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1 Introduction

Non-critical strings play an important role in understanding the physics of 6d supercon-
formal field theories (SCFTs) and little string theories (LSTs) [1, 2]. In this paper, we
study the supersymmetric partition functions on Omega-deformed R* x T2 for various 6d
SCFTs and LSTs. They are Witten indices which capture the bound states of winding
and momentum modes, coming from multiple numbers of 6d BPS strings on 72. In 6d
gauge theories, these observables are 6d uplifts of the instanton partition functions [3, 4],
which were first introduced to derive the Seiberg-Witten prepotentials of 4d N = 2 gauge
theories [5].

The R* x T? partition function is a tensor branch observable. Recall that 6d su-
perconformal and little string theories are equipped with A/ = (1,0) tensor multiplets,
consisting of a 2-form potential By whose field strength Hsj is subject to the self-duality
condition Hs = «Hs, a real scalar ¢, and a superpartner fermion A4. It is the VEV of
the scalar ¢ which parametrizes the tensor branch moduli space of vacua and determines a
tension of the 6d string, the source of the tensor multiplet. The 6d string acquires a non-
zero tension at a generic point of the tensor branch, such that the string number fugacity
n = exp (—vol(T?) - {)) becomes a sensible expansion parameter of the R* x T? partition
function. One can write the partition function as the weighted sum over the 6d string



elliptic genera with different numbers of strings. More precisely, the R* x T2 partition
function is given as

Zﬁd:IO' <1+anIk> . (11)
k

The overall factor Zy is the Witten index for pure momentum states decoupled from winding
modes. The coefficient 7, captures the BPS spectrum of an infinite tower of momentum
modes and k winding modes, corresponding to the elliptic genus of k strings.! It turns out
to be strongly constrained by the modular and symmetry properties.

The 6d string elliptic genus Z;, depends on the complex modulus 7 of the 72 and
various chemical potentials for the U(1) charges in the maximal tori of the 6d symmetry
group. We collectively denote all chemical potentials by z. The elliptic genus Zj, is a weak
Jacobi form of weight 0 and index i(z), transforming under the modular transformation

T — Z:IS, z = g with (2%) € SL(2,Z) as follows:
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Z(r,z) — I( > =¢e(a,b,c,d) exp < > Z(T,2) (1.2)
where the index i(z) is completely determined by the worldsheet chiral anomaly of 6d
strings [7, 8]. Combined with a separate observation on the pole structure of the elliptic
genus, induced from the zero modes that parametrize the moduli space of 6d strings, (1.2)
nearly solves the elliptic genus Z; in an appropriate ring of weak Jacobi forms up to finite
numerical coefficients [9-15]. The problem of finding the 6d string elliptic genus has been
reduced to determining the coefficients through comparison with an initially given set of
the BPS data. In this way, the elliptic genera were successfully bootstrapped out for the
instanton strings in minimal SCFTs [14] and also for the chains of E- and M-strings [15].
In this paper, we apply this approach to broader classes of 6d SCFTs. Specifically we
are interested in various self-dual string theories, which are defined as IR limit of 2d gauge
theories. The initial BPS data are obtained from the gauge theory side. Obviously this
is just one convenient way of obtaining the BPS data and the bootstrapping procedure
can equally be applied to the cases where the gauge theory description is not available.
Also we make a technical improvement over [14]. When the 6d string theories have global
symmetry, we can consider the elliptic genus with the corresponding chemical potentials.
The elliptic genus of the 6d string theories should be described by suitable Weyl-invariant
Jacobi forms. We explicitly work out such Weyl-invariant Jacobi forms wherever needed.
In addition, we also focus on circle compactified LSTs, bootstrapping their R* x T2
partition functions. A characteristic feature of the LST is T-duality that identifies two
apparently distinct LSTs on S', at different circle radii R = o//R, by exchanging the
winding and momentum modes. As the supersymmetric partition function is protected
and insensitive to the circle radius, T-duality implies the equivalence of the R* x T? par-
tition functions for a dual pair of LSTs. This has been confirmed for several examples,

The 2d superconformal index with NS boundary condition on the world-sheet fermions was worked out
by [6]. The 2d elliptic genus with Ramond boundary condition was worked out by [7, 8].



such as (2,0) and (1,1) LSTs of A-type [16] and their orbifold variations [17, 18] which are
engineered from type IIA and IIB NS5-branes on transverse R* and R*/T'ap backgrounds.
Assuming the general equivalence of the BPS spectra for all T-dual pairs of circle compact-
ified LSTSs, a sufficient amount of the initial BPS data will be given such that the R* x T2
partition function can be constructed through the iterated bootstrap of the 6d string ellip-
tic genus. For example, it can reproduce the R* x T2 partition functions of A-type (2,0)
and (1,1) LSTs which were first obtained in [16] using the worldsheet gauge theories of
little strings. Since the bootstrap approach to the LST partition functions does not use the
gauge theory description of little strings, it is also applicable to any general LSTs whose
T-duality relations have been established. In this work, we will consider D-type (2,0) and
(1,1) LSTs as well as SO(32) and Eg x Eg heterotic LSTs, which arise as the worldvolume
theory of type II and heterotic NS5-branes in the decoupling limit g — 0 [19].

For the full strings which completely wrap the transverse circle to the NS5-branes,
the bootstrap computation shows that the conjectured form of the pole structure, which
is generally expected for the 6d BPS partition function [20], does not always hold in their
elliptic genera. It is because the 2d superconformal field theories of little strings has the
target space with a tubelike region, where strings escape from NS5-branes [21-23]. This
is reflected in the elliptic genera as the additional poles which indicate the presence of
the extra bosonic zero modes parametrizing the run-away motions [24, 25]. Based on the
modified ansatze which include the additional zero modes, one can bootstrap the elliptic
genera of the full winding modes. We also remark that the ADHM gauge theories for
N = (1,1) SO(2n) instantons and N = (1,0) Sp(n) instantons with 1 antisymmetric
and 16 fundamental hypermultiplets analogously develop the extra poles in their elliptic
genera. To obtain the proper 6d spectrum, one still has to separately remove the extra
states’ contribution from the partition function. See also [26, 27| for removal of the extra
contributions in the instanton partition functions of 5d SYMs, obtained from their suitable
S1 reductions. On the contrary, the fractional strings which partially wrap the transverse
circle must end on a pair of NS5-branes, not escaping to the bulk. Using the BPS data
coming from T-duality relation between circle compactified LSTs, we find the elliptic genera
of various string chains in D-type (2,0) LSTs and Eg x Eg heterotic LSTs. These fractional
string chains include what appear in their relative 6d SCFTs, i.e., D-type (2,0) SCFTs and
E-string SCFTs [15, 28, 29], while many of them are unique to LSTs.

The rest of this paper is organized as follows. Section 2 reviews the modular bootstrap
of the 6d string elliptic genera [14], refining the conjectured form of the elliptic genera.
Along with it, we clarify the relation between the 2d chiral anomaly of the 6d string
theories and modular properties of their elliptic genera. In section 3, we study the anomaly
polynomial of little strings in maximally supersymmetric LSTs and heterotic LSTs. In
section 4, we construct the R* x T2 partition functions of LSTs by the iterated bootstrap
of the elliptic genera, based on the T-duality relations. Section 5 concludes with brief
discussions.

Note added. As this work is being finished, the paper [30] appears on arXiv which
partially overlaps with the current work.



2 Elliptic genera of 6d strings

In this section, we will study the strings of 6d SCFTs and LSTs on R* x 7?2 in the tensor
branch. They are the BPS string configurations which preserve at least 2d N' = (0,4)
supersymmetry. They have non-zero tension proportional to the VEV of a tensor multiplet
scalar. Wrapping the T2, they preserve SO(4)r = SU(2); x SU(2), symmetry that rotates
the R* space. The 6d R-symmetry SU(2)g, the 6d gauge symmetry G, the 6d flavor
symmetry F' are also visible in the (0,4) SCFT of the strings.

The elliptic genus of the 6d strings is the supersymmetric partition function on 72 =
S} x S with the periodic boundary condition, defined as

T = Trgr (_1)F627ri(THL—’FHR) 627rie+(J,~+JR)e27riele627riz~Jz ) (21)

The complex structure 7 of the torus 7?2 is conjugate to the left-moving Hamiltonian

Hyp = #. With (0,4) supersymmetry, the right-moving Hamiltonian Hp = # can be

written in terms of the supercharges Q%4 where «, ¢, A respectively denote the doublet
indices of SU(2);, SU(2),, SU(2)z. For Q = Q12 and Q' = —Q*, Hz ~ {Q, Q'} such that
the elliptic genus is independent of 7, if one introduces the chemical potentials to generate
the mass gap, lifting all the zero modes. The Cartan generators of SU(2);, SU(2),, SU(2)r
are denoted by J;, J,., Jr. Only two of three combinations J; and (J, + Jr) commute with
the supercharges Q and Q. We introduce their conjugate chemical potentials as 27e_ and
2me ., respectively. They uplift the zero modes for the center-of-mass motion of the strings
on R* € Mg [3, 4]. We will collectively denote by J, and 27z the Cartan generators
and the chemical potentials introduced for the 6d gauge symmetry G and the 6d flavor
symmetry F'.

2.1 High temperature free energy

Let us study the high temperature free energy of the elliptic genus Z; to derive its modular
property. The elliptic genus Z, is the supersymmetric partition function on the Euclidean
torus T2 = S} x S}, which has the periodicity (¢, z) ~ (t,24+27) ~ (t+27Im 7, 2+27 Re 7).
The torus metric is given by

2 2
pdx > dx (2.2)

ds? = (14 p?) ( dt Sl
s (ﬂ‘)( P 14 2

with 7 = %(u +14). Insertion of €?™*/= introduces the U(1) background gauge field as

A, = 2gzdt . (2.3)

where the normalization of the generator .J, is captured by d, = tr(J,.J,).

We reduce the elliptic genus along S} to reach the high temperature limit 3 < 1.
For the Kaluza-Klein reduction, we recast the metric (2.2) and the background gauge field
A into

ds? = 22(dt + a)> + gdz?, A, =®.(dt+a)+ A.dx. (2.4)



This identifies the dilaton e2?, the graviphoton a, the 1d gauge field A, the 1d scalar field

d, as
2 9 _ pdx 271z pdz _ 27mz

We now apply the analysis of [31-33] to the reduced 1d system on S!. After the S}
reduction, there are the massless degrees of freedom whose determinants appear in the

1d effective action as non-local terms. These non-local terms are real-valued since all the
background fields in the Euclidean quantum mechanics have been chosen to be real. On
the other hand, the imaginary part of the effective action can be obtained from local terms,
such as the Euclidean Chern-Simons term, which can be fixed by the 2d chiral anomaly [31-
34]. Let us split the imaginary terms into the gauge invariant and non—invariant ones. The
gauge invariant action generally takes the form of i [ af(®, ) and i [ d¢ g(®, ¢). It must

Bdx

produce the anomalous factor exp ( (cR - cL)) under the transformatlon a—a+ 5=,

which corresponds to the 2d global diffeomorphism (¢,z2) — (t + %,x) Matching the

global anomaly fixes the gauge invariant action S to be [32]

(1) _ i (cr —cr  (mod 12)) 0
s0=" 5 /S% a+0(8) (2.6)

where (cgp — cr) is the 2d gravitational anomaly. Similarly, the gauge non-invariant action
S must match the 2d chiral anomaly under the U(1) gauge transformation, i.e., 6P, = 0
and 0.A, = de,. Recall that the 2d chiral anomaly A is encoded in the 4-form anomaly
polynomial I, by the descent formalism, such that

mz . Ny 2
/T2 tr(de; A,) «— Iy= Z Ztr]:z (2.7)

z

where the sum is taken over all background U(1) gauge fields. Dimensionally reducing it
on S},

A=Y in, /S1 tr(de, @) (2.8)

This must be reproduced by the gauge non-invariant action S under the U(1) gauge
transformation, implying that S has to be

®=3 Zﬂ”Z/ tr (A, @)+ O0(8°). (2.9)
4 Sl

We evaluate the imaginary part of the high temperature free energy f; by inserting
the background values (2.5) into the effective action S1) + S®3). 1t is given by

212 o CrR—cC m0d12
Imfh(7->_ﬂ1_’_'u2<R - Zdnz )

:Im[T(CR_CL (mod 12) Zdnz >] (2.10)




On the other hand, the Casimir energy Ey of the elliptic genus, defined by Z, = ¢

(14 >0 4" k) with ¢ = e?™7 makes a dominant contribution to the low temperature

free energy fi, i.e.,

fi(r) =2mitEy + O(7 62””). (2.11)

Since the modular transformation 7 — —% and z — Z inverts the temperature, in the

7 — 407" limit, the free energies f;(—1) with f,(7) must be identified up to an anomalous
factor i(z). We find that the Casimir energy Ejy and the anomalous factor i(z) are given by

_ CrR—CL . B 2
By =——"1; (mod 1),  i(z) = — szdznz .22, (2.12)

at+b
cT+d’

z = g with (¢ b) € SL(2, Z) as a weak Jacobi form of weight 0 and index — Y, d.n. 22,
ie., [7, §]

) |
I, (‘”* 2 ) — (ab,e.d) exp< mic -Zdznzz2> Tu(7, 2) (2.13)

We conclude that the elliptic genus Zj, behaves under the modular transformation 7 —

cr+d er+d et +d

where £(a, b, c,d) is a phase factor.

The above derivation clearly shows that the 2d chiral anomaly of the 6d string theory
determines the index of weak Jacobi forms of the corresponding elliptic genus. Note that
the above argument is quite general so that we need not the gauge theory description of
the 6d string theory.

2.2 Analytic properties

We expect the elliptic genus of the 6d strings to have the following structure: [14]

N(1,2)
D(t,z)

Ty(r,2) = n(r)™ (2.14)
The overall factor n(7)™ has been introduced to absorb the Casimir energy Ej given
in (2.12), while the numerator N (7,z) and denominator D(r, z) are Jacobi forms whose
g-expansion starts at ¢° order. This means that the exponent ng of the Dedekind eta
function is given by

ng =24Ey = —2(cgp —c) (mod 24). (2.15)

We will always assume that the Casimir energy Ej of the elliptic genus is non-positive and
|Ep| < 1, which hold true for all 6d theories studied throughout the paper.

2.2.1 Pole structure

The elliptic genus (2.1) develops various poles at certain values of chemical potentials,
which lift the bosonic zero modes that parameterize the moduli space of the 6d strings.
We will predict the location of poles by inspecting these zero modes, making a conjecture
on the denominator D(r, z) in (2.14).



As the 6d strings wrapping on T2 can freely move along the R* plane, there exist the
zero modes for their center-of-mass motion. Had there not been the chemical potentials
€1 = €4 +e_ and €2 = e — e_, the elliptic genus would have suffered from these infrared
divergences. Since the center-of-mass zero modes have been lifted by €; and €3, the elliptic
genus must have two poles at ¢, = 0 and e = 0. Precisely speaking, we expect the 6d
single particle index on R* x T2, defined by

o0

foa(T,2) = PE™! [ Zga(r, 2)] with PE[f(7,2)] = exp Z; - f(prypz) |, (2.16)
p=1

to have a simple pole at €; = 0 and e = 0 [20]. This causes the k string elliptic genus Zj
to have the following factor in the denominator D(r, z) [14, 15].

k
01 (mey) 01 (meg)
Dcom( ) — H 3 3 . (217)
m=1 N N
For the chain of {ki, ko, -, k,} strings, the above factor is generalized as follows.
nokg (meq) 01 (meg)
?];ni T, Z HDcom ) — H 1 1 1 7’3 2 . (218)

i=1m=1

We notice that the g-expansion of (2.17) and (2.18) starts from ¢° as required in (2.14).

The 6d strings are also the Yang-Mills instanton solitons in the 6d gauge theories. As
the translational zero modes along R* have already been taken care of, here we focus on
the bosonic zero modes that span the reduced instanton moduli space. We first consider
the elliptic genus of k SU(2) instanton strings. Taking the ¢ — 0 limit, it is reduced to the
Witten index of k instantons in the 5d SU(2) gauge theory whose denominators are known
from the 5d partition functions [35]. The poles are located at

aey + beg + a(a) =

0
for positive integers (a, b) such that ab < k (2.19)
aer + bea — a(a) =0

where a(a) is the gauge holonomy for a positive root @ € AL = {e; — e2}, e.g., a(a) =
a; — az. The entire denominator D(7, z) in the elliptic genus of k£ SU(2) instanton strings
is a product of (2.17) and

g 01(aer + bes + a(a)) 01 (aer + bes — a(a
ab<k
a,b>0

whose g-expansion starts at the ¢ order as required in (2.14).

We recall that non-Abelian G instantons can be constructed by embedding SU(2)
BPST instantons into G [36, 37]. For embedding SU(2), we choose 3 generators of G
satisfying the SU(2) algebra. All possible choices of embedding are labeled by positive



roots of G. Denoting 3 generators by T){ with a = 1,2, 3, for a given positive root o € Ay,
the trace between them takes the form of

tr (T;Tf;) = a0, (2.21)

The constant ¢, is normalized to be 1 for every long root . Under such normalization,
the constant ¢, for a short root o becomes

ca=2 if G=Sp(N),SO@2N +1), Fy (2.22)
ca=3 ifG=Gs. (2.23)

Starting from the SU(2) BPST solution carrying an instanton charge kgy2), one can con-
struct the G instanton solution by embedding it to o € A" of G. It carries an instanton
charge kg = cq ksy(z). So the short root embedding can only produce the G instanton
solutions with kg > c,. Such embedding structure must be reflected in the denominator
of the elliptic genus of G instanton strings. In fact, the denominator D(7, z) of the k string
elliptic genus Z, is a product of (2.17) and

~ ~SU(2 ~SU(2
DE(r,2) = [[ Do (r2) - [ D}, /g:m(ﬂ 2), (2.24)
aEN; aEAg

where 7522(2) (7, 2) is the SU(2) denominator (2.20) after replacing e; — e with a given root
a of G. More generally, for the chain of {ki,---,k,} strings in the G = G1 ® --- ® Gy,
quiver gauge theory, the denominator D(7, z) is generalized as a product of (2.18) and

n

Dy (1,2) = [[ DL (7, 2) (2.25)

i
1=1

where 15,?(7, z) is understood as 1. We checked D™ (7, 2) - D (7, 2) in the ¢ — 0 limit
agrees with the denominator of the Witten index for 5d k£ G instantons in the following
cases: (1) G=S50(6), k=3, (2) G=FEsrs, k=1, (3) G=S0(5), k=3, (4) G =Sp(2),
k=4, (5) G =Ga, k=327, 38-40]. In summary, we propose?

D(r,z) = ~‘{:zﬁ (1,2) - f)gﬂ}(T, z). (2.26)

2.2.2 Weyl invariant Jacobi forms

The 6d string elliptic genus Zj, is strongly constrained by the modular property (2.13) and
the Weyl invariance of the global symmetry of 6d strings. As the denominator (2.26) itself
is a weak Jacobi form of certain weight wy and index i4, the numerator N (7, z) has to be
a weak Jacobi form of weight (wg — %) and index i + ig to match the modularity (2.13)
of the entire elliptic genus Z;. Similarly, as the denominator (2.26) is invariant under the
Weyl reflections of SU(2);, SU(2)4 C SU(2), x SU(2)g, the 6d gauge group G, the 6d flavor

group F', the numerator should also manifest the Weyl invariance.

2As discussed in section 4, this ansatz should be modified when the ellipic genus has additional contri-
butions from the Coulomb branches.



One way to guarantee the Weyl invariance is to express the numerator N (7, z) as the
Weyl invariant Jacobi forms of SU(2);, SU(2)4, G, and F [14, 15]. For a simple Lie algebra
R, the Weyl invariant Jacobi forms of R depend on the complex structure 7 of 72 and the
chemical potentials m = (m1,ma, -+ ,m|g|) conjugate to the Cartan generators of R. They
are characterized by two integers w and m > 0 and have the following properties [41-43]:

e Weyl invariance

Guw,m (T, Wr(M)) = @y m (7, M) for all wgr € Weyl[R] (2.27)

e Modular property

atr+b m mTime
wm | ———— | = d)” : wmn (T, 2.28
P, <c7'+d c7'~|—d> (er +d) exp<67+dm m) P m (7, 10) ( )

e Quasi-periodicity

Ywm(T,m+a+7b) = e~ Tim(7b-b+2m-b) Owm (T, m) (2.29)
e Fourier expansion
© .
Pw,m (T,m) = Z Z c(n, p) - e2rinTHrem) (2.30)
n=0 p

The weight and index of ¢y, (7, m) are w and — (m-m), respectively. We also note that
a Weyl invariant Jacobi form ¢y, (7,m) of R can be constructed as a linear combination
of level-m theta functions of the affine Lie algebra R, defined as follows [44, 45].

Oxm(T,m) = Z exp (miT(a + A/m)* + 27mi(ma + A) - m). (2.31)
acadjg

It implies that the number of independent Weyl invariant Jacobi forms of index —% (m-m)

is the same as the number of level-m fundamental representations of the affine Lie algebra
R [42, 45]. Furthermore, the algebra of Weyl invariant Jacobi forms of R over the algebra
of modular forms C[Ey, Eg] with an integer-valued m is freely generated by the following

rank(R) generators [42]
O —w;m; for je{0,1,--- ,rank(R)} (2.32)

except the case of R = Eg. Here {w;} and {m;} collect the order of independent Casimirs
and the level of fundamental representations of R, respectively.

The explicit forms of the generators (2.32) are written in many literatures such as [42—
45]. For R = A,, and B,, all the (n + 1) generators

SUMn+1): wo1,9-21,9-31, " »P-n-11 (2.33)
SO@2n+1): @o1,9-21,9-41, " ,P-2n1 (2.34)



can be constructed from the generating functions found in [44]. Among the C), generators,

SP(n) 1 @01, P21, 94,1, P—6,2, P—8,2: " ** > P—2n,2, (2.35)

all index-2 generators are identical to the B, generators, i.e., cpgglg = cp]fgl 1 [44]. Also
for R = Dy,

SO(2n) © ©0,15,9—2,1, P—4,1, Pon,1s P—6,2: P—8.2, " s P—2n+2,2, (2.36)

all index-2 generators are identical to the B, generators, i.e., ¢~ Blo = B 511 [44]. The
remaining index-1 generators for C,, and D,, can be constructed from the level-1 funda-
mental theta functions. For example, the D,, generators ¢g 1, ¥—21, ¢—4.1, P—n,1 can be
written as follows.

_ T, 04(as) _ 1 (162 0s(ai)  TTiy aa)  TTiL, 02(as)

oo = Bt o= o (Lt - et~ et 230
_ (93(0)4 +64(0)4) . (H?:l 0s(a:) _ [1i=y 0a(ai) 4 21, 92(%))

P21 N2 05 (0)n—4 0,(0)n—1 05(0)n—1

3602(0)* (T, 03(ai) | TTiz, Oa(a:)
B <03<1o>n—4 oo )
1 <H?193(ai) H?:194(ai) H?:1 92(%)).

W 93(0)n—12 o 94(0)n—12 B 92(0)7;—12

For R = E,, all the (n + 1) generators are explicitly constructed in [43, 45]. The Fj and
Gy generators are obtained from the Ay and Dy generators [42, 44], e.g.,

©Yo,1 =

coi=vot  ¢B1=vly ¢S = (@f‘i,l)Z- (2.38)
All the Weyl invariant Jacobi forms used in this paper will be explicitly displayed in
appendix A. One typically finds more than one combinations of weak Jacobi forms
of weight (wq — %) and index (i —ig). Each of them is a product of the genera-
tors of Weyl invariant Jacobi forms for SU(2);, SU(2)4, G, and F. Denoting them as
{®1(7,2), Po(7,2), -, P(7,2)}, the numerator N(7,z) can be generally written as their
linear combination, i.e., N (7,z) = Zé-:l ¢; ®;j(1,2). A finite number of the numerical co-
efficients {c1, ca, -+ , ¢} will be determined through comparison with the finite amount of
the BPS spectral data in a given 6d theory [14, 15].

2.3 Test against known examples

The conjectured formula (2.14) may reduce the problem of obtaining the 6d string elliptic
genus down to the problem of determining a finite number of numerical coefficients. We
will test if (2.14) holds for several known elliptic genera in 6d superconformal field theories.
All of the examples we consider have an alternative gauge theory description.

The anomaly polynomial of k self-dual strings in N' = (1,0) SCFTs is given by [46, 47|

_ 2
(41107 - 22 a2 2es) then(R) ) + 5 ol -a(r)

4 2
(2.39)
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where @ is the Dirac pairing of self-dual strings. The field strength F, of a Lie algebra g

is normalized such that a chiral fermion in a representation p contributes A(T3) tr,(e9)

to the anomaly polynomial. Following [48], we use the normalized trace ‘Tr’ defined by

tragj (.7-"3) = hy Tr(]-"gQ) where hy is the dual Coxeter number of g. The conversion factor

54 between trfnd(]-"gQ) = 5g¢ Tr(]-'g) is given by

1 1

SSU(m) = 5> SS0(m) = L, Ssp(n) = 5, SR =3, 5B =3, sp; =6, s, =30, sp =3, sg, = 1.

(2.40)

The 2nd Chern class ca2(g) of the SU(2) bundle g can be written as ca(g) = %Tr(}"g)
using the normalized trace. hY and Tr(Fy) are understood as 1 and 0. The anomaly
polynomial (2.39) determines the index i(z) of the elliptic genus based on (2.12). The

denominator D(7, z) and the zero point energy Ej of the elliptic genus have been discussed
in section 2.2. We summarize Ey, (i + ig), and (wd — %) of various elliptic genera in the

following table.

G Ia k| Eo no wg—7 |itig

%) SU(2) 1|0 0 -2 m3 + €2

SU(2) SUM4) 1| 0 0 —4 | 20} +4e2 + Y0 mm;

@ SO(16) 1| -1 -12 4 138 m?

Sp(1) SO(20) 1| -1 —12 2 3a? +3¢2 + 3300, m?

SU(3) @ 1| -3 -12 -2 3(a? + a3 + araz) + 1262

G Sp(l) 1|-%1 -12 -2 m3 + 3(a? + a3 + a1az) + 1162

We denote by a; and m; the chemical potentials for G and F', respectively, which may
be subject to the traceless condition ) ;' ;a; = 0 and/or Zf;l m; = 0if G = SU(n)
and/or F = SU(n/).

Let us determine the numerator N (7, z) in an appropriate ring of Weyl invariant Jacobi
forms. For brevity, we denote the SU(2); and SU(2)4; C SU(2), x SU(2)r Weyl invariant
Jacobi forms by

L= (ne), Lo=epPre), o= PUre), Ro=g Pire),
(2.41)
and also the Weyl invariant Jacobi forms of G and F' by gym = @gwm (1,a;) and fym =
of wm (1,m;). In some particular cases, e.g., k = 1 strings in non-Higgsable gauge theories,
the numerators N (7, 2) are in the reduced ring of SU(2)y; and G Weyl invariant Jacobi
forms, generated by [14]

3 SU(2 - SU(2
Ry = 90—2,(1)d(26+)7 9‘{0 - (100,1( )d(26+)a Jw,m = (pgw’m(T, a)' (2‘42)

We now determine the coefficients in N (7, z) using the initially given BPS data from [29,
46, 49-53].
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M-string (G = @, F = SU(2), k = 1). The numerator has 2 coefficients which can
be determined through comparison with the initial BPS data at ¢° order. It turns out to be

1 1
N == Emole — Emgfo’l == 77_691(m + 6+), (2.43)

reproducing the M-string elliptic genus in [49].

SU(2) string (G = SU(2), F = SU(4), k = 1). The numerator has 34 coefficients.
33 of them are fixed using the initially given BPS data at ¢° order. The remaining 1
coefficient is determined by the BPS data at ¢! order. The numerator is given by

N= BAE {41031, —36 514,103 1 RERG+I BT 2,103 19380 —48 74,1 80,1020 5% —6 E3Fa 105,19

s
1135
—9E712,180,102,1R5—32F4 Esfa105 1 R3R0 — 16 E4 Fof,190,1 82,105~ 2E4f1103 1 Ro+3Euf2,105 R
—16E4f1,180,192,1R2R5— 12E4f4,193,1m§%3*108E4f0,193,19“1%9“%*31‘74&,193,1mgmo+72E4fo,1go,192,19‘{3%0
+36E4fo,1901 M3 —64E7 14,193 1 R5— 16 Egfa 105 | RoR)+12E6F2,105 | RIRG—48 Esfa,190,102,1 R3RG

—16E6f4,185,1R5R0—96 Egfo,193 1 R3Ro—8 Efa,100,192,1 K3 Ro—4E6f2,190 1 R3+96 Esfo, 190,192,173

+2f4,193,1%3+12f0,19§,19{3+f2,190,192,19‘13—f2,193,1m2m3+24f0,190,192,19“2mg—36f0,193,1%§mg)4

We checked that this agrees with the previously known result [50] up to ¢* order.

E-string (G = &, F = SO(16), k = 1). There are five terms in the numerator,

given as

1
N = 27733( — fs,1 B3 + 48§41 Ef — T2f01 Ea + 3,1 B¢ + 1221 E6).

Four coefficients are determined by the BPS data at ¢—/2 order. The last one is fixed at

¢'/2 order. We checked its agreement with the known E-string elliptic genus [9, 29, 51, 52]

5/2

up to ¢°/“ order.

Sp(1) string (G = Sp(1), F = SO(20), k = 1). The numerator has 91 coefficients.
We use the initial BPS data at ¢='/2, ¢*/2, ¢3/2 orders to fix 63, 27, 1 of those coefficients,
respectively. After all,

1

7739 (*33f1o,1gg,1m§Eg+32f10,192,1%ggg,1Ei+32f10,1gg,1%2%315’5+33f10,1g§,1m§go,1m0E2

N
+3fm,1g%,190,1%3E2+32ho,192,19%293,1%3E2—2633f4,1g§,1%§go,1Eff+2231f10,1Eeg%,liﬁggo,ﬂi
+31ho,1%393,1EﬁoEff+2633f4,193,1%3%0Ei+2231f1o,1Eag§,1%§%0E3+591f1o,1Eégg,ﬂigEi’

—273%F4, 19300, B +2 Fro,1 BoRa00,1 B3 +2°3F4,102 1 RO B 2 10,1 Bo03,1 9% B3 —F10,100,1 9% B2
—2433f2,192,1%393,1E2+2433fz,193,1%2%§E2+2633f4,193,19‘?290,1%3193—%2132f1o,1Eeg§,1%290,1%3E2
—2534fo,193,19“390,1Eff+2534fo,1g§’,1%3%0E2—2633f4,192,19‘%393,1%E3+2132f10,1Eegz,19‘i§g§,19‘ioEZ
03%f0,1R5 00,1 B3 —2°3%f0,105 1 RG BZ —2°3%4,102,100 10 B +2"3%2,105,1 90,1 R0 B}

—32flo,1E§gg,1%§g?),1EZ—263271f4,1Eega,1%593,1E2+2632f4,1%298,1%3EZ—32flo,1E§gg,1%9‘i3E§
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+2°3%7" 4,1 Eog3,1 MR 5 —2°8"0,105,1R200,1 R0 BZ —2"3%5 2,1 Fe g3 1 M300,1 B —2'3%F2,1 M3 00 1 R0 3
+2'3%5" 2.1 Ee g3 1 R3R0 BT +2°30 1921 R595.1 R0 X —3°F10,1 ES 95,1 M5 00,1 Mo 1 —2°3°f2 1 EsR3 g5, 1 Ea
+2°3%2,1 Esgs 1 RG Ea+2°30,192,1 00,180 E1—3' 10,1 B3 951 80,100 Ea+2°3°f4,1 E6 93,1 60,170 E

+2°3%7 0,1 Bog2,1R500, 1 Ba—2°3f0,1R200,1 R0 Fa—3F10,1 B 92,1 R200 1 R0 Fa—2"37'fo,1 Eogs 1 ReRj Fs
+2°3%2,1 Bog2,1R280,1R0 Ea—223' 10,1 Eg 95,1 R5g0,1 Ba—27 3§41 E5 93,1 R2g0,1 Ea—3" 10,1 Eg 390,10 Ea
—20314 1 BeM3 g5 1Mo Ea—273" 10,1 Ea 05 1 R3M0 Fa+27 37§41 B3 95 195 R0 E1—2°3%f2,1 Es 92,195 90 1Mo s
—2°f10,1 B4 g3 1R —2" 10,1 B R3 g0 1 —2°3° 41 EGR3 g0 1 —2 " Fr0,1 B 03 1 R0 +2°3% a1 ES 03 1 G

+f10,1 B3 961980 —2"3%2,1 E6g2,100.1 R0 —2°3fo,1 E6 93,1 80,100 —2°3° 2,1 B3 92,1500 1

+2'3%2,1 EsQRagy 1 Mo +2°3%2,1 B3 g5 1 R0 —2' 3% 10,1 B 95,1 R200,1 085 +2°34,1 EG 95 1 R2g0,1 R0
+2°3%0,1 B4 g5,1R580,1+2°3%fo,1 Ee M2 95,10 —2°3%f0 1 5 95,1 R3R0—2" 3%F10,1 Eg 92,1 R385 1 Ro

—2°3%41 E§ 92,1R395,1M0) -
We checked that it agrees the known Sp(1) string elliptic genus [29] up to ¢7/? order.

SU(3) string (G = SU(3), F = &, k = 1). The numerator has 21 coefficients.
One can fix 20 and 1 of those coefficients using the BPS data at ¢~/2 and ¢'/2 orders,
respectively. We checked that

1 . L o o

N = W(—24EZ’9%392,19§,1+24E§%9%392,1g§,1+3Ef‘ﬁ3%g§,1—288EZ9%§9%90,1Q§,1
+36Ef9~‘i§90,195,1+24E4E69~“§§%92,19§,1—96E4E69~Q§’90,19§,1+E49~‘{39§’,1—96E4§f{390,19§,1
—36E1R2R300,105 1 —432 EaR5R0g5 1 02,1 +1728 B4R gl 1 +32E5R3 02,103 1 +8 E6R5 02,103 1
+4EsRoNR2gs 1 — 288 EgRoR3 00,103 | —5T6E6R3 g3 1 92,1 — 1440508 1 92,1~ 1728R:R305 ).

agrees with the known SU(3) string elliptic genus [46] up to ¢”/? order.

G2 string (G = G2, F = Sp(1), k = 1). The 6d theory has the G5 gauge symmetry
with 1 hypermultiplet in 7. Upon the Higgsing, it gives rise to the minimal SU(3) SCFT.
The numerator has 232 coefficients. For simplicity, we take the e, — 0 limit which cuts the
number of independent Weyl invariant Jacobi forms to 9. All of them can be determined

—-1/2

through comparison with the initially given BPS data at ¢ order as follows.

1
N = 28732( — 9696,200,1 F6f2,1 — 9696,200,1 Eafo.1 + 892,106,2F3 2,1 — 495 Fefon  (2.44)

+ 051 Eafor + 892,106, 2FEf0.1 — 518495 1§21 — 14492105 10,1 + 8495 190,1 Eaf2,1).-
We checked its agreement with [40] until ¢>/2 order. If we instead keep €, and turn off the

G2 gauge holonomy, the numerator has 30 coefficients. 21 and 9 of those coeflicients are
fixed using the initial BPS data at ¢~ /2 and ¢'/2 orders, respectively. We checked that
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the numerator

N = ﬁ (729E4Eg’f2,19%§1+2334E§1E6f2,19%§1+36E;Z’fo,19%§173~28EZE§f0719%§1+35E;i’f2719%09%§0
+3-28 B2 2§21 R0 — 210 B3R 0 1 R0 +5-2 32 B Mo fo 1 R0 +3-210 Edfg MEMS
+2°3 B Bsfo | RFRI—31-3° E{RG o 1 R5—3-2° B4 E§ MG o 1 R +3" B 1 RGNS —33-2° E§RGFo 198
+87-20 By E2§0 1 RIRS — 12321 E2 EgR3f0 1 M5 +3-61125 B2 Efo 1 RERT —22-3% B3R 350 1 AL
+238-32 B2 1 RORS+21 20 E2f0 1 MIMS —105-2 B4 EsR5f0 1 RS +7-2132 B4 Egfa 1 RGOS
—T14E{RGfo,1 03 +66 B3 2,1 RGR5— 23 EeR{fo,10R543-2° Efa1 RoMRS —3E4RGfo,1 973

31 Exfo BB fo 1 Mo 321 5 )
(2.45)

agrees with the known G4 string elliptic genus [40] up to ¢°/? order.

3 Anomaly polynomial of little strings

In the previous section, we study various 6d SCFTs and work out their BPS spectrum. We
naturally expect that the same can be worked out for little string theories. Here we initiate
our study on LSTs by exploring their 6d/2d anomaly polynomials, which are necessary to
bootstrap the 6d string elliptic genera and the R* x T partition functions. They are the
worldvolume theories of n NS5-branes in the decoupling limit g; — 0. The corresponding
anomaly polynomials will be worked out using the anomaly inflow arguments starting from
10-dimensional string theory.

Any consistent string theory background should be free from gravitational and gauge
anomalies, which are encoded in the 10d anomaly polynomial I15. It is the characteric
polynomial made of the Pontryagin class p;(T1g) of the 10d tangent bundle Ty and the
Chern class ¢;(g) of the gauge bundle g. The anomaly polynomial ;2 vanishes for type ITA
and IIB string theories, i.e., I1a = 0. For type I and SO(32) heterotic string theories,

Iy = < _ 2p1(T10)2' Tr(fz)) A <8Tf(f4) +2Te(F?)pr (7;1902) — 4p2(To) + 3p1 (T10)2>
(3.1)

where F is the field strength of the SO(32) gauge symmetry. For Eg X Eg heterotic string
theory,

o <_2p1(Tw) + Te(F?) —|—Tr(.7-'22)> N (2 (Te(F)* + 2 (Te(FD))” — 2 Te(FP) Tx(F3)
12 — A

192

N 2p1(Tho) (Tr(F7) + Tr(F3)) — 4p2(Tho) + 3p1 (T10)2> (3.2)

192

where F; and F> are the field strengths for the first and second Eg gauge symmetries,
respectively. The normalized trace ‘ITr’ has been explained in section 2.3.
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We note that these anomaly polynomials are factorized into 115 = Y4 AYs. The Green-
Schwarz mechanism cancels the above 1-loop anomaly by introducing the counter term
AS1 g = — f Bs A'Ys and modifying the Bianchi identity of the Kalb-Ramond 2-form Bs to
be dH3 = Y, where H3 denotes the 3-form field strength of Bs. The equation of motion
for By accordingly changes to d(xHs) = Y.

In the remaining part of the section, we will denote by T /T the 6d/2d tangent bundles
on the worldvolume of NS5-branes/little strings, respectively. The 10d tangent bundle T}q
can be decomposed into Th1g = Tg & N where N is the SO(4) y = SU(2)r x SU(2) g normal
bundle. The 6d tangent bundle Tg can be further divided into Ty = T> & Ty where Ty
denotes the SO(4)7r = SU(2); x SU(2), bundle. The Pontryagin classes of T1g and T can
be written as

p1(Tho) = p1(Ts) + p1(N), p2(Tho) = p2(Ts) + p2(N) + p1(T6) p1(N), (3.3)
p1(Ts) = p1(T2) + p1(Tu), p2(T6) = p2(T2) + p2(Ts) + p1(T2) p1(Ty).

For SO(4) bundles, the Pontryagin and Euler classes are written in the Chern classes of
SU(2) bundles.

p1(Ty) = —2c2(1) — 2c2(r), p2(Ty) = xa(Ta)*,  xa(Ty) = c2(l) —ca(r)  (3.4)
pi(N) = =2¢3(F) = 2¢2(R),  pa(N) =xa(N)*,  xa(N) = co(F) — eo(R).

3.1 Anomaly on NS5-branes
The 10d effective action usually includes — [ By A Y3, for which the Bianchi identity of By

becomes

0 for type II theories
dHs3 = (3.5)

Y, for heterotic and type I theories.

Introduction of n NS5-branes adds the delta function source n ngﬁ 0(y*)dy® on the right-
hand side of the Bianchi identity. The 6d inflow anomaly from the bulk action — [ By A Y3
becomes —n [ Yﬁ(l) where Yﬁ(l) is obtained from Yg by the descent formalism [54, 55].
Following the prescription of [54, 55], the delta function source can be smoothed as

9

1
[T oM dy" = Sd(pes). (3.6)
a=6
p(r) is a smooth function of the radial coordinate r for the transverse R* plane, such that
p(r) = —1 at sufficiently small 7 and p(r) = 0 at sufficiently large r. The global S® angular
form es is normalized to be fsg es = 2. e3 can be written as [55]

1
272

1 NG T e 1 . e
aten [(Dw (D) (DY) — LF(Dg)eg? (3.7)

@ = 3 2

where 7% = y%/|y|. The SO(4) covariant derivative (D)® and curvature F® are written as

(D§)* =dij* — 0%, F*=do™ — 0% A e? (3.8)
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using the global SO(4) connection ©%. It was shown in [55, 56] that the angular form e3
is related to the Euler class x4(NN) of the SO(4)y normal bundle N by jdez = —x4(N).
The 6d anomaly polynomial Iy is the sum of the 1-loop anomaly polynomial 15",
the inflow anomaly polynomial —nYg, and the possibly existing Green-Schwarz anomaly
polynomial I$S [57-59]. Since a possible 6d counter term generally takes the form of
f By A X4 with an exact 4-form X4, for consistency, the anomaly polynomial Ig has to be

factorized as follows.

nxs(N) AN X for type II theories
IS _ Ié)ert . an + Ig;s _ X4( ) 4 yp

— (Ya —nxa(N)) A X4 for heterotic and type I theories.

(3.9)
Let us check if such factorization holds true for type II and heterotic NS5-branes.
e In type ITA theory, the 1-loop effective action [60, 61] induces
n
—TLY%; = —— (pl(T10)2 - 4p2(T10)) . (310)

192

I2°™" is the 1-loop anomaly polynomial for n Abelian A" = (2,0) tensor multiplets.

I$S denotes the Green-Schwarz anomaly polynomial [62].

Ié)ert _ % pg(N) —pQ(TG) + % (pl(TG) _pl(N))2:| , ISS — n(n2 _ 1)p22(iv)
(3.11)

The total anomaly I3 is factorized as (3.9) and removable by the following counter
term [63].

7'L2
= ma() 1 () 3.12)

e The type IIB NS5-branes does not have the inflow anomaly and Green-Schwarz
anomaly [60]. The total anomaly polynomial Ig only comes from the perturbative
contribution of N/ = (1,0) vector and adjoint hypermultiplet, factorized as follows:

A

Cpy(Ts) =y (N) T (Fum)
48 4 '

Iy = I = nya(N) A ( (3.13)

ﬁSU(n) is the curvature of 6d gauge bundle G = SU(n). In general, for a 6d gauge

symmetry G,
de p1(Ts) — p1(N)  Tr(FZ)
_ 1V oG _ G
Iy = hGX4(N) A ( hé 3 1 . (3.14)
e The inflow anomaly to n SO(32) 5-branes is given by
Tr(F*) + 2 Te(F2)p1 (Tho) — 4p2(T: To)?
Y= n <8 r(F7) 4+ 2Te(F )p1(11902) p2(Tho) + 3p1(Tho) )7 (3.15)
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while I§S = 0. The 1-loop polynomial IF*"" receives the contribution from a Sp(n)
vector multiplet, an antisymmetric hypermultiplet, and 16 fundamental hypermulti-
plets [21].

I = (—nX4(N) - 1(T10)) A <_ np1(Ts) —npi1(N) Tf(fSpm))z)

2 24 4

n (3p1(T10)? — 4pa(Tho)) (3 Tr(FZy () + npl(T6)> Tr(F2) + 2n Tr(FY)
+ 192 + 8 '

(3.16)

Summing them up, we find that the total anomaly I3 is in the factorized form (3.9)
as [64]

T 2
Iy=— <Y4 - nX4(N)> : (npl (TG);anl(N) + Tr(fip(”)) > (3.17)

The inflow anomaly to n Eg x Eg 5-branes is given by

Y = — o (Te(FR? + To(FD)? = Te(FD) Te(F))
- % (p1(Tho) (Tx(F7) 4 Tx(F3))) — % (—4pa(To) + 3p1(T10)?) . (3.18)

The 1-loop contribution IY*"* comes from A" = (1,0) tensor and hypermultiplets.

B = 2 [pa) = o) + § (0 (T) - NP (3.19)

The Green-Schwarz anomaly IBGS can be found from the tensor branch anomaly
matching [65, 66].

158 = i; <p1(4Tlo) n Tl"ff n <r - ;) X4(N)>2. (3.20)

r=1

Combining them all, the total anomaly Ig can be factorized like (3.9) as required [67].

onTr F2 — nTr F2 T 2v4(N
Isz—(Y4—nx4(N))/\< nlr 7y —n 2r4f2+"p1( 10)+”Xé( )>. (3.21)

3.2 Anomaly on little strings

The anomaly polynomial I; of strings in 6d superconformal field theories was studied

in [46, 47] based on the anomaly inflow mechanism. The self-dual string is the source of
the 2-form potential C%, whose field strength G3 satisfies the 6d self-duality G4 = xG% and
the Bianchi identity dG% = J}i. The index i = 1, - -+, n labels all tensor multiplets and self-
dual strings in a given 6d SCFT. The right-hand side of the Bianchi identify constitutes the
Green-Schwarz term .78GS = %Qij JiJZ of the 6d anomaly polynomial Ig, where §2;; denotes
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the Dirac pairing between i-th and j-th self-dual strings. Introducing (k!, k2, --- k™)
strings adds the source term k' Hi:z d(y*)dy® to the Bianchi identity, such that

5
dGh = Ji+ & T 6(y*)dy™. (3.22)
a=2

We again smooth the delta function source as in (3.6) using the SO(4) angular form eg
satisfying des = —2x4(T4) [54, 55]. The 6d effective action Q;; [ 2GL A *GL + Q5 [ CL A
JJ induces the inflow anomaly on the string worldsheet, which can be encoded into the

following 4-form polynomial [46, 47]

O ki o
Jy = 7ZJ2 xa(Ty) + kaze]i (3.23)
A little string theory can be viewed as an affine extension of 6d superconformal field
theories [68] by the background 2-form potential and the massive string m ~ o/~/2, which
we call the full winding string. They are inherited from the ten-dimensional 2-form tensor
By and the fundamental string [19]. The worldsheet coupling of & full strings to the bulk
2-form By is given by k [ Ba. Since the Bianchi identity of By has been modified by n
NS5-branes,

9
n H o(y*)dy® for type II theories

a=6

dHs = (3.24)

9
Yi+n H d(y*)dy®  for heterotic and type I theories,

a=6

the worldvolume coupling k [ By contributes to I by k(Ys — nx4(N)). Combining
with (3.23), we find

- Qyjk'K Zi 1
Iy = k(Y4 — TLX4(N)) + TX4(T4) + Qljk J4 (325)
as the entire 2d anomaly polynomial of (k!,--- , k™) strings and k full strings in a general
6d LST. For later discussions in section 4, let us explicitly write I for LSTs on type II and

heterotic NS5-branes.

(2,0) LST. A parallel stack of type ITA n NS5-branes engineers N = (2,0) LST of Apq
type, for which Yy = 0, €2;; is the A,_; Cartan matrix, and Ji = —p' x4(N) with the A,
Weyl vector p'. We separate the NS5-branes along the transverse circle of radius ~ gsa/'/2,
which sets the length scale of the LST. Let us denote the worldvolume coordinates of the

012345 and 25, respectively. All strings are realized

NS5-branes and the circle coordinate by x
as D2-branes along the 29! and 2% directions, suspended between a pair of NS5-branes.
One can view a long string as a composition of short strings which interconnect adjacent
pairs of NS5-branes. Especially the full strings are those which completely wind the 2%
circle, consisting of n different types of fractional short strings. For (k!,--- k") strings

and k full strings, illustated in figure 1a, it is often more convenient to express the anomaly
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k' strings k’ strings K" strings ! ; k' strings Kk’ strings

k" strings

NS5 NS5 NS5

- ' * stri NS5 K stri N
k strings on~ K strings k strings ON

(a) Type A, 1. (b) Type D,

Figure 1. Fractional and full strings in A" = (2,0) LSTs.

polynomial I, in terms of the numbers of fractional short strings, k™ = k and k' = k' + k
for ¢ < m, such that

n

L= Qijsw (c2(l) = ea(r)) + z; E (ca(R) — ea(F)), (3.26)

ij=1

where Qij is the Cartan matrix of affine Afllzl Lie algebra.

To engineer N' = (2,0) LST of D,, type, for which p’ and 2;; are replaced with the
D,, Weyl vector and Cartan matrix, we introduce two ON~ planes [69, 70] parallel to n
NS5-branes. They are orbifold planes which change the transverse 29 circle to be S'/Zs
and sit at both ends of the S'/Zs segment. The total NS5-brane charge is (2n — 2) since
an ON™ plane carries a negative unit. One can regard a long string as a composition of
short strings suspended between adjacent pairs of NS5-branes. The full k little strings (or
equivalently, 2k half strings stuck on the orbifold planes) are therefore the collection of r
different types of fractional short strings, where r is the rank of the affine 15,(11) algebra.
For (k',--- k™) fractional strings and k full strings, illustrated in figure 1b, the numbers

of fractional short strings are given by

n=2: K=k+k fori=1,23, ki=k (3.27)
n>2: kK=kl+k fori=1,22n, kK =k+4+2k fori=3,---,2n-1), k"l =k.
Then the anomaly polynomial I becomes (3.26) in which Qij means the affine I)S) Cartan
matrix. We expect that (3.26) also holds for (2,0) E,, LST by replacing Q;; with the affine

EA}(LI) Cartan matrix.

(1,1) LST. The worldvolume theory of type IIB n NS5-branes is the maximally super-
symmetric U(n) Yang-Mills theory, in which Yy = 0. It has only one type of strings with
zero Dirac self-pairing, which couples to the background 2-form tensor Bs. This is the
instanton string of 6d maximal SYM. The anomaly polynomial of k strings is given by

Iy = khY (c2(R) — co(F)), (3.28)

where we replace the NS5-brane charge n by hY = n, the dual Coexter number of A, _1.

By suitably introducing an orbifold 5-plane, one can engineer (1,1) LSTs of B,, Cy,
D, -type, whose 5-brane charges are respectively (2n —1), (2n+2), and (2n —2). The dual
Coexter numbers of B,, C,, D, Lie algebras are given by

hY =2n—1 for B,, W =n+1 for Cp, hY =2n—2 for D,. (3.29)
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We find that (3.28) gives the anomaly polynomial of k strings in By, Cn, D, LSTs. Here k
must be understood as the number of half strings stuck on the ONT plane that engineers
C,, LST. We expect that (3.28) holds true for an other (1,1) LST with an exceptional
gauge symmetry G, by replacing hY with the dual Coexter number of Lie algebra G.

SO(32) LST. A stack of n NS5-branes in SO(32) heterotic string theory engineers N' =
(1,0) LST with Sp(n) gauge symmetry and SO(32) flavor symmetry. It allows only one
type of strings with zero Dirac self-pairing which is the instanton string of Sp(n) gauge
theory. Denoting the 2-form curvature of the SO(32) bundle by F, the anomaly polynomial
I, of k strings is given by

Iy = k(Yi—nxa(N)) = k <c2<l>+c2<r>—<n—1>cz<F>+<n+1>cz<R>—p1 (zT s ‘Trf 2) |

(3.30)

Eg X Eg LST. The worldvolume theory of n Fg x Eg heterotic NS5-branes is the rank-n
(1,0) LST with Eg x Eg flavor symmetry which contains n dynamical tensor multiplets.
After S-duality transformation, we obtain the configuration of IIA NS5-branes probing the
S'/Zy orbifold parametrized by the 2% coordinate. All strings are realized by D2-branes
filling the 2! and 2°® directions, suspended between a pair of NS5-branes. Regarding a
long BPS string as a combination of short strings which connects adjacent NS5-branes,
the & half strings stuck on the orbifold fixed plane will be equivalent to the composition
of (n 4+ 1) different types of short strings. All Dirac pairings between the short strings are
recorded in the (n + 1) x (n 4+ 1) matrix entries as follows [68].

41 i=j=1lor2
Q= 0 S forn=1 (3.31)
-1 ¢t=j+1lori=75-1
+1 i=j=1lor(n+1)
Qij=q+2 i=j=2,---,n forn > 1.
-1 i=j4+1lori=35—-1
Computing the inflow from the 6d Green-Schwarz term [65, 66], for (k',--- k™) short
strings alone,

n—1,+ 7 7 n—1
Zi (Z —“"@"’3“*”1%) N e e L))

=1 i=1
_ Tyo)+Tr F? 1
iy (-PIREAL D) a).
4 2
(3.32)
Introduction of the k long strings contributes to the anomaly polynomial I, by
. 2p1 (T Tr 77 + Tr F3
k<—nx4(N)— pl( 10)+ i 1+ r 2) (333)
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Figure 2. Fractional and full strings in ' = (1,0) Es x Eg heterotic LSTs.
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Estrings

where F1 and F» denote the curvature 2-forms of two FEg gauge bundles. If we rewrite the
anomaly polynomial I, using the numbers of short strings, k"' = k and k' = k' + k for

1=1,---,n,
i = 255 1) ) + 1y (—pl(TQ)ITr L alital) c2<R>) (3.34)
# 3k eaR) = ea) b (-2 R 2 altal) ()

which follows the general form of (3.25). See figure 2 for the illustration.

4 BPS spectra from T-duality

In this section, we will study the R* x T2 partition function of circle compactified LSTs,
based on their T-duality relation and the modular bootstrap of the little string elliptic
genera. It is defined as a grand canonical partition function that displays the BPS spec-
trum for an infinite number of strings, counting the bound states between winding and/or
momentum modes. More precisely, [3, 4]

n
ZGd = Tr'HGd (_1)F627T7;(7HL*71HR) 627Ti6+(JT+JR)62ﬂ'i€_JleZTI’iZ-JZ H ni‘% (41)
=1

where the trace is taken over the entire 6d BPS Hilbert space Hgg. The integral charge k;
is conjugate to the winding fugacity n;, counting the number of the i-th strings coupled to
the i-th tensor multiplet. All other chemical potentials and conjugate charges have been
introduced in section 2. We will also frequently use the fugacity variables

g = e t = e2mics u = i w](.i) _ 627ria§-i>’ n; = e vol(T?)-(@:) (4.2)
where (®;) and ag.i) denote the scalar VEV of the i-th tensor multiplet and the i-th gauge
holonomy, respectively. In particular, the non-zero gauge holonomy allows the fractional
circle momentum mode, leading us to interpret ¢ and w

J
the tensor branch observable, the R* x T2 partition function will be expanded mainly in

as the momentum fugacities. As

the winding fugacities ny, --- ,n, such that
Z@d = Io 11+ Z nlfl s nﬁ" : I{kl,--~ Jn} |- (4.3)
{ki}
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We remark that the individual coefficient Zy, .. 1,y corresponds to the elliptic genus of
{ki1, -+, kyn} strings, satisfying the modular property (2.13). The overall dressing factor Zy
is the BPS partition function for the pure momentum sector, capturing all the multi-trace
letter operators [71] made of the elementary fields and the gauge covariant derivatives.

All of them are given as closed-form expressions in the momentum fugacities made of ¢
(4)
J

T-duality is a distinctive feature of the LST that identifies two apparently different

and w;"’.
LSTs on S, at different circle radii R’ = o'/ R, by exchanging the winding and momentum
modes [19]. Since the BPS spectrum is insensitive to the circle radius, it will be incarnated
as the equivalence between the dual R* x T2 partition functions after suitably mapping
the winding/momentum fugacities on one side to the momentum/winding fugacities on the
other side. This has been confirmed in several examples, i.e., the maximally supersymmetric
LSTs of A-type [16] and their orbifold variations [17, 18], engineered from type ITA and IIB
NS5-branes probing the R* and R*/T'yp backgrounds. For these theories, the underlying
2d gauge theory description is known. Thus one can completely determine the elliptic
genus of little strings in type ITA and IIB NS5-branes separately, thereby showing the
T-duality of type ITA and IIB 5-branes. However we will turn the logic around and will
assume the equivalence of the BPS spectra for T-dual pairs of S compactified LSTs. Since
the BPS partition function Zy /I{k1,~- k) for a given winding sector captures an arbitrary
number of momentum modes, it provides the BPS data with a given momentum unit for
all individual winding sectors in the T-dual version of the LST. We will start from Zg
for the pure momentum sector which can be easily obtained by counting the BPS letters.
Recall that the modular bootstrap based on (2.13) and (2.14) has reduced the problem of
obtaining the 6d string elliptic genera down to the problem of finding the sufficient amount
of BPS coefficients [9-15]. Knowing the BPS data for zero momentum modes would be
sufficient to bootstrap some elliptic genera with low winding numbers, so that Zg could
determine those elliptic genera in the T-dual LST. The newly found elliptic genera will be
closed-form expressions in the dual momentum fugacities, providing the additional BPS
data with certain momentum modes for all winding sectors in the original LST. Using
these coefficients, one could find the elliptic genera for some winding sectors which will
yield again the BPS data with higher momentum modes in the T-dual description of the
LST. Repeating this procedure, we would obtain the infinite tower of the 6d string elliptic
genera composing the R*xT? partition function of the LST. This approach is quite effective
for the theories which do not have the gauge theory realization.

For the iterated bootstrap of the 6d string elliptic genera, it is necessary to know
the precise map between the winding/momentum fugacities on one side to the momen-
tum/winding fugacities on the other side. We will particularly focus on the maximally
supersymmetric LSTs of AD-types as well as the N' = (1,0) heterotic LSTs with SO(32)
and Eg x Eg global symmetries.

e (2,0) LST of A,y type contains n different types of fractional strings, illustrated in
figure la, and an integral unit of the circle momentum. As we denote by ny,--- ,n,
the fractional winding fugacities, the combination nyns - - - n,, corresponds to the full
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D2:

Dn24 :

winding mode. On the contrary, (1,1) LST of Ap_1 type has n different units of
fractional momentum, due to the SU(n) gauge holonomy, and only one type of full
winding modes carrying the Yang-Mills instanton charge. The fractional momentum
fugacities are labeled by the simple roots of the affine Apq algebra,

Vi n
w w.
=21 g="2 qg:qw,n with JJwi=1, (4.4)
1 i=1

where all variables in (1,1) LST are primed for distinction. T-duality implies the
fugacity map

g=n n =g, e N1 =Gl 1, n, = q,. (4.5)

The fugacity map between (2,0) and (1,1) LSTs of D,, type can be derived in an
analogous way.

The (2,0) LST has 7 = rank(D,,) different kinds of fractional strings, as depicted
in figure 1b, whose Dirac pairings are given by the Cartan matrix of affine D, algebra.
Denoting the fractional winding fugacities by ny,--- ,n,, the full winding fugacity is
the combination ningon,_in, H:;?? n?. The (1,1) LST has r = rank(f)n) different
units of fractional momentum due to the SO(2n) gauge holonomy. Their conjugate
fugacities are labeled by the simple roots of the D, algebra.

) qWy r )
y o = 7 3 = W Wy, q4q = ! o

/
q =
! w

)

/ / / /
/ q Wy / Wy 9 / Wy 1 / /

w
ol
2
w) w w qdw 1
r M /2 ;3 /o 4 : I
G =7 Q2= 7 3= s 4= w1thHwif1
2
w
ol
2

!
’LU7 9o = —F7 7> q3:W7 ity Gp1 =

T-duality imposes the following map between winding and momentum fugacities

q= n/7 ny = Qia Ty n, = q;w nTH‘l = q;},+1' (47)

The rank-n Eg x Eg heterotic LST has (n+ 1) different types of fractional strings, il-
lustrated in figure 2, and an integral unit of the circle momentum. The Dirac pairings
between those strings are noted in the matrix (3.31). Denoting the fractional winding
fugacities by ny,no, - -+ ,n,41, the combination H;:Lll n? is conjugate to the full string
that wraps the transverse circle. In contrast, the rank-n SO(32) heterotic LST has
(n+1) different units of fractional momentum, due to the Sp(n) gauge holonomy, and
only one type of full strings carrying the instanton charge. The fractional momentum

fugacities are labeled by the simple roots of the affine C), algebra, i.c.,

/ / /

q/ 9 q/ o wy q/ Wy
1= 2 2= T n /
wh wh w!,

, q;LJrl = wf. (4.8)
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The circle compactified Eg x Eg and SO(32) heterotic LSTs are identified by T-
duality which requires the Wilson lines along S} C T2 breaking the flavor symmetry
to SO(16) x SO(16):

8
RAgo(g,z) _ <08’; ) : RAfSXEs — (07, 1,07, 1). (4.9)

These background Wilson lines produce shifts in the left-moving momentum Hj, and
the flavor charges f,, depending on the winding number(s) k; [72].

Esx Eg: Hp=2Hp+ (ki +kpi1) = 2(fs + fie), fs=fs— ki, fie = fic — ko
16
- ~ 1
SO(32): Hy=2Hp+2k— Y fa, fa=fa= 5k (forall 9 <a <16).
a=9

(4.10)

The new momentum and flavor charges are distinguished from the original ones by
the tilde. To establish T-duality, we express the R* x T? partition functions in the
new fugacities conjugate to the shifted charges. The relation between the original
and new variables can be derived from

16 ) 16
g T n [ vl = a™ [0 T o (4.11)
A =1 % =1

where the right-hand side should appear in the definition of the R* x T? partition
functions with the SO(16) x SO(16) Wilson line. Combining (4.10) and (4.11), we

find that
Eg x Eg: n =n1qys, Tyl = Mr1qYi6, Ja = Yaq (a=8,16), §=+/q
(4.12)
16
SO(32): # =n'q []v."> U =voVd (@29), ¢ =7
1=9

Especially the momentum and winding fugacities of both LSTs are identified as

~ / /
A R 7 Cwp
qg=n, n = ) ny = ng = —,, Ty n, =
w) wh wh w

~ ’
T Mgl = Wy
n

(4.13)

For the rest of this section, we will study the R* x T2 partition functions of the
above LSTs through the iterated bootstrap of the 6d string elliptic genera. Here we briefly
summarize the results. First, we successfully construct the R* x T2 partition functions of
several A-type (2,0) and (1,1) LSTs based on (2.13) and (2.14). They agree with the results
of [16] which obtain the little string elliptic genera using the worldsheet gauge theories of
type IIA and IIB little strings. Second, we show the existence of additional bosonic zero
modes in the 2d SCFTs of full strings in maximally supersymmetric LST's of Dn24—type as
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well as heterotic LSTs. The extra zero modes correspond to the string motion moving away
from the NS5-branes, developing the tubelike region in the target space. They are lifted
by the chemical potentials —e; + m where m has been introduced for SU(2)r C SO(4)n
of these LSTs. Here SO(4)y is the R* rotation of the transverse directions to NS5-branes.
The conjectured form of the denominator D(7, z) in (2.14) must be appropriately modified
by additional factors, e.g., 61(—e+ £ m), for successful bootstrapping of the elliptic genera.
We propose the modified denominator by considering the ¢ — 0 limit of those elliptic
genera. Third, we construct the R* x T2 partition functions of D,>4-type (2,0) and (1,1)
LSTs and heterotic LSTs based on (2.13) and (2.14) with the modified denominators.
These 6d partition functions include the novel elliptic genera of fractional strings, some of
which also appear in D-type (2,0) SCFTs, lacking the 2d gauge theory descriptions.

4.1 (2,0) and (1,1) LSTs of A, _;-type

Bootstrapping the R* x T? partition function starts from the index Zy of the pure mo-
mentum sector, decoupled from stringy excitations. It can be easily obtained by counting
the multi-trace BPS letter operators made of the elementary fields and the gauge covariant
derivatives [71]. As the multi-letter partition function is the Plethystic exponential of the
single-letter partition function fy(7, z), i.e., [73]

[e.9]

To(t,2) = PE[fo(T, 2)] = exp Z; - folpr,p2) |, (4.14)

p=1

we compute fy = tr [(—1)FqHL It IRy iy Tr T, lel} over the single BPS letters. Jp

and G1,--- ,G, denote the Cartan generators of the SU(2)p flavor and gauge symmetries,
respectively, whose conjugate fugacities are v = €*™™ and w; = €?™%, The SU(N) gauge
fugacities are subject to the traceless condition [] ;w; = 1. The trace over the (1,0)
supermultiplet and its derivatives takes the form of

tensor :  — a —EZ)+1U— oy ( Z q > (4.15)

. st i
vector : _(1—tu)(1 1l Xadj (w;) Zq

n=—0oo

+
tlv+ov1h
hyper : w;)
P + (1 —tu)(1 —tut) xR (i Z ¢
n=—oo

where the + superscript in the parenthesis indicates that all non-positive momentum states
have been discarded. xg is the irreducible character for a gauge representation R of a given
supermultiplet. For the SU( ) adjoint representation, the irreducible character Xadj is given
by Xadgj(wi) = an 1= w — 1. For the stack of n IIA NS5-branes, engineering A,_;-type
(2,0) LST plus a free (2 0) tensor multiplet,
not(v+v_17ufu_1) q

T, = PE .
0 I—tu)(1—tul) 1-—g¢

(4.16)
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String chain Index i(z) Denominator D(r, z) Numerator N (7, z)

@ m? — €2 7 %01(er £e) %01 (m £e)
% 2m? — 262 N 1201(e; £ )? n 1201 (m £ e )?
@—@ 2m? — 2 — €2 1201 (ep £ )? n 120 (m ey )01 (m £ e )

@ 3m? — 36 n 1801 (ep £ e )3 N80 (m £+ ey )3
@—@—@ 3m? — 2% — €% N 1801 (ep £ e )3 71801 (m £ ey )01 (m £ e )?

ama 4m? — 4€% 72401 (ef £ e )t N 2401 (ep e )t

Table 1. Elliptic genera of (2,0) string chains determined from Zj).

For the stack of n IIB NS5-branes, engineering A,_;-type (1,1) LST and a free (1,1) vector
multiplet,

tlv+ovt—t—t71) w! g 1

7, = PE — . ! 4.17

0 (1 —tu)(1 —tu=1) .Zw’» +Z w, M 1—¢ (.17
i<j J 1>] J

torot—t—¢1) [t U 1
- (1 —tu)(1 —tu™t) 2 e+ {11 a-Ild ) +nd 1—¢
=1

i<j k=i §<i \k=i+1

where ¢ = [[;, ¢;. We prime the fugacity variables of the (1,1) LST for distinction.

The indices Zy and Z) display the infinite towers of the pure momentum states. Ac-
cording to the relation (4.5) between the dual fugacity variables, they supply the BPS data
with zero momentum for all distinct winding sectors in the T-dual descriptions. For exam-
ple, the BPS data from Z, is sufficient to determine the elliptic genus of {ki, k2, -, kn}
string chain if all k; < 1. For maximally supersymmetric LSTs, the Casimir energy of
the elliptic genera must be always zero, i.e., ngp = 0. We summarize the index i(z), the
denominator D(r, z), and the numerator N (7, z) of the elliptic genera for various string
chains in table 1.

As the elliptic genera of (2,0) string chains capture the infinite tower of momentum
modes, they supply the BPS data with given momentum modes for all winding sectors in
(1,1) LSTs. One can completely determine the elliptic genus of one instanton string based
on the provided BPS data. We summarize the index i(z), the denominator D(r,z), the
numerator N (7, z) of the elliptic genera for single SU(2), SU(3), SU(4) instanton strings in
table 3. To keep the expressions simpler, we have turned off e, = 0 for SU(3) and SU(4)
instanton strings. See appendix A for the explicit expressions for all Weyl invariant Jacobi
forms used in this paper.

One can further iterate the procedure to obtain the elliptic genera for higher winding
sectors. For instance, we determine the elliptic genera of {2,0} and {2, 1} string chains in
(2,0) LST of Ay-type, using the initial data supplied by the BPS index (4.17) of the pure
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D(1,2) 1 201(ep £ e )01(2e, +2¢) i(z)  2m?+ 263 — 4é?

2713767120, (m £ €4 )01 (m + e_) x (2TERS — 45EFRINE — 24 E4 EgRIRo
—15E4R3IN — 32E3RS — 40ERIRG + RE)

% D(1,2) 1 B01(ey £ €_)%01(2e4 +2¢) i(z)  3m?—2e% — €2

—271337 T 7120, (m £ €,)? x (B4EFL3M3Rofo 1 + 2TEL3NGFo,1 — 81EFL0L3NAfo 1 — 18EZ L3RR a1
—36E2L3R2R%f01 — 18E2L0 L2303 R0fo,1 + HAEFLEL.M3NR0fa1 + IETLEL Mo 1 + IEZLINRIfo
—24E,FeL3R3NZf0 1 — 24E, E¢L3R3NRofo,1 + 24E4 EeLoL3R3NRofo,1 + 24E4 E6 L3LoR 421

N(r,2) —3E, L3301 — 3ELL0L3RYf01 — 18E4L0L3RMBf0.1 + 6ELLELaMRoN3fa 1 + 125, L3RZR2 S0
+6E4£39%39%f0 1— 64E2239%3£R0f2 1 — 32E2£39% f() 1 + 96E2£0£29% fg 1 + 12E6£2£29%39%f0 1
—20E6 L3RR 301 — 12F6L0L3RaM3f2,1 — 36 E6L0L3M3NREf0,1 + 36 E6 L2 LaMINf0 1 — L3MGF21
+20Es L3M3NRof2,1 + 4E6 £5R1f0.1 + 3E3 LM Fo,1 — 2L89M3fo.1 — 4E6L3RGf21)

Table 2. Elliptic genera of (2,0) string chains determined from Zj and Table 3.

momentum sector and the elliptic genus of the SU(2) single instanton string expressed in
table 3. We summarize them in table 2. Such iteration enables us to find out the infinite
tower of the 6d string elliptic genera which constitute the R* x T2 partition function of
the maximally supersymmetric LST of A,_1-type. All of these results precisely match the
results of [16] which were computed from the worldsheet UV gauge theories of type ITA and
IIB little strings [22, 50]. Furthermore, the iterated bootstrap requires no more inputs than
the modular/analytic properties of the elliptic genera as well as the T-duality relation, so
that it can be applied to a broader class of theories for which the worldsheet gauge theory
description is unknown. We will focus on two such examples: (2,0) LSTs of f)n24—type
and Eg x Eg heterotic LSTs.

4.2 (2,0) and (1,1) LSTs of D, -type

To initiate the modular bootstrap of the R* x T2 partition functions, we first study the
BPS indices Zy and Zj of the pure momentum states in (2,0) and (1,1) LSTs. They
are the multi-trace indices which can be obtained from the single-letter partition functions
fo(7, 2) using (4.14). The contribution to the single-letter partition function from each (1, 0)
supermultiplet has been summarized in (4.15). (2,0) LST of D,, type has r = rank(D,,)
free (2,0) tensor multiplets, which gives

t(v+v_1—u—u_1) q
(1—tu)(l—tu=l) 1-—¢q]

r
To = PE[ (4.18)
(1,1) LST of ﬁn type has a (1,1) vector multiplet in the SO(2n) adjoint representation,
which gives

n

v4ovT t—tl
( H ww —{—wz/w +q/w '-—{—q’w;/w;%—rq’)
i<J

(1 —tu)(1 —tu™

1
1—¢ |
(4.19)

=PE
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D(1,2) 177 201(e; £ e )01(2¢, * (a1 — a2)) i(z)  2m?—2¢%
Ay

2_73_477_691 (m + 6+)( — 9EZ]‘27192719%§’ — 3E4f27192,19{2m(2) — 9E4f2719071m%m0
N(r,2) —3FE4f0,1801R3 — 12E6f2,192,19R3R0 — 8F6f2,1801R3 — 4F6f0.192,1R5 + 2,180,108
0,182,195 + 3f0,180,1R2RE — 3E4fo,102,1:R3R0)

D(r,z) 0 401 (xe ) [T, 01 (£(a; — a))) i(2)

42 2714374756, (m)? (2E6f3 105 1 + 3 E3fo.152.105 1 — 36Eaf3 100,105 1 + 18313 100,105 1 — 288F613 031931
—432E4f0.1f2,100 1031 — 3EF10103,1051 + 15E3f3 1031031 + 16E53 1031051 + 24EaEgfo,1§2,103,105 1
+1728f?),198,19%,1 + 288E6f%,190,19§,19%,1 - 768E4E6f%,130,193,193,1 - ZSSEA%ICO,1f2,190,19§,193,1 + 31104f0,1f2,193,19%,1
+48E4E6f%,19§,19%,1 + 48E2E6f%,19§,19§,1 + 96ng0,1f2,19431719%,1 - 4320E4f%,19%,19§,19%,1 + 4320E2f%,19(2),19§,19%,1

N(r.2) —3456E5fo,1f2,108 103103 1 + 12441653 103 1021 — 1152E313 190,103 1020 — 1152E313 00,103 1821

—2304E4 Eefo,172,100,10% 1021 + 13824 F6f3 07 103 182.1 + 41472E4f01§2100 105 1921 — 64E3f 105 ) + 64EZf3 105,
+645113 105 1 — 64E1EGf3 1051 + 6912E6f3 195 1031 + 6912E4 Eof3 105 193 1 + 13824E70,1f2,190 1031
+18662475 105 103 1 — 103680E4f3 165,1931)

3m?2— 363_ — 3m?

D(r,2) 0 20i(xe) [Tic; 01(£(a; — a5) i(2)

277237000, m & e4) (3EoR Tl + 253 Eofonfd 00103, — 23 B afangoaody + 213 Eoff g0 — 25 B2 a1ag], — 213" Bxboion i 00a0] + 23 IR Fragaagh + 25 Eofd f 1081 — 2'3'Eifoafd 08 108,

4m? — 463_ — 4m?
A

—2Eoff 108 1081 + 5 2° B33 1031081 + 228 EaEufon 3,103,108 — S2ERR 2103 108, + 2"

E3i3 107,05, — 11 2'8 EREof 108 1081 — 209 Efo 3,107,105, — 7+ 278 Egfoafd 008, — 192

Ealoff 121031081
~23 B} 100100081 + 27321 Bof] 001011681 + 2% Effof 10010408, — 2

32,

o f21001001081 — 23 Eafd 1081081 + 28 1eaad a0k + 2°8' Bakioff ol 0k, + 208 BT 1ot a0l — 11 278 B4

1tk
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Table 3. Elliptic genera of (1,1) little strings determined from Zyy, ... .3 with all k; < 1.
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Table 4. Elliptic genera of (2,0) string chains determined from Z.

Here we recall that the fractional momentum fugacities are identified in (4.6) as combina-
tions of the SO(2n) gauge fugacities w; and the full momentum fugacity ¢'.

The above indices Zy and Z{, capture the BPS spectra of the pure momentum sectors
decoupled from stringy excitations. Using the fugacity relation (4.7) imposed by T-duality,
they provide the BPS data with zero momentum for all winding sectors in the dual descrip-
tions. One can particularly determine the elliptic genus of {ki, ks, -+ , kynt1} string chain
for all k; < 1 using the BPS index Z|,. For instance, those elliptic genera for connected
string chains with &; < 1 in (2,0) LST of Dy-type are summarized in table 1 and 4. As
a next step towards the entire R* x T2 partition function, we attempt to bootstrap the
elliptic genus of the single SO(2n) instanton string, utilizing the BPS data given by Z
and the elliptic genera of (2,0) string chains. For the specific cases of Dy = fl%, Ds = A
instantons, the single string elliptic genera have already been constructed in section 4.1, i.e.,

T/P2 (7, 2) = N7, 2) § M) (4.20)
y .
DAl (T’ Z) 2a1—a1—a2 DAI (T’ Z) 2a1—a1+a2
1D3 _ NA3 (7—7 Z)
773 (1,2) = DA )
(T’ Z) 2a1—a1+a2—as, 2az—a1—az+as3, 2a3——ai1+az+as

For the generic case of En24 instantons, we report that the conjectured form (2.14) of the
6d string elliptic genus is not compatible with T-duality of the LST. Let us illustrate this
point in detail.

Applying the moduli space approximation, the low energy dynamics of instanton
strings are described by the supersymmetric non-linear sigma model onto the instanton
moduli space. Classically the instanton moduli space has a singular point called the small
instanton singularity, which will be replaced by a semi-infinite tube at a quantum level.
As one moves down the tube, the strings gets ejected from NS5-branes as dynamical ob-
jects. This can be viewed as passing from the Higgs branch to the Coulomb branch in the
ADHM gauge theory, whose Higgs branch realizes the instanton moduli space and whose
Coulomb branch corresponds to the strings runaway from NS5-branes. Although the two
branches are infinitely far away [22], the presence of the semi-infinite tube in the quantum
Higgs branch develops the continuum in the spectrum of the Higgs branch CFT [24, 25].
For instance, some ‘throat’ states propagating in the tube were identified as supergravity
particles [25]. We generally expect such throat states to be captured in the elliptic gen-
era (2.1), defined with the SO(4)y = SU(2)r x SU(2)r chemical potentials gapping the
continuum states. For the A,, instantons, the throat continuum can be removed by turning
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on the SU(2),. triplet of FI term ¢123 and the theta angle 6, deforming the Higgs branch
to be detached from the Coulomb branch. Such deformation is what the Ansatz (2.14)
implicitly do. One has to suitably extend (2.14) for the general cases where the Higgs
branch cannot be deformed.

For the Dy and Dj instantons, the throat states’ contribution can be isolated by
comparing (4.20) with the elliptic genera of the ADHM gauge theory for maximally su-
persymmetric SO(2n) instantons. We consider N' = (4,4) Sp(k) gauge theory with the
following matter contents:

an Sp(k) symmetric vector multiplet Ay, Qaa, )\ﬁd, P
an Sp(k) antisymmetric hypermultiplet Qo> Mo \aa (4.21)
an Sp(k) x SO(2n) bifundamental hypermultiplet Ga, VA, YO i

where k is the instanton number. Its elliptic genus can be obtained via localizing the gauge
theory path integral, following the formalism of [6-8]. The single string elliptic genus is
given by

D, M n 91(4e+—2ai)91(26+—2ai)H?# 01(m=E(e4—a;)*xay) L
= 201 (e4+e—) [Z {( 01 (m=+(3e+—2a;)) H;L#i 01(aita;)01 (264 —aita;) (ai = a,))}

) 4 601(m—3e4)01(m—ey) [, 0p (3m56+ :i:ai) (s —m)
= 20, (2m)01 (2m—2¢,) Ty 0, (m‘23€+ iai) '
(4.22)

We observe that the difference between (4.20) and (4.22) only arise in the full momentum
sector, being independent of the SO(4) and SO(6) holonomies. Taking the limit ¢ — 0
which truncates the tower of momentum modes, the difference between two indices are

_ Lo+vt—u—ut) 20w+vt—u—ut)
I — 1 - 4.23
! ! (1 — tu*)(1 + to) (1 — tu®) (423)
f1D3—IiD3—>t2(U+U_ —u—u 1)_t(v+v_1—u—u_1)
(1 —tu®)(1 + tot) (1 — tu®)

The first term captures the single-letter operators with a unit momentum for 11d gravity
multiplet in R x (R* x S')/Zs x S', which can be dualized to type IIB ON5~ plane
engineering D,, LSTs [26]. The denominator of the throat states’ index is sinh (“’j;‘)

- cosh <7E+2im), which will be promoted to

O1(e4x £ e_)01(—2€e4 +2m)
U Or(—er£m)

phulk(r ) = (4.24)

The BPS indices for the throat states must share the same modularity (2.13) with (4.20)
and (4.22). Here we attempt to recast them into the form of (2.14) with the new denomi-
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nator DPUk(7, 2).

1 O1(mte_)b1(—esrtm)
21135 0 (e4te_)01(—2e1+2m)

~16E4EsR313 o1~ 8 EsEsRoPafh  ~ ER3fE S EsRoRafar fi 1 —6Ea9R3T3 113 4
—32E§R3F 1 —8 EsR3f2,110,1 —24 E6RoRaf3 15 1 —8EsRGf3 1 Fo.1+Rof0,1 —3E1R5Fa,1) -

—D. 1 O1(mte_)b1(—esrtm)
IPs _1'Ps — 2TE3fS  —A5E%$% §2 , —24E, Esf)
1 1 21136 91(€+:|:€_)91(—26+:|:2m)( 4f271 4f2,1f0,1 4 6f2,1f0,1

—15E4f3 1§51 —32E513 1 —40Eef3 1 o 1 +55.1)-

P12 = (27E3R3f5  —18EIN33 112 — 24 EFRRof3 1 fo.1

(4.25)

Starting from Dy instantons, it is not possible to separate the throat states’ contribution
from (4.22). If that were possible, one could bootstrap the BPS index for the throat states
based on (2.14) with the new denominator DPU(7, 2), satisfying the modularity (2.13)
with index i = (2n —2)(m? — €2). As the denominator D*U¥(7, 2) is a weak Jacobi form of
weight —2 and index iy = 3m? + 463_ + €2, the numerator N(7, z) would be a weak Jacobi
form of index i+ ig = €2 + (1 + 2n)m? + (6 — 2n)el.

This cannot exist for n > 4, although the Sp(1) elliptic genus still includes the first
term in (4.23) counting the throat states. We conclude that the throat states’ contribution
cannot be isolated out.

Accordingly, the elliptic genera of the SO(2n) instanton strings involve the extra factor
01(—2e4+2m)
91(7€+:|:m)
the bulk states from the 6d LST spectrum. For now, we continue to bootstrap the elliptic

in the denominator. It would be desirable if one could precisely distinguish

genus of the single SO(2n) instanton string for n > 4 with the modified denominator

01(—2€e4 £ 2m)
O1(—€ex £m)

DPUK(7 2) = D(r, 2) (4.26)
As the bootstrapped elliptic genus I{D " share the same modular and analytic properties
with (4.22) and has to display the same BPS data for fractional momentum modes, it must
inevitably agree with the Sp(1) elliptic genus (4.22). We determined the coefficients in
n = 4 case up to ¢' order and found the agreement (after turning off ¢, = 0). To move
on to the next, we extract the BPS data for fractional momentum modes from (4.22) and
study the elliptic genera of fractional string chains in (2,0) LST, which are summarized in
table 2 and 5. One can study the higher winding sector by the iterated bootstrap. For k
strings, the elliptic genus can be bootstrapped with the denominator

—2ne4 £ 2nm)

(4.27)

k
01 (
pbulk - D _ 1
(7_7 Z) (7_7 z) nHI 01(_n6+ inm)

which must reproduce the Sp(k) elliptic genus of the ADHM gauge theory (4.21). Utilizing
the BPS data with fractional momentum modes in the Sp(2) elliptic genus, we obtain
the elliptic genera of higher winding modes displayed in table 6. These novel indices are
expected to be a useful probe to find the UV gauge theory for DE-type (2,0) string chains
generalizing [50].
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Table 5. Elliptic genera of (2,0) string chains determined from Z}) and Z;.

4.3 Heterotic little strings

To construct the R* x T2 partition functions of heterotic LSTs, let us first consider the

BPS indices of their pure momentum sectors. They are the multi-letter BPS indices, which

can be computed by taking the Plethystic exponential on the single-letter indices

Jo(T

z) = tr | (=1)F¢Hr ¢/ TRy iy TF Hw H ool . (4.28)
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Table 6. Elliptic genera of (2,0) string chains determined from Z}), T, Zo.
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G; and f, are the Cartan generators of the Sp(n) gauge symmetry and the SO(32) or Eg x
Eg flavor symmetry. Each (1,0) supermultiplet contributes to the single-letter partition
function by

tensor: — a —EZ)—Flu— fu 1) ( Z q ) (4.29)

n=—oo

+
tt 4+t~ 1)
vector : — (1 —tw)(1 - tu Xadj (wi) Z q"

n=—oo

1 t-xF (vy) !
P (XR 2> Q>

n=—0oo

where yg denotes the irreducible character for a flavor representation F of a given %—
hypermultiplet.

The stack of n heterotic NS5-branes in Eg x FEg string theory engineers the rank-
n heterotic LST with Eg x FEg flavor symmetry. It has n tensor multiplets and n free
hypermultiplets. These elementary fields and their derivatives lead to the following multi-

letter index:

t-(u+ut) ¢ nt-(v+v7l) ¢

Ty =PE |-
0 (1—tut) 1-—9¢q (1—tut) 1—g¢q

(4.30)

On the other hand, the SO(32) heterotic LST of rank-n has a vector multiplet in the
Sp(n) adjoint representation, a half-hypermultiplet in the Sp(n) antisymmetric represen-
tation, and a hypermultiplet in the Sp(n) x SO(32) bifundamental representation. The
corresponding multi-trace partition function is given by

T N e () e (23
0 (1—tut) \1—¢ (1—tut) \1—¢ (1—tut) \(1—¢

(4.31)

where the irreducible characters for Sp(n) and SO(32) representations are

n

Sp(n . 1 wh W) S
xepm (w]) = D (w Wit ey w) — . Xpaa (W) = D (wi+wf) (432)

/.
i<j j j i—1
32 _
Xonts (W) =Y (w W+ —— ot o+ ],> 0 Xend Wh) =D (Wh+us ). (4.33)
i<y i Y i a=1

Here we recall that the fractional momentum fugacities have been identified in (4.8) using
the full momentum fugacity ¢’ and the Sp(n) gauge fugacities w}. All gauge and flavor
fugacity variables in SO(32) LST are primed for distinction.

As the T-duality between the two LSTs involves the Wilson lines (4.9) preserving
the SO(16) x SO(16) flavor symmetry, it is more convenient to express the indices (4.30)
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and (4.31) in terms of the SO(16) x SO(16) flavor fugacities. Recall that the background
Wilson line RA, shuffles the momentum Hip, the flavor charges f,, the winding number(s)
k; [72]. The new fugacity variables conjugate to the shifted charges are identified in (4.12).
By replacing the original variables with the new ones, then dropping out the tildes for
simplicity, the indices Zyp and Z| for the pure momentum sectors become

nt-(ut+ut—v—ovt) ¢

Iy =PE |— 4.34
0 [ (1 — tut) 1—¢q? ( )
SO(16 SO(16
2 pp | P X ) S (0 + g2/ wl) |t X W 16) S (g0 + /)
0 (1 —tut) 1—¢? (1 —tut) 1—¢?
Lt () X (wiw + ¢ fwiw) + 3T (wi/w) + ¢Pwi/wp) + ng”
(1 — tut) 1—q~2
t- (v + vt i (wiw) + ¢ Jwiw) + wi/w} + ¢?w]/w]) + ng”? (435)

(1 — tut) 1— ¢

The indices Zp and Z|, capture the infinite towers of the pure momentum states. Based
on the T-duality relation (4.13), the BPS data supplied by Zy and Z;, are used to determine
the numerical coefficients in the elliptic genera (2.14) of various winding sectors. We should
first replace the chemical potentials in the ansatz (2.14) following (4.12), expand it in the
momentum fugacities, then compare it with the BPS data from Zj and Z, to determine the

numerical coefficients. The zero point energy of the elliptic genus matches with

—12(k1 + knt+1) for {ki, ko, -+ ,knt1} Eg X Eg string chains
ng = (436)

—24k for £ SO(32) heterotic strings.

In particular, the BPS data from (4.34) are sufficient to determine the elliptic genus of
{ki1,ka,--- ,kny1} string chain if k; < 1 for all ¢ and H?Ll kj = 0. The index i(2), the
denominator D(7, z), the numerator N (7, 2) of the elliptic genera for some of such string
chains are summarized in table 7 [15, 28, 29].

Here we comment about the elliptic genera of the full string chains where k1 = --- =
knt1 = k > 0. Once we attempt to write their elliptic genera based on (2.14), the whole
elliptic genus would be a weak Jacobi form of weight 0 and index i = k (—€% — (n + 2)et
+(n — 1)m?). Moreover, its denominator D(, z) would have weight —2k(n + 1) and index
ig= (nH)'k(kl;l)(%H) (€2 +€2). For the k = 1 case, this implies that the numerator N(z, 1)
must be a weak Jacobi form of weight (—2n + 4) and index i, = (n — 1)m? + (%) €2 —
(n+3

T) 63_ which does not exist. We interpret it as an inevitable appearance of the throat

states, for which one has to conjecture the new denominator D"X(7, 2) associated to the

extra bosonic zero modes. The throat states correspond to the strings runaway from NS5-
branes. But their contribution to the elliptic genus cannot be separated from the states
localized on NS5-branes.

We make the similar observation for the elliptic genera of SO(32) heterotic little strings.
One may continue the iterated bootstrap to study the elliptic genera of SO(32) heterotic

little strings, using the ansatz (2.14) and the BPS data from Zg, g, .. y of fractional

7kn+l
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Table 7. Elliptic genera of string chains in Fg x Fg heterotic LST.

strings with k; <1 and H?ill k; = 0. However, the conjectured form (2.14) of the elliptic
genus is not compatible with T-duality, because the overdetermined set of equations for
numerical coefficients, provided by T-duality relation (4.13), is inconsistent. We again
interpret it as an unavoidable presence of the throat states corresponding to the strings
escaping from NS5-branes. Let us take the 5d limit ¢’ — 0 to find the new denominator
DYk (7 %) including the extra bosonic zero modes. What remains is 5d N = 1 Sp(n)
gauge theory with 1 antisymmetric and 8 fundamental hypermultiplets. [27] computed
its Omega-deformed R* x S! partition function. In particular, the Sp(n) neutral states

contributes to the partition function by [27]

_ _ _ SO(16 SO(16
PE P (utu o) n” _tQ(XuS( )(yg)n’%—xlzé )( Hn2) 1
2(1—tu®)(1—tv?) 1—n'? (1—tu®)(1—tv¥) 1—n”2

(4.37)

The first term is the single-letter index for the 11d gravity multiplet on R® x S x R*.
The second term comes from the single-letter operators of the 10d Eg gauge theory with the

Es — SO(16) Wilson line. The 6d partition function should also contain these bulk states

ne+:§ne, sinh ( —ne+2:|:nm

we propose the new denominator DU (7, z) of the k string elliptic genus to be

having denominator Hﬁ:l sinh( ) Reflecting this observation,

—ney +nm)
7

k
DM(r,2) = D(r,2) - [] l

n=1

(4.38)
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The bootstrapped elliptic genus Zj, shares the same modular and analytic properties with
the elliptic genus of N = (0,4) O(k) gauge theory having the following field contents:

an O(k) adjoint vector multiplet A, )\ﬁd

an O(k) symmetric hypermultiplet Qo> \Aa

an O(k) symmetric twisted hypermultiplet Pad, A

an O(k) antisymmetric Fermi multiplet AG? (4.39)
an O(k) x Sp(N) bifundamental hypermultiplet Ga, VA

an O(k) x Sp(N) bifundamental Fermi multiplet P

an O(k) x SO(16) bifundamental Fermi multiplet ;.

This is the 2d ADHM gauge theory of £ F1 and n NS5-branes in SO(32) heterotic string
theory [74]. In k =1 case, by localizing the gauge theory path integral, one can write the
elliptic genus as follows.

2

1 LT Oi(m ay) 1 0:(m)
o= ’ = 4.40
P20 (eq e )Oi(—eq £ m) 2:21;[ €+:|:a])l1—11 n (4.40)

For example, if n=1, one can see that its denominator agrees with (4.38) using H?Zl 0i(z)=
17%01(22). It also captures the correct BPS data of all fractional winding modes in the dual
theory, such as table 7. It would be desirable if one could precisely distinguish the bulk
states from the 6d LST spectrum in the elliptic genera. One can still continue to study
the elliptic genera of fractional string chains in Fg x Fg little string theory, based on the
BPS data provided by Z7. This procedure can be iterated up to as high winding numbers
as we want.

5 Concluding remarks

In this work, we studied the elliptic genera of 6d strings using their modular properties.
They are weak Jacobi forms of weight 0 and index i(z) which can be derived from the
anomaly polynomial of 6d strings [14, 15]. The conjectured form of the 6d string elliptic
genera respects the analytic structure of the R* x T2 instanton partition function [14].
Given a finite amount of initial BPS data, we constructed the elliptic genera of 6d strings
in various 6d SCFTs [14, 15].

We also applied the general ansatz for the 6d string elliptic genera to study the little
string theories. T-duality of little string theories is an equivalence between two circle
compactified LSTs, interchanging the winding and momentum modes, when their circle
radii R and R are related as R = o//R [19]. The R* x T2 partition functions for T-dual
LSTs should agree with each other, after imposing a fugacity relation which identifies the
winding/momentum fugacities on one side with the momentum/winding fugacities on the
other side [16-18]. Once we know the elliptic genus at a given winding number, it can
supply the BPS data for the dual elliptic genera at any winding number but a given circle
momentum. We summarized the fugacity maps for N' = (2,0) and (1,1) LSTs of A,, and
D, types as well as N = (1,0) Eg x Eg and SO(32) heterotic LSTs. We also worked out the
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anomaly polynomials of strings in those LSTs, to derive the modular properties of the little
string elliptic genera. Collecting these pieces of information, the elliptic genera of various
winding modes in LSTs can be constructed. We initially prepare the BPS indices for the
pure momentum sectors, then utilize their BPS data to fix all numerical coefficients in the
dual elliptic genera. Then the obtained elliptic genera yields more BPS data to fix the
dual elliptic genera with higher winding numbers. One can gain more BPS data for each
iteration. In principle, the entire LST partition functions on R* x T? can be constructed
from the iterated bootstrap. We successfully bootstrapped the elliptic genera of various
fractional string chains in A = (2,0) LSTs of A, and D, types and N = (1,0) Eg x Eg
heterotic LST.

For some little string theories, the full string elliptic genera may include an additional
contribution that comes from the bulk bound states unrelated to the 6d physics. These
states are localized in the throat continuum of the target space, which is a quantum res-
olution of the point-like singularity in the classical moduli space of 6d strings [24, 25].
Unless we suppress the emergence of the throat region by Fayet-Iliopoulos deformation,
just as we did in A = (2,0) and (1,1) LSTs of A, and 15273 types, the full strings may
escape from NS5-branes by moving down the throat region. For (1,1) LSTs of D,, types
and SO(32) heterotic LSTs, we proposed the new ansatz for the full string elliptic genera
to include the extra bosonic zero modes parameterizing the string movement transverse to
NS5-branes. With the new ansatz, the bootstrapped elliptic genera agree with those of the
ADHM gauge theories. It would be desirable to separate out the throat states from the
bound states localized on NS5-branes. To achieve this, one might examine the 72 partition
function of the ADHM gauge theories with NS-NS boundary condition [6]. Each term in
the partition function may have an interpretation as a gauge invariant operator, while it
uniquely maps to a term in the ADHM elliptic genus. This analysis would be helpful to
distinguish the throat states in the full string elliptic genus, identifying the entire BPS
spectrum of the little string theory on R* x T2. We hope to solve this problem in a near
future.

Acknowledgments

We thank Seok Kim, Sung-Soo Kim, Antonio Sciarappa for helpful comments and
discussions. KL is supported in part by the National Research Foundation of Ko-
rea Grant NRF-2017R1D1A1B06034369. JP is supported in part by the NRF Grant
2015R1A2A2A01007058 and 2018R1A2B6007159.

A Weyl invariant Jacobi forms
In this appendix, we collect the explicit expressions for the generators of the Weyl invariant

Jacobi forms used in the paper. We refer to the literatures such as [42-45] for the detailed
explanations. For SU(N + 1) and SO(2N + 1) Weyl groups, (/N + 1) generators of Weyl
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invariant Jacobi forms are obtained from the following generating functions [44]:

N 1 v v NX .
s+ TSR - ("n( )) S 62 (w)pi(a) (A1)
i=1 3 a;=0 =0
N 1 v —a; v v 2N N .
soeN+1): ] ulai + )Sé( i+to) _ (9177(3 )> D 0P (0)p gin(a)  (A2)
=1 1=0

where a; denote the SU(N + 1)/SO(2N + 1) chemical potentials. ©(~2)(v) must be un-
derstood as 1. The Weierstrass p function is a weak Jacobi form of weight 2 and index 0
which can be expressed using Jacobi theta functions as follows:

03(0)%62(0)* 04(2)*> 1

p(z) = 1 B2 12 [03(0)4 + 92(0)4] . (A.3)

The following identities are useful for writing the explicit expressions for the generators [44].

1 pw) @) - eV ()
1 pla)  ¢'lar) - N D(ay)
det
Y, 7% 61(a; — v) _ 1 1 plan—1) ¢'(an—1) -+ pN "D (an-1)
[T, 01 (ai)fs(v) 2NV2(N - 1) 1 p(a)  ¢a) - N (ay)
det :
1 p(an—1) ¢'(an-1) -+ 9V (an-1)
(A.4)
1 o) ¢"(v) - PN (v)
1 pla1) ¢"(a1) -+ PN (ay)
det
LY, 01 (as +v) 1 1 plan) 9"(an) - 9N (ay)
[TiL; 61 (ai)?61(v)? 22N=2(2N — 1) 1 p(a1) ¢"(a1) -+ V"V (ar)
det :
1 p(an) ¢"(an) -+ VY (an)

(A.5)

We particularly consider the generators of SU(2), SU(3), SU(4) Weyl invariant Jacobi
forms used in section 2.3. Imposing a; + az = 0 for SU(2), we obtain

01(aq)? 1261 (aq)?
ol = 200 e, (A6)

¥Y-2,1 =
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For SU(3), imposing the traceless condition a;+as+as = 0, the generators can be written as

_ 1(p(a1) p' (a2) — p(a2) ¢ (a1)) > 91
PO o (az) — o (a1) ™
)

i=1
3 3
_ 1g'(a1) — ¢’ (a2 01(a;) 1y ba(a)
T T2 () — o (a2) H A 2}:[1 P
For SU(4), the Weyl invariant Jacobi forms are generated by
o — 12wy 9(02) (9 (ay) 9" (az) — ¢ (a2) 9" (ay)) T 61 (ar)
76 > (eym) 9(02) (67 <ay> o (az)) 117
12 (0,2 9 (a2) (9" (ay) — 01 (a;
Go1 =~ (@,,2) H 1(?
6 % 0y 9(2) (9 () — 1=
o 1 Z(m,y,z) @(ax) ( (ay) f[ 91 (az o 1 ﬁ 91 (al)
-3,1 = 7% ; —4,1 — %
6 % 0y 9002) (5 () — 1= 6 L1705

(A7)

where (z,y,z) runs over {(1,2,3),(2,3,1),(3,1,2)}. Based on the SU(3) generators
and (2.38), one can write the generators of the Gy Weyl invariant Jacobi forms [42, 44].
We also found the expressions (2.37) for the generators of the D,, Weyl invariant Jacobi

forms, by generalizing the SO(8) generators given in [44]. Finally, all the generators of the

E,, Weyl invariant Jacobi forms are given in [43, 45].
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