agrees with the results from the spectrum derived in [49].

iii. For λ = 0, both branches of EL(λ) in eqs. (4.33a) and (4.33b) satisfy the condition

EL(λ → 0) = EL(0).

vi. For λ 6= 0, the physical branch with negative w (4.33a) becomes complex for large

enough EL(0), while the branch with positive w remains real.
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