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1 Introduction

3-form gauge theories in four-dimensional (4D) spacetime have been studied extensively in

the past decades. They were first considered in the context of quantum chromodynamics

(QCD) to describe a long-range confinement force between quarks [1, 2]. Furthermore, a

3-form gauge field can be regarded to provide an effective description of a Chern-Simons

3-form in Yang-Mills theories [2, 3], in particular in the context of the U(1) problem [4,

5] and the strong CP problem [6–8]. In cosmology, a 3-form gauge field was used for

dynamical neutralization of the cosmological constant [9–16], quintessence [17], inflationary

models [18–23]. A relation between the 3-form gauge theories and condensed matter physics

was also discussed, see e.g. [24]. A supersymmetric (SUSY) extension of the 3-form gauge

fields was first formulated in ref. [25]. The SUSY 3-form gauge fields naturally appear

in superstring theory and M-theory, therefore they were studied extensively with various

applications: supergravity (SUGRA) [26–28] (see refs. [29, 30] as a review), Stückelberg

coupling [31–34], topological coupling [33, 35, 36], coupling with a membrane [37–39],

alternative formulation of old-minimal SUGRA [37, 40–42], gaugino condensation in SUSY

Yang-Mills theories [43, 44], the cosmological constant problem [41], SUSY breaking [41,

45], string effective theories [42, 46–48], and inflationary models [35, 49]. Complex 3-form

gauge theories were also considered in refs. [38, 39, 42].

One of the characterizations of p-form gauge fields is their couplings to extended ob-

jects. As 1-form and 2-form gauge fields can be electrically coupled to a particle and string,

respectively in 4D spacetime, a 3-form gauge field can be electrically coupled to a mem-

brane [1]. Since membranes and 3-form gauge fields naturally arise in string theory and

M-theory as fundamental degrees of freedom, 3-form gauge fields in 4D spacetime appear

as 4D compactification of these theories. Another characteristic feature of the 3-form gauge

field is its coupling to scalar fields. Since a field strength of the 3-form gauge field is a 4-form,

the 3-form gauge field can be topologically coupled to a pseudo-scalar field [4, 6, 18, 50].

It was pointed out that the topological coupling generates a potential (e.g., mass term)

for the pseudo-scalar field while preserving a shift symmetry of the pseudo-scalar field in

an action [17, 18]. This mechanism was applied to inflationary models [20, 22, 23, 51],

quintessence [17], the strong CP problem [6–8] and so on.

Apart from many applications, the 3-form gauge field would have some theoretical and

fundamental subtleties which we have to discuss carefully, compared with other p-form

gauge theories. The 3-from gauge field with canonical (quadratic derivative) kinetic term

has no dynamical degrees of freedom, and hence it is classically dual to a constant term,

analogous to an electromagnetic field in 2D spacetime. Nevertheless, there are several

merits to consider a 3-form gauge field itself rather than merely a constant. In fact, it was

shown that a 3-form gauge field is inequivalent to a constant at a quantum level [52].

In contrast to other p-form gauge theories, Lagrangians of the 3-form gauge theories

generally should include boundary terms [11, 12]. If the boundary term were missing,

the functional variation of the 3-form gauge field at the boundary would not vanish, and

consequently the energy-momentum tensor of the 3-form gauge field would be inconsistent

with its equation of motion (EOM) [13, 14]. This situation is the same with the θ-term
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Bosonic SUSY

Instability − − (cf. chiralsuperfield [53])

2nd (bulk) [1] [25]

2nd (boundary) [11] [31, 42]

H.D. (bulk) Ghost/tachyon-free [6, 8] Ghost/tachyon-free (4th order) [35]

Ghost/tachyon (all order, chiral) [54]

Ghost/tachyon-free (all order) −
H.D. (boundary) − −

Table 1. Higher derivative Lagrangians of 3-form gauge theories. “2nd” and “H.D.” imply second

order canonical term and higher derivative term, respectively. “−” implies that it has not been

done and will be done in this paper. The reason why we list chiral superfield is that 3-form gauge

theories can be formulated in terms of a chiral superfield.

in 2D electromagnetism, where the θ-term is needed if one considers a non-trivial field

strength in the bulk.

As mentioned above, 3-form gauge theories are often considered to describe infrared

(low-energy or long-range) effective theories, such as a Chern-Simons 3-form in QCD,

and compactifications of string theory and M-theory. Since effective theories inevitably

include nonrenormalizable interactions which depend on an ultraviolet cutoff parameter,

it is natural to consider higher derivative corrections to the 3-form gauge fields. Since the

Lagrangian should be gauge invariant, the nonrenormalizable interactions may be described

in terms of the field strength of the 3-form gauge field rather than the 3-form gauge field

itself. In particular, higher derivative corrections in 3-form gauge theories provide a pseudo-

scalar field with a non-trivial potential [6, 8, 23] such as a cosine-type potential [6]. This

is in contrast to the case of the quadratic derivative term (kinetic term) giving rise to only

a mass term for the pseudo-scalar field.

Construction of consistent higher derivative 3-form gauge theories consists of three

procedures for both bosonic and SUSY cases:

(1) identifying unstable modes such as ghosts and tachyons,

(2) constructing bulk Lagrangians free from unstable modes,

(3) determining boundary Lagrangian corresponding to the bulk.

Which have already been done and which have not been are summarized in table 1.

(1) In general, higher derivative interactions give rise to additional degrees of freedom,

which cause instabilities. For higher derivative theories of a scalar field φ, such an

instability is known as the Ostrogradsky’s ghost [55, 56]. A sufficient condition for

the absence of such a ghost is that the Lagrangians should be written by a function

of the first order derivative (such as ∂φ), but not by the higher order derivatives than

the first order (such as ∂∂φ). However, in the case of the 3-form gauge theories, the

existence or absence of such unwanted degrees of freedom is not known in general.

– 3 –
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(2) The examples of the higher derivative Lagrangians without unstable modes is known

in bosonic 3-form gauge theories. One of sufficient conditions free from unstable

modes is that the Lagrangian consists of arbitrary function of the field strength of

a 3-form gauge field [6, 8, 23]. However, this is not a necessary condition; even

when there exist derivative terms of the field strength of a 3-form gauge field [57–

59], there are no unstable modes, if the canonical kinetic term is absent or has the

wrong sign [60]. On the other hand, in contrast to the bosonic case, the only known

example of a higher derivative term free from unstable modes in the SUSY 3-form

gauge theories is a four derivative term [35].

One of the most characteristic features of the SUSY 3-form gauge fields, in contrast

to non-SUSY cases, is that there exist dynamical degrees of freedom of bosons and

fermions even at on-shell, which are superpartners of the 3-form gauge field. In higher

derivative theories, one should be careful with unstable modes originated from higher

derivative terms of the dynamical degrees of freedom.

When we construct higher derivative extensions of SUSY 3-form gauge theories, we

can use higher derivative Lagrangians for a chiral superfield because the field strength

of the 3-form gauge field can be expressed in terms of a chiral superfield. This is

because a 3-form gauge field can be embedded into a vector component of a real

superfield, and its field strength can be embedded into an auxiliary field component

of a chiral superfield which is defined by the real superfield [25]. These are analogous

to a vector superfield and a chiral superfield (gaugino superfield) for a SUSY electro-

magnetism, respectively. A quartic order term of the field strength was described in

ref. [35] as mentioned above. Although higher order terms of an auxiliary field were

considered in ref. [54], they contain the Ostrogradsky’s ghost instability in general.

The most general ghost-free higher derivative terms for SUSY 3-form fields are still

missing.

This is in contrast to the cases of chiral matter and vector superfields. For the chi-

ral superfields, ghost-free higher derivative Lagrangians were systematically given in

refs. [61–64], which were later generalized in ref. [65]. Before their constructions,

it has been known that higher derivative terms in SUSY theories often encounter

the so-called auxiliary field problem [66–70]: the action contains the terms with

spacetime derivatives on auxiliary fields. In this case, the auxiliary terms cannot be

eliminated by their EOM, which is the case for a Wess-Zumino term [71, 72] and

Skyrme-like models [73, 74]. This auxiliary field problem usually comes up together

with the higher derivative ghosts [53], although such the ghost can be removed by

introducing a non-dynamical gauge field (the ghostbuster mechanism) [75, 76]. The

higher derivative terms free from these problems given in refs. [61–65] were applied

to many topics such as low-energy effective theories [77–80], SUGRA [63, 81], SUSY

extension [62, 82] of Galileons [83], ghost condensation [61, 64], the Dirac-Born-Infeld

(DBI) inflation [84], flattening of the inflaton potential [85, 86], baby Skyrme mod-

els [65, 87–92], Skyrme-like models [93–95], solitons [65, 89, 96, 97], nonlinear realiza-

tions [98], SUSY breaking in modulated vacua [99, 100], and a formulation of a liber-
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ated SUGRA [101]. For the vector superfield case, ghost-free higher derivative actions

were considered in the context of a correction to a scalar potential in SUGRA [102],

SUSY Euler-Heisenberg model [53, 81, 103], nonlinearly self-dual actions [104, 105],

and the DBI action [106, 107]. The most general ghost-free action of an arbitrary

order of the field strength was achieved in ref. [108]. Later, higher derivative theories

were applied to the Fayet-Iliopoulos term without gauged R-symmetry [109–111], and

inflationary models [112, 113].

(3) The boundary terms are also needed corresponding to higher derivative terms for the

consistency between EOM and the energy-momentum tensor. However, in both the

bosonic and SUSY cases, they have not been explicitly presented.

In this paper, we give all constructions of 3-form gauge theories missing in table 1.

First, in the bosonic case, we show that higher derivative terms given by derivatives on

the field strength may cause a tachyon as far as the canonical kinetic term exists. If such

higher derivative terms are absent, there are no additional degrees of freedom. We further

argue that there are no additional degrees of freedom if the higher derivative terms are

given by functions of the field strength but not of derivatives of the field strength. All the

previously known examples in refs. [6, 8, 19, 22, 23] fall into this class.

Second, we give the most general higher derivative Lagrangian including an arbitrary

order of the field strength without tachyons as well as ghosts in the SUSY case. Since the

field strength of the 3-form gauge field can be embedded into the auxiliary field of a chiral

superfield, we can construct a ghost-free higher derivative system of 3-form gauge fields by

a Lagrangian with an arbitrary function of the auxiliary field. This Lagrangian is obtained

by choosing ghost-free sector of the Lagrangian in ref. [54]. We show that this Lagrangian

is ghost-free and tachyon-free in the bosonic sector.

Third, we determine the boundary terms for the higher derivative Lagrangians given

by arbitrary functions of the field strength in both the bosonic and SUSY cases. These

boundary terms are determined by requiring the condition that a functional variation of

the Lagrangian vanishes at the boundary.

This paper is organized as follows. In section 2, we first review a 3-form gauge theory

with a quadratic kinetic term and the role of the boundary term. We then argue that

a Lagrangian with derivatives on the field strength gives rise to a tachyon by using an

example. We then discuss a tachyon-free higher derivative Lagrangian, and its the boundary

term. We further confirm that our boundary term gives us an energy-momentum tensor

consistent with EOM. In section 3, we discuss SUSY extension of ghost/tachyon-free higher

derivative 3-form gauge theories. First, we review 3-form gauge theories with 4D N = 1

global SUSY with a quadratic kinetic term and the corresponding boundary term. Second,

we propose the ghost/tachyon-free Lagrangian for SUSY 3-form gauge theories. We then

determine the boundary term for the ghost/tachyon-free Lagrangian by requiring that a

superspace functional variation at a boundary should vanish. Section 4 is devoted to a

summary and discussion. In appendix A, we summarize our notation. In appendix B, we

review a dual formulation of a 3-form gauge theory. In appendix C, we also review a dual
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formulation of a 3-form gauge theory in SUSY field theories. In appendix D, we discuss an

auxiliary field method for the ghost/tachyon-free Lagrangian proposed in section 3.3.

We use the notation of the textbook [114].

2 3-form gauge theories

In this section, we consider 3-form gauge theories in 4D. First, we review a 3-form gauge

theory with a canonical kinetic term with a corresponding boundary term. Second, we

argue that a higher derivative term given by a derivative of the field strength of the 3-form

gauge field gives rise to a tachyon in the presence of the canonical kinetic term. We also

show that higher derivative Lagrangians are tachyon-free if the higher derivative terms are

given by a function of the field strength but not of a function of the derivatives of the field

strength. Finally, we consider the necessity of the boundary term for the higher derivative

term, and we specify a higher derivative extension of the boundary term.

2.1 3-form gauge theory with canonical kinetic term

Here, we review a 3-form gauge field, its field strength, and gauge invariant Lagrangian

with a canonical kinetic term with a boundary term. This review part is mainly based on

refs. [11–13].

2.1.1 3-form gauge field

A 3-form gauge field is a third-rank antisymmetric tensor field which is transformed by a

2-form antisymmetric tensor local parameter ξmn as follows:

δ3Cmnp = ∂mξnp + ∂nξpm + ∂pξmn. (2.1)

Here, δ3 denotes an infinitesimal gauge transformation of the 3-form gauge field. The field

strength of the 3-form gauge field is introduced as follows:

Fmnpq = ∂mCnpq − ∂nCmpq + ∂pCmnq − ∂qCmnp. (2.2)

The field strength is invariant under the gauge transformation of the 3-form:

δ3Fmnpq = 0. (2.3)

Note that the field strength can be written by using totally anti-symmetric tensor εmnpq:

Fmnpq = − 1

4!
εmnpqε

rstuFrstu (2.4)

because Fmnpq is totally antisymmetric tensor in 4D. It is convenient to define the Hodge

dual of the field strength F as follows:

F :=
1

4!
εmnpqFmnpq. (2.5)

We can write Fmnpq in terms of F as

Fmnpq = −εmnpqF. (2.6)

– 6 –
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2.1.2 Lagrangian with canonical kinetic term: bulk part

In the following, we give a Lagrangian with a quadratic derivative term. As we will explain

below, the Lagrangian gives us a constant term. As a merit, we can describe the cosmolog-

ical constant in terms of a gauge symmetry [11–13, 15]. A quadratic derivative Lagrangian

of the 3-form gauge field is given by

Lkin. = − 1

2 · 4!
FmnpqFmnpq +

1

3!
∂m(CnpqFmnpq). (2.7)

The first term is a quadratic derivative term, which we call the canonical kinetic term. The

second term is a boundary term corresponding to the kinetic term, which is necessary for

the consistency as described below. We impose the gauge invariant boundary condition for

the 3-form gauge field:

F |bound. = −c, (2.8)

where c is a real constant, and the minus sign is just a convention. The symbol |bound.
denotes the value at the boundary. We further impose that the functional variation of the

field strength at the boundary is zero:

δF |bound. = 0, (2.9)

which we will use to discuss the boundary term. Note that the Lagrangian in eq. (2.7) can

be rewritten by using F as

Lkin. = +
1

2
F 2 − 1

3!
∂m(CnpqεmnpqF ). (2.10)

The Lagrangian written in term of F will be useful when we consider higher derivative

extensions.

The variation of the Lagrangian in eq. (2.7) by the 3-form gauge field gives us the

EOM of the 3-form gauge field:

∂mFmnpq = 0, or equivalently ∂mF = 0. (2.11)

This can be solved as

Fmnpq = εmnpqc, (2.12)

where the constant c is determined by the boundary condition in eq. (2.8). We will use

them below.

2.1.3 Lagrangian with canonical kinetic term: boundary part

Now, we review a role of the boundary term. The boundary term is necessary in order that

the variation of the kinetic term at the boundary vanishes: the variation of the Lagrangian

by the 3-form gauge field is

δLkin. = − 1

3!
(∂mδCnpq)Fmnpq +

1

3!
∂m(δCnpqFmnpq)

= − 1

3!
∂m(δCnpqFmnpq) +

1

3!
∂m(δCnpqFmnpq) +

1

3!
δCnpq∂mFmnpq.

(2.13)
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Here, we used that the variation of the field strength at the boundary is zero by the

condition in eq. (2.9). The right hand side of the second line shows that the variation of

the kinetic term at the boundary − 1
3!∂

m(δCnpqFmnpq) is canceled by that of the boundary

term + 1
3!∂

m(δCnpqFmnpq). If the boundary term were not introduced, the variation of the

Lagrangian would not vanish at the boundary.

The boundary term is also needed for the consistency between the energy-momentum

tensor and the EOM. If boundary term were absent, the energy-momentum tensor and the

EOM would not be compatible with each other [13, 14]. This can be seen as follows. If the

boundary term were absent, the Lagrangian would be written as

Lkin.,bulk := − 1

2 · 4!
FmnpqFmnpq. (2.14)

The energy-momentum tensor of this Lagrangian is

Tmn =
1

3!
FmpqrFnpqr −

1

2 · 4!
ηmnF pqrsFpqrs = −ηmnF 2 + ηmn

1

2
F 2 = −1

2
ηmnF 2. (2.15)

Note that the energy-momentum tensor is a local quantity, and is the same whether bound-

ary term is included or not before substituting the solution of EOM of the 3-form gauge

field.

The variation of the Lagrangian leads to the same EOM and its solution which is

also independent of whether the boundary term is included or not. Let us substitute the

solution into the energy-momentum tensor and the Lagrangian. The energy-momentum

tensor is proportional to a constant:

Tmn = −1

2
ηmnF 2 = −1

2
ηmnc2. (2.16)

The on-shell Lagrangian is also merely a constant:

Lkin.,bulk = − 1

2 · 4!
εmnpqεmnpqc

2 = +
1

2
c2. (2.17)

We can also derive the energy-momentum tensor of the on-shell Lagrangian in eq. (2.17).

However, the Lagrangian gives the energy-momentum tensor which is not equal to the one

in eq. (2.16):

Tmn = +
1

2
ηmnc2. (2.18)

Therefore, if the boundary term were absent, the EOM is not consistent with energy-

momentum tensor unless the constant c is equal to zero.1

The boundary term resolves this problem [13, 14]. We again consider the Lagrangian

Lkin. in eq. (2.7). In the presence of the boundary term, the Lagrangian after substituting

the solution of the EOM is changed as follows:

Lkin. = −1

2
c2. (2.19)

1Historically, the 3-form gauge field was used to consider the cosmological constant problem in ref. [10].

However, it was pointed out that the discussion led to wrong sign for the cosmological constant since the

boundary term for the 3-form was not included [14, 16].
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Then the energy-momentum tensor is given by

Tmn = −1

2
ηmnc2. (2.20)

Therefore, the solution of the equation of motion is consistent with the energy-

momentum tensor.

2.2 Higher derivative term causing tachyon and/or ghost in 3-form gauge

theories

Here, we show that higher derivative terms in the form of derivatives on the field strength

in 3-form gauge theories may cause a tachyon as far as the canonical kinetic term exists.

We show that the tachyon can also be a ghost depending on parameters.

We see that the field strength can become dynamical and tachyonic if higher derivative

terms in the form of derivatives of the field strength of a 3-form gauge field are present, and

if the canonical kinetic term exists. As an example, we consider the following Lagrangian

with a term ∂mF∂mF :

L∂F = +
1

2
F 2 +

α

2
∂mF∂mF −

1

3!
∂m(εmnpqCnpqF ), (2.21)

where α is an arbitrary parameter with mass dimension −2. The first term is the canonical

kinetic term, and the second term is a higher derivative term which includes a derivative on

the field strength ∂mF . The third term is the corresponding boundary term. Note that the

boundary term for the second term is not needed because derivatives on the field strength

at the boundary are zero by the boundary condition in eq. (2.9).

To see that there is a tachyonic mode, we rewrite the Lagrangian by introducing new

fields F ′ and q:

L′∂F = +
1

2
F ′2 +

α

2
∂mF ′∂mF

′ − 1

3!
∂m(εmnpqCnpqF

′) + q

(
F ′ − 1

3!
εmnpq∂mCnpq

)
. (2.22)

Here, F ′ is a pseudo-scalar field independent of the 3-form gauge field. We assume that the

boundary condition for F ′ is the same as F : F ′|bound. = −c. q is a Lagrange’s multiplier

field whose EOM gives us the original Lagrangian in eq. (2.21). Vanishing of the variation

of Cmnp at the boundary requires the boundary condition for q: q|bound. = −F ′|bound. = c.

The EOM of Cmnp implies that q is a local constant, which is equal to c by the boundary

condition. By substituting the solution into eq. (2.22), and redefining F ′ as F ′′ = F ′ + c,

we obtain

L′∂F = +
1

2
F ′′2 +

α

2
∂mF ′′∂mF

′′ − 1

2
c2. (2.23)

The first term +1
2F

′′2 becomes a tachyon mass term. The origin of the tachyon mass term

is the canonical kinetic term with the correct sign. Furthermore, the second term is the

kinetic term for F ′′. Thus, the Lagrangian in eq. (2.22) contains a dynamical tachyon. If

the sign of α is positive, the field F ′′ is a ghost as well.

Note that there is no tachyon, if the canonical kinetic term in the original Lagrangian

has a wrong sign −1
2F

2. Furthermore, if the parameter α is negative in addition to the

kinetic term with the wrong sign, there is neither a ghost nor a tachyon [60].

– 9 –
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Let us make a comment on a relation to SUSY Lagrangian. The Lagrangian in

eq. (2.21) is obtained from the SUSY Lagrangian in eq. (3.44) given in ref. [53] by re-

garding the imaginary part of the auxiliary field as the field strength of the 3-form gauge

field and truncating all fields other than the field strength.

2.3 Ghost/tachyon-free higher derivative 3-form gauge theories

Here, we consider a ghost/tachyon-free higher derivative extension of the 3-form gauge

theory. In the previous subsection, we have seen that the derivatives on the field strength

can cause a tachyon. Thus, we only consider a higher derivative Lagrangian with a function

of the field strength but not of derivatives on the field strength. Such higher derivative

Lagrangians were previously considered in refs. [6, 8, 23]. In this subsection, we confirm

that there are no tachyons as well as ghosts in this higher derivative Lagrangian in contrast

to the previous subsection. We determine the boundary term for the ghost/tachyon-free

higher derivative term. We show that the boundary terms are also needed for the higher

derivative interactions of the 3-form gauge field. We determine it by requiring that the

variation of the Lagrangian at the boundary should vanish.

2.3.1 Ghost/tachyon-free higher derivative Lagrangian: bulk part

First of all, we confirm that a higher derivative term given by a function of the field strength

is ghost/tachyon-free. We consider the following Lagrangian whose bulk part was discussed

in refs. [6, 8]:

LHD = G(F ) + LHD,bound. (2.24)

where G(F ) is an arbitrary real function of F , and LHD,bound. is the boundary term which

we will determine below. One can assume that G(F ) includes the canonical kinetic term:

G(F ) = +1
2F

2 + · · · . We impose the same boundary condition on F as eqs. (2.8) and (2.9):

F |bound. = c, (2.25)

and

δF |bound. = 0. (2.26)

In this Lagrangian in eq. (2.24), we can see that there are no additional dynamical degrees

of freedom. The EOM of the 3-form gauge field is

0 = G′′(F )∂mFmnpq. (2.27)

The solutions of the EOM are ∂mFmnpq = 0 or G′′(F ) = 0. For ∂mFmnpq = 0, F is a

constant, which is determined by the boundary condition. For G′′(F ) = 0, the value of F

depends on G(F ), and this value does not always satisfy the boundary condition. Thus,

we focus on the former solution ∂mFmnpq = 0. The EOM can be solved as

Fmnpq = cεmnpq, (2.28)

where c is a constant determined by the boundary condition in eq. (2.25). For this solution,

there are no additional degrees of freedom in the higher derivative Lagrangian since the

EOM is not changed from the case of the canonical kinetic term. Thus, there are no

tachyons as well as ghosts in eq. (2.24).
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2.3.2 Ghost/tachyon-free higher derivative Lagrangian: boundary part

Next, we see that the boundary term is needed for the vanishing of the variation of the La-

grangian at the boundary and for the consistency between EOM and the energy-momentum

tensor. We show that the ghost/tachyon-free Lagrangian of the 3-form gauge field without

the corresponding boundary term also gives rise to an inconsistency between the EOM and

the energy-momentum tensor.

We see the inconsistency between the energy-momentum tensor and the EOM of the

Lagrangian in eq. (2.24). On one hand, the energy-momentum tensor of the Lagrangian in

eq. (2.24) can be calculated as

Tmn = ηmn(−FG′(F ) +G(F )). (2.29)

On the other hand, substituting the solution in eq. (2.28) into the energy-momentum tensor

in eq. (2.29), we obtain

Tmn = ηmn(cG′(−c) +G(−c)). (2.30)

If the boundary term LHD,bound. were absent in the Lagrangian in eq. (2.24), the Lagrangian

would be

LHD,bulk := G(F ), (2.31)

and the on-shell Lagrangian would be

LHD,bulk = G(−c). (2.32)

We can see that the energy-momentum tensor which is calculated by the on-shell La-

grangian in eq. (2.32), Tmn = ηmnG(−c), is inconsistent with the one in eq. (2.30).

Therefore, we need the boundary term which gives us the consistent energy-momentum

tensor. We can find the boundary term by the variational principle. The variation of the

Lagrangian by the 3-form gauge field is

δLHD =
1

3!
G′(F )εmnpq∂mδCnpq + δLHD,bound.. (2.33)

By the partial integration, we obtain the variation at the boundary:

δLHD =
1

3!
∂m(εmnpqG′(F )δCnpq) + δLHD,bound. + · · · , (2.34)

where the ellipsis · · · denotes the variation in the bulk. To cancel the variation at the

boundary, we propose the boundary term corresponding to the higher derivative term:

LHD,bound. = − 1

3!
∂m(εmnpqG′(F )Cnpq). (2.35)

Note that boundary term given in eq. (2.7) is naturally included into the boundary term in

eq. (2.35) by choosing G(F ) = +1
2F

2. To confirm whether the boundary term is consistent

or not, we consider the EOM and the energy-momentum tensor. We start with the following

Lagrangian:

LHD = LHD, bulk + LHD, bound. = G(F )− 1

3!
∂m(εmnpqG′(F )Cnpq). (2.36)
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The EOM is the same as eq. (2.27), but the on-shell Lagrangian is modified as

LHD = G(−c) + cG′(−c), (2.37)

which leads to the energy-momentum tensor which is consistent with eq. (2.29):

Tmn = ηmn(cG′(−c) +G(−c)). (2.38)

Therefore, the Lagrangian which includes the boundary term in eq. (2.36) gives us the

consistent energy-momentum tensor.

3 SUSY 3-form gauge theories

In this section, we give the most general ghost/tachyon-free SUSY Lagrangian of a 3-from

gauge field of an arbitrary order of the field strength. In section 3.1, we review a formulation

of a Lagrangian with the quadratic kinetic term in SUSY 3-form gauge theories. We also

review a boundary term for the quadratic kinetic term. In section 3.2 we give an example

of SUSY higher derivative Lagrangian of 3-form gauge field containing a ghost as well as

tachyon. In section 3.3, we give the most general ghost/tachyon-free Lagrangian and its

boundary term.

In this section, we use superspace to formulate manifestly SUSY theories. Superspace

is spanned by spacetime coordinate (xm) and fermionic coordinate given by Grassmann

variables (θα, θ̄α̇). Here, undotted and dotted Greek letters α, β, . . . and α̇, β̇, . . . denote

undotted and dotted spinors, respectively.

3.1 SUSY 3-form gauge theory with canonical kinetic term

In this subsection, we review formulations of Lagrangians with quadratic kinetic terms in

SUSY 3-form gauge theories. This subsection is essentially based on refs. [25, 31, 42].

3.1.1 3-form prepotential

Here we explain how to embed a 3-form gauge field into a superfield. In superspace, fields

are embedded into superfields. A 3-form gauge field Cmnp is embedded into a real superfield

X (X† = X) [25]:

Cmnp =

√
2

8
εmnpq(σ̄

q)α̇α[Dα, D̄α̇]X|. (3.1)

Here, the vertical bar “|” denotes θ = θ̄ = 0 projection in superspace. The derivatives

Dα and D̄α̇ are SUSY covariant spinor derivatives. Following ref. [29], we call X “3-form

prepotential” in this paper. An infinitesimal superfield gauge transformation of the 3-form

prepotential is given by

δ3,SUSYX =
1

2i
(DαΥα − D̄α̇Ῡα̇), (3.2)

where Υα is a chiral superfield D̄α̇Υα = 0. Here, δ3,SUSY denotes the infinitesimal gauge

transformation of the 3-form prepotential. Since L := 1
2i(D

αΥα − D̄α̇Ῡα̇) is a real linear
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superfield satisfying DαDαL = D̄α̇D̄
α̇L = 0, the gauge transformation can be simply

rewritten by the real linear superfield as

δ3,SUSYX = L. (3.3)

The gauge transformation of the bosonic gauge field is included in this superfield gauge

transformation:

δ3,SUSYCmnp =

√
2

8
εmnpq(σ̄

q)α̇α[Dα, D̄α̇]δ3,SUSYX|

=

√
2

8
εmnpq(σ̄

q)α̇α[Dα, D̄α̇]
1

2i
(DγΥγ − D̄γ̇Ῡγ̇)|

= ∂mλnp + ∂nλpm + ∂pλmn,

(3.4)

where the gauge parameter λmn is embedded into the chiral superfield Υα as

λmn =

√
2

2i

(
(σmn)α

βDαΥβ − (σ̄mn)α̇β̇D̄α̇Ῡβ̇
)
|. (3.5)

Note that a prepotential for a 1-form (vector superfield) is also a real superfield, but the

gauge transformation law of the 1-form prepotential is different from that of the 3-form

prepotential.

The field strength of the 3-form gauge field is embedded into a chiral superfield Y (and

its Hermitian conjugate), which is given by the 3-form prepotential as follows:

Y := −1

4
D̄2X. (3.6)

Here, the second order spinor derivative D̄2 := D̄α̇D̄
α̇ acts on X as a chiral projection

D̄α̇D̄
2 = 0. Therefore, Y is a chiral superfield: D̄α̇Y = 0. We will call Y “4-form

field strength superfield” in this paper. Note that Y is gauge invariant: δ3,SUSYY =

−1
4D̄

2δ3,SUSYX = −1
4D̄

2L = 0. The bosonic field strength Fmnpq is embedded into the

imaginary part of the auxiliary field of Y :

Fmnpq =

√
2i

8
εmnpq(D

2Y − D̄2Ȳ )|, (3.7)

where D2 := DαDα. This is equivalently written by using F as

F = −
√

2i

8
(D2Y − D̄2Ȳ )|. (3.8)

In SUSY theories, the 3-form gauge field has dynamical superpartners. Since the 3-

form gauge field has one off-shell degree of freedom, there are also off-shell fermionic degrees

of freedom as well as additional bosonic ones. The superpartners of the 3-form gauge field

can be found as components of the chiral superfield Y . They are one complex scalar y (two

bosons), one Weyl fermion χα (four fermions), and one real auxiliary scalar field H (one

boson). We define the components as follows:

y := Y |, χα :=
1√
2
DαY |, H := −

√
2

8
(D2Y + D̄2Ȳ )|. (3.9)
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Note that the dynamical degrees of freedom are y and two of χα, thus the on-shell bosonic

degrees of freedom are also equal to the fermionic ones. It is convenient to define the

following complex auxiliary field F :

F := −1

4
D2Y | = 1√

2
(H − iF ). (3.10)

We impose the following boundary conditions for the component fields. One is the

boundary condition for F , which is the same as the previous one:

F |bound. = −c. (3.11)

Other boundary conditions are imposed so that SUSY and gauge invariance are preserved

at the boundary [31]:

δy|bound. = 0, δχα|bound. = 0, δH|bound. = 0, and δF |bound. = 0. (3.12)

Here, δ denotes variations of fields. In the superfield language, the boundary conditions

can be written as

D̄2δX||bound. = 0, DαD̄
2δX||bound. = 0, D2D̄2δX||bound. = 0, (3.13)

and their Hermitian conjugates. Here, ||bound. denotes the θ = θ̄ = 0 projection at the

boundary. The other boundary conditions for the higher order spinor derivatives on D̄2δX

and D2δX are also assumed to be zero. The examples used later are

[Dα, D̄α̇]D̄2δX||bound. = 0, D̄2DαD̄
2δX||bound. = 0, (3.14)

and so on. Meanwhile, as in the non-SUSY case, we do not impose a specific boundary

condition for the gauge field Cmnp, since the gauge field is not gauge invariant.

3.1.2 SUSY Lagrangian with canonical kinetic term: bulk part

The Lagrangian with a canonical kinetic term is given by

Lkin.,SUSY = −1

8

∫
d2θD̄2Y Ȳ − 1

8

∫
d2θ̄D2Y Ȳ + Lkin.,SUSY,bound.

= −∂my∂mȳ − iχ̄α̇(σ̄m)α̇α∂mχα +
1

2
H2 − 1

2 · 4!
FmnpqFmnpq + Lkin.,SUSY,bound.

(3.15)

Here
∫
d2θ = −1

4D
2| is the F-type integration. We use −1

8(
∫
d2θD̄2 +

∫
d2θ̄D2) for the D-

type integration instead of the conventional
∫
d4θ in order to fix the definition of the D-type

integration. Our choice for the D-type integration may have a natural extension to Poincaré

and conformal SUGRA [114–120]. Note that we have neglected the boundary terms which

do not depend on the field strength Fmnpq. Such boundary terms are not relevant to our

discussion. As in the non-SUSY case, we derive the EOM for the 3-form gauge field in the

SUSY case. This can be evaluated by the variation of the 3-form prepotential in the bulk:

0 = −1

4
(D̄2Ȳ +D2Y ). (3.16)
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The θ = θ̄ = 0 component of the EOM leads to the EOM for the real auxiliary field H:

H = 0. (3.17)

The EOM for F can be found in the [Dα, D̄α̇] component of the EOM in eq. (3.16):

0 = −1

4
[Dα, D̄α̇](D̄2Ȳ +D2Y )| = − i

2
(σm)αα̇∂m(D̄2Ȳ −D2Y )| = 2

√
2(σm)αα̇∂mF, (3.18)

where we have used [Dα, D̄α̇](chiral) = +2i∂αα̇(chiral) and [Dα, D̄α̇](anti-chiral) =

−2i∂αα̇(anti-chiral). Here, ∂αα̇ is the spinor representation of the spacetime derivative:

∂αα̇ = (σm)αα̇∂m. Thus, F is equal to a constant, which is determined by the boundary

condition for F in eq. (3.11):

F = −c. (3.19)

We can rewrite the solution to the EOM in terms of the complex auxiliary field F as

F = −1

4
D2Y | = i

c√
2
. (3.20)

Since the 4-form field strength superfield is described by the chiral superfield, the

kinetic term Y Ȳ can be generalized to a Kähler potential K(Y, Ȳ ). Further, the 4-form field

strength superfield can have a superpotential. Therefore, the Lagrangian with quadratic

derivative terms is given by

LKW =

(
−1

8

∫
d2θD̄2K(Y, Ȳ ) +

∫
d2θW (Y ) + h.c.

)
+ LKW,bound. (3.21)

Here, LKW,bound. is the boundary term for the above Lagrangian, which we will determine

below. The EOM for the field strength can be obtained in the same way as the case of the

Lagrangian in eq. (3.15).

3.1.3 SUSY Lagrangian with canonical kinetic term: boundary part

In the variation of the Lagrangian in eq. (3.15) by the 3-form prepotential, we have ne-

glected the variation at the boundary, which we should discuss carefully. Therefore, we con-

sider the boundary term for the canonical kinetic term [31, 42]. The term Lkin.,SUSY,bound.

in eq. (3.15) is a boundary term corresponding to the canonical kinetic term. As in the

non-SUSY case, there is generally a non-trivial boundary condition for the field strength

of the 3-form. The boundary term is obtained by either the variational principle [31] or

a dual formulation [42]. Since we can straightforwardly obtain the boundary term by the

variational principle in terms of the 3-form prepotential only, we use the former option

here. The latter option is summarized in appendix C.

In the following discussion, we consider the variation of the Lagrangian by the 3-form

prepotential, and find the term proportional to ∂mδCnpq, which gives a nontrivial variation

at the boundary as in the non-SUSY case in section 2.1. We then introduce a boundary

term which cancels the variation at the boundary.
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The variation of the kinetic term in eq. (3.15) by the 3-form prepotential is

δLkin., SUSY =
1

32

(∫
d2θD̄2(Ȳ D̄2δX) +

∫
d2θD̄2(Y D2δX)

+

∫
d2θ̄D2(Ȳ D̄2δX) +

∫
d2θ̄D2(Y D2δX)

)
+ δLkin.,SUSY,bound..

(3.22)

Here, we will show that the second and the third terms in the right hand side are equal

to the fourth and the first terms, respectively. For example, we consider the third term∫
d2θ̄D2(Ȳ D̄2δX). By using the identity

D2D̄2 − D̄2D2 = −4i∂α̇α[Dα, D̄α̇], (3.23)

this term is equal to∫
d2θ̄D2(Ȳ D̄2δX) = −1

4
D̄2D2(Ȳ D̄2δX)|

= −1

4
D2D̄2(Ȳ D̄2δX)| − i∂α̇α[Dα, D̄α̇](Ȳ D̄2δX)|.

(3.24)

The difference between the first and the third terms in eq. (3.22) is the total derivative term

−i∂α̇α([Dα, D̄α̇](Ȳ D̄2δX)|). The total derivative is equal to zero because the variation δY |,
DαδY |, and ∂mδY | are assumed to be zero in eq. (3.12) to preserve SUSY at the boundary.

Therefore, eq. (3.22) can be rewritten as

δLkin., SUSY =
1

16

(∫
d2θD̄2(Ȳ D̄2δX) +

∫
d2θ̄D2(Y D2δX)

)
+ δLkin.,SUSY,bound.. (3.25)

By using DαD
2 = 0, we can further rewrite the variation as

δLkin., SUSY =
1

16

(∫
d2θ(D̄2Ȳ )D̄2δX +

∫
d2θ̄(D2Y )D2δX

)
+ δLkin.,SUSY,bound.. (3.26)

For later use, we define a chiral superfield

T := −1

4
D̄2Ȳ , (3.27)

whose θ = θ̄ = 0 component is

T | = −1

4
D̄2Ȳ | = 1√

2
(H + iF ). (3.28)

Using the chiral superfield, the variation is manifestly written by the product of the chiral

superfield T and D̄2δX. This structure will be useful in the higher derivative case discussed

later.

In this variation of the Lagrangian, we show that there is a term proportional to

∂mδCnpq which gives rise to the variation of the 3-form at the boundary. This can be seen

by the component expansion:

δLkin., SUSY = −1

4

(∫
d2θTD̄2δX +

∫
d2θ̄T̄D2δX

)
+ δLkin.,SUSY,bound.

=
1

16
iTI(D

2D̄2 − D̄2D2)δX|+ δLkin.,SUSY,bound. + · · · ,
(3.29)
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where TI = 1
2i(T − T̄ ) is the imaginary part of T , and the ellipsis · · · means the terms

which are not related to the variation of the 3-form. The first term can be calculated as

1

16
iTI(D

2D̄2 − D̄2D2)δX| = 1

16
iTI(−4i)∂α̇α[Dα, D̄α̇]δX| = 1

3!
Fεmnpq∂mδCnpq. (3.30)

Therefore, the variation gives us the following boundary term

1

16
∂α̇α(iTI(−4i)[Dα, D̄α̇]δX)| = 1

3!
∂m(FεmnpqδCnpq). (3.31)

To cancel the variation at the boundary, we determine the boundary term Lkin.,SUSY,bound.

as follows:

Lkin.,SUSY,bound. =
i

4

(∫
d2θD̄2 −

∫
d2θ̄D2

)
TIX. (3.32)

In fact, this Lagrangian is a boundary term which cancels eq. (3.30) since the identity of

the spinor derivatives gives us

i

4

(∫
d2θD̄2 −

∫
d2D2

)
TIX = − i

16
(D2D̄2 − D̄2D2)TIX| = −

1

4
∂α̇α[Dα, D̄α̇]TIX|.

(3.33)

In the Wess-Zumino (WZ) gauge [29] where

X| = DαX| = D̄α̇X| = 0, (3.34)

the boundary term is

Lkin.,SUSY,bound. = − 1

3!
∂m(FεmnpqCnpq). (3.35)

Thus, the Lagrangian in eq. (3.32) gives correct boundary term.

For convenience, we refer to the following θ-integration given in ref. [42]

− 1

4
· 1

2i

(∫
d2θD̄2 −

∫
d2θ̄D2

)
(3.36)

as an I(maginary)-type integration in this paper. This integration is convenient to describe

boundary terms such as the term in eq. (3.32).

Of course, the boundary term is also needed in the case where the Lagrangian is written

by a Kähler potential and a superpotential in eq. (3.21). The boundary term is found in the

same way as the previous case. The difference is merely the choice of the chiral superfield

T . We will see the boundary term more precisely. The variation of the Lagrangian in

eq. (3.21) by the 3-form gauge field is

δLKW =
1

32

(∫
d2θD̄2 +

∫
d2θ̄D2

)(
∂K

∂Y
D̄2δX +

∂K

∂Ȳ
D2δX

)
− 1

4

∫
d2θ

∂W

∂Y
D̄2δX − 1

4

∫
d2θ

∂W̄

∂Ȳ
D2δX + δLKW,bound..

(3.37)
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We can further rewrite the variation as

δLKW = −1

4

∫
d2θ

(
−1

4
D̄2∂K

∂Y
+
∂W

∂Y

)
D̄2δX − 1

4

∫
d2θ̄

(
−1

4
D2∂K

∂Ȳ
+
∂W̄

∂Ȳ

)
D2δX

+ δLKW,bound. , (3.38)

because the following equation holds from the boundary conditions in eqs. (3.12) and (3.14):

∂α̇α[Dα, D̄α̇]
∂K

∂Y
D̄2δX| = 0. (3.39)

If we define the chiral superfield TKW as

TKW := −1

4
D̄2∂K

∂Y
+
∂W

∂Y
, (3.40)

the variation can be simply written as

δLKW = −1

4

∫
d2θTKW D̄

2δX − 1

4

∫
d2θ̄T̄KWD

2δX + δLKW,bound.. (3.41)

Since the variation has the same structure as eq. (3.25), we can repeat the same procedure

as the previous case. The variation at the boundary is

δLKW |bound. =
1

16
(D2D̄2 − D̄2D2)iTI,KW δX + LKW,bound.

=
1

4
∂α̇α[Dα, D̄α̇]TI,KW δX + δLKW,bound.,

(3.42)

where TI,KW = 1
2i(TKW − T̄KW ) is the imaginary part of TKW . Therefore, we introduce

the following boundary term by using the I-type integration as follows:

LKW,bound. =
i

4

(∫
d2θD̄2 −

∫
d2θ̄D2

)
TI,KWX. (3.43)

Thus, we have determined the boundary term for the Lagrangian with the Kähler potential

and the superpotential.

3.2 Higher derivative term causing ghost and tachyon in SUSY 3-form gauge

theories

In this subsection, we consider higher derivative Lagrangians which may cause tachyons as

well as ghosts in SUSY 3-form gauge theories. The following discussion is an extension of

the discussion in ref. [53] for higher derivative chiral superfields.

We can expect that higher derivative Lagrangians with arbitrary order of the auxiliary

field can be obtained by choosing an arbitrary function of D2Y and its Hermitian conjugate.

However, a naively constructed higher derivative Lagrangian gives rise to a ghost.

We will explain this more concretely. For example, we may naively consider the fol-

lowing higher derivative Lagrangian [53]

L∂F,SUSY = −1

8

(∫
d2θD̄2Y Ȳ +

α

16

∫
d2θD̄2(D̄2Ȳ D2Y ) + h.c.

)
+ L∂F,SUSY,bound.,

(3.44)
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where L∂F,SUSY,bound. is the boundary term for L∂F,SUSY, which is not relevant in this

discussion. We will show that the Lagrangian contains an Ostrogradsky’s ghost as well as

a tachyon. We can see these unstable modes by the component expression. The bosonic

sector of the component Lagrangian is

L∂F,SUSY = −∂my∂mȳ + |F|2 + α(|�y|2 − ∂mF∂mF̄). (3.45)

Here, we have abbreviated the boundary term. We briefly show that there is a ghost from

the higher derivative term |�y|2. This can be seen by an auxiliary field method. The higher

derivative term |�y|2 can be rewritten by adding a new complex scalar field (auxiliary field)

ψ as

L′∂F,SUSY = −∂my∂mȳ + |F|2 + α(−|ψ|2 − ∂mψ∂mȳ − ∂mψ̄∂my − ∂mF∂mF̄). (3.46)

The EOM for ψ gives us the original Lagrangian in eq. (3.45). Instead, we obtain one

negative eigenvalue by diagonalizing quadratic derivative terms. The eigenmode of the

negative eigenvalue corresponds to a ghost.

We also show that there are also dynamical tachyons. The tachyons are the real

auxiliary field H and the field strength F . These fields are now dynamical because of

the higher derivative term −α∂mF∂mF̄ = −α
2 (∂mH∂mH + ∂mF∂mF ). The terms are

tachyonic because the term |F|2 = 1
2(H2 + F 2) in eq. (3.46) becomes mass terms with

wrong signs. The origin of the wrong signs are the canonical kinetic term, but not the sign

of the coefficient of the higher derivative term α. Therefore, the tachyons exist as far as we

include the canonical kinetic term. The presence of the tachyons has the same structure

as the bosonic model in section 2.2.

The ghosts and tachyons can be more simply seen by a SUSY auxiliary method [53]

than the above discussion. In superspace, we can rewrite the Lagrangian in eq. (3.44) by

adding Ψ and Σ as

L′∂F,SUSY =

(
−1

8

∫
d2θD̄2Y Ȳ − α

8

∫
d2θD̄2ΨΨ̄ +

∫
d2θΣ

(
Ψ +

1

4
D̄2Ȳ

)
+ h.c.

)
+ L′∂F,SUSY,bound.

=

(
−1

8

∫
d2θD̄2(|Y − Σ|2 − ΣΣ̄)− α

8

∫
d2θD̄2ΨΨ̄ +

∫
d2θΣΨ + h.c.

)
+ L′∂F,SUSY,bound. .

(3.47)

Thus, dynamical superfields are Y − Σ, Σ and Ψ. By seeing the sign, Σ becomes a ghost.

Furthermore, Ψ becomes a tachyon. This can be seen by solving EOM for the auxiliary

fields of Σ and Ψ, the on-shell scalar potential V is

V = −|ψ|2 +
1

α
|σ|2. (3.48)

Here, ψ = Ψ| and σ = Σ|. Thus, the chiral superfield Σ can be regarded as an indepen-

dent dynamical field. Therefore, we cannot use the Lagrangian in eq. (3.44) to construct

ghost/tachyon-free Lagrangians.
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One may wonder whether there are also a ghost or tachyons in eq. (3.44) or not when

we put α = 0. Of course, there should not be such a ghost or tachyons. This can be seen

as follows. We can use the above auxiliary method even in the case that higher derivative

terms are absent α = 0. The EOM of Ψ leads to Σ = 0 if α = 0. Thus, Σ is not a dynamical

field. Furthermore, Ψ drops out of the Lagrangian. Therefore, there is neither a ghost nor

a tachyon in this case as expected.

We make a comment on the sign of the kinetic term in eq. (3.44). In section 2.2,

we have mentioned the sign of the kinetic term. If the canonical kinetic term of the field

strength has a wrong sign, there is no tachyon. However, the kinetic term of y has also the

wrong sign by SUSY. Therefore, y becomes a ghost in this case.

3.3 SUSY ghost/tachyon-free higher derivative 3-form gauge theories

In this subsection, we give the most general ghost/tachyon-free Lagrangian of SUSY 3-form

gauge theories. First, we present a ghost/tachyon-free Lagrangian at an arbitrary order

of the field strength, and then we specify the boundary term for the ghost/tachyon-free

Lagrangian.

3.3.1 SUSY ghost/tachyon-free higher derivative Lagrangian: bulk part

The previously known ghost/tachyon-free Lagrangian of 3-form gauge theories is at most

the fourth order of the auxiliary field, i. e. the fourth order of the field strength of the 3-

form gauge field. Here, we construct the most general ghost/tachyon-free higher derivative

Lagrangian of an arbitrary order of the field strength. To this end, we use the fact that the

field strength of the 3-form gauge field is embedded into a chiral superfield Y . Therefore,

ghost/tachyon-free Lagrangian for the SUSY 3-form gauge field can be formulated by that

of the chiral superfield [61].

We present the following Lagrangian:

LHD,SUSY

= − 1

8 · 16

(∫
d2θD̄2Λ(Y, Ȳ , ∂mY, ∂mȲ , D

2Y, D̄2Ȳ )(DαY )(DαY )(D̄α̇Ȳ )(D̄α̇Ȳ ) + h.c.

)
+ LHD,SUSY,bound.

(3.49)

Here, LHD,SUSY,bound. is the boundary term, which we will discuss later. This Lagrangian

is a natural extension of ghost-free Lagrangian of a chiral superfield [61, 65]. Previously

known ghost-free Lagrangian is that Λ is a function of Y , Ȳ [61], ∂mY , and ∂mȲ [65]. One

new point is that Λ in eq. (3.49) can also be a function of D2Y and D̄2Ȳ . The Lagrangian

presented in ref. [54] is more relaxed and consequently contains an Ostrogradsky’s ghost.

This can be shown by the auxiliary method in ref. [103].

We prove that the Lagrangian in eq. (3.49) is ghost/tachyon-free. One way to show

it is to calculate the component expression of the Lagrangian. Another way is using the

auxiliary method, which we summarize in appendix D. Here, we use the former way. We

show that there are no ghosts/tachyons in the purely bosonic sector. If there are no ghosts

in the bosonic sector, there should be no ghosts/tachyons in the fermionic sector because

of SUSY.
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The bosonic sector of the component Lagrangian is

LHD,SUSY,boson = Λ(y, ȳ, ∂my, ∂mȳ,−2
√

2(H − iF ),−2
√

2(H + iF ))

×
(

1

4
(H2 + F 2)2 − ∂ny∂nȳ(H2 + F 2) + (∂ny∂ny)(∂pȳ∂pȳ)

)
+ LHD,SUSY,bound..

(3.50)

Since there are no ∂∂y terms in the bosonic sector of the Lagrangian, we conclude that there

are no ghosts in the bosonic sector. Because there are no ∂F terms, the field strength is not

dynamical, and there is also no tachyonic mode which is discussed in section 2.2 and 3.2.

By SUSY transformation, we conclude that there should be no fermionic ghosts in the

Lagrangian as well.

Some comments are in order. One comment is that the ghost/tachyon-free Lagrangian

in eq. (3.49) can be extended into a system with matter chiral superfield (ordinary chiral

superfield). That is, we can relax the assumption that a chiral superfield Y is related to a

real superfield Y = −1
4D̄

2X. In this case, we generally do not need the boundary terms

which we will discuss later for the 3-form gauge theories.

Another comment is that we can straightforwardly extend the ghost/tachyon-free La-

grangian into a case of multicomponent chiral superfields Φi (i = 1, . . . , n) with couplings

of a Kähler potential K(Φi, Φ̄i∗) and a superpotential W (Φi):

LHD,multi = −1

8

∫
d2θD̄2K(Φi, Φ̄i∗) +

∫
d2θW (Φi)

− 1

8 · 16

∫
d2θD̄2Λijk∗l∗(DαΦi)(DαΦj)(D̄α̇Φ̄k∗)(D̄α̇Φ̄l∗) + h.c.,

(3.51)

where Λijk∗l∗ is a tensor Λijk∗l∗ = Λijk∗l∗(Φi, Φ̄i∗ , ∂mΦi, ∂mΦ̄i∗ , D2Φi, D̄2Φ̄i∗). If we con-

sider multicomponent 4-form field strength superfields as chiral superfields, we need the

corresponding boundary term. We can obtain the boundary term by the same procedure

as the following discussion.

3.3.2 SUSY ghost/tachyon-free higher derivative Lagrangian: boundary part

Now, we specify the boundary term which corresponds to the higher derivative Lagrangian

in eq. (3.49). As mentioned in section 2.3, the boundary term which corresponds to the

higher derivative term is needed. To specify the boundary term, we determine the chiral

superfield for the boundary term THD. This chiral superfield is a generalization of T and

TKW in the cases in which the Lagrangians are given by the canonical kinetic term in

eq. (3.15) and by a Kähler potential as well as a superpotential in eq. (3.21), respectively.

We consider the variation of the Lagrangian in eq. (3.49) by the 3-form prepotential X:

δLHD,SUSY = − 1

128

(∫
d2θD̄2

(
∂Λ

∂Y

(
−1

4
D̄2δX

)
|DαY |4 +

∂Λ

∂Ȳ

(
−1

4
D2δX

)
|DαY |4

+
∂Λ

∂∂mY

(
−1

4
∂mD̄

2δX

)
|DαY |4 +

∂Λ

∂∂mȲ

(
−1

4
∂mD

2δX

)
|DαY |4

+
∂Λ

∂D2Y

(
−1

4
D2D̄2δX

)
|DαY |4 +

∂Λ

∂D̄2Ȳ

(
−1

4
D̄2D2δX

)
|DαY |4
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+ 2Λ(DαY )

(
−1

4
DαD̄

2δX

)
(D̄α̇Ȳ )(D̄α̇Ȳ )

+ 2Λ(DαY )(DαY )(D̄α̇Ȳ )

(
−1

4
D̄α̇D2δX

))
+ h.c.

)
+ δLHD,SUSY,bound., (3.52)

where |DαY |4 := (DαY )(DαY )(D̄α̇Ȳ )(D̄α̇Ȳ ).

We will use partial integrations for each spinor or vector derivative terms to find the

chiral superfield THD. Unlike the cases of T and TKW , there are spinor or vector derivatives

on the variation terms such as D̄α̇D̄
2δX, ∂mD̄

2δX and D2D̄2δX. Naively, we would ignore

the boundary term for each of the partial integrations. However, we should be careful when

the 3-form gauge field is included because the total derivative terms may give δCmnp at

the boundary. Therefore, we explicitly execute the partial integration.

For example, we show the following relation

− 1

128

∫
d2θD̄2 ∂Λ

∂D2Y

(
−1

4
D2D̄2δX

)
|DαY |4

= − 1

128

∫
d2θD̄2

(
D2 ∂Λ

∂D2Y
|DαY |4

)(
−1

4
D̄2δX

) (3.53)

which may be the most complicated term in eq. (3.52) to derive the relation. To show this

relation, we change the integration
∫
d2θD̄2 to

∫
d2θ̄D2. The change gives us the following

total derivative term:

− 1

128

∫
d2θD̄2 ∂Λ

∂D2Y

(
−1

4
D2D̄2δX

)
|DαY |4

= − 1

128
(−4i)∂β̇β

(
[Dβ , D̄β̇ ]

∂Λ

∂D2Y

(
−1

4
D2D̄2δX

)
|DαY |4

)
|

− 1

128

∫
d2θ̄D2 ∂Λ

∂D2Y
|DαY |4

(
−1

4
D2D̄2δX

)
.

(3.54)

Note that we can safely execute the partial integration for the term
∫
d2θ̄D2 . . . in the

right hand side by using the identity D2Dα = 0. We now consider the total derivative

term in eq. (3.54). In the total derivative, there are terms proportional to D2D̄2δX||bound.,
D̄β̇D

2D̄2δX||bound., and DβD̄β̇D
2D̄2δX||bound.. By the boundary conditions in eqs. (3.12)

and (3.14), we conclude that the boundary term is equal to zero. Therefore, eq. (3.54) can

be rewritten as

− 1

128

∫
d2θD̄2 ∂Λ

∂D2Y

(
−1

4
D2D̄2δX

)
|DαY |4

= − 1

128

∫
d2θ̄D2

(
D2 ∂Λ

∂D2Y
|DαY |4

)(
−1

4
D̄2δX

)
.

(3.55)
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We again change the integration
∫
d2θ̄D2 to

∫
d2θD̄2 as

− 1

128

∫
d2θD̄2 ∂Λ

∂D2Y

(
−1

4
D2D̄2δX

)
|DαY |4

= − 1

128

∫
d2θD̄2

(
D2 ∂Λ

∂D2Y
|DαY |4

)(
−1

4
D̄2δX

)
− 1

128
(+4i)∂β̇β

(
[Dβ , D̄β̇ ]

(
D2 ∂Λ

∂D2Y
|DαY |4

)(
−1

4
D̄2δX

))
|.

(3.56)

The total derivative term does not have the term including δCmnp at the boundary, and

this total derivative term is zero. By using the identity D̄β̇D̄
2 = 0, we finally obtain

− 1

128

∫
d2θD̄2 ∂Λ

∂D2Y

(
−1

4
D2D̄2δX

)
|DαY |4

= − 1

128

∫
d2θ

(
D̄2D2 ∂Λ

∂D2Y
|DαY |4

)(
−1

4
D̄2δX

)
.

(3.57)

As a consequence, boundary terms given by the partial integrations are equal to zero. Thus,

the variation of the higher derivative Lagrangian can be written by using the following chiral

superfield THD

THD = −1

4
D̄2 · 1

16

(
∂Λ

∂Y
|DαY |4 − ∂m

(
∂Λ

∂∂mY
|DαY |4

)
+D2

(
∂Λ

∂D2Y
|DαY |4

)
− 2Dα(Λ(DαY )(D̄α̇Ȳ )(D̄α̇Ȳ ))

) (3.58)

as

δLHD,SUSY =

(∫
d2θTHD

(
−1

4
D̄2δX

)
+ h.c.

)
+ δLHD,SUSY,bound. (3.59)

The variation has the same structure as the previous quadratic derivative case in eq. (3.41).

The superspace integration leads to the boundary term with δCmnp:

δLHD,SUSY = iTI,HD

(
1

16
(D2D̄2 − D̄2D2)δX

)
|+ δLHD,SUSY,bound. · · ·

= iTI,HD(−4i)

(
1

16
∂α̇α[Dα, D̄α̇]δX

)
|+ δLHD,SUSY,bound. + · · ·

= +

√
2

3!
∂m (TI,HD|εmnpqδCnpq) + δLHD,SUSY,bound. + · · · .

(3.60)

Here, the ellipsis · · · denotes the terms that do not contribute to the boundary terms, and

TI,HD = 1
2i(THD − T̄HD). To see the variation more concretely, we express THD in terms of

the component fields. For simplicity, we focus on the bosonic term of THD|. In the WZ

gauge in eq. (3.34), the bosonic term of THD can be calculated as

THD| = 2Λ|F|2F̄ − 2ΛF̄∂my∂mȳ

− 4
∂Λ

∂D2Y

(
|F|4 − 2∂my∂mȳ|F|2 + (∂my∂my)(∂nȳ∂nȳ)

)
+ (fermions).

(3.61)
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Therefore, the imaginary part TI,HD is

TI,HD| =
1√
2

Λ(H2 + F 2)F −
√

2Λ(∂my∂mȳ)F

− 4

(
Im

∂Λ

∂D2Y

)(
1

4
(H2 + F 2)2 − ∂my∂mȳ(H2 + F 2) + (∂my∂my)(∂nȳ∂nȳ)

)
+ (fermions). (3.62)

We now consider the boundary term which cancels the variation at the boundary in

eq. (3.60). Such boundary term is given by the I-type integral as follows:

LHD,SUSY,bound. =
i

4

(∫
d2θD̄2 −

∫
d2θ̄D2

)
TI,HDX. (3.63)

In the WZ gauge, the boundary term is expressed as

LHD,SUSY,bound. = −
√

2

3!
∂m (TI,HD|εmnpqδCnpq) . (3.64)

Therefore, this boundary term precisely cancels the variation in eq. (3.60).

By adding a Kähler potential and a superpotential, we obtain the most general La-

grangian of the 3-form gauge field with an arbitrary order of the field strength:

LKW,HD,SUSY

= −1

8

∫
d2θD̄2K(Y, Ȳ ) +

∫
d2θW (Y )

− 1

8 · 16

∫
d2θD̄2Λ(Y, Ȳ , ∂mY, ∂mȲ , D

2Y, D̄2Ȳ )(DαY )(DαY )(D̄α̇Ȳ )(D̄α̇Ȳ )

+
i

4

∫
d2θD̄2(TI,KW + TI,HD)X + h.c.

(3.65)

3.3.3 EOM for 3-form gauge field

Before closing this section, we write down the general EOM for the 3-form gauge field, which

should be useful for applications. We consider the most general Lagrangian in eq. (3.65).

The EOM for the 3-form prepotential can be derived by the variation of the Lagrangian in

the bulk:

0 =− 1

4
D̄2∂K

∂Y
+
∂W

∂Y
− 1

4 · 16
D̄2 ∂Λ

∂Y
|DαY |4 +

1

4 · 16
D̄2∂m

∂Λ

∂∂mY
|DαY |4

− 1

4 · 16
D̄2D2 ∂Λ

∂D2Y
|DαY |4 +

1

2 · 16
D̄2DαΛ(DαY )(D̄α̇Ȳ )(D̄α̇Ȳ ) + h.c.

(3.66)

As we have seen in section 3.1, the θ = θ̄ = 0 component of this EOM corresponds to the

EOM for the the auxiliary field H. In order to obtain the EOM for the 3-form gauge field,

we consider a derivative [Dβ , D̄β̇ ] on the both hand sides of eq. (3.66):

0 = −1

4
(+2i)∂ββ̇

(
D̄2∂K

∂Y
− 4

∂W

∂Y
+

1

16
D̄2 ∂Λ

∂Y
|DαY |4 −

1

16
D̄2∂m

∂Λ

∂∂mY
|DαY |4

+
1

16
D̄2D2 ∂Λ

∂D2Y
|DαY |4 −

1

8
D̄2DαΛ(DαY )(D̄α̇Ȳ )(D̄α̇Ȳ )

)
+ h.c.

(3.67)
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The EOM can be solved as follows:

k =
i

4

(
D̄2∂K

∂Y
− 4

∂W

∂Y
+

1

16
D̄2 ∂Λ

∂Y
|DαY |4 −

1

16
D̄2∂m

∂Λ

∂∂mY
|DαY |4

+
1

16
D̄2D2 ∂Λ

∂D2Y
|DαY |4 −

1

8
D̄2DαΛ(DαY )(D̄α̇Ȳ )(D̄α̇Ȳ )

)
+ h.c.,

(3.68)

where k is a constant which will be determined by the boundary conditions. By using

eqs. (3.66) and (3.68), we obtain the following solution:

ik =− 1

4
D̄2∂K

∂Y
+
∂W

∂Y
− 1

4 · 16
D̄2 ∂Λ

∂Y
|DαY |4 +

1

4 · 16
D̄2∂m

∂Λ

∂∂mY
|DαY |4

− 1

4 · 16
D̄2D2 ∂Λ

∂D2Y
|DαY |4 +

1

2 · 16
D̄2DαΛ(DαY )(D̄α̇Ȳ )(D̄α̇Ȳ ).

(3.69)

The bosonic sector of the θ = θ̄ = 0 component of the above solution is expressed as

ik =
∂2K

∂Y ∂Ȳ
|F̄ +

∂W

∂Y
|

− 4
∂Λ

∂D2Y
|(|F|4 − 2|F|2(∂my∂mȳ) + (∂my∂my)(∂nȳ∂nȳ))

+ 2Λ(|F|2F̄ − F̄∂my∂mȳ).

(3.70)

To solve this equation, we need to give a concrete model of K, W , and Λ. We will

discuss such models and their solutions elsewhere.

4 Summary and discussion

We have considered higher derivative extensions of 3-form gauge theories in the both

bosonic and SUSY cases. For the bosonic case, we have shown that higher derivative

terms given by derivatives on the field strength causes a tachyon as long as the canonical

kinetic term exists. We have also argued that the tachyon can also be a ghost, depending

on models and parameters. We have shown that there is neither a tachyon nor a ghost

if the higher derivative terms are given by functions of the field strength but not of the

derivative of the field strength. This is because the EOM is not changed from the case of

the canonical kinetic term. We have confirmed that previously known higher derivative

Lagrangians [6, 8] fall into this class, Then we have specified the boundary term which cor-

responds to the ghost/tachyon-free higher derivative Lagrangian of an arbitrary order of

the field strength. For the SUSY case, we have shown that a naive higher derivative exten-

sion of the SUSY 3-form gauge theory may cause a tachyon as well as a ghost, as long as the

canonical kinetic term exists. Then we have presented the most general ghost/tachyon-free

Lagrangian of an arbitrary order of the field strength, the corresponding boundary term,

and EOM for the 3-form gauge field.

There can be several extensions and applications of our work. One may apply the

higher derivative theory in section 2.3 to the cosmological constant problem. Since the

Lagrangian gives us a more general constant term given by G(−c) + cG′(−c) than that
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of the canonical kinetic term −1
2c

2, it may give a correction to the application to the

cosmological constant problem.

We can extend the higher derivative Lagrangians to include a topological coupling

between a 3-form gauge field and a pseudo-scalar field, which will give us the potential

of the pseudo-scalar field. The general discussion between higher derivative terms and

potentials is known for bosonic case in ref. [6], and so the SUSY extension is possible by

using our new ghost/tachyon-free Lagrangian. Since coupling gives us a potential for the

pseudo-scalar field, it should be useful for inflationary models.

To apply the higher derivative Lagrangian to cosmology, we should embed the La-

grangian into SUGRA. It may be straightforward since 3-form gauge theories in SUGRA

are known in refs. [28, 42].

In this paper, we have shown no ghost in the bosonic sector of the SUSY case. We

expect that there is no fermionic ghost in eq. (3.65) by SUSY transformations. However,

a concrete explanation of whether fermionic ghosts are absent or not is an open question.

We may discuss it along the line of refs. [121, 122].

It would also be interesting to consider solutions of the EOM in eq. (3.69). In the

case where Λ is a constant, it is known that there is a non-trivial solution of the auxiliary

field (so-called a non-canonical branch), where the canonical kinetic term for the boson in

the chiral superfield vanishes at on-shell. Our higher derivative term would deform this

solution.

Higher derivative chiral superfield Lagrangians give several BPS equations for BPS

solitons [65, 89]. It is interesting to discuss whether our SUSY higher derivative Lagrangian

of the 3-form gauge field admit any BPS equations and their soliton solutions.
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A Notation

In this appendix, we summarize our notation. We use Wess-Bagger’s notation in ref. [114].

The Minkowski metric ηmn and the totally anti-symmetric tensor εmnpq are given by

ηmn = (−1, 1, 1, 1), ε0123 = −ε0123 = 1, (A.1)

respectively. Here, the Roman letters beginning with m,n, p, . . . denote indices of vectors

and tensors.
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In the following, we summarize our notation of spinors. The Greek letters beginning

with α, β, . . . denote undotted spinor indices, while dotted Greek letters beginning with

α̇, β̇, . . . denote dotted spinor indices. The undotted and dotted spinors are related to each

other by the Hermitian conjugate denoted by †. The Hermitian conjugate of a spinor χα,

χ̄α̇ are defined by

(χα)† = χ̄α̇, (χ̄α̇)† = χα. (A.2)

The Hermitian conjugate of a product of spinors χα and ψα is defined by

(χαψβ)† = ψ̄β̇χ̄α̇. (A.3)

Spinor indices are raised and lowered by the following totally antisymmetric tensors εαβ ,

εαβ , εα̇β̇ , and εα̇β̇ with the following normalizations

ε12 = −ε21 = −ε12 = ε21 = 1, ε1̇2̇ = −ε2̇1̇ = −ε1̇2̇ = ε2̇1̇ = 1 (A.4)

as

χα = εαβχβ , χα = εαβχ
β , χ̄α̇ = εα̇β̇χ̄β̇ , χ̄α̇ = εα̇β̇χ̄

β̇ . (A.5)

The anti-symmetric tensors satisfy

εαβεβγ = δαγ , εα̇β̇εβ̇γ̇ = δα̇γ̇ , (A.6)

where δαβ and δα̇
β̇

are the Kronecker’s delta for undotted and dotted spinors, respectively.

The contraction of spinors are

ψαχα = εαβψβχα, ψ̄α̇χ̄
α̇ = εα̇β̇ψ̄β̇χ̄

α̇. (A.7)

A vector is represented by a tensor product of spinors. The relations between vectors

and spinors are given by the 4D Pauli matrices (σm)αα̇ defined by

(σm)αβ̇ = (σ0, σ1, σ2, σ3)αβ̇ =

((
1 0

0 1

)
,

(
0 1

1 0

)
,

(
0 −i
i 0

)
,

(
1 0

0 −1

))
. (A.8)

For example, the spacetime derivative ∂m are represented by using spinors as

∂αα̇ = (σm)αα̇∂m. (A.9)

The relation of Hermitian conjugates of the Pauli matrices (σ̄m)α̇β to (σm)αβ̇ is

(σ̄m)α̇β = (σm)βα̇ = εα̇γ̇εβδ(σm)δγ̇ . (A.10)

The Pauli matrices satisfy the following relation:

(σm)αβ̇(σ̄n)β̇γ + (σn)αβ̇(σ̄m)β̇γ = −2ηmnδ
γ
α, (σ̄m)α̇β(σn)βγ̇ + (σ̄n)α̇β(σm)βγ̇ = −2ηmnδ

α̇
γ̇ .

(A.11)

The matrices σmn and σ̄mn are defined by

(σmn)α
β =

1

4
((σm)αγ̇(σ̄n)γ̇β − (σn)αγ̇(σ̄m)γ̇β),

(σ̄mn)α̇β̇ =
1

4
((σ̄m)α̇γ(σn)γβ̇ − (σn)α̇γ(σ̄m)γβ̇).

(A.12)

– 27 –



J
H
E
P
1
0
(
2
0
1
8
)
1
4
6

To formulate SUSY theories, we have used SUSY covariant spinor derivatives. The

definition of the spinor derivatives are

Dα =
∂

∂θα
+ iθ̄β̇(σm)αβ̇

∂

∂xm
, D̄α̇ = − ∂

∂θ̄α̇
− iθβ(σ̄m)α̇β

∂

∂xm
. (A.13)

B Duality transformation of bosonic 3-form gauge theory

In this appendix, we review the duality transformation of the 3-form. The 3-form is clas-

sically dual to a constant. This can be shown as follows. We consider the following first

order Lagrangian instead of the Lagrangian in eq. (2.7):

L′kin. = − 1

2 · 4!
F ′mnpqF ′

mnpq +
1

3!
∂m(CnpqF ′

mnpq) +
1

4!
qεmnpq(F ′

mnpq − 3∂mCnpq). (B.1)

Here, F ′
mnpq is a 4-form field which is independent of the 3-form gauge field Cmnp, but we

assume the boundary condition for the 4-form:

F ′ = −c, (B.2)

where F ′ = 1
4!ε

mnpqF ′
mnpq. In eq. (B.1), q is a pseudo-scalar field which is regarded as

a Lagrange’s multiplier. The vanishing of the variation by the 3-form gauge field at the

boundary requires the boundary condition for q:

q|bound. = c. (B.3)

The EOM of q gives εmnpqF ′
mnpq = 4εmnpq∂mCnpq, and we obtain the original Lagrangian

in eq. (2.7). On the other hand, the EOM for the 4-form field F ′
mnpq gives

F ′
mnpq = qεmnpq, or equilvalently q = −F ′. (B.4)

Substituting the solution to the Lagrangian in eq. (B.1), we obtain

L′kin. = −1

2
q2 +

1

3!
∂m(Cnpqεmnpqq)−

1

3!
qεmnpq∂mCnpq

= −1

2
q2 +

1

3!
Cnpqεmnpq∂

mq.

(B.5)

The EOM of Cmnp gives

∂mq = 0. (B.6)

Therefore, q is local constant, which is equal to c by the boundary condition. Therefore,

the Lagrangian is equal to a constant.

L′kin. = −1

2
c2. (B.7)

The reverse of the duality transformation is possible, and the boundary term in eq. (2.7)

is naturally understood by this transformation. We start with the following Lagrangian:

Lconst. = −1

2
c2, (B.8)
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where c is a real constant. The first-order Lagrangian is

L′const. = −1

2
q2 +

1

3!
εmnpqCnpq∂mq, (B.9)

where we assume the boundary conditions for q as q|bound. = c. The Lagrangian can be

constructed as follows. The constant term can be considered as a closed 0-form. A closed

0-form f is defined by the condition ∂mf = 0. Thus, we introduce the condition as a

solution of the Lagrange’s multiplier field. In 4D, the Lagrange’s multiplier can be a 3-

form, and this condition can be imposed by the term εmnpqCnpq∂mq. In this case, there is

a gauge symmetry of Cmnp given in eq. (2.1).

The EOM for q is

q = − 1

4!
εmnpq∂mCnpq = − 1

4!
εmnpqFmnpq = −F. (B.10)

Substituting this solution into eq. (B.9), we obtain

L′const. = −1

2
F 2 − 1

3!
εmnpqCnpq∂mF = +

1

2
F 2 − 1

3!
∂m(εmnpqCnpqF )

= − 1

2 · 4!
FmnpqFmnpq +

1

3!
∂m(CnpqF

mnpq).

(B.11)

Thus, we have the Lagrangian in eq. (2.7).

C Duality transformation of SUSY 3-form gauge theory

In this appendix, we review a duality transformation of SUSY 3-form gauge theories [42].

A 3-from field in SUSY theories can be dualized into a chiral superfield Φ which has a linear

superpotential irΦ with a real constant r. The boundary term for the 3-form gauge theories

can be straightforwardly obtained by this duality procedure. Here, we only consider the

case of a canonical kinetic term, although this discussion can be generalized to the case in

which the Lagrangian is given by a Kähler potential and a superpotential.

We consider a dual transformation from a single chiral superfield Φ with a linear

superpotential to a 3-form field system. We start with the following Lagrangian:

Lkin.,chiral = −1

8

∫
d2θD̄2ΦΦ̄ +

∫
d2θirΦ + h.c., (C.1)

where r is a real constant.

Now we dualize the Lagrangian by considering the following Lagrangian with a chiral

superfield Q and a real superfield X:

L′kin.,chiral = −1

8

∫
d2θD̄2ΦΦ̄ +

∫
d2θQΦ +

1

8

∫
d2θD̄2X(Q+ Q̄) + h.c., (C.2)

where we assume the boundary condition Q||bound. = ir. Note that X has a gauge symme-

try X → X+L, where L is a linear superfield D2L = D̄2L = 0. The gauge transformation

implies that X is a 3-form prepotential. The EOM of X gives us Q + Q̄ = 0, i.e. Q is a
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pure imaginary constant, and Q is equal to ir by the boundary condition. Substituting

this solution into eq. (C.2), we obtain the original Lagrangian in eq. (C.1).

Instead, the EOM for the chiral superfield Q relates the original chiral superfield Φ

with the real superfield X:

Φ = −1

4
D̄2X =: Y, (C.3)

where Y can be identified with a 4-form field strength superfield since Y is related to the

real superfield X. The EOM for the chiral superfield Φ leads to the relation between Y

and Q:

− 1

4
D̄2Φ̄ = −1

4
D̄2Ȳ = −Q. (C.4)

The solution gives us the boundary condition for D2Y :

− 1

4
D2Y ||bound. = −Q̄||bound. = ir. (C.5)

Eliminating the chiral superfield Φ, we obtain the Lagrangian

L′kin.,chiral = −1

8

∫
d2θD̄2Y Ȳ +

i

4

∫
d2θD̄2XTI + h.c., (C.6)

Here TI is a imaginary part of the chiral superfield T := −1
4D̄

2Ȳ . The second term in the

right hand side in eq. (C.6) is the boundary term which is equal to the one in eq. (3.32).

Note that to derive the Lagrangian in eq. (C.6), we have used the following calculation:∫
d2θQΦ +

1

8

∫
d2θD̄2X(Q+ Q̄) = −1

4

∫
d2θD̄2XQ+

1

8

∫
d2θD̄2X(Q+ Q̄)

=
i

4

∫
d2θD̄2X

1

2i

(
−1

4
D̄2Ȳ +

1

4
D2Y

)
.

(C.7)

The Lagrangian in eq. (C.6) is the same as the one in eq. (3.15), and thus the Lagrangian

with a linear superpotential in eq. (C.1) can be dualized into a Lagrangian for a 3-form

gauge field including the boundary term.

D Ghost/tachyon-free Lagrangian and auxiliary field method

Here, we consider an auxiliary field method for the ghost/tachyon-free Lagrangian pro-

posed in section 3.3. In section 3.3, we have shown that the Lagrangian in eq. (3.65)

is ghost/tachyon-free by using component expression. We can also show it by using the

auxiliary field method in section 3.2.

The Lagrangian with auxiliary superfields is given as follows:

L′HD,SUSY =

(
1

8 · 16

∫
d2θD̄2Λ(Y, Ȳ , ∂mY, ∂mȲ , Ψ̄,Ψ)(DαY )(DαY )(D̄α̇Ȳ )(D̄α̇Ȳ )

+

∫
d2θΣ

(
Ψ +

1

4
D̄2Ȳ

)
+ h.c.

)
+ L′HD,SUSY,bound..

(D.1)

Here, L′HD,SUSY,bound. is the boundary term for this Lagrangian, which is not relevant to the

following discussion. In this Lagrangian, the superfield Σ is not an independent dynamical
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superfield as far as fermions are set to be zero in the vacuum. This can be seen by the

EOM for the chiral superfield Ψ. The EOM for Ψ is

0 = −1
4D̄

2

(
∂Λ

∂Ψ
(DαY )(DαY )(D̄α̇Ȳ )(D̄α̇Ȳ )

)
+ Σ. (D.2)

The EOM leads to Σ| = 0 around the vacuum where DαY | = 0. Thus, Σ| has no dynamical

degrees of freedom. Therefore, Σ| does not give rise to a ghost. As long as SUSY is

preserved, the fermionic component DαΣ| is also not dynamical, and so there is no fermionic

ghost as well.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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