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1 Introduction and summary

Three-dimensional gauge theories have been the focus of many recent studies. A wide

array of tools has been applied to these theories, leading to many exact results and even

more conjectures. However, the N = 1 supersymmetric1 versions of these theories have

only very recently received increased attention [1–7]. These theories are the focus of the

present paper.

Supersymmetry (SUSY) is less restrictive in 2+1d N = 1 theories than in other well-

known SUSY theories. For example, since the superpotential is real, the standard non-

renormalization theorems based on holomorphy, which apply to many SUSY theories (such

as N = 1 SUSY in 3+1d), do not apply to N = 1 theories in 2+1d. These theories are

therefore much harder to analyze than theories with more supercharges. However, many

properties of SUSY do not depend on holomorphy of the superpotential, and they can come

to our aid when studying N = 1 theories in 2+1d. The Witten index [8] is one example;

12+1d theories with N = 1 supersymmetry have 2 supercharges.
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we rely on it heavily. Phase transitions between SUSY vacua are also simpler to analyze,

since these phase transitions must be of second order or higher.2 One final example is

the calculation of supergraphs, which makes cancellations between bosonic and fermionic

Feynman diagrams manifest, and which simplify our calculations. These tools allow us to

find some exact results even though the superpotential is real.

In this work we use supergraphs to find the phase diagrams of N = 1 gauge theories

coupled to fundamental matter multiplets. When the theories are weakly coupled (e.g.

when the fields are very massive), the vacuum can usually be found through a simple

semiclassical computation. However, in the strongly coupled regime the vacua are more

complicated. In this case one must calculate the effective potential of the theory to find the

correct vacua [9], which can be calculated in perturbation theory using Feynman diagrams.

We use a SUSY generalization of this effective potential (called the effective superpotential).

Given a 2+1d N = 1 gauge theory with massive matter fields Φ, we calculate the

1-loop effective superpotential for matter fields in an arbitrary representation R, assuming

that there is a single Chern-Simons (CS) level3 k. The result is4

W = m|Φi|2 −
κ

8π
tr

√
κ2δab + 4g2Φ̄iT (aT b)Φi (1.1)

Here m is the tree-level mass, κ = kg2

2π , g is the gauge coupling, i = 1, . . . , Nf is the

flavor index and T a for a = 1, . . . , dim(R) are the generators of the gauge group in the

representation R.

Next, we restrict ourselves to matter in the fundamental representation; we mostly

discuss the unitary, orthogonal and symplectic groups in this paper. Having found the

effective superpotential, we can study the vacua and the phase structure of the theory. We

find that 1-loop corrections to the superpotential have a drastic effect on the phase diagram

of the theory. While the classical theory can have a moduli space (when the matter fields

are massless), this moduli space is generally lifted at the 1-loop level. On the other hand,

the 1-loop superpotential can create new vacua that do not appear at the classical level

when the fields are massive.

We summarize our results for the phase diagrams of these theories. We find that the

theories we study all have a universal form for their phase diagram shown in figure 1.

For concreteness, we describe the phases for a specific example we study in this paper: a

U(N)k+ 1
2

(N+Nf ),k+ 1
2
Nf

gauge theory with Nf fundamental matter multiplets. Solving the

F-term equations, we find the phase diagram that appears in figure 1, with the following

phases:

2This is because SUSY vacua have zero energy. Recall that classical SUSY vacua with vanishing Witten

index can be lifted dynamically, whereas classical SUSY vacua with non-vanishing Witten index must have

zero energy also at the quantum level.
3By this we mean that the result is valid when the “quantum” CS levels (schematically obtained by

integrating out all of the fermions, see e.g. [10]) are all equal. This is automatically obeyed for gauge groups

such as SU(N), O(N), SO(N), Sp(N) and so on, but is also obeyed for theories such as N = 1 U(N)k+ 1
2
N,k

(since after integrating out the gaugino we find U(N)k, which has a single CS level).
4Our convention here is that under time reversal, k → −k, so it suffices to study k > 0.
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Figure 1. Schematic general form of the phase diagram for the N = 1 gauge theories with

CS terms and Nf fundamental matter fields discussed in this paper. The blue graphs depict the

effective potential. There are two semiclassical phases for large |m|, and an intermediate phase with

min(N + 1, Nf + 1) solutions to the F-term equations with various symmetry breaking patterns. A

similar phase diagram exists for SO(N) and Sp(N) gauge groups. The phase transition at m = m∗ is

highly unnatural, since at this point many solutions of the F-term equations collide simultaneously.

Nonetheless, this picture is an exact result to all orders in perturbation theory.

• For m > m∗ for some m∗ > 0, we find a single solution to the F-term equations. The

resulting low-energy theory is an N = 1 U(N)k+N
2

+Nf
CS theory.

• For m < 0, we again find a single solution, with an N = 1 U(N)k+N
2

CS theory.

• In the intermediate phase 0 < m < m∗, we find min(N + 1, Nf + 1) solutions to the

F-term equations. These exhibit various symmetry-breaking patterns, and consist of

an N = 1 vector multiplet with a decoupled non-linear sigma model (NLSM).

We claim that this picture is correct for all N and Nf in the range k > −min(Nf , N).

Note that some of the vacua above may have vanishing Witten index, and are expected

to break SUSY dynamically due to non-perturbative corrections. This behavior of a pure

N = 1 CS theory is reviewed in section 2.2.

There are two interesting points in the phase diagram that we must discuss. First, at

the point m = 0 we find a “wall” where the Witten index jumps due to the appearance of

vacua from infinity [8] (this appeared in a similar analysis where the matter content was a

single adjoint matter multiplet [1]). Second, we find a single phase transition point where

many SUSY vacua merge together to create a single SUSY vacuum (specifically, for k ≥ 0

we find that the number of SUSY vacua that merge is min(Nf + 1, N + 1)). This critical

point is highly unnatural; generically, we would need to tune n − 1 relevant deformations

to find a fixed point where n vacua collide. Note that such a critical point did not appear

when the matter field was in the adjoint representation; there, instead of one non-generic

critial point, there were many different phase transitions in the range 0 < m < m∗ for some

m∗ [1]. We call the non-generic critical point at m = m∗ a “super-critical” point.5

The phase diagram can be explicitly found at 1-loop by studying the effective super-

potential (1.1). However, we show that this phase diagram is actually an exact result to

5This term may lead one to suspect that SUSY is required for this phenomenon to occur. We are not

claiming that this is true in the general case. However, we find that for the theories we study here, there is

strong evidence that the super-critical points can be linked to similar phenomena in 3d theories with N = 2

SUSY (where they can be understood as resulting from the holomorphy of the superpotential).
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all orders in perturbation theory (and only the value of m∗ can be changed by higher-loop

corrections). This makes the phase transition point at m∗ much more interesting. As

explained above, having such a super-critical point in the theory is highly unnatural, since

a generic small quantum correction should split this single point into many phase transi-

tions. However, we are able to use general arguments that rely only on the symmetries

of the theory to show that this super-critical point should indeed persist to all orders in

perturbation theory.

These symmetry arguments turn out to useful in an even wider range of theories.

Much of this paper is devoted to studying the solutions of the F-term equations due to

the superpotential (1.1) in the range 0 < m < m∗ for various gauge groups. As discussed

above, we find that the solutions are universal, which means that a wide range of gauge

theories with CS terms and fundamental matter fields have the same general form for

their phase diagrams, appearing in figure 1. We explain this universality using the same

symmetry arguments, and show that these solutions are expected to persist to all orders in

perturbation theory, again allowing for exact results for the theories we study in this paper.

Next, we study the phase transition point at m∗ in more detail. As explained above,

since the phase transition is between SUSY vacua, it must be (at least) second order. The

phase transition is thus described by a conformal field theory (CFT). We can study some

of its properties by considering the RG flows of these theories at large k. The two-loop

beta functions of CS theories with matter were calculated in [11, 12]. However, since our

theories also include a Yang-Mills (YM) term, it is not immediately obvious how to relate

these results to our theory. To do so, we must first integrate out the very massive YM

mode from our theory, which lead to a low energy CS-matter theory with some effective

superpotential. We can then use the two-loop beta functions of [11, 12] to find the fixed

point we flow to, and to study the corresponding CFT at the super-critical point. In

particular, it is shown that while this fixed point generically has N = 1 SUSY, in some

degenerate cases we find emergent N = 2 SUSY in the infrared (IR). The special case of an

SU(2) gauge theory with Nf fundamental matter multiplets is discussed separately. The

global symmetry of this theory is classically enhanced6 to Sp(Nf ), and we find that this

enhanced symmetry is present in the IR fixed point as well.

The phase diagrams and RG flows lead us to propose some N = 1 dualities at the

phase transition point m = m∗. A duality was recently proposed for N = 1 gauge theories

with fundamental matter the special case Nf = 1 [1]. Our results allow us to generalize

this duality to all values of Nf :

U(N)k+ 1
2

(N+Nf ), k+ 1
2
Nf

+Nf Φ←→ SU(k +Nf )−N− 1
2
k +Nf Φ̃ (1.2)

The proposed range of this duality is k > −min(Nf , N). The universality discussed above

6To avoid confusion, we use the word “enhanced” when discussing symmetries which are classically

larger than naively expected, and “emergent” when discussing symmetries which appear only in the IR.

Specifically, while an SU(N) gauge theory with Nf fundamental matter fields has a U(Nf ) global symmetry,

in the case N = 2 this is classically enhanced to Sp(Nf ), as we shall review in this paper.

– 4 –
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allows us to propose similar N = 1 dualities for other gauge groups. These dualities are:

SO(N)k+ 1
2

(N−2+Nf ) +Nf Φ←→ SO(k +Nf )− 1
2

(k−2)−N +Nf Φ̃ (1.3)

Sp(N)k+ 1
2

(N+1+Nf ) +Nf Φ←→ Sp(k +Nf )− 1
2

(k+1)−N +Nf Φ̃ (1.4)

U(N)k+ 1
2

(N+Nf ), k+N+ 1
2
Nf

+Nf Φ←→ U(k +Nf )−N− 1
2
k, −N−k− 1

2
Nf

+Nf Φ̃ (1.5)

U(N)k+ 1
2

(N+Nf ), k−N+ 1
2
Nf

+Nf Φ←→ U(k +Nf )−N− 1
2
k, k−N+ 3

2
Nf

+Nf Φ̃ (1.6)

Note that some of these dualities have already been studied at large N for the case Nf =

1 [6, 13].

As we shall see, it is of vital importance that to all orders in perturbation theory,

there is a single phase transition point m = m∗. This fact allows us to match the various

phases of these theories exactly across the phase transition point. We emphasize that these

dualities are inherently N = 1 supersymmetric, as we do not expect the theories above to

have emergent N = 2 SUSY (apart from degenerate cases that we discuss in the text).

The dualities (1.3)–(1.6) lead to an interesting result for the special case k = N −Nf .

For example, duality (1.5) reduces to:

U(N) 3
2
N− 1

2
Nf , 2N− 1

2
Nf

+Nf Φ←→ U(N)− 3
2
N+ 1

2
Nf , −2N+ 1

2
Nf

+Nf Φ̃ (1.7)

which means that the theory has emergent time-reversal symmetry in the IR. We obtain

a similar result for the rest of the dualities (1.3)–(1.6). As discussed in a recent paper,

the superpotential in N = 1 time-reversal invariant theories cannot be perturbatively

renormalized. Thus, the appearance of a classical moduli space may lead to an exact

moduli space in the full quantum theory [4]. We thus might expect the theory in (1.7)

(and the corresponding theories from the rest of the dualities) to have an exact quantum

moduli space. This was shown explicitly for the specific case N = Nf = 1 of (1.7) by the

authors of [4] (the emergent time-reversal invariance in this case was also studied in [14]).

The dualities (1.2)–(1.6) look very similar to some well-known 2+1d N = 2 duali-

ties [15–18]. In fact, we show that most of these dualities can be guessed very naively

from known N = 2 dualities, and a discussion of the RG flows of these theories at large

k indicate that we can flow from the N = 2 dualities to our N = 1 dualities (some of

the dualities above were related more carefully to their N = 2 versions at large N and for

Nf = 1 in [13]). The only exception is (1.6), whose N = 2 version has not yet appeared in

the literature. This allows us to conjecture a new N = 2 duality:

U(N)k+N, k−N +Nf Φ←→ U(k +Nf/2)−N−k, k−N+Nf +Nf Φ̃ (1.8)

on which we have performed some nontrivial checks. This connection to theories with

N = 2 SUSY (in which the superpotential is holomorphic, as opposed to theories with

N = 1 SUSY) allows us to better understand the phase diagrams we found. In particular,

we discuss how this connection might help explain the unnatural super-critical fixed point

at m = m∗.

These dualities are also related to the recently proposed non-SUSY bosonization dual-

ities [19–44]. One way in which this can be seen is by naively integrating out the gaugino

– 5 –
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in the dualities (1.2)–(1.6) and comparing to the results of [14, 45]. Further evidence for

this is that the non-SUSY dualities have been shown to be related to the N = 2 SUSY

dualities mentioned above [13, 46]. We will not be discussing the relation to the non-SUSY

dualities further in this work.

This paper is outlined as follows. We begin by reviewing the relevant background

material in section 2. In section 3, we calculate the effective superpotential for an N =

1 gauge theory with matter in an arbitrary representation. Readers interested in the

results for the phase diagrams and dualities (and not in the derivation of the effective

superpotential) can safely skip most of section 3, and start at section 3.4. In section 4 we use

this effective superpotential to find the phase diagrams of U(N) and SU(N) gauge theories,

and then use symmetry arguments to prove that these phase diagrams are universal. In

section 5 we discuss the RG flow diagrams of our N = 1 theories when deforming by

the available classically marginal N = 1 operators. This allows us to study the emergent

symmetries of the CFT at the super-critical point m = m∗, and to prove that in generic

non-degenerate cases the dualities discussed above are genuine N = 1 dualities. In section 6

we generalize the Nf = 1 duality of [1] to any number of fundamental fields, and conjecture

many similar dualities due to the universality of the phase diagram. We also relate most

of these dualities to existing N = 2 dualities, and discuss the one exception (1.8).

During the initial stages of this work, some of the main results were also noticed

independently by [47].

2 Background

2.1 Gauge theories in N = 1 superspace

Our superspace conventions are summarized in appendix A. The gauge multiplet is de-

scribed by covariantizing the spinor and vector derivatives:

{∇α,∇β} = 2i∇αβ , ∇α ≡ Dα − iΓα , (2.1)

where the generators are hermitian (which is why there is an i in the definition of the gauge

covariant derivative ∇α). The Bianchi identities imply:

[∇γ ,∇αβ ] = CγαWβ + CγβWα , ∇αWα = 0 . (2.2)

The explicit form of Wα is

Wα =
i

6
[∇β , {∇β ,∇α}] =

1

2

(
DβDαΓβ − i[Γβ , DβΓα]− 1

3
[Γβ , {Γβ ,Γα}]

)
. (2.3)

The Lagrangian for a gauge theory in 2+1d consists of three parts: a Chern-Simons

term, a Yang-Mills term, and a matter coupling. The CS action is:

SCS =
k

2π

∫
d2θ Tr

(
ΓαWα +

i

6
{Γα,Γβ}DαΓβ +

1

12
{Γα,Γβ}{Γα,Γβ}

)
. (2.4)

– 6 –
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Using cyclicity of the trace, this can be written out as:

SCS =
k

4π

∫
d2θ Tr

(
ΓαDβDαΓβ −

2i

3
{Γα,Γβ}DαΓβ −

1

6
{Γα,Γβ}{Γα,Γβ}

)
. (2.5)

The YM term is

SWW =
2

g2

∫
d2θ Tr W 2

=
1

4g2

∫
d2θ Tr

(
ΓαDβDαD

γDβΓγ − 2iDβDαΓβ [Γγ , DγΓα]

−[Γβ , DβΓα][Γγ , DγΓα]− 2

3
DβDαΓβ [Γγ , {Γγ ,Γα}] + . . .

)
(2.6)

where the higher order terms are not needed for a two-loop calculation. We can rewrite

the kinetic terms as:

Lkin = − k

4π
Tr (2iΓα∂αβΓβ + ΓαDαD

βΓβ) +
1

2g2
Tr (Γα�Γα − iΓα∂αβD2Γβ) (2.7)

When we gauge fix, we also use the identity:

Tr (ΓαDαD
2DβΓβ) = −Tr (Γα�Γα + iΓα∂αβD

2Γβ) (2.8)

Finally, the gauge invariant matter action is:

SΦ =

∫
d2θ (

1

2
Φ̄∇α∇αΦ +mΦ̄Φ) (2.9)

Gauge fixing typically involves nontrivial weighting functions and hence propagating

Nielsen-Kallosh ghosts [48, 49]. Let us consider the naive gauge fixing term (after integrat-

ing by parts)

S0
fix = −

∫
d2θ Tr

(
ΓαDα

(
1

2αg2
D2 +

k

4πβ

)
DβΓβ

)
(2.10)

This gives rise to a (decoupled) free massive Nielsen-Kallosh ghost with a kinetic operator(
1

2αg2
D2 + k

4πβ

)
, and a usual Faddeev-Popov ghost action:

SFP =
1

g2

∫
d2θ Tr (BDα∇αC) (2.11)

The gauge-fixed kinetic term is (using (2.8)):

Lkin = − k

4π
Tr

(
2iΓα∂αβΓβ +

(
1− 1

β

)
ΓαDαD

βΓβ

)
+

1

2g2
Tr

((
1 +

1

α

)
Γα�Γα − i

(
1− 1

α

)
Γα∂αβD

2Γβ
)

(2.12)

We use Landau gauge in the following, which is obtained by taking7 α, β → 0. Using (2.12)

one can then find the gauge field propagator. Choosing Landau gauge, we find for the gauge

field propagator:

∆ β
α = −g2 δ

β
α

(
κD2 + p2

)
+
(
κ−D2

)
p β
α

p2 (κ2 + p2)
(2.13)

where we defined κ = kg2

2π .

7It is actually enough to take either α→ 0 or β → 0.

– 7 –



J
H
E
P
1
0
(
2
0
1
8
)
1
0
5

2.2 Free N = 1 vector multiplets

We discuss the physics of a free N = 1 vector multiplet. For our purposes, it suffices to

consider N = 1 SU(N)k gauge theories.8 For simplicity, we denote an N = 1 SU(N)k
vector multiplet by SU(N)N=1

k , and the usual non-SUSY theory by just SU(N)k.

Witten [50] found that the behaviour of SU(N)N=1
k can be split into two regimes. In

the small coupling regime k ≥ N
2 , the vacuum is just an SU(N)k−N

2
TQFT (this can be

seen naively by integrating out the adjoint gaugino, which has a mass proportional to k and

with opposite sign). On the other hand, in the strong coupling regime k < N
2 , the Witten

index of these theories vanishes. In this case the vacuum consists of a U
(
k + N

2

)
−N

2
+k,−N

TQFT with a Majorana goldstino [3]. Due to this behaviour, one can write down an N = 1

version of level-rank duality for SU(N) and U(N) vector multiplets:

U(N)N=1
k+N/2,k ←→ SU(k)N=1

−N−k/2 (2.14)

which is valid for k ≥ 0. Indeed, after integrating out the gaugino we find that this reduces

to the usual level-rank duality [51–53].

The Witten indices of some N = 1 CS theories are collected in appendix D.1.

2.3 Gauge theories with a single fundamental matter multiplet

The authors of [1] studied N = 1 U(N) and SU(N) gauge theories with CS terms and with

a single fundamental matter multiplet (i.e. Nf = 1). Due to the structure of the phase

diagram, they proposed the following duality:

U(N)k+N/2+1/2,k+1/2 + Φ←→ SU(k + 1)−N−k/2 + Φ̃ (2.15)

where Φ, Φ̃ are fundamental matter multiplets. In this duality the mass term Φ†Φ maps to

−Φ̃†Φ̃.

This duality was motivated by the study of N = 1 SU(N)k gauge theories with a

massive adjoint matter multiplet [1]. For k ≥ 0, they found that the phase diagrams have

three regimes, separated by the values m = 0 and m = m∗ for some m∗. For m < 0 and

for m > m∗, they found semiclassical vacua which are obtained by integrating out the

matter field, leading to N = 1 SU(N)k±N/2 vector multiplets (the vacuum can then be

found using the results of section 2.2). Additionally, a new intermediate regime appears

in the range 0 < m < m∗. Using the effective 1-loop superpotential, they showed that in

this range there are 2N−1 vacua (in particular, new vacua have appeared from infinity at

m = 0, causing the Witten index to jump). In most of these vacua, the scalar component

of Φ condenses, leading to various symmetry breaking patterns for the gauge symmetry.

The vacua are thus described by various CS TQFTs. These vacua participate in a series

of phase transitions for increasing m up to m = m∗, where the final phase transition

occurs, after which we end up with the single vacuum we expected for large positive m. (In

8The behaviour of N = 1 U(N)k,k′ gauge theories can be deduced immediately by noticing that the

fields of the vector multiplet are in the adjoint representation, and so their behaviour is affected only by

the SU(N) part of U(N)k,k′ .
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other words, the phase diagram is similar to the one in figure 1, but now there are many

additional phase transitions in the range 0 < m < m∗).

In accordance with this picture, the following phase structure was conjectured for the

theories in (2.15), which have a single fundamental matter multiplet instead of an adjoint

matter multiplet. The semiclassical phases for large |m| are obtained by integrating out

the matter fields, leading to a TQFT in the IR. Again, a new intermediate phase appears

for 0 < m < m∗ for some m∗ > 0, which has two vacua. One of these vacua is the same as

the vacuum for large negative m, while in the other the scalar component of Φ condenses.

We review the behavior around the phase transition point m∗ in more detail. On the

U(N) side of (2.15), the phases are:

• for m > m∗ we have one vacuum with a U(N)k+1 TQFT.

• for m < m∗ we have two vacua, one with a U(N)k TQFT and one with a U(N−1)k+1

TQFT.

While on the SU(N) side, the phases are:

• for m > m∗ we have one vacuum with an SU(k + 1)−N+1 TQFT and one with an

SU(k)−N TQFT.

• for m < m∗ we have one vacuum with an SU(k + 1)−N TQFT.

Using level-rank duality we find that the phases match around the transition point (after

taking m→ −m), and so the duality is consistent.

Note that the duality matches a Higgsed vacuum on one side (e.g. U(N − 1)k+1) to

a vacuum without Higgsing on the other side (SU(k + 1)−N+1). In addition, note that

far away from the transition point (i.e. at m � −g2), the phases of the two theories no

longer match; on the U(N) side we find a U(N)k TQFT, while on the SU(N) side we find

an SU(k + 1)−N+1 TQFT. This does not affect the duality, since the phases only need

to match in the vicinity of the transition point. Both of these properties appear in the

generalization of the duality to higher Nf , which is the focus of this paper.

A complete picture of the conjectured phases of the U(N) theory with Nf = 1 appears

in figure 2. In the present paper, we find the 1-loop superpotential for the theories in (2.15),

and we prove this phase diagram. We also are able to generalize the phase diagram and

the duality to theories with any number Nf of fundamental matter multiplets.

3 1-loop superpotential for gauge theories with arbitrary matter repre-

sentations

3.1 Comments on the superpotential and the potential

As usual, the component potential is found by eliminating the auxiliary fields of the scalar

multiplets (in three dimensions, the vector multiplet has no auxiliary field). This leads to

an interesting effect; suppose that we expand the superpotential in loops

W (X, X̄) =
∑
`=0

W` . (3.1)
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Figure 2. Phase diagram for an N = 1 U(N)k+N+1
2 ,k+ 1

2
gauge theory coupled to a single funda-

mental matter multiplet.

The auxiliary field F = D2X enters the bosonic part of the component Lagrangian as:

Laux = F̄F + F
∂W

∂X
+ F̄

∂W

∂X̄
. (3.2)

Eliminating F leads to a potential9

U(X, X̄) =
∂W

∂X

∂W

∂X̄
≡ U0 + U1 + U2 + . . .

=
∂W0

∂X

∂W0

∂X̄
+
∂W0

∂X

∂W1

∂X̄
+
∂W1

∂X

∂W0

∂X̄

+
∂W1

∂X

∂W1

∂X̄
+
∂W0

∂X

∂W2

∂X̄
+
∂W2

∂X

∂W0

∂X̄
+ . . . (3.3)

where the ellipsis indicates contributions beyond two loops. Notice that if the tree-level

superpotential vanishes (W0 = 0), then the two-loop potential U2 comes entirely from the

one-loop superpotential W1, which is a very nice simplification.

Actually, there is another contribution to the potential: in general, the kinetic part

of the super-Lagrangian ∇αX̄∇αX gets finite corrections by a multiplicative factor Z =

1 +
∑

`=1 Z`, which leads to a factor in front of the component action ZF̄F , and hence

lead to a component potential

U(X, X̄) =
(
Z−1

) ∂W
∂X

∂W

∂X̄
(3.4)

Clearly, this does not modify supersymmetric vacua to any loop level, as they are charac-

terized by ∂W
∂X = 0, but could lead to some effects for non-supersymmetric vacua. We thus

find that in the absence of a tree-level superpotential W0, finding the SUSY vacua of the

effective potential U to 2-loop order requires computing W only to 1-loop order.

9This isn’t actually completely correct–see (3.4).
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Figure 3. The 1-loop diagrams we sum over for the 1-loop superpotential.

3.2 Massless 1-loop superpotential

We can now calculate the 1-loop effective superpotential for Φi using the background field

method (where i = 1, . . . , Nf is the flavor index). As explained in the introduction, we

assume here that all of the “quantum” CS levels are equal. The resulting superpotential is

thus applicable to N = 1 gauge theories such as SU(N)k and U(N)k+ 1
2
N,k, but for general

U(N)k,k′ gauge theories an additional calculation is required. We comment on such gauge

theories at the end of this section and in appendix C.

Assume that the matter field Φi has a vacuum expectation value (vev) φi. Using (2.13)

we find that in Landau gauge the propagator is transverse:

∆ β
α Dβ = 0 (3.5)

This allows us to ignore the vertex iDαΓα(Φ̄iφi − φ̄iΦi) at one loop in the effective super-

potential.10 The calculation thus includes only a sum over diagrams with insertions of the

vertex 1
2ΓαΓαφ̄iφi, depicted in figure 3.

Let us define the superpotential to be11 W =
∫ d3p

(2π)3
d2θ′δ(θ − θ′)Σδ(θ′ − θ). We can

thus find Σ by summing over the diagrams:

Σ =− 1

2
Tr
δβα(κD2 + p2) + pβα(κ−D2)

p2 (κ2 + p2)
g2φ2

+
1

4
Tr

(
δβα(κD2 + p2) + pβα(κ−D2)

p2 (κ2 + p2)
g2φ2

)2

− 1

6
Tr

(
δβα(κD2 + p2) + pβα(κ−D2)

p2 (κ2 + p2)
g2φ2

)3

+ . . . (3.6)

where φ2 is the dimG× dimG matrix defined by φ2 = φ̄iT
(aT b)φi (with i = 1, . . . , Nf and

a, b = 1, . . . , dimG). To simplify this expression we can plug in the following identity:

∆γ
α∆β

γ =
2(p2 + κD2)

p2(κ2 + p2)
∆β
α (3.7)

10The vertex actually arises as −iΓα(DαΦ̄iφi − φ̄iDαΦi) because we are only interested in contributions

to the effective superpotential and therefore can drop any terms with Dαφ or Dαφ̄.
11The action is thus obtained by the usual expression S = i

∫
d3xd2θW . We note that the 1-loop effective

superpotential can be obtained as a direct supersymmetric extension of the 1-loop Coleman-Weinberg

potential:

W =

∫
d3p

(2π)3
dθ′δ(θ − θ′)Tr log

(
δ2L
δΦ2

)
δ(θ′ − θ) .
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This allows us to formally sum this series to find

W = −
∫

d3p

(2π)3
d2θ′δ(θ − θ′)δ

α
α

2
Tr log

(
1 +

g2φ2(κD2 + p2)

p2(κ2 + p2)

)
δ(θ′ − θ) (3.8)

We must take care of the remaining θ integral. We use the following identities:

δ2(θ − θ′)δ2(θ′ − θ) = 0

δ2(θ − θ′)Dαδ2(θ′ − θ) = 0

δ2(θ − θ′)D2δ2(θ′ − θ) = δ2(θ − θ′) (3.9)

from which we conclude that W can be rewritten as

W = −
∫

d3p

(2π)3
Tr log

(
1 +

g2φ2(κD2 + p2)

p2(κ2 + p2)

)
|D2 (3.10)

Where Σ|D2 means we are keeping only the terms proportional to D2 after reducing poly-

nomials in D by using the identities from appendix A. To calculate this integral, we use

the following identity: (
κD2 + p2

)n |D2 =
1

|p|
Im
((
iκ|p|+ p2

)n)
(3.11)

We can thus rewrite W as

W = −
∫

d3p

(2π)3

1

|p|
ImTr log

(
1 +

g2φ2(iκ|p|+ p2)

p2(κ2 + p2)

)
(3.12)

We must now evaluate the momentum integral. It is much simpler to calculate W ′

instead. We find:

∂g2W = −Tr

∫
4πp2dp

(2π)3

κφ2

(p2 + g2φ2)2 + κ2p2
= −Tr

κφ2

2π2

∫
dp

p2

(p2 + g2φ2)2 + κ2p2
(3.13)

which results in:

∂g2W = −Tr
κ

4π

φ2√
κ2 + 4g2φ2

(3.14)

and finally

W = − κ

8π
Tr
√
κ2 + 4g2φ2 (3.15)

reintroducing the color and flavor indices, this can be written as12

W = − κ

8π
Tr

√
κ2δab + 4g2φ̄iT (aT b)φi (3.16)

We can now use this result to calculate the 2-loop effective potential for φ (as explained in

section 3.1). We note that as explained above, since the tree-level superpotential vanishes,

the solutions of the F-term equations due to this superpotential are actually the 2-loop

solutions when written in components.

12Note that as required, the superpotential is time-reversal odd, since in our conventions k → −k under

time reversal.
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3.3 Adding a mass term

We now add a mass to the matter field Φ, which amounts to adding a tree-level superpo-

tential of the form W0 = mΦ̄Φ. The effective superpotential now takes the form

W = mφ2
i −

κ

8π
Tr

√
κ2δab + 4g2φ̄iT (aT b)φi (3.17)

The important point here is that adding a mass term did not change the 1-loop contribution

from the previous section, since we do not have any matter fields running in the loops in

figure 3. This means that the massive result is just the sum of the tree level and the

massless 1-loop result (of course, at higher loop orders this will not work). Again, one can

now calculate the effective potential using the methods described in section 3.1.

3.4 Summary

We have thus found that the 1-loop effective superpotential for massive matter in an arbi-

trary representation is

W = m|Φi|2 −
κ

8π
Tr

√
κ2δab + 4g2Φ̄iT (aT b)Φi (3.18)

We can now use this to find the SUSY vacua by solving the F-term equations W ′ = 0. We

emphasize that when m = 0, the resulting solutions are the correct vacua to 2-loop order

in the component fields. To simplify notation in the following, we redefine the fields and

the couplings so that the effective superpotential W is proportional to

W̃ = m|Φi|2 − Tr
√
δab + Φ̄iT (aT b)Φi (3.19)

Furthermore, since we are only interested in the solutions to the F-term equations in the

following, we can disregard the proportionality constant and treat W̃ in (3.19) as our

superpotential.

We can write down the superpotential (3.19) explicitly for specific representations

and gauge groups. First, we find the superpotential for a U(1)k gauge theory with Nf

charge 1 fields. Assuming the matter fields have vevs φi, the superpotential reduces to the

simple form

W̃U(1) = m|φi|2 −
√

1 + |φi|2 (3.20)

Next, we can discuss the adjoint representation of SU(N) and U(N). Assume that φ

gets a constant vev. For φ in the adjoint representation of U(N) or SU(N), we can think

of φ as an N ×N matrix. We can then use gauge transformations to put the vev matrix

φ in the form φ = diag(φ1, . . . , φN ) (remembering that for SU(N) we have
∑

i φi = 0).

Plugging this into the superpotential (3.19) we obtain

W̃adj = mφ2
i −

N∑
i,j=1

√
1 + (φi − φj)2 (3.21)

The resulting effective potential can be compared to those obtained in [54, 55].
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Next, we discuss SU(N) and U(N) gauge theories with fundamental matter (where

as explained above, the two quantum CS levels for U(N) are identical). We can try to

repeat the process described above. Assuming we have Nf fields in the fundamental rep-

resentation, we can think of φ as an N × Nf matrix. Using combined gauge and flavor

transformations, we can then choose a representative of the vev matrix φ which is in upper-

diagonal form. Explicitly, for Nf ≤ N we have

φ =



φ1

. . .

φNf
0 . . . 0
...

...

0 . . . 0


(3.22)

with φi > 0. We have a similar form for Nf > N (with N terms on the diagonal).

However, this still does not give a simple form for the superpotential for an SU(N) or a

U(N) gauge theory with fundamental matter (so that we have to restrict ourselves to a

numerical study of this superpotential). One case in which the superpotential is simplified

is for an SU(N)k+ 1
2
N × U(1)k gauge theory with fundamental matter. For Nf > N we

obtain

W̃SU(N)
k+1

2N
×U(1)k = mφ2

i −
N∑

i,j=1

√
1 + φ2

i + φ2
j (3.23)

For Nf ≤ N , if we take the vector φi of length Nf and pad it with zeros to make it of

length N , then the result is identical to (3.23).13

Next we discuss SO(N) gauge theories with fundamental matter. The idea is the same

as before. After putting φ into upper-diagonal form, we find for Nf > N

W̃SO(N)k = mφ2
i −

N∑
i>j

√
1 + φ2

i + φ2
j (3.24)

And again, this expression is also true for Nf ≤ N if we pad φi with zeros to make it of

length N .

Finally, we must discuss a general N = 1 U(N)k,k′ gauge theory. When the quantum

CS levels for the fields are different, the calculation above becomes much more complicated.

In this case, we must restrict ourselves to an integral form for the superpotential, similar

to the form (3.12), which allows us to perform a numerical analysis. We describe the

calculation in appendix C.

13More generally, for both Nf ≤ N and Nf > N we can write a U(Nf ) invariant expression for W as well:

W = mtrQ+ 2(N −Nf )Tr
√

1 +Q+ (Tr⊗ Tr)
√

1 +Q⊗ 1 + 1⊗Q

where Qβα is the field bilinear Qβα = φ∗αφ
β .
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4 Phase diagrams

We can now use the 1-loop superpotential (3.19) to find the phase structure of N = 1

gauge theories with fundamental matter. To do this, we give an arbitrary vev to the

matter fields φi, and find the SUSY vacua by solving the F-term equations ∂W
∂φi

= 0. We

start by performing this analysis for two cases in which the superpotential is particularly

simple: a U(1)k gauge theory and an SU(N)k+ 1
2
N × U(1)k gauge theory. What we find is

that the behavior of the SU(N)k+ 1
2
N × U(1)k gauge theory is universal, and appears also

in the SU(N)k and U(N)k+N
2
,k gauge theories (the resulting phase diagrams are of the

form discussed in figure 1). Note that when the gauge group is SU(2), the theory requires

special treatment. In general, an SU(N) gauge theory with Nf fundamentals has U(Nf )

global symmetry. But in an SU(2) gauge theory, this symmetry is classically enhanced to

Sp(Nf ). The phases of an SU(2) gauge theory are discussed separately in section 4.5.

We find that all of these theories have the same general form for their phase diagram. In

section 4.6 we use a symmetry argument to explain why this is the case. This argument also

allows us to prove that there is a single phase transition point to all orders in perturbation

theory.

The main results of this section are summarized in section 4.7. Using the results of

this section, we are able to extend the duality proposed in [1] to larger Nf in the next

section.

4.1 Warmup: phases of U(1)
k+

Nf
2

with Nf matter multiplets

We look for the vacua of an N = 1 U(1)
k+

Nf
2

vector multiplet coupled to Nf charge 1

fields. We give the fields a constant vev, and plug them into the superpotential found in

equation (3.20):

W̃U(1) = m|φi|2 −
√

1 + |φi|2 (4.1)

We look for the solutions to the F-term equations W ′ = 0. We find three different regimes:

• For m < 0 we find a single solution, φi = 0. The vacuum in this case is U(1)k.

• For 0 < m < m∗ (for some m∗ > 0) we find two solutions: one at φi = 0 (with

low-energy theory U(1)k) and one at |φi|2 = 1−4m2

4m2 . Let us discuss the vacuum at

the latter solution. First, we note that the solution runs off to infinity when m→ 0.

Second, we find that it breaks the gauge symmetry and the flavor symmetry. The

gauge symmetry is broken to nothing, but the breaking of the flavor symmetry leaves

us with a NLSM with target space CPNf−1 =
U(Nf )

U(Nf−1)×U(1) in the IR. So the low-

energy theory is a CPNf−1 NLSM.

• Finally, for m > m∗ we once again find the single solution φi = 0, this time with

low-energy theory U(1)k+Nf .

Let us discuss the Witten index of the theory. As we saw, for small positive m a

new vacuum appears from infinity. This is due to the changing of the asymptotics of the
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Figure 4. Phase diagram for an N = 1 U(1)
k+

Nf
2

gauge theory coupled to Nf charge 1 matter

multiplets.

effective potential (as discussed in [1]), and can cause the Witten index to jump [8]. Indeed,

we find that the phases above have the following Witten indices (see appendix D):

m < 0 0 < m < m∗ m > m∗

Witten Index k k +Nf k +Nf

And so the Witten index jumps only at m = 0, as expected.

Another interesting point is m = m∗. There, we find a phase transition where two

vacua merge into one. This must be a phase transition of second order or higher, since

these are SUSY vacua which have zero energy. We describe the dual theory at this phase

transition later on.

This discussion is summarized in figure 4.

4.2 More warmups: vacua of SU(N)k+ 1
2
N ×U(1)k with Nf fundamentals

Before attempting to find the phases for SU(N) and U(N) gauge theories, we look for the

phases of SU(N)k+ 1
2
N×U(1)k. The reason we do this is that (as we saw in equation (3.23))

the superpotential for this case simplifies. Thus, we can study the solutions to the F-term

equations analytically for this case. Unfortunately, we could not find such a simple form

for SU(N) and U(N) gauge theories, and so we have to resort to numerical calculations to

study them in following sections. However, since we show that the phase diagrams of all

of these theories are similar, it is worthwhile to exhibit an example where we can find the

solutions analytically.

The 1-loop effective superpotential for a SU(N)k+ 1
2
N ×U(1)k theory is:

W̃ = m
∑
i

φ2
i −

Nf∑
i,j=1

√
1 + φ2

i + φ2
j (4.2)

where φi are the eigenvalues after using gauge and flavor transformations to bring φ to

an upper-diagonal form. Let us discuss the solutions to the F-term equations ∂
∂φi

W̃ = 0.

We find that the solution φ0 = 0 exists for any m. Additionally, for a specific range
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0 < m ≤ m∗, we have min(N,Nf ) additional solutions φn of the form14

φn =

(
vn(m) · 1n×n

0

)
where vn ∈ R and 1n×n is the n× n unit matrix.

Explicitly, we find that in this case, m∗ = N (in the units used in equation (4.2)). We

also find limm→0+ vn = ∞, and so we learn that these solutions come in from infinity at

m = 0. This is related to the fact that the asymptotics of the effective potential change at

m = 0, which as we see leads to a jump in the Witten index. Furthermore, we find that all

of these solutions coalesce simultaneously at the phase transition point m = m∗. In other

words, we find that all vn vanish at m = m∗ simultaneously at 1-loop. The phase diagram

thus consists of a single point where the Witten index jumps, and a single phase transition

point m∗. We thus find a phase diagram of the form discussed in figure 1.

We will not study the specific vacua and phases in detail, since we are more interested

in the results for SU(N) and U(N) gauge theories. But what we find is that the solutions

φn play a pivotal role in the following sections. Their appearance here is not a coincidence,

and we show that they are also the form of the solutions for the 1-loop F-term equations for

the U(N) and SU(N) gauge theories. In fact, the picture described here is almost identical

to the picture in the U(N) and SU(N) case - these vacua appear from infinity at m = 0,

causing a jump in the Witten index, and coalesce at a single phase transition point at

some m = m∗. Later we explain why this behavior is universal using symmetry arguments.

These arguments allow us to show that the φn solve the F-term equations to all orders in

perturbation theory, from which we learn that there is a single phase transition point to

all orders in perturbation theory.

4.3 Phases of SU(N)k+ 1
2
N with Nf fundamentals

We now study the phase diagrams for an N = 1 SU(N)k+ 1
2
N gauge theory with Nf

fundamentals.15 The result is very similar to the SU(N)×U(1) case studied in the previous

section. In particular, the form of the phase diagram is the same as in figure 1, and most

of this section focuses on finding the different vacua in the intermediate phase. A more

detailed form of our resulting phase diagram appears in figure 5.

Let us find the SUSY vacua of the theory. We start by putting the vev matrix in

upper-diagonal form. Plugging this form into the superpotential from section 3.4, we can

solve the F-term equations numerically as a function of m (as discussed in section 3.4, it

is difficult to find the solutions to the F-term equations for SU(N) analytically, and so we

restrict ourselves to numerical results). We find that the solutions are identical to the ones

in the SU(N)×U(1) case discussed in section 4.2. Specifically, we find that there are three

distinct regions as a function of m. For large |m|, the vacuum is just the result of integrating

14We are abusing notation here, since φn is an N×Nf rectangular matrix. The point is that φn is upper-

diagonal with n identical values on the diagonal, with the rest of the values on the diagonal vanishing. This

explains why there are min(N,Nf ) solutions of this form. We continue to use this notation throughout

this paper.
15Due to our conventions of the CS level, it suffices to consider k + N

2
≥ 0.
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Figure 5. Phase diagram for an N = 1 SU(N)k+ 1
2N,k gauge theory coupled to a Nf fundamental

matter multiplets. The precise form of the low-energy theories in the intermediate phase is discussed

in the text.

out the massive matter, so that the vacuum is SU(N)k+ 1
2

(N±Nf ). However, in some range

0 < m < m∗, we find min(N,Nf ) new solutions of the form φn =

(
vn(m) · 1n×n

0

)
.

Specifically, we find once again that there is only one phase transition at m = m∗ (and a

jump in the Witten index at m = 0).

We can now find the explicit form of the low-energy theories at the solutions φn. We

study the two cases Nf < N and Nf ≥ N independently.

4.3.1 Nf < N

We find the phases for Nf ≤ N with small positive mass. As explained above, we have a

SUSY vacuum for each of the solutions φn for n = 0, . . . , Nf . Let us consider a specific

solution φn. In the φn vacuum, both the gauge symmetry and the global symmetry are

broken. Higgsing the gauge group leads to an SU(N − n) vector multiplet, while the

breaking of the flavor symmetry leads to to a
SU(Nf )

S[U(n)×U(N−n)] NLSM (we denote this NLSM

by MNf ,n). The vacua corresponding to the solutions φn are then:

φ0 : SU(N)N=1
k+ 1

2
(N−Nf )

φ1 : MNf ,1×SU(N − 1)N=1
k+ 1

2
(N−Nf+1)

. . .

φn : MNf ,n×SU(N − n)N=1
k+ 1

2
(N−Nf+n)

. . .

φNf : SU(N −Nf )N=1
k+ 1

2
N

(4.3)

where we have emphasized that the vacua are N = 1 vector multiplets. It is easy to

understand the vacua above; at the solution φn, n multiplets have a non-zero vev, while

the Nf − n remaining multiplets are massive. We thus break the gauge group to N − n
and shift the CS level by

Nf−n
2 . The vacua described above are not the final solutions. To

find their precise form, we must take special care of the resulting N = 1 vector multiplets,
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as described in section 2.2. Specifically, for k ≥ Nf
2 they all result in TQFTs, while for

k <
Nf
2 some solutions break SUSY dynamically.

We can also study the behavior of the Witten index of the theory. In appendix D.2,

We show that the Witten index jumps only at m = 0, and does not jump at the phase

transition point m = m∗ (this is similar to the result in [1]). The picture is thus the

following. For negative mass, there is one vacuum. At small positive mass, Nf new vacua

appear from infinity (which lead to the jump in the Witten index). These vacua merge

together with the vacuum at the origin at the phase transition point m = m∗, resulting in

a single vacuum for m > m∗.

In section 4.6 we prove that this picture persists to all orders in perturbation theory.

In particular, the solutions to the F-term equations of the full superpotential also coalesce

at a single point, so that there is only one phase transition.

4.3.2 Nf ≥ N

The case Nf ≥ N has a few additional subtleties that we must take care of. Specifically, in

this case there is a vacuum φN in which the gauge group is completely Higgsed, and we find

that the solutions “truncate” when we reach this maximally Higgsed solution. Furthermore,

in this solution the baryons (defined in the usual way Qi1...iN = εa1...aNφi1a1 . . . φ
iN
aN

) get a

vev. This changes the symmetry breaking pattern, since the baryons are charged under

the flavor symmetry, and so we must be careful about the resulting NLSM.

We find that the vacua for small positive mass are:

φn : MNf ,n × SU(N − n)N=1
k+ 1

2
N− 1

2
(Nf−n)

φN :
U(Nf )

SU(N)×U(Nf −N)
(4.4)

where n = 0, . . . , N − 1. Once again, we find that the Witten index jumps only at m = 0

(and not at the phase transition point). This is proven in appendix D.3.

4.4 Phases of U(N)k+ 1
2
N,k with Nf fundamentals

We now study the phase structure of U(N)k+ 1
2
N,k gauge theories as a function of the mass

m of the matter multiplets. Again we give all of the Nf matter multiplets the same mass m.

One immediately finds that for large |m|, the vacuum is just the result of integrating out

the massive matter multiplets, so that the large mass phases are N = 1 U(N)
k+

N±Nf
2

,k±
Nf
2

vector multiplets. However, for 0 < m < m∗, the solutions φn appear once again, and a

more careful analysis must be done. We perform this analysis separately for Nf ≤ N and

Nf > N . The resulting phase diagram appears in figure 6 (note that this phase diagram

is still of the general form discussed around figure 1).

4.4.1 Nf ≤ N

Let us discuss the vacuum at each φn. Once again, denote by MN,n a NLSM with target

space U(N)
U(N−n)×U(n) . The vacua of the theory for small positive mass are:

φn : MNf ,n ×U(N − n)N=1
k+ 1

2
N− 1

2
(Nf−n), k− 1

2
Nf+n

(4.5)

– 19 –



J
H
E
P
1
0
(
2
0
1
8
)
1
0
5

Figure 6. Phase diagram for an N = 1 U(N)k+ 2
1 (N+Nf ),k+

1
2Nf

gauge theory coupled to a Nf

fundamental matter multiplets. The precise form of the vacua in the intermediate phase is discussed

in the text.

With n = 0, . . . , Nf . As we show in appendix D.4, the Witten index jumps only at the

point m = 0.

The shift of the U(1) CS level must be explained. In addition to the shift due to

integrating out the matter multiplets, there appears to be another shift of the U(1) CS

level. This is due to the fact that by definition, a U(N)K,K′ CS theory has a Lagrangian

of the form
K

4π
Tr

(
A ∧ dA− 2i

3
A ∧A ∧A

)
+
K ′ −K

4πN
TrA ∧ TrdA (4.6)

and so Higgsing the gauge group also shifts the value of the U(1) CS level16 K ′.

4.4.2 Nf > N

Once again, we find a similar result for Nf > N with some minor changes. We again find

that the phases truncate when we reach maximal Higgsing at the solution φN , so that the

phases for small positive mass are:

φn : MNf ,n ×U(N − n)N=1
k+ 1

2
N− 1

2
(Nf−n), k− 1

2
Nf+n

(4.7)

with n = 0, . . . , N . Once again, to find the exact form of the vacua one must be careful

about the value of k, and whether or not SUSY is broken. In appendix D.5 we show that

once again the index jumps only at m = 0.

4.5 SU(2) gauge symmetry and enhanced global symmetry

We now discuss the case of an SU(2) gauge theory. This case is special, since the global

symmetry is enhanced at the classical level from U(Nf ) to Sp(Nf ). This leads to a differ-

ent vacuum structure in the phases discussed above, since the global symmetry breaking

pattern is different (and so the NLSM is different). However, we show that the discussions

that appeared above (and in particular the matching of the Witten index across the phase

transition) applies here as well.

16Note that such an additional shift must occur since a U(N)K,K′ TQFT is consistent only when K′−K ≡
0 mod N [53]
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We start by explicitly describing the enhancement of the global symmetry in a theory

with an SU(2) gauge theory coupled to a boson in the fundamental representation. The

generalization to a SUSY theory is immediate. The main point is that for an SU(2) doublet

φ, the Lagrangian

L = |Dµφi|2 +m|φi|2, Dµ = ∂µ − iAµ

can be re-written as a function of φ̃a ≡ (φa1, . . . , φ
a
Nf
, εabφ∗1b, . . . , ε

abφ∗Nf b), where a, b are

color indices. The resulting Lagrangian is

L =
1

2
ΩIK(Dµφ̃I)ε(D

µφ̃K) +
m

2
ΩIK φ̃Iεφ̃K , Ω =

(
0 1Nf

−1Nf 0

)
here, the color indices are implicitly contracted using ε and I,K = 1, . . . , 2Nf . One can

check that this Lagrangian is invariant under an Sp(Nf ) transformation

φ̃aI −→ SIK φ̃
a
K , StΩS = Ω (4.8)

Let us discuss global symmetry breaking pattern in this model. The moduli space can

be parametrized by the gauge invariant building blocks

MI
J = φ̃†Iaφ̃Ja

Now, for any Nf , we can use gauge and global symmetry transformations on φ to make

MI
J vanish apart from one component M1

1 = MNf+1
Nf+1 = v. If v = 0 then there is no

symmetry breaking, while for any v 6= 0 the symmetry breaking pattern results in a NLSM

with target space

Sp(Nf )

Sp(1)× Sp(Nf − 1)

We can now find the phase diagram of an N = 1 SU(2)k+1+ 1
2
Nf

gauge theory with any

number Nf ≥ 1 of fundamentals. As for the theories above, the phase diagram as a function

of m consists of three regions. For m < 0 we get an SU(2)k+1 N = 1 vector multiplet. For

0 < m < m∗ we get two vacua, one with an SU(2)k+1 vector multiplet and one with an
Sp(Nf )

Sp(1)×Sp(Nf−1) NLSM. Finally, for m > m∗ we find an SU(2)k+1+Nf N = 1 vector multiplet.

Note that the Witten index still matches across the phase transition at m = m∗, since the

Euler characteristic of the target space is given by χ(
Sp(Nf )

Sp(1)×Sp(Nf−1)) = Nf .

4.6 Universality of solutions and the phase transition

The theories we have discussed exhibit a very interesting pattern. It seems as though the

general form of the solutions to the F-term equations at 1-loop does not depend on the the

CS level or the gauge group. In other words, the form of the solutions φn =

(
vn · 1n×n

0

)
described above seems to be universal for gauge theories with fundamental matter (although

the specific values of the vn’s are not universal). Additionally, it is interesting that at one

loop there is a single phase transition point, even when the number of vacua is large.
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We now use a symmetry argument to explain both of these properties. First we

show that these solutions are indeed universal in a certain sense, and that they appear

to all orders in perturbation theory. This also allows us to show that there is a single

phase transition to all orders in perturbation theory. This result is very important for our

conjectured dualities, since the fact that there is a single phase transition means that we

must match all of the vacua on both sides of the duality. We prove these properties for

U(N) and SU(N) gauge theories with fundamental matter, but as we comment below, the

proof can easily be applied to more gauge groups with fundamental matter.

We first study the symmetries of the superpotential. A general solution of the F-

term equations φ can be put in upper diagonal form using combined gauge and flavor

rotations. Let us label the resulting values on the diagonal by v1, . . . , vK (where vi ∈ R
and K = min(N,Nf )). It is crucially important to find the residual symmetries of the

solution φ. First, we can permute the different vi’s, and so we have an SK symmetry.

Furthermore, we can take any vi → −vi, and so we also have a (Z2)K symmetry. The

superpotential W (vi) must be invariant under both of these symmetries, and so W is a

symmetric and even function in v1, . . . , vK .

Using this fact, we find that it suffices to prove the existence of the solution φK (for

which all of the values on the diagonal are equal, v1 = . . . = vK) to show that all of the

φn’s exist. Indeed, since W is even in each of the vi’s, we find that taking any solution and

replacing one of the vi’s with zero gives another solution.17 Thus it suffices to show that

φK exists to show that all of other solutions exist as well.

It should not be surprising that a symmetric function W has such a symmetric ex-

tremum φK , but we can give a rigorous argument that shows why we expect it to be an

extremum to all orders in perturbation theory.

Let us assume that we can show that the solution φK exists at 1-loop (as we have

managed to do in the previous sections). We now claim that the form of φK is preserved

also to higher loop orders. This is the result of a general lemma, which states that small

corrections cannot cause a global symmetry to be broken in the vacuum18 [56].

We have thus found that the solutions of the form φn =

(
vn · 1n×n

0

)
always appears,

regardless of the specific form of the superpotential. Thus the solutions discussed above

remain solutions to all orders in perturbation theory (for some unknown vn’s).

Having proven this, it is simple to show that there is only one phase transition. This is

done in appendix E. This should already sound reasonable, since the form of the solutions

makes it obvious that a phase transition where two vacua φn, φk collide can occur only

when vn = vk = 0. Thus the phase transitions all occur at the same point in field space,

φ = 0 (and in particular, they must include the vacuum at this point).

17The proof of this fact is identical to the proof that an even function f(x) has f ′(0) = 0.
18We must assume that the theory is weakly coupled so that perturbation theory is justified, e.g., by

taking large k. However, since our results remain consistent in the range k ≥ −min(N,Nf ), we assume

that this works for smaller k as well. It is also important that we have a tree-level mass term for this

argument.
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There are some comments we must make about this proof. First, we can ask whether

additional solutions which are not of the form φn can appear at higher loop orders. We

do not expect this to happen, since we cannot see these solutions at 1-loop order, and it is

very unlikely that small quantum effects can create them. Furthermore, if these vacua exist

then they are extremely restricted; for example, we saw that the vacua φn exactly agree

with the expected behavior of the Witten index, so that any additional vacuum must have

vanishing Witten index, meaning that they can disappear even without a phase transition.

One can also ask why the proof does not work for the large |m| regime as well, where

we saw that the only solution is φ = 0. Our analysis of the U(1) gauge theory gives us the

answer; the solutions φn do appear in this regime, but they become complex solutions (that

is, the parameter vn becomes complex). But then how do we know that these solutions

are guaranteed to become real for some range of m? This is simply due to the fact that

the asymptotic phases do not have the same Witten index. We conclude that the Witten

index must jump for some m, and so we must have new vacua coming in from infinity. It is

reasonable to assume that these vacua are the φn’s (precisely because we have shown that

their Witten index is the difference between the Witten indices of the two large |m| phases).

Finally, it is important to note that the proof was only valid for matter in the funda-

mental representation. Indeed, when using adjoint matter one finds completely different

solutions [1]. This is because in the adjoint representation the residual symmetries are

different — specifically, after diagonalizing the vev matrix φ, we do not have a residual

(Z2)N symmetry.

It is now clear that the proof works for many more gauge groups. In particular, one can

redo the argument for gauge groups such as SO(N), O(N) and Sp(N). Indeed, studying

the superpotential (3.18) for these theories, one can explicitly find the solutions φn at 1-

loop, and so the proof proceeds in the same manner (in the cases where the superpotential

simplifies, as in the SU(N) × U(1), SO(N) and O(N) cases, one can prove analytically

that the φn’s are the only solutions in the intermediate phase at 1-loop.). We thus expect

similar phase diagrams for these theories as well.

4.7 Summary

We summarize the main parts of this section. We have shown explicitly that at 1-loop,

both SU(N) and U(N) gauge theories with CS terms and fundamental matter fields all

have very similar phase diagrams. The general form of these phase diagram was given in

figure 1. These phase diagrams have 3 regimes as a function of m. For negative mass, there

is a single vacuum, found by naively integrating out the massive matter multiplets. For

0 < m < m∗, there are many SUSY vacua, each corresponding to an N = 1 NLSM with a

decoupled CS TQFT (these may also be SUSY-breaking). All but one of these vacua appear

from infinity in field space for small positive mass, causing the Witten index to jump. At

m = m∗, these vacua coalesce simultaneously into a single vacuum for m > m∗. The

vacuum at m > m∗ can again be obtained by naively integrating out the massive matter

multiplets. The diagram for a U(N) gauge theory is given in figure 6, and the diagram

for an SU(N) gauge theory is given in figure 5. We also considered the special case of an

SU(2) gauge theory, where classically the symmetry group is enhanced to Sp(Nf ). This
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changes the symmetry breaking pattern in SU(2) theories as opposed to SU(N) theories

with N > 2.

It is no accident that all of these theories have similar phase structures, as explained

in the symmetry argument in section 4.6. This same symmetry argument proves that all of

the different vacua in the intermediate phase all coalesce simultaneously at m = m∗ to all

orders in perturbation theory (this is highly unnatural, and we understand this better after

studying the N = 2 versions of these theories in the next sections). We thus expect the

1-loop picture to persist to all orders in perturbation theory, and expect quantum effects

to change this picture only slightly (e.g. by shifting the value of m∗ from the 1-loop result).

The fact that there is a single phase transition also allows us to suggest dual descriptions

for the phase transition at m = m∗. We take a more careful look at this point in the

following sections.

5 Fixed points and RG flows at weak coupling

In the previous sections we analyzed N = 1 SQCD3 with a mass deformation, and found

a second order phase transition (which should be described by a CFT). We now attempt

to study this fixed point more carefully, in the limit where the theory is weakly coupled (in

particular, for large CS level k). In this limit we can safely decouple the Yang-Mills term,

and are left with a pure CS-matter theory. We can then use the results of [11, 12], where

the beta function of a CS theory with matter fields was analyzed.

We start by considering the general RG flow diagram obtained in [12], and determine

the specific fixed point our theory flows to at large k, assuming the classical superpotential

vanishes in the CS-matter theory. In particular, we find that for some degenerate cases,

this fixed point has emergent N = 2 SUSY. We then consider the special case of an SU(2)

gauge theory. We find that the enhanced symmetry observed in section 4.5 is also apparent

in the RG flow diagram, and supports our previous analysis.

There is one important subtlety we must take care of before applying the results of [12]

to N = 1 SQCD3. When we decouple the Yang-Mills term and keep only the CS term

from N = 1 SQCD3 (see appendix B), we may generate a superpotential for the resulting

CS theory, and in particular, generate non-zero values for the marginal couplings. Thus, to

find the correct RG fixed point we flow to, we must plug in these couplings into the result

of [12], and follow the RG flow to find the fixed point. However, we will show that at large

k, the couplings which are generated are negligible, and so our assumption that the flow

starts with vanishing classical superpotential in the CS-matter theory is justified.

5.1 RG flows and fixed points at large k

We start by analyzing the fixed point that our N = 1 SQCD3 theory flows to at large k

(the specific case of an SU(2) gauge group is studied in the next section). We emphasize

once again that we assume that in flowing from the YM-CS theory to the CS theory, the

additional couplings that are generated may be neglected (we prove that this assumption

is justified in section 5.3). We can thus find the fixed point we flow to by following the RG

flows of [12] when starting from the origin.
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There are two cases we must discuss separately. For N = 1 SQCD3 with gauge group

SU(N) or U(N), there are generically two classically marginal operators which preserve

N = 1 SUSY; these are 1
4η0(Φ̄iΦi)

2 and 1
4η1(Φ̄iT aΦi)

2, where i = 1, . . . , Nf is a flavor

index and η0, η1 are coupling constants. However, in degenerate cases, these two operators

coincide. These degenerate cases are:

• When the gauge group is U(1)

• When Nf = 1

In these two cases, there is only one marginal operator that preserves N = 1. So we must

discuss the degenerate and the non-degenerate cases separately.

We start by discussing the degenerate cases. The results of [11, 12] show that in these

cases, flows that originate in a neighborhood of the origin flow to a fixed point with N = 2

SUSY, which is located at η1 = 8π
k . These theories thus have emergent N = 2 SUSY at

the fixed point.

We now discuss the non-degenerate cases, where there are two independent classically

marginal operators. For matter fields in the fundamental representation, the results of [12]

give the following result for the beta function for an SU(N) gauge theory with Nf > 1

(using k̃ ≡ k
2π ):

β
SU(N),Nf
η1 =

1

8N2k̃3

{
η3

1 k̃
3
(
(3N2 − 10)NNf − 5N2 + 22

)
+8η1k̃

[
N
(
η2

0Nk̃
2 (2NNf+11)+4η0

(
N2−1

)
k̃ − 6

(
N2−2

)
Nf

)
+10N2−28

]
−64(N2 − 4)(η0Nk̃ +NNf − 3)

+4η2
1 k̃

2
(
η0Nk̃(3NNf + 7N2 − 22) +N3Nf − 3N2 + 4

)}
β

SU(N),Nf
η0 =

1

16N3k̃3

{
η3

1(N2 − 1)k̃3(2NNf + 3N2 − 10)

+4η2
1(N2 − 1)k̃2

(
2η0Nk̃(NNf + 2) +N2 − 2

)
+16

[
3η3

0N
3k̃3(NNf + 2)− 8η0N

2(N2 − 1)k̃Nf + 2η2
0N

2(N2 − 1)k̃2

−4(N2 − 1)(2NNf +N2 − 6)
]

+ 8η1

(
N2−1

)
k̃
(

7η2
0N

2k̃2− 6N2+12
)}

(5.1)

the results for a U(N) gauge theory are similar in the large k limit. We plot the resulting

RG flow in figure 7(a).

We now discuss the fixed points. First, we find that in the non-degenerate case, the

N = 2 fixed point is actually a saddle point, and so is unstable. Instead, there is a stable

N = 1 fixed point located at η0, η1 > 0. From inspection of the beta function or figure 7(a),

we can see that flows which originate in a small neighborhood of the origin end up at this

N = 1 fixed point. We conclude that the non-degenerate cases of N = 1 SQCD3 flow to

this N = 1 fixed point.

To summarize, we studied the fixed point for N = 1 SQCD3 with large CS level k and

no classical superpotential. In particular, we find that for large enough k:
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(a) (b)

Figure 7. RG flows for (a) SU(5) with Nf = 3 and (b) SU(2) with Nf = 2. These represent the

general structure of the RG flows at large k. The N = 2 fixed point is at (1, 0), which is a saddle

point for Nf ≥ 2. For N > 2 there is a stable N = 1 fixed point in the first quadrant, which

attracts flows starting near the origin. For N = 2, a stable N = 1 fixed point along the positive

vertical axis attracts flows originating near (0, 0).

• A U(1)k gauge theory with Nf ≥ 1 flows to an N = 2 fixed point.

• SU(N)k and U(N)k gauge theories with N > 1 and Nf = 1 flow to an N = 2 fixed

point.

• SU(N)k and U(N)k gauge theories with N > 1 and Nf > 1 flow to an N = 1 fixed

point.

5.2 RG flows for SU(2) and enhanced global symmetry

For an SU(2) gauge theory, the beta function simplifies (here again, k̃ ≡ k
2π ):

βη1(η1, η0) =
η1k̃

16k̃3

{[
η2

1 k̃
2(2Nf + 1) + 8η1k̃

(
3η0k̃(Nf + 1) + 2(Nf − 1)

]
(5.2)

+16
[
η2

0 k̃
2(4Nf + 11) + 6η0k̃ − 6Nf + 3

)]}
βη0(η1, η0) =

3

64k̃3

{
η3

1 k̃
3(2Nf + 1) + 4η2

1 k̃
2
(

4η0k̃(Nf + 1) + 1
)

+64
[
2η3

0 k̃
3(Nf + 1)− 4η0k̃Nf + η2

0 k̃
2 − 2Nf + 1

]
+ 16η1k̃(7η2

0 k̃
2 − 3)

}
The corresponding RG flow is shown in figure 7(b). We find that the N = 2 fixed point

is still unstable, but now the stable N = 1 fixed point lies on the vertical axis (η0 = 0).

Furthermore, we find βη1(0, η0) = 0, which means that if the theory has η1 = 0 classically

then no η1 is generated by quantum effects. This is consistent with the fact that η0 6= 0

preserves the Sp(Nf ) global symmetry discussed in section 4.5, while η1 6= 0 does not. This

gives a non-trivial check for the validity of the calculation in [12].

We conclude that an SU(2) gauge theory with Nf > 1 at large k flows to an N = 1

fixed point which preserves the Sp(Nf ) global symmetry.
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5.3 Flowing from Yang-Mills-Chern-Simons to Chern-Simons theory at large

k

We now justify our assumption that the correct fixed point for our theory is found by setting

the classical superpotential of the corresponding CS-matter theory to zero. As explained

above, our theories differ from those studied in [12] by a YM term. To find the correct

fixed point for our theories, we must find what couplings are generated by integrating out

the YM term. We find that these couplings are negligible for large k. This means that it

was justified to find the fixed point by starting the flow from the origin as done in figure 7.

In flowing from YM-CS theory to CS theory, we generate Φ4 couplings in the effec-

tive action.19 To find the couplings, we must find the effective action which results from

integrating out only the very massive gauge field mode. To explain how this is done in

more detail, we assume that the gauge group is U(1) for simplicity. At large k an abelian

Higgsed YM-CS theory has two massive gauge field modes, with masses [57]:

m± =
mCS

2

(√
1 +

4m2
H

m2
CS

± 1

)

Here, mCS = kg2

2π and mH = 2gv with v the scalar vev. We find that at large CS level k,

we have one very massive mode (with mass m ∼ kg2) and one light mode. Comparing to

the spectrum of a Higgsed CS theory, we find that we can associate the very massive mode

with the YM term and the light mode with the CS term. Since we want to flow to a CS

theory, we must integrate out only the very massive YM mode to end up with a Higgsed

CS theory. We show how this is achieved in appendix B (the same method applies for a

nonabelian gauge group as well).

Integrating out only the very massive mode, we generate nonzero η0 and η1 (call these

values = η
(0)
0 , η

(0)
1 respectively). Furthermore, we find η

(0)
i ∝ 1

k2
for i = 1, 2. One can use

a dimensional analysis argument to prove this. First, note that in the effective action for

Φ when integrating out only the gauge field, each Φ external leg comes with a factor of

g. Since the only other dimensionful parameters come from the combination κ = kg2

2π , the

only way to give the effective action the correct dimensions is to have a factor of κ2 in the

denominator. We thus find W |Φ4 ∝ (gΦ)4

κ2
, which leads to the required result.

We now show that since η
(0)
i ∝ 1

k2
, we must flow to the attractive fixed point in the

first quadrant of figure 7. Consider the beta functions (5.1), (5.2). These can be put in

the form βη1,2 = 1
k3
f1,2(η1k, η2k) for some functions f1, f2. We conclude that the RG flow

only depends on η1, η2 through the combinations ηi ·k, and so in particular the fixed points

appear at ηi ∼ 1
k . Since our starting point is at η

(0)
i ∝

1
k2

, we can conclude that by taking k

to be large enough, we can set the starting point of the RG flow in figure 7 to be arbitrarily

close to the origin. Since there exists a neighborhood of the origin which flows to the same

fixed point, we find that at large enough k we must flow to this fixed point.

To summarize, we have managed to relate our YM-CS theory with matter to the

CS-matter theory studied in [12]. Specifically, even though integrating out the YM term

19We also generate some non-renormalizable terms, which we ignore, as well as a shift of the CS level of

order N , which we can ignore at large k.
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generates an effective superpotential, we have found that at large k we can neglect this

superpotential when looking for the starting point of the RG flow. We thus find that our

assumption that we can flow from the origin to find the correct fixed point is justified.

6 Dualities

Using the phase diagrams described above, one can generalize the Nf = 1 duality described

in [1] to larger Nf . The generalization is:

U(N)k+ 1
2
N+ 1

2
Nf ,k+ 1

2
Nf

+Nf Φ←→ SU(k +Nf )−N− 1
2
k +Nf Φ̃ (6.1)

With ΦΦ matching to −Φ̃Φ̃. Here we shall provide evidence for this duality for all Nf ≥ 1

and k > −min(Nf , N).

Let us sketch a general picture of the phases of both sides of the duality, consistent

with the 1-loop superpotential analysis done above. We have shown that at 1-loop, there

is a single phase transition point located at m = m∗. On one side of the transition, both

sides of the duality (6.1) have a single vacuum: on the l.h.s. this is a U(N)k+Nf TQFT,

and on the r.h.s. this is an SU(k+Nf )−N TQFT (schematically, this is the rightmost phase

in figure 1). These are level rank dual, and so they match.

On the other side of the transition, the picture is much more complicated. Both sides

of the duality have many vacua, which collide simultaneously at m = m∗ (this is the

intermediate phase in figure 1). Due to this simultaneous collision (or equivalently, since

there is only phase transition), all of these vacua must appear arbitrarily close to the phase

transition point, and so it seems like we would need to match all of these vacua across

the duality. However, we remember that some of these vacua can be SUSY-breaking, and

so they do not participate in the phase transition.20 Indeed, we are able to match the

SUSY-preserving vacua on both sides of the duality.

In the following sections, we study the phases of the two sides of the duality, and show

that we can match all of the SUSY-preserving phases across the two sides. We note that the

matching of the phases here is a direct extension of the matching of the phases in the case

Nf = 1 discussed in section 2.3. In the Nf = 1 case, a Higgsed vacuum was matched with

a non-Higgsed vacuum. We find a similar result here; a U(N) vacuum which is Higgsed to

U(N −n) corresponds to an SU(N) vacuum which is Higgsed to SU(N − (Nf −n)) (where

we have suppressed the CS levels). We also emphasize that for the phases to match, it is

imperative that there is only one phase transition, so that all of the vacua coalesce at the

same point on both sides.

Finally, we show that most our N = 1 dualities can be understood as resulting from

some known N = 2 dualities. This might not be too much of a surprise, since we saw that

the N = 1 fixed point is close to the N = 2 fixed point in the RG sense, and so we might

expect that there exists an RG flow from the N = 2 point to the N = 1 point which could

20Even if these SUSY-breaking vacua aren’t removed by higher-order effects, their energy is necessarily

larger than that of the SUSY-preserving vacua, meaning that they cannot take part in this second-order

phase transition.
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explicitly prove the relation between the dualities. We also find that one of the dualities

does not have an N = 2 version in the literature. We describe this N = 2 duality and

discuss some nontrivial checks we have performed on it.

6.1 Warmup: N = 1

In the case N = 1, the N = 1 duality (6.1) becomes

U(1)k+ 1
2
Nf

+Nf Φ←→ SU(k +Nf )− 1
2
k−1 +Nf Φ̃ (6.2)

Let us match the phases for k > 0. As we saw above, a U(1) gauge theory has a phase

transition at some m = m∗. On one side of this transition we have two vacua (U(1)k
and a CPNf−1 NLSM), and on the other we have a single vacuum (U(1)k+Nf ). As for the

SU(k + Nf ) gauge theory, we also have a phase transition at some m = m∗. On one side

of this transition we have a single vacuum (SU(k + Nf )−1), while on the other side we

have Nf + 1 vacua. However, only two of these vacua are SUSY-preserving: SU(k)−1 and

MNf ,1 = CPNf−1. Using level-rank duality, we can thus exactly match the phases of these

two theories around the transition point.

We are left with matching the phases for21 k = 0. While the phase with a single

vacuum is unchanged and can still be matched across the duality, we find that the vacua

in the intermediate phase are slightly modified. On the U(1) side, the vacua are now a

U(1)0 gauge theory and a CPNf−1 NLSM. On the SU(N) side, the vacua are now a CPNf−1

and a
U(Nf )

SU(Nf ) = S1 NLSM. We can immediately match the two CPNf−1 vacua. To match

the remaining vacua, we notice that U(1)0 has a circle of vacua, parametrized by the dual

scalar. We can thus match the two remaining vacua, since they are both NLSMs with

target space S1.

6.2 Matching the phases for general N

We now match the phases across the phase transition point for general N . Referring to

figure 1, we find that both theories have one vacuum on one side of the transition point,

and many on the other side. We have already discussed the matching for the side with the

single vacuum, and we are left with matching the many vacua in the intermediate phase

across the duality. There are four regimes we must do this for:

• Nf < N and k > 0. This is the simplest form of the duality. Referring to sections 4.3

and 4.4, we find that all of the vacua are SUSY-preserving. The vacua are matched as

MNf ,n×U(N−n)N=1
k+ 1

2
(N+n),k+n

←→MNf ,Nf−n×SU(k+n)N=1
−N+ 1

2
(n−k)

, n = 0, . . . , Nf

(6.3)

Indeed, since k > 0, this is just the N = 1 version of level-rank duality described in

equation (2.14) (note that by definition, MNf ,Nf−n =MNf ,n).

• Nf < N and −Nf < k ≤ 0. Referring to the phases described above, we find the

following phase structure. On the U side we find |k| SUSY-breaking vacua and

21the case N = 1, Nf = 1 is more subtle and is discussed in [1]. Here we discuss Nf > 1.
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Nf −|k|+1 SUSY-preserving vacua of the formMNf ,n×U(N−n)N=1
k+ 1

2
(N+n),k+n

with

n = |k|, . . . , Nf . We note that the vacuum with n = |k| isMNf ,|k|×U(N+k)N=1
1
2

(N+k),0
,

and so its index vanishes.

On the SU side, we find Nf − |k| SUSY-preserving vacua of the form MNf ,Nf−n ×
SU(k+n)N=1

−N+ 1
2

(n−k)
with n = |k|+1, . . . , Nf , and one SUSY vacuum

U(Nf )
SU(Nf−|k|)×U(|k|)

with vanishing index.

We can use the N = 1 version of level-rank duality to match all of the phases, except

for the phase with vanishing Witten index which needs some care.22

• Nf ≥ N and k > 0. We can once again refer to the phases described above. On the U

side we have N+1 SUSY-preserving vacua of the formMNf ,n×U(N−n)N=1
k+ 1

2
(N+n),k+n

.

On the SU side we find Nf −N SUSY-breaking vacua, and N + 1 SUSY-preserving

vacua of the formMNf ,Nf−n×SU(k+n)N=1
−N+ 1

2
(n−k)

. Again, using the N = 1 version

of level-rank duality (2.14) we find that these phases match.

• Nf ≥ N and −N < k ≤ 0. On the U side we find |k| SUSY-breaking vacua and

N − |k|+ 1 SUSY-preserving vacua of the form MNf ,n ×U(N − n)N=1
k+ 1

2
(N+n),k+n

for

n = |k|, . . . , N . Again, we find that for n = |k| we must take special care of the SUSY

vacuum MNf ,|k| ×U(N + k)N=1
1
2

(N+k),0
, since its Witten index vanishes.

On the SU side we find Nf − N SUSY-breaking vacua, N − |k| SUSY-preserving

vacua of the form MNf ,Nf−n × SU(k + n)N=1
−N+ 1

2
(n−k)

, and a single SUSY-preserving

vacuum of the form
U(Nf )

SU(Nf−|k|)×U(|k|) (with vanishing index). We once again find that

apart from using the N = 1 level-rank duality to show that the phases match, we

must also take special care of the vacua with vanishing Witten index22.

Finally, we comment on the case Nf > N and k < −N . In this case, we find some

SUSY-preserving vacua for which we cannot use the known level-rank duality to match the

phases.

6.3 More dualities

We can now generalize this discussion to other gauge groups. Due to the symmetry argu-

ment in section 4.6, we expect SO(N) and Sp(N) gauge groups to have the same general

form for solutions to the F-term equations (indeed, a numerical analysis confirms this).

We can thus find the phase diagrams for these theories. Repeating the analysis above for

these gauge groups leads to the following N = 1 dualities:

SO(N)k+ 1
2

(N−2+Nf ) +Nf Φ←→ SO(k +Nf )− 1
2

(k−2)−N +Nf Φ̃ (6.4)

Sp(N)k+ 1
2

(N+1+Nf ) +Nf Φ←→ Sp(k +Nf )− 1
2

(k+1)−N +Nf Φ̃ (6.5)

22Using the fact that a U(1)0 gauge theory is dual to a free scalar, we find that the target spaces of the

two phases are locally both
U(Nf )

SU(Nf−|k|)×U(|k|) . However, there are some global effects one must be careful

with. We assume that a more careful analysis of these phases matches the global behavior of the target

spaces as well.
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We will not give a detailed proof here that the phases match for the various ranges of

parameters, since the details are very similar to those discussed above. Instead, we restrict

ourselves to the simplest case of k ≥ 0 and Nf < N . In this case, there are no SUSY-

breaking phases. The phases for the theories in the SO(N) duality (6.4) with k ≥ 0, Nf <

N are summarized in the following table:23

l.h.s. r.h.s.

m > m∗ SO(N)k+Nf SO(k +Nf )−N

m < m∗ SO(N − n)k+n × M̃Nf ,n SO(k +Nf − n)−N+Nf−n × M̃Nf ,n

where n = 0, . . . , Nf and we used M̃Nf ,n =
SO(Nf )

S[O(n)×O(Nf−n)] as shorthand for a NLSM with

target space M̃Nf ,n. Just like in the SU(N) and U(N) cases discussed above, we find that

using level-rank duality we can match the n’th vacuum on the l.h.s. with the (Nf − n)’th

vacuum on the r.h.s. (one can also compare to [31]).

We can also repeat the discussion above to find dualities between U(N) groups. Indeed,

using U -U level-rank dualities [53], a similar procedure leads to the N = 1 dualities

U(N)k+ 1
2

(N+Nf ), k+N+ 1
2
Nf

+Nf Φ←→ U(k +Nf )−N− 1
2
k, −N−k− 1

2
Nf

+Nf Φ̃ (6.6)

U(N)k+ 1
2

(N+Nf ), k−N+ 1
2
Nf

+Nf Φ←→ U(k +Nf )−N− 1
2
k, k−N+ 3

2
Nf

+Nf Φ̃ (6.7)

Once again, we only show the matching of the phases for the simplest case k ≥ 0, Nf < N .

In this case the phases for the two sides of the first duality are:

l.h.s. r.h.s.

m > m∗ U(N)k+Nf , k+N+Nf U(k +Nf )−N, −k−N−Nf
m < m∗ U(N − n)k+n, k+N ×MNf ,n U(k +Nf − n)−N+Nf−n, −k−N ×MNf ,n

and for the second duality:

l.h.s. r.h.s.

m > m∗ U(N)k+Nf , k−N+Nf U(k +Nf )−N, k−N+Nf

m < m∗ U(N−n)k+n, k−N+2n ×MNf ,n U(k+Nf−n)−N+Nf−n, k−N+2Nf−2n×MNf ,n

where n = 0, . . . , Nf . Once again, using level-rank dualities we can match the n’th vacuum

on the l.h.s. with the (Nf − n)’th vacuum on the r.h.s. .

6.4 Emergent symmetries and supersymmetry

We now comment on some interesting consequences of our duality (1.2), which are related

to emergent global symmetries, supersymmetry, and time-reversal symmetry in the IR.

Similar results were found within the context of N = 1 SUSY in [4, 58]. Finally we analyze

the special cases of U(1) ' SO(2) and SU(2) ' Sp(1) to obtain a series of dualities similar

to the non-SUSY case in [22].

23We are being purposefully careless here with the definition of m so as to simplify notation. Specifically,

we are being careless with the sign of m. Note that the duality matches m⇒ −m.
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Our conjectured duality (1.2) is a strong-weak duality.24 Thus, we cannot use the RG

flow analysis above to describe both sides of the duality (since the analysis assumes large

k). However, assuming the duality is correct, we can find some interesting conclusions

about the strongly coupled side by analyzing the weakly coupled side.

We start by discussing emergent global symmetries. As discussed in 4.5, an SU(2)

gauge theory with Nf fundamentals has classically enhanced Sp(Nf ) flavor symmetry.

Similarly, an SO(2) gauge theory with Nf fundamentals has enhanced U(Nf ) symmetry.

Combined with the SU -U and SO-SO dualities (1.2), (1.3) we find the following emergent

symmetries:

U(N)2+ 1
2

(N−Nf ),2− 1
2
Nf
−→ emergent Sp(Nf ) global symmetry (6.8)

SO(N)1+ 1
2

(N−Nf ) −→ emergent U(Nf ) global symmetry (6.9)

in the range where the dualities are valid.

Next we discuss emergent supersymmetry. In section 5 we saw that in the weak

coupling regime with large CS level k, the theories with Nf = 1 and the theories with

U(1) ' SO(2) gauge symmetry flow to an N = 2 IR fixed point. Combined with the

dualities above, we can conjecture that in the range where our dualities are correct (and

also for large enough N), we have:

SU(N)1+ 1
2

(N−Nf ) +Nf Φ −→ emergent N = 2 SUSY

SO(N)1+ 1
2

(N−Nf ) +Nf Φ −→ emergent N = 2 SUSY
(6.10)

Next, we discuss emergent time-reversal symmetry. Using the dualities of (1.2)–(1.6)

with k = N −Nf , we find the following dualities:

SO(N) 3
2
N− 1

2
Nf−1 +Nf Φ ←→ SO(N)− 3

2
N+ 1

2
Nf+1 +Nf Φ̃

Sp(N) 3
2
N− 1

2
Nf+ 1

2
+Nf Φ ←→ Sp(N)− 3

2
N+ 1

2
Nf− 1

2
+Nf Φ̃

U(N) 3
2
N− 1

2
Nf , 2N− 1

2
Nf

+Nf Φ ←→ U(N)− 3
2
N+ 1

2
Nf , −2N+ 1

2
Nf

+Nf Φ̃

U(N) 3
2
N− 1

2
Nf , − 1

2
Nf

+Nf Φ ←→ U(N)− 3
2
N+ 1

2
Nf , + 1

2
Nf

+Nf Φ̃

(6.11)

Note that in each duality, the two sides are related by time reversal. We thus conclude

that these theories have emergent time reversal symmetry in the IR. Due to the fact that

the superpotential of 2+1d N = 1 theories must be time-reversal odd, these theories

might have exact moduli spaces [4]. Indeed, a special case of the third duality of (6.11)

is N = Nf = 1, which tells us that the theory U(1)3/2 + Φ has emergent time-reversal

symmetry. This theory was studied in [4], and was shown to be dual to a U(1)0 gauge

theory with a charge 2 matter field, so that it is indeed time-reversal invariant. As a result,

it was also shown that this theory has an exact quantum moduli space. It might be possible

to find similar dualities that relate the theories in (6.11) to theories that are manifestly

24This can be easily seen when we change regularization schemes; switching from Yang-Mills regularization

of the CS level k to dimensional regularization with CS level κ following [19], the ’t Hooft coupling λ = N
k

of the two sides of the duality are related by |λl.h.s. | = 1− |λr.h.s. |.
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time-reversal invariant. Consequently, a similar analysis might prove that these theories

all have exact quantum moduli spaces.

Finally, we discuss a simple series of dualities. Using U(1) ' SO(2) and SU(2) ' Sp(1),

we can obtain the following two series of dualities using (1.2)−(1.6). Note that the range

of validity of the SU-U duality forces us to have Nf ≤ 2 (a similar non-SUSY version was

discussed in [22])

U(3)−2, 52
+ Φ←→U(3)2,− 5

2
+ Φ←→U(1)− 3

2
+ Φ←→U(1) 3

2
+ Φ←→SU(2)− 3

2
+ Φ←→ SU(2) 3

2
+Φ

U(3)− 3
2 ,3

+2Φ←→U(3) 3
2 ,−3+2Φ←→U(1)−1+2Φ←→U(1)1+2Φ←→SU(2)−1+2Φ←→SU(2)1+ 2Φ

In particular we note that both series have emergent time reversal symmetry in the IR.

Furthermore, the first series has emergent Sp(1) flavor symmetry, while the second one has

emergent Sp(2) flavor symmetry (this becomes apparent when studying the theories in the

series with SU(2) gauge groups).

6.5 Relation to N = 2 dualities

We now discuss the relation between the N = 1 dualities discussed above and some well-

known N = 2 dualities. We focus on the N = 1 dualities for SU(N) and U(N) gauge

groups (the results for SO and Sp gauge groups are similar). These are:

U(N)k+ 1
2

(N+Nf ), k+ 1
2
Nf

+Nf Φ←→ SU(k +Nf )−N− 1
2
k +Nf Φ̃ (6.12)

U(N)k+ 1
2

(N+Nf ), k+N+ 1
2
Nf

+Nf Φ←→ U(k +Nf )−N− 1
2
k, −N−k− 1

2
Nf

+Nf Φ̃ (6.13)

U(N)k+ 1
2

(N+Nf ), k−N+ 1
2
Nf

+Nf Φ←→ U(k +Nf )−N− 1
2
k, k−N+ 3

2
Nf

+Nf Φ̃ (6.14)

We start with the SU -U duality (6.12). We show that this duality is related to the N = 2

SU -U duality discussed in [16]. This duality was generalized to an arbitrary number of

fundamentals and anti-fundamentals in [59]. For the case at hand, we are interested in the

duality where there are no antifundamentals (and Nf < 2k):

SU(N)k +Nf Q←→ U(Nf/2 + k −N)−k, 1
2
Nf−N +Nf q (6.15)

We argue that by deforming theN = 2 duality (6.15), one can find theN = 1 duality (6.12).

To see this, we first remember that the N = 2 fixed point is unstable to N = 1 Φ4

deformations at large k, so that such an N = 1 deformation should make the theory flow

to a new N = 1 fixed point. Now, if we think of the N = 2 vector multiplet as an N = 1

vector multiplet with an additional N = 1 matter multiplet, then we can integrate out the

matter multiplet at large k (since its mass is proportional to k) and end up with an N = 1

duality. This integration out induces a Φ4 coupling, which seems to have the correct sign

to make us flow to the correct N = 1 fixed point shown in figure 7. Furthermore, this

integration out shifts the CS level, and we find exactly the N = 1 theories discussed above.

The picture we find is thus the following. It is possible that by just integrating out

one-half of the N = 2 vector multiplet, we flow to the N = 1 duality, due to the appearance
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of the Φ4 interaction. But even if this is not so, we can also add a Φ4 term in addition to

the integration out to make sure that we flow to the correct fixed point. We can thus flow

from the N = 2 duality to the N = 1 duality.

Another piece of evidence for this relation is the phase diagrams for these theories.

Consider theN = 2 theories discussed above. We can add real masses (and an FI parameter

where relevant) to these theories, and find the phases as a function of these parameters

close to the fixed point. Assuming we give an identical real mass to all of the matter fields,

we find that the phases as a function of the real mass are identical to the phases we found

for the N = 1 theories in section 4 around the fixed point. Since the RG flow is “short”,

we might expect the phases to be similar for these two theories. This again points to a

relation between the N = 2 and the N = 1 dualities.

We can do an identical analysis for the first U -U duality (6.13). This time, the relevant

N = 2 duality is Giveon-Kutasov duality [15]. Once again, we must start by getting rid

of the antifundamental matter fields in Giveon-Kutasov by adding mass terms. This was

done in [17], and the result is

U(N)k +Nf Φ←→ U (Nf/2 + k −N)−k +Nf Φ̃ (6.16)

We again find that a naive integration out of the N = 1 chiral multiplet embedded in the

N = 2 vector multiplet immediately leads to the N = 1 duality described above. We thus

expect a similar behavior in this case as well. We also find once again the the phases of

the N = 2 theory as a function of the real mass match the phases of the N = 1 theory as

a function of the mass m (for the case where the mass preserves the global symmetries).

Finally, we discuss the second U -U duality (6.14). Interestingly, the relevant N = 2

duality has not yet appeared in the literature. This should be

U(N)k+N,k−N +Nf Φ, Φ̃←→ U(Nf + k)−k−N,k−N+2Nf +Nf Ψ, Ψ̃ +N2
f M (6.17)

where the M ’s are gauge singlets and the r.h.s. has the superpotential W = Ψ̃MΨ. Fol-

lowing the procedure discussed above, this should flow to our N = 1 duality. We have

performed some nontrivial checks on this N = 2 duality. First, one can match the phases

of the two sides as a function of real and complex masses for the quarks. Second, using

localization [60–62], one can also match the partition functions of the two sides for the

simpler cases of the duality.

We make two final comments. First, we note that the range of validity for the N = 2

theories directly implies the range of validity that were found for the N = 1 dualities above

(for example, the range of the N = 2 SU -U duality discussed in [17] directly leads to the

range k > −min(Nf , N) for the N = 1 SU -U duality). Since the range of the N = 1

dualities was found here independently, this is further evidence of the correspondence

between the N = 1 and N = 2 dualities. Second, we note that the relation to N = 2

dualities can explain the fact that there is a single phase transition in the phase diagram to

all orders in perturbation theory. Indeed, in the N = 2 case this fact is obvious; it results

from the fact that the superpotential in these theories is holomorphic, and so the standard

non-renormalization theorems apply. This means that the vacua are often given by the
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solutions of the classical (or 1-loop) F-term equations, which can easily be tuned to have

such unnatural structures (and indeed this can be seen in the phase structure of the N = 2

theories described above when we add real masses to the matter fields). If the N = 1 and

N = 2 theories are then close (in an RG flow sense), we might expect their phase diagrams

to be similar as well. This might lead to there being a single phase transition in the N = 1

theory as well.

7 Summary and conclusions

In this work, we considered 2+1d N = 1 supersymmetric gauge theories, with matter

(mostly) in the fundamental representation. Using supergraphs, we have found the 1-loop

effective superpotential for these theories with matter in an arbitrary representation. This

superpotential allows us to find the phase diagram for these theories by solving the F-term

equations.

Next, restricting ourselves to matter fields in the fundamental representation, we find

a universal form for the solutions of the F-term equations and for the resulting phase

diagrams for many different gauge groups (including SO(N), O(N), Sp(N), SU(N) and

U(N)), see figure 1. These phase diagrams have three regimes - two semiclassical phases

for large |m| with a single vacuum, and one intermediate phase with many SUSY vacua.

In particular, we find that there is a single point where the Witten index jumps (due to

vacua appearing from infinity), and a single phase transition where many different vacua

collide.

One can understand this universal form using a simple symmetry argument. This

argument also proves that there is a single phase transition to all orders in perturbation

theory. Thus, even though this result seems highly unnatural, it is actually an exact result.

This fact (together with the phase diagrams we found) allows us to write down dualities

relating the different theories, summarized in equations (1.2)–(1.6). All of these dualities

except one were shown to be related to well known N = 2 dualities (except for one, for

which we conjecture the corresponding N = 2 duality (6.17)).

These dualities lead to some interesting conclusions. In particular, we find many the-

ories which have emergent global symmetries and supersymmetry in the IR. Furthermore,

we find a series of theories which have emergent time-reversal symmetry in the IR, which

might indicate that they have an exact quantum moduli space.

This paper includes both conjectures (for example, the dualities) and some exact results

(for example, the single phase transition at m = m∗ where many vacua collide). Even more

exact results have appeared recently in the literature for theories with N = 1 SUSY. The

fact that one can find exact results in theories with N = 1 might seem very surprising

at first; as mentioned in the introduction, the superpotentials in these theories are not

holomorphic, and so they do not possess the full power of supersymmetry. However, our

results seem to indicate that some of the exact results that appear in this paper are still

a direct result of the holomorphy of the superpotential in N = 2 SUSY. In other words,

most of the exact results can be understood by deforming theories with N = 2 SUSY. It

would be interesting to see if other exact results in N = 1 theories can also be understood
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directly from N = 2 theories.25 Furthermore, it would be interesting to see whether we

can continue this flow to find exact results in non-SUSY theories as well. As we have

mentioned, the connection between the non-SUSY bosonization dualities and some N = 2

dualities has already been studied in the literature (and a similar connection to our N = 1

dualities should also exist). Hopefully, the recent results in theories with N = 1 SUSY

might lead to new results in non-SUSY theories as well.
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A Superspace conventions

We follow [63]. Spinor indicies are raised and lowered with

Cαβ = −Cαβ = (σ2)αβ ⇒ CαβC
γδ = δα

δδβ
δ − δβδδαδ . (A.1)

We use the conventions that for a spinor

ψα = Cαβψβ , ψβ = ψαCαβ , ψ2 =
1

2
ψαψα = iψ+ψ− (A.2)

Spinor derivatives obey the usual algebra:

{Dα, Dβ} = 2i∂αβ . (A.3)

The convention is again D2 = 1
2D

αDα. These identities follow trivially:

DαDβ = i∂αβ − CαβD2 , DαDβDα = 0 , D2Dα = −DαD
2 = i∂αβD

β , (A.4)

as well as

∂αβ∂γβ = δγ
α� , (D2)(D2) = � , � ≡ 1

2
∂αβ∂αβ . (A.5)

25In particular, it would be interesting to understand whether the exact moduli spaces appearing in [4] can

be understood using deformations of N = 2 theories, or whether they are intrinsically N = 1 phenomena.

On one hand, it is very common to have exact moduli spaces in theories with a holomorphic superpotential,

and so this doesn’t sound unreasonable. On the other hand, this seems highly nontrivial, since (for example)

moduli spaces of theories with holomorphic superpotentials are Kähler manifolds, while the moduli spaces

that were found for N = 1 theories were not Kähler.

– 36 –



J
H
E
P
1
0
(
2
0
1
8
)
1
0
5

The free scalar superfield action is

SX =
1

2

∫
d2θ (XD2X +mX2) =

1

2

∫
d2θ

(
−1

2
DαXDαX +mX2

)
. (A.6)

The gauge multiplet is described by covariantizing the spinor and vector derivatives:

{∇α,∇β} = 2i∇αβ , ∇α ≡ Dα − iΓα , (A.7)

where the generators are hermitian (which is why there is an i in the definition of the gauge

covariant derivative ∇α). The Bianchi identities imply:

[∇γ ,∇αβ ] = CγαWβ + CγβWα , ∇αWα = 0 . (A.8)

The explicit form of Wα is

Wα =
i

6
[∇β , {∇β ,∇α}] =

1

2

(
DβDαΓβ − i[Γβ , DβΓα]− 1

3
[Γβ , {Γβ ,Γα}]

)
. (A.9)

B Separating the massive YM mode from the CS mode

Consider the Higgs mechanism in a YM-CS theory. The gauge field then has two modes [57];

at large CS level k, we find that one is very massive (with mass of order m ∼ kg2) while

the mass of the other field is very small. Here we show how to separate these modes to

integrate out only the very massive mode.

We can replace SWW with a simpler action by introducing an extra spinor super-

field ψα:

Sψψ =

∫
d2θ Tr

(
−g

2k2

2π2
ψ2 − k

π
ψαWα

)
= −g

2k2

2π2

∫
d2θTr

(
1

2
ψαψα +

2π

g2k
ψαWα

)
(B.1)

Note that eliminating ψ gives back SWW . We now cancel the ψαWα term by shifting Γ:

Γ = Γ′ + ψ ⇒ ∇ = ∇′ − iψ , (B.2)

Using (A.9), we have:

Wα = W ′α +
1

2

(
∇′β∇′αψβ − i[ψβ ,∇′βψα]− 1

3
[ψβ , {ψβ , ψα}]

)
. (B.3)

We find the shifted Chern-Simons term directly from (2.5):

SCS[Γ′+ψ] = SCS[Γ′] +
k

π

∫
d2θ Tr

(
ψαW ′α

+
1

4

[
ψα∇′β∇′αψβ −

2i

3
{ψα, ψβ}∇′αψβ −

1

6
{ψα, ψβ}{ψα, ψβ}

])
(B.4)

Notice that the ψαW ′α cross-term cancels when we add Sψψ + SCS[Γ′+ψ]; using (B.3), we

find [64]

SΓ′ψ = SCS[Γ′]− k

2π

∫
d2θTr

(
1

2
ψα∇′β∇′αψβ

−2i

3
{ψα, ψβ}∇′αψβ−

1

4
{ψα, ψβ}{ψα, ψβ}+

g2k

π
ψ2

)
(B.5)
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The superfield ψ thus has a mass κ = kg2

2π (before corrections due to the Higgs mechanism),

and we identify it with the very massive YM mode. We can now integrate out this mode

to find the effective action for the remaining fields.

After performing this separation, since the gauge field Γ′ has only a Chern-Simons

kinetic term, gauge-fixing is simpler, and no Nielsen-Kallosh ghosts such as those described

in section 2.1 are needed; the gauge fixing term can be chosen to be, e.g.,

S0
fix = − k

4πα

∫
d2θ Tr(DαΓα)2 (B.6)

or the usual R− ξ gauge, etc.

C Superpotential for U(N)k,k′

We find the form of the superpotential for a U(N)k,k′ gauge theory. Let us redo the

calculation from section 3.2. This time, the calculation is more complicated, since we have

two different propagators (for k and k′).

Let us discuss the form of the propagator. Note that we can rewrite the propagator

corresponding to level k (ignoring group factors)

∆ β
α (κ) = −g2 δ

β
α

(
κD2 + p2

)
+
(
κ−D2

)
p β
α

p2 (κ2 + p2)

= −g2 δ
β
α

(
κD4 + p2D2

)
D−2 +

(
κ−D2

)
p β
α

p2 (κ2 + p2)

= −g2 κ−D2

κ2 + p2

−δ β
α p2D−2 + p β

α

p2

(C.1)

We can now relate the propagators with different k’s. Again, we use the trick 3.11, which

amounts to replacing D2 by ip and extracting the imaginary part at the end. Thus U(1)

and SU(N) propagators are then related by

∆ β
α (κ̃) =

κ̃− ip
κ̃2 + p2

κ2 + p2

κ− ip
∆ β
α (κ)

=
κ+ ip

κ̃+ ip
∆ β
α (κ)

≡ R∆ β
α (κ)

We must now re-sum the diagrams. We reintroduce the φ2 = φ̄T (aT b)φ factor, which

multiplies each propagator. We observe that each U(1) propagator comes with two factors

of T 0. We can thus absorb the factor of R into the generator T 0 using T̃ 0 =
√
RT 0, The

propagators are now all equal, but the new definition for φ2 is

φ̃2 ≡ φ†T̃ (aT̃ b)φ, T̃ 0 = RT 0, T̃ a = T a, a ∈ SU(N) (C.2)
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The following part of the calculation proceeds as before. We can re-sum the diagrams to

find the superpotential:

W = −
∫

d3p

(2π)3

1

|p|
ImTr log

(
1 +

g2φ̃2(iκ|p|+ p2)

p2(κ2 + p2)

)

= −
∫

d3p

(2π)3

1

|p|
ImTr log

(
1 +

g2φ̃2

(−iκ|p|+ p2)

)

Note that this integral is still much more complicated than before, since φ̃ depends on p.

However, this form allows us to perform numerical calculations to find the vacua for the

theory.

D Matching the Witten index

D.1 Generalities

In this appendix we study the Witten index of the phase diagrams for SU(N) and U(N)

gauge theories described in sections 4.3, 4.4. We show that for these theories, the Witten

index jumps only once (at m = 0), and does not jump at the phase transition point m = m∗.

This is consistent with the fact that vacua appearing from infinity can cause the Witten

index to jump. We also find that as required, the Witten index of the vacua coming in

from infinity exactly matches the expected jump

We focus on the calculation of the Witten index for the large positive mass phase and

for the intermediate phase in figure 1. We show that the Witten index of both phases is

equal, so that there is no jump at m = m∗. This immediately leads to the necessity of a

jump at m = 0, since a simple calculation shows that the Witten indices for positive mass

and negative mass are not equal in general.

The following facts about the Witten index are used. First, the Witten index for

a SUSY NLSM is equal to the Euler characteristic of the target manifold χ(M) [8]. In

particular, for the Grassmannian Manifold Mn,m =
SU(Nf )

S[U(Nf−m)×U(m)] , we find26

I(Mn,m) = χ(Mn,m) =

(
n
m

)
(D.1)

We also make extensive use of the Witten indices of the following N = 1 vector multiplets:

I(SU(N)N=1
k ) =

{(N
2

+k−1
N−1

)
k > 0

0 −N/2 < k ≤ 0
(D.2)

I(U(N)N=1
k+N/2,k) =

{(
N+k−1
k−1

)
k > 0

0 −N/2 < k ≤ 0
(D.3)

It is believed that these theories break SUSY dynamically when their Witten index vanishes.

26One way to obtain this result is using Atiyah-Bott Localization Theorem [65], since the fixed points

under the action of U(1)n on Mn,k are just the

(
n
k

)
diagonal elements.
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It is important to note that I(U(N)N=1
N/2,0) = 0. This is because the U(1) part of the

theory has a circle of vacua, parametrized by the dual photon. Since the χ(S1) = 0, we

find that the Witten index of this theory vanishes. This fact was also used in [1].

Vandermonde’s Identity also plays important role:

K′∑
n=0

(
M

n

)(
K

K ′ − n

)
=

(
K +M

K ′

)
(D.4)

Finally, a comment about the sign ambiguity of the Witten index is in order. There is

a sign ambiguity for the operator (−1)F in finite volume [8, 50]. The overall sign is purely

determined by our own choice for the Hilbert space, and we set it as positive for large

positive k for both SU(N)k and U(N)k.

D.2 SU(N)k+N/2 with N > Nf

We study the theories described in section 4.3.1. We show that the Witten index does not

jump across the phase transition at m = m∗. As a result, we find that it must jump at

m = 0, when the new vacua appear from infinity.

D.2.1 k ≥ Nf/2

There are no SUSY-breaking vacua in this case. For small positive mass, the sum of the

Witten indices for all of the vacua is (using (D.2), (D.4)):

Nf∑
n=0

I(MNf ,n × SU(N − n)N=1
k+N/2−Nf/2+n/2) =

Nf∑
n=0

(
Nf

n

)(
N + k − Nf

2 − 1

N − n− 1

)

=

(
N + k +

Nf
2 − 1

N − 1

)
(D.5)

which is precisely the Witten index of the large positive mass phase, which is an N = 1

SU(N)k+N/2+Nf/2 vector multiplet (see (D.2)).

D.2.2 −Nf/2 ≤ k < Nf/2

Here, some vacua in the range 0 < m < m∗ become SUSY-breaking (as discussed in

section 2.2), and so they do not contribute to the index. The total Witten index in this
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range becomes

Nf∑
n=0

I(MNf ,n × SU(N − n)N=1
k+N/2−Nf/2+n/2)

=

Nf/2−k−1∑
n=0

I(

���
���

���
���

���
���:

SUSY-breaking

MNf ,n × SU(N − n)N=1
k+N/2−Nf/2+n/2)

+

Nf∑
n=Nf/2−k

I(MNf ,n × SU(N − n)N=1
k+N/2−Nf/2+n/2)

=

Nf/2+k∑
n=0

(
Nf

n

)(
N + k − Nf

2 − 1

k +
Nf
2 − n

)

=

(
N + k +

Nf
2 − 1

N − 1

)
(D.6)

Which is precisely the Witten index of the large positive mass phase, an N = 1

SU(N)k+N/2+Nf/2 vector multiplet.

D.2.3 −N/2 ≤ k < −Nf/2

All of the vacua break SUSY in this region since |k+N/2±Nf/2| < N/2. Thus the Witten

index vanishes on both sides of the transition.

D.3 SU(N)k+N/2 with N ≤ Nf

D.3.1 k ≥ Nf/2

There are no SUSY-breaking vacua in this case. For small positive mass, the sum of the

Witten indices for all of the vacua is:

I =
���

���
���

���
�:0

I(
U(Nf )

SU(N)×U(Nf −N)
) +

N−1∑
n=0

I(MNf ,n × SU(N − n)N=1
k+N/2−(Nf−n)/2)

=
N−1∑
n=0

(
Nf

n

)(
N − Nf

2 + k − 1

N − 1− n

)

=

(
N +

Nf
2 + k − 1

N − 1

)
(D.7)

which is the Witten index of the large positive mass phase, an N = 1 SU(N)k+N/2+Nf/2

vector multiplet. The first term vanishes because it is the Euler characteristic of an odd-

dimensional manifold.
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D.3.2 −N +Nf/2 < k < Nf/2

SUSY-breaking occurs for the phases with 0 ≤ n < Nf/2−k, and so they do not contribute

to the index. The full index for 0 < m < m∗ is:

N−1∑
n=0

I(MNf ,n × SU(N − n)N=1
k+N/2−(Nf−n)/2)

=
��

���
���

���
��:0

I(
U(Nf )

SU(N)×U(Nf −N)
)

+

Nf/2−k−1∑
n=0

I(

���
���

���
���

���
���:

SUSY-breaking

MNf ,n × SU(N − n)N=1
k+N/2−(Nf−n)/2)

+

N−1∑
n=Nf/2−k

I(MNf ,n × SU(N − n)N=1
k+N/2−(Nf−n)/2)

=

N+k−
Nf
2
−1∑

n=0

(
Nf

Nf
2 + k − n

)(
N + k − Nf

2 − 1

n

)

=

(
N + k +

Nf
2 − 1

N − 1

)
(D.8)

and again we obtain the Witten index of the large positive mass phase, an N = 1

SU(N)k+N/2+Nf/2 vector multiplet. As above, the first term vanishes because it is the

Euler characteristic of an odd-dimensional manifold.

D.3.3 −N/2 ≤ k ≤ −N +Nf/2

In this case, there are no SUSY breaking for all phases, since k + N/2 − (Nf − n)/2 ≤
−(N − n)/2 and k +N/2 +Nf/2 ≥ N/2. The calculation is similar to D.3.1.

D.4 U(N)k+N/2,k with N > Nf

D.4.1 k > Nf/2

The total index for small positive m is (using (D.3)):

Nf∑
n=0

I(MNf ,n ×U(N − n)N=1
k+N/2−Nf/2+n/2,k−Nf/2+n)

=

Nf∑
n=0

(
Nf

Nf − n

)(
N + k − Nf

2 − 1

k − Nf
2 + n− 1

)
=

(
N + k +

Nf
2 − 1

N

)
(D.9)

which is the index of the large positive mass phase, an N = 1 U(N)k+N/2+Nf/2,k+Nf/2

vector multiplet.
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D.4.2 −Nf/2 ≤ k ≤ Nf/2

Here, some vacua are SUSY-breaking, and so they do not contribute to the index. The

total Witten index for small positive mass is:

Nf∑
n=0

I(MNf ,n ×U(N − n)N=1
k+N/2−Nf/2+n/2,k−Nf/2+n)

=

Nf/2−k−1∑
n=0

I(

��
���

��
���

���
���

��:SUSY-breaking

U(N − n)N=1
k+N/2−Nf/2+n/2,k−Nf/2+n)

+ I(

���
���

���
���

���
�:0

U(N −Nf/2 + k)N=1
k/2+N/2−Nf/4,0)

+

Nf∑
n=Nf/2−k+1

I(MNf ,n ×U(N − n)N=1
k+N/2−Nf/2+n/2,k−Nf/2+n)

=

Nf∑
n=Nf/2−k+1

(
Nf

Nf − n

)(
N + k − Nf

2 − 1

k −Nf/2 + n− 1

)

=

(
N + k +

Nf
2 − 1

N

)
(D.10)

which again, matches with the index of the large positive m vacuum. As explained be-

low (D.3), the Witten index of the term on the second line vanishes: generally, an N = 1

U(N)N/2,0 vector multiplet leads to a U(N)0 TQFT in the IR. The U(1) part of this TQFT

has a circle of vacua, parametrized by the dual scalar. The Euler characteristic of a circle

is zero, and so the Witten index of this theory vanishes.

D.4.3 −N/2 ≤ k ≤ −Nf/2

In this region, all phases break supersymmetry because |k + N/2 ± Nf/2| < N/2. Thus

the Witten index matches trivially.

D.5 U(N)k+N/2,k with N ≤ Nf

D.5.1 k ≥ Nf/2

All of the small positive mass vacua are SUSY-preserving, and so the total index for small

positive m is:

N∑
n=0

I(MNf ,n ×U(N − n)N=1
k+N/2−Nf/2+n/2,k−Nf/2+n)

=
N∑
n=0

(
Nf

n

)(
N + k − Nf

2 − 1

N − n

)
=

(
N + k +

Nf
2 − 1

N

)

which is again consistent with the index for large positive m.
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D.5.2 −N +Nf/2 < k < Nf/2

Here, some of the vacua can break SUSY. The total Witten index for the small positive

mass phase is:

N∑
n=0

I(MNf ,n ×U(N − n)N=1
k+N/2−Nf/2+n/2,k−Nf/2+n)

=

Nf/2−k−1∑
n=0

I(

���
���

���
���

���
���:

SUSY-breaking

U(N − n)N=1
k+N/2−Nf/2+n/2,k−Nf/2+n)

+ I(

��
���

���
���

���
��:0

U(N −Nf/2 + k)N=1
k/2+N/2−Nf/4,0)

+

N∑
n=Nf/2−k+1

I(MNf ,n ×U(N − n)N=1
k+N/2−Nf/2+n/2,k−Nf/2+n)

=

N∑
n=Nf/2−k+1

(
Nf

n

)(
N + k − Nf

2 − 1

N − n

)

=

(
N + k +

Nf
2 − 1

N

)
(D.11)

which is again identical to the index of the vacuum at large positive m. The Witten index

of the second line vanishes as explained below (D.3), (D.10).

E Proof that there is only one phase transition

We prove that the solutions φn =

(
vn(m) · 1n×n

0

)
must all coalesce at the same value

of v and m, which proves that there is only one phase transition. Our arguments are

similar to those used in Landau-Ginzburg theory. The main logic is the following: consider

some effective potential U for small φ. This can be expanded in φ, and we find U(φ) =

λ1φ
2 + λ2φ

4 + . . . for some constants λ1, λ2 (we assume λ2 > 0). We find that this model

has a phase transition point, which occurs when λ1 = 0. We can now repeat this procedure

for the effective potential W (n) of a specific solution φn. What we show is that for any φn
we have λ

(n)
1 = nλ, where λ is independent of n. The phase transition for all φn’s is thus

at the same point λ = 0.

We start by noticing that a phase transition (i.e. two of the solutions φn, φk colliding)

can only occur at φ = 0. This is obvious, since to have φn = φk we must have vn = vk = 0.

It is thus enough to show that all of the phase transitions occur at the same mass m∗.

Consider one solution φn and assume that it undergoes a phase transition at m
(n)
∗ (in other

words, vn

(
m

(n)
∗

)
= 0) Assume that the phase transition that occurs for the smallest m

includes the solution vn, and denote this m by m = m∗n. Since vn must vanish at the phase

transition, we find vn(m = m∗n) = 0.
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Now we expand the superpotential around the phase transition point φ = 0:

W (m) = W0(m) +W2(m)trφ2
n + (W4(m)trφ4

n + W̃4(m)(trφ2
n)2) + . . . (E.1)

Plug in the solution φn:

W (m) = W0(m) +W2(m)nv2
n + (W4(m)nv4

n + W̃4(m)(nv2
n)2) + . . . (E.2)

This must solve the equation ∂
∂vn

W = 0, and so we have

0 = 2W2(m)nvn + 4nv3
n(W4(m) + W̃4(m)n) + . . . (E.3)

Let us remove the solution at vn = 0:

0 = 2W2(m)n+ 4nv2
n(W4(m) + W̃4(m)n) + . . . (E.4)

Finally, we plug in m = m∗n and use the fact that vn(m∗) = 0 to find:

0 = W2(m∗n)n (E.5)

We thus find that the phase transition point m∗n is defined by the equation W2(m∗n) = 0.

Note that this equation does not depend on n, and so repeating this argument for any

other vi gives the same m∗. We thus find that all other solutions vi must also vanish at

this m∗, so that all of the solutions coalesce simultaneously. We conclude that there is only

one phase transition.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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[64] A. Karlhede, U. Lindström, M. Roček and P. van Nieuwenhuizen, Supersymmetric

vector-vector duality, Class. Quant. Grav. 4 (1987) 549 [INSPIRE].

[65] K. Hori, Clay Mathematics Monographs. Vol. 1: Mirror symmetry, AMS Press, Providence

U.S.A. (2003).

– 48 –

https://doi.org/10.1016/0550-3213(78)90009-3
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B140,499%22
https://doi.org/10.1016/0550-3213(78)90340-1
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B141,141%22
https://arxiv.org/abs/hep-th/9903005
https://inspirehep.net/search?p=find+EPRINT+hep-th/9903005
https://doi.org/10.1016/0370-2693(90)90623-E
https://inspirehep.net/search?p=find+J+%22Phys.Lett.,B246,417%22
https://doi.org/10.1016/0550-3213(91)90110-J
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B352,863%22
https://doi.org/10.1007/JHEP09(2016)095
https://doi.org/10.1007/JHEP09(2016)095
https://arxiv.org/abs/1607.07457
https://inspirehep.net/search?p=find+EPRINT+arXiv:1607.07457
https://doi.org/10.1088/1126-6708/2005/07/043
https://arxiv.org/abs/hep-th/0505213
https://inspirehep.net/search?p=find+EPRINT+hep-th/0505213
https://doi.org/10.1088/1126-6708/2006/02/072
https://arxiv.org/abs/hep-th/0601150
https://inspirehep.net/search?p=find+EPRINT+hep-th/0601150
https://doi.org/10.1103/PhysRevD.10.1246
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,D10,1246%22
https://arxiv.org/abs/hep-th/9902115
https://inspirehep.net/search?p=find+EPRINT+hep-th/9902115
https://arxiv.org/abs/1804.05707
https://inspirehep.net/search?p=find+EPRINT+arXiv:1804.05707
https://doi.org/10.1007/JHEP02(2015)162
https://arxiv.org/abs/1411.5475
https://inspirehep.net/search?p=find+EPRINT+arXiv:1411.5475
https://doi.org/10.1007/JHEP03(2010)089
https://arxiv.org/abs/0909.4559
https://inspirehep.net/search?p=find+EPRINT+arXiv:0909.4559
https://doi.org/10.1007/JHEP03(2011)127
https://doi.org/10.1007/JHEP03(2011)127
https://arxiv.org/abs/1012.3512
https://inspirehep.net/search?p=find+EPRINT+arXiv:1012.3512
https://doi.org/10.1007/JHEP05(2012)159
https://arxiv.org/abs/1012.3210
https://inspirehep.net/search?p=find+EPRINT+arXiv:1012.3210
https://arxiv.org/abs/hep-th/0108200
https://inspirehep.net/search?p=find+EPRINT+hep-th/0108200
https://doi.org/10.1088/0264-9381/4/3/013
https://inspirehep.net/search?p=find+J+%22Class.Quant.Grav.,4,549%22

	Introduction and summary
	Background
	Gauge theories in n1 superspace
	Free N=1 vector multiplets
	Gauge theories with a single fundamental matter multiplet

	1-loop superpotential for gauge theories with arbitrary matter representations
	Comments on the superpotential and the potential
	Massless 1-loop superpotential
	Adding a mass term
	Summary

	Phase diagrams
	Warmup: phases of U(1)(k+Nf/2) with Nf matter multiplets
	More warmups: vacua of SU(N)(k+1/2N) x U(1)(k) with Nf fundamentals
	Phases of SU(N)(k+1/2 N) with Nf fundamentals
	Nf=N
	Nf=N

	Phases of U(N)(k+1/2 N,k) with Nf fundamentals
	Nf=N
	Nf=N

	SU(2) gauge symmetry and enhanced global symmetry
	Universality of solutions and the phase transition
	Summary

	Fixed points and RG flows at weak coupling
	RG flows and fixed points at large k
	RG flows for SU2 and enhanced global symmetry
	Flowing from Yang-Mills-Chern-Simons to Chern-Simons theory at large k

	Dualities
	Warmup: N=1
	Matching the phases for general N
	More dualities
	Emergent symmetries and supersymmetry
	Relation to N=2 dualities

	Summary and conclusions
	Superspace conventions
	Separating the massive YM mode from the CS mode
	Superpotential for U(N)(kk')
	Matching the Witten index
	Generalities
	SU(N)(k+N/2) with N=Nf
	k=Nf/2
	Nf/2=k=Nf/2
	-N/2=k=Nf/2

	SU(N)(k+N/2) with N=Nf
	k=Nf
	-N+Nf/2=k=Nf/2
	-nleq

	unknp
	kgnf
	-nf2leq
	-n2leqkleq

	unnn with nnfleq
	kgeqnf
	-nnf2knf2


	Proof that there is only one phase transition

