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1 Introduction

The discovery of the Higgs boson at the Large Hadron Collider (LHC) at CERN [1–3]

leaves two crucial open questions. First, how many elementary scalars there are in Nature?

Is there one single scalar as in the original proposal for the Standard Model (SM), or are

there several scalar families, just like there are several families of elementary fermions?

Second, are the couplings of the observed 125 GeV scalar to gauge bosons and to fermions

consistent with the SM (and if yes, to what precision)? Answering this second question will

place important constraints on models of new physics beyond the SM. The two questions

posed above are related. For example, a detailed study of the predictions of an N Higgs

doublet model (NHDM) can guide experimental searches for new scalar phenomena.

Models with multiple scalar doublets are very rich. They predict both neutral and

charged scalars, whose mass basis do not, in general, coincide with the interaction basis. As

a result, one has mixing among the neutral scalars and mixing among the charged scalars.

In addition, new sources of CP violation in the scalar sector are possible, and the mechanism

for CP violation may be spontaneous [4] or explicit. One might have new CP violation

sources in the mixing of neutral CP-even and CP-odd scalars, in the mixing of charged

scalars, and/or in the couplings of scalars with fermions. In general, the NHDM also yields

flavor changing neutral scalar interactions, which are strongly constrained by experiment.
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This difficulty is a challenge, which one can address with extra symmetries, such as the Z2

symmetry introduced in the two Higgs doublet model (2HDM) following general theorems

proposed by Glashow and Weinberg [5] and independently by Paschos [6]. However, the

difficulty in avoiding flavor changing interactions mediated by neutral scalars is also an

opportunity. For example, the symmetries employed in suppressing flavor changing neutral

scalar interactions might also be related to the hierarchy of fermion masses and mixing, or

even to the existence of Dark Matter.

In order to study models of extended Higgs sectors, one needs first to establish a

convenient notation and impose the relevant theoretical constraints, such as those arising

from unitarity bounds. In a previous publication [7], we introduced a suitable notation in

the pure scalar sector of the NHDM, clearly related to the physical degrees of freedom,

which we identified as being those that appear in the mass basis of the charged scalars,

and we studied the unitarity bounds arising from the scalar/gauge sectors. Here, we will

extend our parameterization into the fermion sector, and we will study the unitarity bounds

arising from interaction of the fermions with the scalar/gauge sectors.

Section 2 reviews and extends our physical parameterization and the many relations

among the parameters. These are used in section 3 in order to derive new sum rules. In

section 4 we define a vector involving the couplings in the gauge/scalar sector and vectors

involving the Yukawa couplings. We show that the approximate Higgs alignment observed

in the gauge/scalar sector (where the properties of one neutral scalar is SM-like) translates

into an alignment between the gauge/scalar sector vector and vectors in the scalar/fermion

sector. We present our conclusions in section 5. In appendix A, we use the cancellation

of bad high energy behavior in 2 → 2 scattering amplitudes in order to rederive the sum

rules that have been obtained in section 3 by looking directly at the Lagrangian.

2 The N Higgs doublet model with fermions

In this section we discuss the full Lagrangian of the most general N Higgs doublet model.

Our field content is the following: (i) The usual SU(2)L×U(1)Y gauge bosons; (ii) N Higgs

doublet fields, parameterized as:

Φk =

(
ϕ+
k

1√
2
(vk + ϕ0

k)

)
, (2.1)

for k = 1, 2, . . . , N ; and (iii) the quark doublets, qL = (pL, nL), which is a vector in the

ng-dimensional family space of left-handed doublets, and the quark singlets, pR and nR,

which are ng-dimensional vectors in the right-handed family spaces of charge 2/3 and −1/3

quarks, respectively.1 The neutral scalar field vacuum expectation values are normalized

such that

v2 ≡ v2
1 + v2

2 + . . . v2
N = (246 GeV)2 , (2.2)

whose numerical value is fixed by the Fermi constant.

1Throughout this paper we neglect leptons without loss of generality, as our analysis of the quark sector

is similar to that of the lepton sector with Dirac neutrinos.
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When expressed in terms of the physical gauge fields, the covariant derivative may be

written as

iDµ = i∂µ −
g

2
(τ+W

+
µ + τ−W

−
µ )− eQAµ −

g

cW

(τ3

2
−Qs2

W

)
Zµ, (2.3)

where g is the SU(2) coupling constant, cW = cos θW , sW = sin θW , e is the positron

charge, Q is the charge operator, and the SU(2) generators, when acting on doublets,

τ+ =

(
0
√

2

0 0

)
, τ− =

(
0 0√
2 0

)
, τ3 =

(
1 0

0 −1

)
. (2.4)

The covariant derivative for the singlet right-handed quarks only contains i∂µ and the

terms proportional to Q in eq. (2.3). Our choice for the signs of the coupling constants and

of the gauge fields is that in ref. [8] with all η factors taken positive. The kinetic terms are

written as

LKΦ = (DµΦk)
†(DµΦk),

LKq = q̄L(i /D)qL + p̄R(i /D)pR + n̄R(i /D)nR, (2.5)

for the scalars and quarks, respectively.

For the scalar potential, we follow the notation of [9, 10]:

VH = µij(Φ
†
iΦj) + λij,kl(Φ

†
iΦj)(Φ

†
kΦl) = −LHiggs, (2.6)

where, by hermiticity,

µij = µ∗ji, λij,kl ≡ λkl,ij = λ∗ji,lk. (2.7)

The Yukawa couplings are organized into complex ng × ng matrices Γk and ∆k (for

k = 1, . . . , N), as

− LY = q̄LΓkΦknR + q̄L∆kΦ̃kpR + h.c., (2.8)

where Φ̃k ≡ iτ2Φ∗k.

Under a weak basis transformation of the scalars,2

Φj = XjbΦ
′
b , (2.9)

the couplings with scalars transform into

µ′ab = X∗iaµijXjb, (2.10)

λ′ab,cd = X∗iaX
∗
kcλij,klXjbXld, (2.11)

Γ′b = ΓjXjb, (2.12)

∆′b = ∆iX
∗
ib. (2.13)

In a previous publication [7] we stressed the importance of the charged Higgs basis,

defined as the basis where the charged components of all scalar doublets correspond to

2A weak basis transformation is one which preserves the doublet structure.
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charged scalar mass eigenstates [11]. We may parameterize the fields in the charged Higgs

basis as

ΦC
1 =

(
G+

1√
2

(
v +H0 + iG0

)) , ΦC
2 =

(
S+

2
1√
2
ϕC0

2

)
, . . . , ΦC

N =

(
S+
N

1√
2
ϕC0
N

)
, (2.14)

where S+
1 ≡ G+ is he charged massless would-be Goldstone boson and S+

2 , . . . , S
+
N are the

physical (mass-eigenstate) charged Higgs fields, with corresponding masses m2
±,a. Notice

that only the neutral component of the first doublet has a vacuum expectation value. In

ref. [7], it is shown that all scalar-scalar and scalar-gauge couplings depend exclusively on

a single N × 2N matrix B. Its physical significance is the matrix that takes the neutral

scalars fields from the charged Higgs basis into their mass eigenstate basis. Denoting

ϕC0
1 ≡ H0 + iG0, the neutral Higgs fields in the charged Higgs basis are given in terms of

the neutral mass-eigenstate scalar fields,

ϕC0
a =

2N∑
β=1

BaβS
0
β , (2.15)

where S0
1 ≡ G0 is the neutral massless would-be Goldstone boson and S0

2 , . . . , S
0
2N are the

physical (mass-eigenstate) neutral Higgs scalar fields, with corresponding masses m2
β . We

may therefore introduce a basis transformation X = U , where U is a unitary matrix that

diagonalizes the charged scalar squared-mass matrix such that

ϕ+
k =

N∑
a=1

UkaS
+
a , (2.16)

with the corresponding diagonal charged scalar squared-mass matrix denoted by

D2
± ≡ diag

(
m2
±,1 = 0,m2

±,2, . . . ,m
2
±,N
)
, (2.17)

and Uk1 = vk/v.

In the charged Higgs basis, the neutral fields ϕC0
a are related to the neutral scalar fields

of the original basis defined in eq. (2.1),

ϕ0
k =

N∑
a=1

Ukaϕ
C0
a =

2N∑
β=1

N∑
a=1

UjaBaβS
0
β . (2.18)

Note that one can also diagonalize the neutral scalar squared-mass matrix starting from

the original basis of scalar fields,

ϕ0
k =

2N∑
β=1

VkβS
0
β , (2.19)

with the corresponding diagonal neutral scalar squared-mass matrix denoted by

D2
0 ≡ diag

(
m2

1 = 0,m2
2, . . . ,m

2
2N

)
, (2.20)
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and Vk1 = ivk/v. Eqs. (2.18) and (2.19) imply that,

B = U †V . (2.21)

It is straightforward to see that U † is the matrix that takes the scalar doublets from

the original basis to a charged Higgs basis. Because the latter is defined up to a rephasing

of N − 1 doublets [7], the transformation into this basis is not unique. For example, one

could consider a matrix U ′ = UK where3

K = diag(1, e−iχ2 , e−iχ3 , · · · , e−iχN ) . (2.22)

Furthermore, because U is a basis transformation, it is parameterized by N2 non-physical

parameters. It is then easy to see that the matrix B alone comprises all the relevant

physical parameters of the diagonalization of the charged and neutral scalar fields.

The non-uniqueness of the charged Higgs basis implies that the matrix U employed

in eq. (2.16) can be replaced by U ′ = UK. That is U ′k1 = Uk1 and U ′ja = e−iχaUja for

a = 2, 3, . . . , N . Eq. (2.21) then yields,

B′1β = B1β , B′aβ = eiχaBaβ , for a = 2, 3, . . . , N. (2.23)

The unphysical phases χa can be absorbed into the definition of the charged Higgs basis

scalar doublet fields, ΦC
a . That is,

ΦC
a → eiχaΦC

a , for a = 2, 3, . . . , N. (2.24)

In particular, note that under this rephasing, the charged Higgs fields rephase in the same

way, i.e., S+
a → eiχaS+

a (for a = 2, 3, . . . , N). In contrast, the mass eigenstate neutral Higgs

fields S0
β are invariant under this rephasing in light of eq. (2.18) since the rephasing of φC0

a

is consistent with the rephasing of Baβ .

In defining the neutral Higgs mass eigenstate fields, S0
β , one always has the option

to redefine any of the neutral scalar fields via S0
β → −S0

β . This means that the choice

of the matrix elements of the diagonalization matrix in eq. (2.19) is unique only up to

a sign, Vkβ → −Vkβ . That is, one is free to change the overall sign of any column of

V . For example, taking h = S0
2 to be the 125 GeV neutral Higgs field, the overall signs

of the couplings, sgn[hV V ] and sgn[hbb], do not have physical significance, although the

relative sign of these two couplings is physical and can be measured.4 It is common practice

to employ a specific sign convention to uniquely fix the signs of the neutral Higgs mass

eigenstate fields. In this convention, Vk1 = ivk/v and the Vkj (for j = 2, 3, . . . , 2N) are

parameterized by (N − 1)(2N − 1) real angles θk` (for 1 ≤ k < ` ≤ 2N − 1) [13]. The

ranges of the θk` can then be chosen to uniquely fix the signs of the columns of V [14].

3Here, we shall assume that there are no mass degeneracies among the charged Higgs bosons. If mass

degeneracies exist, then the most general form for K would be a block diagonal form with an n×n unitary

matrix replacing a diagonal matrix of phases within the n-dimensional mass-degenerate subspace. For

further details, see ref. [12].
4This is the source of some confusion in the literature, even in the 2HDM.
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In ref. [7], the following properties of the N × 2N matrix V were obtained,

Re(V †V ) = 12N×2N , (2.25)

V V † = 2·1N×N , (2.26)

V V T = 0 . (2.27)

Several properties of B have been thoroughly studied in ref. [7], extending previous work

in refs. [15–18]. For example, in light of eq. (2.21) and using the fact that U is unitary,

eqs. (2.25)–(2.27) yield,

1

2
BB† = 1N×N , (2.28)

Re(B†B) = 12N×2N , (2.29)

BBT = 0 . (2.30)

We may also define a new orthogonal and antisymmetric matrix

A = Im(B†B) , (2.31)

which appears in gauge boson couplings to two neutral scalars. Using eq. (2.29), one can

write,

B†B = 12N×2N + iA . (2.32)

From eq. (2.31), it immediately follows that,

AT = −A , AAT = −A2 = 12N×2N , (2.33)

after employing eqs. (2.28)–(2.30). Furthermore, after multiplying eq. (2.32) on the left by

B and using eq. (2.28), we obtain

BA = −iB . (2.34)

Eq. (2.34), which is stated here explicitly for the first time, plays a significant role in the

intermediate steps of the calculations employed later in this work. Finally, we note the

following explicit relations previously obtained in ref. [7],

Ba1 = iδa1, (2.35)

B1β = −A1β + iδ1β . (2.36)

Eq. (2.35) is just the statement that S0
1 = G0 resides entirely in the imaginary part of ϕC0

1 .

Note that eq. (2.36) can be obtained by using the relation, A1β = −ReB1β , which is a

consequence of eqs. (2.31) and (2.35).

In the charged Higgs basis, the scalar potential takes the following form,

VH = Yab(Φ
C†
a ΦC

b ) + Zab,cd(Φ
C†
a ΦC

b )(ΦC†
c ΦC

d ). (2.37)

The minimization the scalar potential in the charged Higgs basis and the identification of

the charged Higgs boson squared-masses are neatly summarized by the following equation

obtained in ref. [7],

Yab + v2Zab,11 = (D2
±)ab . (2.38)
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In addition, there are a number of notable relations among the squared-masses of the

neutral and charged scalars, the physical mixing matrices (A and B), and the coefficients

of the scalar potential in the charged Higgs basis (Y and Z). For example, performing

the diagonalization of the neutral scalar squared-mass directly in the charged Higgs basis

yields [7],

2v2Zi1,1j = −2(D2
±)ij +

(
BD2

0B
†
)
ij
, (2.39)

2v2Zi1,j1 =
(
BD2

0B
T
)
ij
. (2.40)

Using these results along with eqs. (2.36) and (2.38), one can easily derive,

Y1a =
1

2

(
AD2

0B
†
)

1a
, (2.41)

Ya1 = −1

2

(
BD2

0A
)
a1
. (2.42)

In the charged Higgs basis, the Yukawa Lagrangian takes the following form,

− LY = q̄LΓCa ΦC
a nR + q̄L∆C

a Φ̃C
a pR + h.c., (2.43)

where

Φ̃C
a ≡

(
1√
2
(ϕC0

a )∗

−S−a

)
. (2.44)

The quarks are brought into their mass basis by unitary transformations

nR = UdR dR, pR = UuR uR, (2.45)

nL = UdL dL, pL = UuL uL. (2.46)

Since only the neutral component of the first doublet ΦC has a vacuum expectation, these

transformations are chosen such that

v√
2
U †dLΓC1 UdR = Dd = diag(md,ms,mb, . . . ), (2.47)

v√
2
U †uL∆C

1 UuR = Du = diag(mu,mc,mt, . . . ). (2.48)

The Yukawa Lagrangian can then be rewritten as,

− v√
2
LY =

(
ūLV, d̄L

) (
DdΦ

C
1 +N

(2)
d ΦC

2 + · · ·+N
(N)
d ΦC

N

)
dR

+
(
ūL, d̄LV

†
)(

DuΦ̃C
1 +N (2)

u Φ̃C
2 + · · ·+N (N)

u Φ̃C
N

)
uR + h.c., (2.49)

where V = U †uLUdL is the Cabibbo-Kobayashi-Maskawa (CKM) matrix, and

N
(a)
d =

v√
2
U †dLΓCa UdR, (2.50)

N (a)
u =

v√
2
U †uL∆C

a UuR, (2.51)
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Kinetic Lagrangian Yukawa Lagrangian

Coupling Feynman rule Coupling Feynman rule

[ūndmW
+
µ ] −i g√

2
γµPLVnm [ūndmG

+] i g√
2

(
mu

n
MW

PL − md
m

MW
PR

)
Vnm

[d̄numW
−
µ ] −i g√

2
γµPLV

∗
nm [d̄numG

−] i g√
2

(
mu

n
MW

PR − md
m

MW
PL

)
V ∗nm

[ūnumZµ] −i gcw γµ
(

1
2PL −

2
3s

2
w

)
δnm [ūnumG

0] − g
2MW

mu
nδnmγ5

[d̄ndmZµ] i gcw γµ
(

1
2PL −

1
3s

2
w

)
δnm [d̄ndmG

0] g
2MW

md
nδnmγ5

Table 1. The couplings of the up-type and down-type fermions to the massive gauge bosons and

their Yukawa Lagrangian counterparts obtained by substituting the gauge bosons by the corre-

sponding Goldstone bosons.

with a = 2, 3, . . . , N . In light of eq. (2.24), the matrices N
(a)
d and N

(a)
u rephase under the

rephasing of the charged Higgs basis,

N
(a)
d → e−iχaN

(a)
d , N (a)

u → eiχaN (a)
u , for a = 2, 3, . . . , N. (2.52)

In general, the matrices N
(a)
d and N

(a)
u are not diagonal, leading to flavor-changing

neutral scalar interactions, which are strongly constrained experimentally. Notice that

these matrices, multiplied by the appropriate CKM matrix element, will also be responsible

for the charged scalar interactions with quarks. Using eqs. (2.15) and (2.44), it follows that

− v√
2
LY = ūLV

(
N

(a)
d S+

a

)
dR +

v√
2
d̄LDddR +

1√
2
d̄L

(
N

(a)
d BaβS

0
β

)
dR (2.53)

−d̄LV †
(
N (a)
u S−a

)
uR +

v√
2
ūLDuuR +

1√
2
ūL

(
N (a)
u B∗aβS

0
β

)
uR + h.c. ,

where there is an implicit sum over repeated indices, a = 1, . . . , N and β = 1, . . . , 2N , and

N
(1)
d = Dd , N (1)

u = Du , (2.54)

are identified as the diagonal down-type and up-type fermion mass matrices defined in

eqs. (2.47) and (2.48). Note that eq. (2.53) includes the fermion interactions with the

charged and neutral Goldstone bosons, S+
1 = G+ and S0

1 = G0. Moreover, eq. (2.53) is

invariant under the rephasing of the charged Higgs basis in light of eqs. (2.23) and (2.52).

The matrices B and N (a) fully parameterize the Yukawa Lagrangian. Thus, we may

use the equivalence theorem [19] in order to relate some of the cubic couplings from the

kinetic Lagrangian in eq. (2.5) to the couplings with Goldstone bosons in eq. (2.53), through

the properties of B in eqs. (2.35) and (2.36). In contrast with our previous publication [7],

where both the scalar potential and the kinetic Lagrangian Feynman rules were in general

distinct from the SM, here we find that the fermion-gauge couplings of the NHDM are

identical to those of the SM. These results are presented in table 1, where mu
n (md

n) is

the n-th up-quark (down-quark) mass. Thus, no new sum rules arise exclusively from the

fermion-gauge couplings.

– 8 –
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3 Sum rules

A comprehensive study of sum rules for Higgs couplings in extended Higgs sectors (under

the assumption of a CP-conservation) was first provided in ref. [20]. In ref. [7], we special-

ized to the NHDM (while relaxing the assumption of CP conservation in the scalar sector)

and derived numerous sum rules involving the Higgs couplings in the scalar-gauge sector

of the model (see also refs. [21, 22]). In this section, we extend our study of the NHDM

sum rules to include the Higgs couplings to fermions.

We use the same notation of ref. [7] in which [XaYbZc] is identified as the term in

the Lagrangian that depends explicitly on family type indices. For example [7], from the

Feynman rules

ZµS
0
βS

0
γ :

g

2cW
(p0
β − p0

γ)µAβγ ,

ZµZνS
0
β : − igMZ

cW
A1β gµν ,

W+
µ W

−
ν S

0
β : −igMWA1β gµν ,

W+S−a S
0
β :

ig

2
(p−a − p0

β)µBaβ , (3.1)

we define [
ZµS

0
βS

0
γ

]
= Aβγ ,

[
ZµZνS

0
β

]
= A1β ,[

W+
µ W

−
ν S

0
β

]
= A1β ,

[
W+S−a S

0
β

]
= Baβ . (3.2)

Since the matrix A is antisymmetric, Aββ = 0 whenever the two indices coincide.

Analogously, we define [XaYbZc]R,L as the term that depends on family type indices

that is proportional to the corresponding chiral projection operator PR,L ≡ 1
2(1± γ5). For

example, in the Lagrangian term

L ⊃ C1 {f(a, b, c)PL + g(a, b, c)PR}XaYbZc, (3.3)

involving the fields Xa, Yb, Zc, we identify [XaYbZc]L = f(a, b, c) and [XaYbZc]R = g(a, b, c).

We employ indices a and β for scalars and indices m, n, p and q as fermion family indices,

and we follow closely the sign conventions of ref. [8]. For convenience, we have extracted

a normalization factor C1, whose value depends on whether the scalar field is electrically

charged or neutral. As an example, for the couplings of the charged scalars to fermion

pairs, it is convenient to define C1 =
√

2/v = g/(
√

2mW ). Then,5[
ūndmS

+
a

]
L

=
(
N †(a)
u

)
np
Vpm , (3.4)[

ūndmS
+
a

]
R

= −Vnp
(
N

(a)
d

)
pm

, (3.5)

5One can check that eqs. (3.4)–(3.7) and eqs. (3.8)–(3.11) with the respective choices for C1 are consistent

by comparing these couplings for β = 1 [cf. eq. (2.35)] with the SM couplings of the charged and neutral

Goldstone boson to corresponding quark-antiquark pairs [23].
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[
d̄numS

−
a

]
L

= −
(
N
†(a)
d

)
np

(V †)pm , (3.6)[
d̄numS

−
a

]
R

= (V †)np

(
N (a)
u

)
pm

, (3.7)

where repeated indices are summed. For the couplings of the neutral scalars to fermion

pairs, it is convenient to define C1 = −1/v = −g/(2mW ). Then,5

[
d̄ndmS

0
β

]
L

=
(
N
†(a)
d

)
nm

(B†)βa , (3.8)[
d̄ndmS

0
β

]
R

=
(
N

(a)
d

)
nm

Baβ , (3.9)[
ūnumS

0
β

]
L

=
(
N †(a)
u

)
nm

Baβ , (3.10)[
ūnumS

0
β

]
R

=
(
N (a)
u

)
nm

(B†)βa . (3.11)

In light of eqs. (2.49)–(2.51), the matrices N
(a)
f and the couplings defined here have dimen-

sions of mass. Once again, one can verify that all Yukawa interactions are independent of

the rephasing of the charged Higgs basis (taking into account the corresponding rephasing

of the charged Higgs fields, S±a ).

Based on the structure of the Yukawa Lagrangian of the NHDM, one may deduce

several sum rules that have not appeared previously in the literature. For example,

2N∑
β=1

[f̄nfmS
0
β ]L[f̄pfqS

0
β ]L = 0 , (3.12)

2N∑
β=1

[f̄nfmS
0
β ]R[f̄pfqS

0
β ]R = 0 , (3.13)

where f = u (for up-quarks) or f = d (for down-quarks).6

To derive the sum rules above, we provide details on one of the derivations.

2N∑
β=1

[ūnumS
0
β ]L[ūpuqS

0
β ]L =

2N∑
β=1

N∑
a=1

N∑
b=1

(
N †(a)
u

)
nm

Baβ

(
N †(b)u

)
pq
Bbβ

=
N∑
a=1

N∑
b=1

(
N †(a)
u

)
nm

(
N †(b)u

)
pq

2N∑
β=1

Baβ Bbβ

=

N∑
a=1

N∑
b=1

(
N †(a)
u

)
nm

(
N †(b)u

)
pq

(BBT )ab = 0 , (3.14)

where the last equality is a consequence of eq. (2.30). There are numerous other cases that

6The sum rules exhibited in eqs. (3.12) and (3.13), in the special case of n = m = p = q, have been

obtained previously in ref. [22].
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yields a factor BBT as above and thus produce a similar sum rule. For example,

2N∑
β=1

[ūnumS
0
β ]L[d̄pdqS

0
β ]R = 0 , (3.15)

2N∑
β=1

[ūnumS
0
β ]R[d̄pdqS

0
β ]L = 0 . (3.16)

Furthermore,

3∑
q=1

[
d̄nuqS

−
b

]
L

[
ūqdmS

+
a

]
R

=
(
N
†(b)
d N

(a)
d

)
nm

, (3.17)

N∑
a=1

3∑
q=1

[
d̄nuqS

−
a

]
L

[
ūqdmS

+
a

]
R

=
1

2

2N∑
β=1

3∑
q=1

[
d̄ndqS

0
β

]
L

[
d̄qdmS

0
β

]
R

=
N∑
a=1

(
N
†(a)
d N

(a)
d

)
nm

,

(3.18)

N∑
a=1

3∑
q=1

[
ūndqS

+
a

]
L

[
d̄qumS

−
a

]
R

=
1

2

2N∑
β=1

3∑
q=1

[
ūnuqS

0
β

]
L

[
ūqumS

0
β

]
R

=
N∑
a=1

(
N †(a)
u N (a)

u

)
nm

.

(3.19)

Combining the parameterization of the Yukawa Lagrangian presented here with the

parameterization of the scalar sector in ref. [7], we find

2N∑
β=1

[f̄nfmS
0
β ]L[ZµS

0
βS

0
α] = −i[f̄nfmS0

α]L , (3.20)

2N∑
β=1

[ZµS
0
αS

0
β ][f̄nfmS

0
β ]R = −i[f̄nfmS0

α]R . (3.21)

We also observe that

2N∑
β=1

[f̄nfmS
0
β ]L[VµVνS

0
β ] = − (Df )nm , (3.22)

2N∑
β=1

[VµVνS
0
β ][f̄nfmS

0
β ]R = − (Df )nm , (3.23)

where, as before, VµVν = ZµZν , W
+
µ W

−
ν and f = u, d. We find it useful to write certain

sum rules that arise from the fact that the CKM matrix is unitary. For example,∑
p,a

[ūndpS
+
a ]L[W+

µ S
0
βS
−
a ](V †)pm = [ūnumS

0
β ]L , (3.24)

−
∑
p,a

(V †)np[ūpdmS
+
a ]R[W+

µ S
0
βS
−
a ] = [d̄ndmS

0
β ]R , (3.25)
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∑
p,a

Vnp[d̄pumS
−
a ]R[W−µ S

0
βS

+
a ] = [ūnumS

0
β ]R , (3.26)

−
∑
p,a

[d̄nupS
−
a ]L[W−µ S

0
βS

+
a ]Vpm = [d̄ndmS

0
β ]L . (3.27)

We have derived the sum rules above directly from the Lagrangian. One can also obtain

these sum rules from unitarity bounds. Some sum rules were written for a general model

in eq. (3.4) and eq. (3.7) of ref. [20]. In appendix A we show explicitly the derivation of

those sum rules based on the cancellation of bad high energy behavior in 2 → 2 scattering

processes, in the case of the most general NHDM with fermions. Note that in contrast to the

results of section V of ref. [20], the sum rules exhibited in table 1 and in eqs. (3.20)–(3.27)

have been derived under the assumption of multiple quark family generations.

4 A critical constraint from perturbativity

The sum rules obtained in section 3 can be used to uncover intimate relations between the

structure of Yukawa couplings and the scalar/gauge couplings. As an illustration, we start

by observing that eq. (2.32) can be rewritten as,

δβγ + i Aβγ =

N∑
a=1

B∗aβBaγ . (4.1)

Setting β = γ = 2 and noting that the matrix A is antisymmetric, we get

1 =

N∑
a=1

|Ba2|2 . (4.2)

Thus, |B12| must be smaller than one. Moreover, we know from eqs. (2.35), (2.36) and (3.2)

that B12 = −[V V h125], where we have assumed that the lowest lying neutral scalar co-

incides with the one found with 125 GeV at LHC (recall that a = 1 refers to the neutral

would-be Goldstone boson, while a = 2 refers to the lowest lying massive neutral mass

eigenstate). Therefore, one may parameterize

|[V V h125]|2 = |B12|2 = s2
β̄−ᾱ, (4.3)

where, henceforth sθ, cθ, and tθ represent the sine, cosine, and tangent of any angle θ that

appears in the subscript.7 Although reminiscent of the notation in the real 2HDM, the

definition of s2
β̄−ᾱ in eq. (4.3) is completely general. Since the value of [V V h125] deduced

from the LHC Higgs data is very close to one, we conclude that c2
β̄−ᾱ is close to zero.

Let us now define
~b = [B22, B32, . . . , BN2] . (4.4)

7We recall in passing that this discussion implies that the coupling [V V h125] measured at LHC is smaller

than unity in any multi-Higgs doublet model. Had [V V h125] been found experimentally to be larger than

one, then not only the SM but any NHDM would have been excluded.
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Clearly, the squared-magnitude of the this vector, |~b|2 = c2
β̄−ᾱ, must be very close to zero.

Next, we recall from eq. (2.15) that the matrix B takes the neutral scalars fields from the

charged Higgs basis into their mass basis. Thus, s2
β̄−ᾱ ∼ 1 means that the massive neutral

scalar in the first doublet of the charged Higgs basis approximately coincides with the

lightest neutral scalar mass eigenstates, which is identified with the observed Higgs boson

of mass 125 GeV. This is known as the alignment limit [24–32]. It occurs naturally in the

decoupling limit [24], but can also arise in a parameter regime without decoupling.

We will now show that, as a consequence of approximate alignment as suggested by

the precision Higgs data, the vector ~b — which depends exclusively on properties of the

neutral scalars — must be almost orthogonal to the vectors

~a(nm) =
[(
N

(2)
d

)
nm

,
(
N

(3)
d

)
nm

, . . . ,
(
N

(N)
d

)
nm

]
, (4.5)

for any choice of m and n (explicit reference to n and m will henceforth be suppressed).

Indeed, in light of the Cauchy-Schwarz inequality,

|~a·~b |2 ≤ |~a|2 |~b|2 = |~a|2 c2
β̄−ᾱ (4.6)

is suppressed by c2
β̄−ᾱ. Eq. (2.53) shows that entries in the

√
2N

(a)
f /v matrix are physical [up

to an overall rephasing as shown in eq. (2.52)], for they appear in the Yukawa Lagrangian

expressed in terms of the scalars fields in their mass basis. Moreover, for the theory to

remain perturbative, such couplings cannot exceed some reference value, which we take to

be 4π. As a result

|~a|2 ≤
∑
a≥2

∣∣∣(N (a)
d

)
nm

∣∣∣2 ≤ 8π2v2(N − 1) , (4.7)

and

|~a·~b |2 ≤ 8π2v2(N − 1) c2
β̄−ᾱ. (4.8)

This shows that the alignment limit, which is initially defined based on the observed V V h125

coupling, has a dramatic impact on the Higgs-fermion Yukawa couplings. This is one of our

major results. It can be written in a more interesting fashion by setting β = 2 in eq. (3.9),[
d̄ndmS

0
2

]
R

=
(
N1
d

)
nm

B12 +
∑
a≥2

(
N

(a)
d

)
nm

Ba2 . (4.9)

In light of eq. (2.54), it follows that,[
d̄ndmh125

]
R
−md

n δnmB12 = ~a·~b (4.10)

is also bounded by eq. (4.8). Likewise, eq. (3.8) yields[
d̄ndmh125

]
L
−md

n δnmB
∗
12 = (~aT ·~b)∗ , (4.11)

where ~aT (nm) = ~a(mn) [cf. eq. (4.5)]. Similar equations hold for the up type fermions. We

conclude that the couplings of the observed 125 GeV scalar to quark pairs are approximately

diagonal in the alignment limit with values that approximate the corresponding coupling of

– 13 –



J
H
E
P
1
0
(
2
0
1
8
)
1
4
3

the SM Higgs boson. Moreover, the magnitude of the off-diagonal couplings of the 125 GeV

scalar are bounded according to eq. (4.8). Of course, this behavior is expected since the

tree-level properties of H0 ≡
√

2 Re ΦC
1 − v are precisely those of the SM Higgs boson. In

the alignment limit, H0 is an approximate mass eigenstate that is identified as the observed

125 GeV scalar.

It is instructive to apply eq. (4.10) in the case of the so-called complex two Higgs

doublet model (C2HDM) (see, e.g., refs. [33–39]). A recent analysis was performed in [40],

introducing the public C2HDM HDECAY code for the HDECAY program [41], as well as

all the corresponding Feynman rules.8 Using eq. (B.12) of ref. [7], we find[
d̄ndmh125

]
R

+md
n δnm sβ−α c2 =

(
N

(2)
d

)
nm

(−cβ−αc2 + is2). (4.12)

In the C2HDM there are three mixing angles (α1, α2, and α3); c2 ≡ cosα2 and similarly

for others; while we define α1 = α+π/2, in order to make contact between α1 as employed

in the C2HDM and the angle α used in its real 2HDM limit. In the notation used here, the

h125V V coupling is given by c2 cos (α1 − β) = −c2 sβ−α, which corresponds to sβ̄−ᾱ used

in eq. (4.3). For the h125V V coupling to be close to unity, s2 must be close to zero (i.e.,

a small CP-violating angle), and cβ−α must also be close to zero, making both terms on

the right-hand-side of eq. (4.12) close to zero. Consequently, the real part of
[
d̄ndmh125

]
R

must lie close to its SM value and its imaginary part must be close to zero.9 Eq. (4.12) for

the C2HDM, and more generally eq. (4.10) in the case of the NHDM can also be used to

generalize the results presented recently in ref. [42].

5 Conclusions

Although the Standard Model employs a Higgs sector consisting of a hypercharge-one,

doublet of scalar fields, the generational structure of the fermionic sector invites us to

consider the possibility that the Higgs sector of the Standard Model is also non-minimal,

consisting of N Higgs doublets. Without prior knowledge of N , it is useful to analyze

the NHDM in the case of general N . In a previous paper [7], we examined the physical

parameterization, sum rules and unitarity bounds of the bosonic sector of the NHDM. We

were able to provide an elegant formulation of the NHDM by exploiting the charged Higgs

basis, where the neutral scalar field vacuum expectation value resides entirely in one of

the N scalar doublet fields, and each of the remaining N − 1 scalar doublet fields contains

a physical (mass-eigenstate) charged Higgs field. In this formulation, many of the purely

bosonic couplings of the model can be expressed entirely in terms of an N × 2N matrix B.

This paper extends the results of ref. [7] to include the most general Higgs-fermion

Yukawa couplings. We have shown that in addition to B, one must introduce a pair of

N − 1 complex 3 × 3 matrices (one for up-type and one for down-type), along with the

diagonal up and down-type quark mass matrices in order to fully parameterize the Higgs-

quark Yukawa interactions. Using these parameters, we have derived a set of sum rules

8See the webpage at http://porthos.tecnico.ulisboa.pt/arXiv/C2HDM/.
9Despite the bounds on s2 and contrary to popular belief, one can still have dominant CP-violating cou-

plings to some fermions, even when the bounds from electric dipole moments are taken into account [38–40].
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that involve the Higgs-fermion interactions. Some of these sum rules exclusively involve the

Yukawa couplings, whereas others involve products of Yukawa couplings and gauge/Higgs

couplings. Several of these sum rules have not appeared previously in the literature.

In the charged Higgs basis, the tree-level couplings of the neutral CP-even component of

the scalar doublet [denoted by H0 in eq. (2.14)] that contains the entire neutral scalar field

vacuum expectation value correspond precisely to those of the SM Higgs boson. In general,

H0 is not a mass-eigenstate due to the mixing of this field with the other neutral scalar

fields of the NHDM. However, if H0 is an approximate mass eigenstate, then the Higgs

sector is said to exhibit approximate alignment, since the corresponding mass eigenstate

is approximately aligned in field space with the neutral Higgs vacuum expectation value.

The alignment limit can be conveniently defined by exploiting the sum rule satisfied by the

V V couplings to the neutral scalars (where V V = W+W− or ZZ). We are then able to

show the corresponding impact of the alignment limit on the Higgs-fermion couplings.

Of course, the sum rules governing the Higgs-fermion couplings of the NHDM, while

constraining the model in interesting ways, do not address the phenomenological challenge

presented by the near absence of flavor-changing neutral currents in the experimental data.

Without further model constraints, either via fine-tuning of couplings or by the imposi-

tion of additional symmetries, the generic NHDM will exhibit significant tree-level flavor

changing neutral currents mediated by neutral Higgs exchange, in conflict with experimen-

tal observations. Addressing this challenge will be the subject of a future publication.
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A Generalized sum rules

A.1 Notation and conventions

In order to obtain the sum rules of section III of ref. [20], in particular their equa-

tions (3.3), (3.4) and (3.7), it is convenient to adopt their conventions for the Feynman

rules,

V α
a V

β
b V

γ
c : i gabc

[
(pa − pb)γ + (pb − pc)α + (pc − pa)β

]
≡ i gabc Γαβγ(pa, pb, pc) (A.1)

V α
a V

β
c φi : i gabi g

αβ (A.2)

V α
a φiφj : i gaij (pi − pj)α (A.3)

V α
a fmfn : i γα

(
gLamnPL + gRamnPR

)
(A.4)

φifmfn : i
(
gLimnPL + gRimnPR

)
(A.5)
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Figure 1. Diagrams for the scattering fn + fm → VaVb.

with all momenta incoming. Here f , V , and φ stand for fermions, gauge bosons, and

scalars, respectively, and PR,L ≡ 1
2(1 ± γ5) are the usual chiral projection operators. We

will use lowercase mn for the mass of the fermion fn, and uppercase Ma for the mass of

the gauge boson Va.

A.2 FFV V sum rules

A.2.1 The amplitudes

The diagrams contributing to the scattering fn(p1)+fm(p2)→ Va(p3)+Vb(p4) are exhibited

in figure 1. In an obvious notation we will name the amplitudes according to Mandelstam

variables channel (s, t or u) and by the particle being exchanged. We then obtain,

MA
s = (−i)(i gabe)Γαβν(−p4,−p3, p1 + p2) i fm(p2)γµ

(
gLemnPL + gRemnPR

)
fn(p1)

× (−i)
[
gµν − (p1 + p2)µ(p1 + p2)ν/M2

e

]
s−M2

e

εα(p3)εβ(p4) ,

Mf
t = (−i)(i)3 fm(p2)γβ

(
gLbmpPL + gRbmpPR

)
(/p1
− /p3

+mp)γα
(
gLapnPL + gRapnPR

)
fn(p1)

× 1

t−m2
p

εα(p3)εβ(p4) ,

Mf
u = (−i)(i)3 fm(p2)γα

(
gLampPL + gRampPR

)
(/p1
− /p3

+mp)γβ
(
gLbpnPL + gRbpnPR

)
fn(p1)

× 1

u−m2
p

εα(p3)εβ(p4) ,

Mφ
s = (−i)(i)3gabk fm(p2)

(
gLkmnPL + gRkmnPR

)
fn(p1)

gαβ
s−m2

k

εα(p3)εβ(p4) . (A.6)

A.2.2 The high energy limit

When the gauge bosons are longitudinally polarized the diagrams of figure 1 grow with

energy for large center of mass energy
√
s. The worst behavior comes from the first three

diagrams that grow like E2 while the fourth diagram grows like Emf . To see this one has
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to use the expression for the polarization vector for the longitudinal case, which is given by

εL = (γβ, γ~β/β) ' pµ

M
+O

(
1

γ2

E

M

)
. (A.7)

To determine the coefficients of the high energy behavior [see eq. (A.20) below] we can-

not use the approximate expression in the right-hand side of eq. (A.7) for all the diagrams

because we would then lose contributions that modify the Emf terms. Hence, we should

employ consistently the definitions of the left-hand side and expand the result in powers of

s, t or u. As an example, for the gauge boson Va, we have

εLa = (γaβa, γa~βa/βa), βa =

√
E2
a −M2

a

Ea
, γa =

1√
1− β2

a

, Ea =
s+M2

a −M2
b

2
√
s

, (A.8)

and similarly for the other particles. Next we use the kinematics for the process,

f(p1) + f(p2)→ Va(p3) + Vb(p4) , (A.9)

to write

p1 = (En, 0, 0, βnEn), p2 = (Em, 0, 0,−βmEm), (A.10)

p3 = (Ea, βaEa sin θ, 0, βaEa cos θ), p4 = (Eb,−βbEb sin θ, 0,−βbEb cos θ), (A.11)

εLa = (γaβa, γa sin θ, 0, γa cos θ), εLb = (γbβb,−γb sin θ, 0,−γb cos θ). (A.12)

We then use these expressions to evaluate all the amplitudes. In the end we substitute

cos θ in terms of the Mandelstam variable t, through the relation,

cos θ =
t−m2

n −M2
a + 2EnEa

2EnEaβnβa
. (A.13)

At this point all the amplitudes are expressed in terms of the Mandelstam variables

and the masses. As the Mandelstam variables are not independent, we can still use the

relation,

s+ t+ u = m2
n +m2

m +M2
a +M2

b , (A.14)

to express the result in terms of just two independent variables. Next we want to isolate

the terms that grow with E2 and Emf . To achieve this we introduce the scaling

s→ s/x, t→ t/x, u→ u/x , (A.15)

and make an expansion for small x. This would be enough for the amplitudes without

fermions, but here we have the additional complication of having strings like

f(p2) · · · f(p1) . (A.16)

Since we want to isolate the coefficients of these structures, and as the spinors grow like

E1/2, we also employ the scaling

f(p2) · · · f(p1)→ 1√
x
f(p2) · · · f(p1) . (A.17)
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There is one final complication. Since we wish to have independent spinor structures, we

shall use the Dirac equation between spinors. But then we have a problem for structures like

f(p2) · · · γα · · · f(p1)εα . (A.18)

We have verified that for this case it is enough to use the first term on the right-hand side

of eq. (A.7). That is, we will make the replacement

γαεα(p)→ 1√
x
γα

pα
M

. (A.19)

The terms that grow as E2 are the coefficients of x−1 and the terms that grow as Emf

are the coefficients of x−1/2. Therefore we can write for each amplitude

Mi = f(p2)/p3
PLf(p1)ALi x

−1 + f(p2)/p3
PRf(p1)ARi x

−1

+ f(p2)PLf(p1)BL
i x
−1/2 + f(p2)PRf(p1)BR

i x
−1/2 + constant, (A.20)

where we have assumed energy-momentum conservation. Eq. (A.20) has been obtained by

using FeynCalc and Mathematica for the Lorentz and Dirac algebra and series expansion,

respectively.

The E2 terms. The first three diagrams in figure 1 yield terms that grow like E2. To

simplify the expressions, we redefine the coefficients

Âi = AiMaMb . (A.21)

The corresponding Âi coefficients are given in table 2. Since the sum of these coefficients

has to vanish, we end up with two sum rules,∑
p

[
gLapn g

L
bmp − gLamp gLbpn

]
=
∑
e

gabe g
L
emn , (A.22)∑

p

[
gRapn g

R
bmp − gRamp gRbpn

]
=
∑
e

gabe g
R
emn . (A.23)

These relations are the sum rules in eq. (3.3) of ref [20]. The cancellation of the terms which

grow as E2 is guaranteed by the gauge group structure of the fermion representations, as

shown by Llewellyn Smith [43] (see also [44, 45]). So, these sum rules must hold in any

spontaneously broken gauge theory.

The E terms. Having shown that a spontaneously broken gauge theory assures that the

worst high energy behavior cancels, we move to the terms that grow as a single power of

E. Here the gauge invariance of the theory is not sufficient to guarantee cancellation of

the bad high energy behavior, and we obtain constraints on the gauge boson couplings to

scalars.

For convenience we again define,

B̂i ≡MaMbBi . (A.24)
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Diagram ÂLi ÂRi

MA
s gabe g

L
emn gabe g

R
emn

Mf
t −gLapn gLbmp −gRapn gRbmp

Mf
u gLamp g

L
bpn gRamp g

R
bpn

Mφ
s 0 0

Table 2. Coefficients ÂL
i and ÂR

i .

The results are summarized in table 3. To obtain the sum rule in eq. (3.4) of ref. [20], the

sum of the coefficients B̂L
i and B̂R

i has to vanish separately. The follow sum rule is then

obtained,∑
p

[
mp

(
gRbmp g

L
apn + gRamp g

L
bpn

)
−mm g

L
apn g

L
bmp −mn g

R
amp g

R
bpn

]
+
∑
e

′
[
gabe

[
M2
a −M2

b −M2
e

2M2
e

] (
mn g

R
emn −mm g

L
emn

)]
=

1

2

∑
k

gabkg
L
kmn ,

(A.25)

where
∑

e
′ means that the sum only runs over massive gauge bosons. Another sum rule

can be obtained from eq. (A.25) with the substitution L ↔ R. Eq. (A.25) is similar, but

not equal, to eq. (3.4) of ref. [20]. But we can bring eq. (A.25) to the form of the sum rule

of ref. [20] using eq. (A.22) to write,

−
∑
p

mm g
L
apn g

L
bmp =−

∑
p

mm g
L
ampg

L
bpn −

∑
e

gabemm g
L
emn ,

−
∑
p

mn g
R
amp g

R
bpn =−

∑
p

mn g
R
apng

R
bmp +

∑
e

gabemn g
R
emn . (A.26)

Now we add the last two equations to obtain∑
p

[
−mm g

L
apn g

L
bmp −mn g

R
amp g

R
bpn

]
=
∑
p

[
−mm g

L
ampg

L
bpn −mn g

R
apng

R
bmp

]
+
∑
e

′gabe
(
mn g

R
emn −mm g

L
emn

)
. (A.27)

Finally, we substitute eq. (A.27) into eq. (A.25), to obtain∑
p

[
mp

(
gRbmp g

L
apn + gRamp g

L
bpn

)
−mm g

L
amp g

L
bpn −mn g

R
apn g

R
bmp

]
+
∑
e

′
[
gabe

[
M2
a −M2

b +M2
e

2M2
e

] (
mn g

R
emn −mm g

L
emn

)]
=

1

2

∑
k

gabkg
L
kmn ,

(A.28)

which is precisely the sum rule of eq. (3.4) of ref. [20]. We also obtain a similar rule by

substituting L↔ R. The other sum rules in eqs. (3.5) and (3.6) of ref. [20] can be derived

from the above in the same way.
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Figure 2. Diagrams for the scattering fn + fm → Vaφi.

Diagram B̂L
i B̂R

i

MA
s

gabe

[
(M2

a−M2
b
−M2

e )

2M2
e

] gRemnmn − gLemnmm gLemnmn − gRemnmm

Mf
t gLapng

R
bmpmp − gLapngLbmpmm gRapng

L
bmpmp − gRapngRbmpmm

Mf
u gLbpng

R
ampmp − gRampgRbpnmn gRbpng

L
ampmp − gLampgLbpnmn

Mφ
s −1

2gabkg
L
kmn −1

2gabkg
R
kmn

Table 3. Coefficients B̂i.

A.3 FFV φ sum rules

A.3.1 The amplitudes

The diagrams contributing to the scattering fn(p1) + fm(p2) → Va(p3) + φi(p4) are given

in figure 2. The corresponding amplitudes are given by,

MA
s = (−i)2(i)2(gaie)gµαfm(p2)γν

(
gLemnPL+gRemnPR

)
fn(p1)

[
gµν−(p1+p2)µ(p1+p2)ν/M2

e

]
s−M2

e

εα(p3) ,

Mf
t = (−i)(i)3 fm(p2)

(
gLimpPL+gRimpPR

)
(/p1
−/p3

+mp)γα
(
gLapnPL+gRapnPR

)
fn(p1)

1

t−m2
p

εα(p3) ,

Mf
u = (−i)(i)3 fm(p2)γα

(
gLampPL+gRampPR

)
(/p1
−/p3

+mp)
(
gLipnPL+gRipnPR

)
fn(p1)

1

u−m2
p

εα(p3) ,

Mφ
s = (−i)(i)3gaik (−p4−p1−p2)α fm(p2)

(
gLkmnPL+gRkmnPR

)
fn(p1)

1

s−m2
k

εα(p3) .

(A.29)

A.3.2 The high energy limit

In this case there are no divergent E2 terms. The coefficients of B̂L
i and B̂R

i are summarized

in table 4. Again we employed a definition similar to eq. (A.24),

B̂L,R
i ≡MaB

L,R
i . (A.30)
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Diagram B̂L
i B̂R

i

MA
s − 1

2M2
e
gaei(mn g

R
emn −mm g

L
emn) − 1

2M2
e
gaei(mn g

L
emn −mm g

R
emn)

Mf
t gLapn g

L
imp gRapn g

R
imp

Mf
u −gLipn gRamp −gRipn gLamp

Mφ
s gaik g

L
kmn gaik g

R
kmn

Table 4. Coefficients B̂L,R
i .

Since the sum of the coefficients has to vanish, we obtain the sum rule,∑
e

′ 1

2M2
e

gaei(mn g
R
emn −mm g

L
emn)−

∑
k

gaik g
L
kmn =

∑
p

(
gLapn g

L
imp − gRamp gLipn

)
, (A.31)

in agreement with eq. (3.7) of ref. [20]. We also obtain a similar sum rule with the inter-

change L↔ R.
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