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1 Introduction

Unitary representations of N = 1 superconformal algebra play an important role in many

aspects of supersymmetric quantum field theory. Applications of non-unitary represen-

tations are less studied. They appear, in particular, in extended conformal supergravi-

ties [1–4] written in terms of N = 1 multiplets. Recently, such multiplets were considered

in the computation of conformal anomalies (in 4 and 6 dimensions) in the context of

AdS/CFT [5–9]; similar massless and massive multiplets were also discussed in [10]. Non-

unitary superconformal theories may have other interesting applications (see, e.g., [11]).

Given a CFT one may define the standard partition function on S1
β×S3 (with fermions

treated as antiperiodic on S1 of length β to have usual thermodynamic interpretation).

When CFT is also a superconformal theory one may formally define also another — “su-

persymmetric” — partition function Zsusy on S1
β ×S3 by (i) taking fermions to be periodic

on S1
β and (ii) introducing extra R-symmetry gauge-field couplings in the action to pre-

serve global supersymmetry on S3 [12–14]. While having no thermodynamic interpretation1

Zsusy will instead be related to the superconformal index I(β) [15–17]. It will thus be pro-

tected by supersymmetry, receiving contributions only from short multiplets (thus being

computable exactly, e.g., using localization, see [18] for a comprehensive review).

In this paper we shall study the properties of the superconformal index for higher-

derivative (and higher spin) N = 1 non-unitary multiplets. We shall compute the co-

efficients in the small β expansion of the index I(β) and compare with their expected

expressions in terms of conformal anomaly coefficients proposed earlier on the basis of

studies of unitary low-spin examples [19, 20]. We shall find that some modifications of

these expressions are required in the non-unitary cases.2

We shall start in section 2 with a short review of the definition of the superconformal

index for a 4d N = 1 theory and its relation to the supersymmetric partition function on

S1
β×S3. We shall then discuss what is known about the leading coefficients in their small β

expansion, emphasizing that the assumptions used to derive the general expressions for the

coefficients were checked only in models with simplest unitary (chiral and vector) multiplets.

In section 3 we shall introduce four basic higher-derivative N = 1 superconformal

multiplets for which we shall later compute the superconformal index. These non-unitary

multiplets are the N = 1 building blocks of extended conformal supergravities. We shall

discuss the superfield structure of the multiplets and check the relation between their chiral

and conformal anomalies as predicted by the superconformal invariance.

In section 4 we shall compute the superconformal index I(β) of these free non-unitary

multiplets by an explicit “letter”-counting algorithm. The multiplets that contain higher

1We may still formally refer to β as an inverse “temperature”. We shall also assume that the radius of

S3 is fixed to be 1.
2Our discussion will be restricted to abelian free superconformal theories. In presence of a non-trivial

semi-simple gauge group the asymptotic behaviour discussed in [19, 20] may require corrections when the

theory has moduli spaces on the “thermal” cycle [21–23], as in the case of the ISS model [24, 25], i.e.

SU(2) N = 1 SYM with a single chiral field in the spin 3/2 representation. The general reason for such

corrections in models with simple gauge groups has been further elucidated in [26, 27] by taking into account

contributions from all vacua in the 3d limit.
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spin gauge fields (conformal gravitino and graviton) require careful treatment of equation

of motion constraints and Bianchi identities for the field strengths. In section 4.2 where

we present an efficient method to extract the small β expansion of the index, including all

possible subleading terms.

In section 5 we shall compare the expressions for the coefficients in the expansion of

I(β) with those proposed earlier for unitary multiplets and propose some modifications that

should apply universally to all types of theories. We also comment on subleading terms

and the case of finite N = 4 conformal supergravity.

In appendix A we shall present the free action of the [12 ] tensor multiplet. In appendix B

we shall discuss the results for the chiral gravitational and gauge anomalies of the confor-

mal gravitino and non-gauge antisymmetric tensor. In appendix C we shall review the

expression for the conformal higher spin partition function on S1
β × S3

b and work out its

small β expansion. Appendix D will contain a discussion of how to one may compute the

constant and log β term in the partition function using the direct expansion and ζ-function

regularization in terms of spectrum of dimensionally reduced theory on S3. In appendix E

we shall repeat the computation of the superconformal index and its small β expansion for

non-unitary multiplets in case of unequal fugacities which is related to supersymmetric par-

tition function on S1
β ×S3

b (with S3
b being a squashed 3-sphere). Finally, in appendix F we

demonstrate how to perform similar analysis of the index of six-dimensional theories with

(1, 0) supersymmetry considering the examples of scalar, tensor and non-unitary higher

derivative vector multiplets.

One of the conclusions of this paper is that the relation between the leading term in

the expansion of the superconformal index and the anomaly coefficients suggested in [19]

requires a certain modification in non-unitary theories where the structure of the index

appears to be more involved. The results of this paper may be useful for further studies

of properties of higher derivative superconformal multiplets in 4 and 6 dimensions closely

related to conformal supergravities. In particular, it is interesting to investigate further

superconformal index or supersymmetric partition function for a finite model of interact-

ing N = 4 conformal supergravity (mentioned in section 5) viewed as a special N = 1

superconformal theory. It would be interesting also to explore the index for higher spin

superconformal theories which are “shadow” boundary counterparts of supersymmetric

higher spin theories in AdS in the context of vectorial AdS/CFT correspondence. A (mod-

ified) relation between the superconformal index and the conformal anomaly coefficients

may shed light on the values of the latter for superconformal higher spin theories.

2 Superconformal index and its small β expansion: a review

The superconformal index of an N = 1 theory on R
4 is defined as [15–17]

I(p, q) = Tr
[
(−1)F e−µ (∆−2 j2−

3
2
r) pj1+j2+

1
2
r q−j1+j2+

1
2
r
]
. (2.1)

Here, quantum numbers j1, j2,∆, r label representations of the bosonic compact subgroup

SU(2)j1×SU(2)j2×U(1)∆×U(1)r of the SU(2, 2|1) superconformal group. In particular, ∆

– 3 –
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is the conformal dimension and r is R-charge.3 The chemical potentials p and q are free pa-

rameters. Due to supersymmetry, the trace receives contributions only from states with δ ≡
∆−2 j2− 3

2 r = 0 and thus I(p, q) is independent of the third parameter µ. Examples of exact

results for the index obtained by counting or localization can be found in [16, 17, 28–40].

Setting

p = q ≡ t = e−β , (2.2)

one finds the special case of the index that we shall consider below

I(β) = Tr
[
(−1)F e−β (∆− 1

2
r)
]
, Tr ≡ Tr|δ=0 . (2.3)

This index that happens to be directly related to the supersymmetric partition function

Zsusy(β) on S1
β × S3 by [29, 34, 41]

Zsusy(β) = e−β Esusy I(β) . (2.4)

Here Esusy is the “supersymmetric” Casimir energy [34, 41–43] which can be expressed in

terms of the conformal anomaly a and c coefficients4

Esusy =
4

27
(a + 3 c) . (2.5)

The small β expansion of Zsusy(β) takes the following form

logZsusy(β)
β→0
= C1

π2

β
+ C2 + C3 log β + 0 · β +O(β2), (2.6)

where Ci are theory-dependent numerical coefficients and the absence of the linear in β

term is due to supersymmetry. Then (2.4) implies the following expansion of the index5

log I(β)
β→0
= C1

π2

β
+ C2 + C3 log β + Esusy β +O(β2). (2.7)

A more general specialization than (2.2), depending on a 2-parameter family of unequal

fugacities p and q in (2.1), is related [14, 48, 49] to supersymmetric partition function on

S1
β × S3

b where S3
b is squashed sphere and will be discussed in appendix E.

Let us now review what was claimed in the past about each coefficient in the expan-

sion (2.6) or (2.7).

3Here j1, j2 in (2.1) denote the third components of the SU(2)× SU(2) angular momenta.
4For a conformal theory on curved space, the coefficient of the logarithmic UV divergence in the standard

partition function is

logZ∞ =
1

(4π)2
log Λ

∫

d4x
√
g b4 , b4 = −aR⋆R⋆ + cC2 .

Here we ignored possible ∇2R term, C2 is the square of the Weyl tensor and R⋆R⋆ = C2 − 2R2
µν + 2

3
R2

is 32π2 times the Euler number density. Note that in contrast to the standard Casimir energy [44–46] the

“supersymmetric” one may be viewed as “scheme-independent” [43, 47] as supersymmetry should prohibit

adding extra local counterterms that may modify the expression for Esusy.
5The fact that the index encodes Esusy was first suggested in [41]. The relation between the index and

Zsusy was later clarified in [29] who showed that the e−β Esusy factor in (2.4) is a normal-ordering effect

like for the standard Casimir-like contribution. Further discussion of the universality of the relation (2.4)

appeared in [34].
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Leading term ∼ 1/β. It was argued in [19] that the coefficient of the leading Cardy-

type [50] term in (2.7) can be expressed in terms of the conformal anomaly coefficients as6

C1 =
16

3
(c− a). (2.8)

The proof in [19] was based on the expected form of the effective action of the dimen-

sionally reduced 3d theory corresponding to the limit of small radius of S1. It contains a

Chern-Simons term k
∫
S3 a ∧ F where a is the Kaluza-Klein graviphoton (mixed compo-

nent of the metric tensor in reduction to 3d) and F is the R-symmetry gauge field strength.

The coefficient k ∼ C1 is then proportional to the R-current gravitational anomaly. It was

computed by considering the example of a 4d Weyl fermion leading to

C1 = −1

3
Tr(R) , (2.9)

where Tr(R) is the sum of r-charges. In general, the N = 1 superconformal symmetry

relates the gravitational R-current anomaly to the trace anomaly coefficients as [57]

∇µR
µ = − 1

384π2
Tr(R)RR⋆ +

1

16π2
Tr(R3)FF ⋆ =

c− a

24π2
RR⋆ +

5a− 3c

9π2
FF ⋆ , (2.10)

i.e.

a =
3

32

[
3Tr(R3)− Tr(R)

]
, c =

1

32

[
9Tr(R3)− 5Tr(R)

]
, (2.11)

Tr(R) = 16 (a− c) , Tr(R3) =
16

9
(5 a− 3 c) . (2.12)

Here we use the somewhat loose notation Tr(R) and Tr(R3) for the gravitational and gauge

anomaly coefficients: they are literally the sum of r-charges and their cubes only in the case

of the standard chiral fermions but in general contain also field-dependent coefficients, i.e.

Tr(R) ≡
∑

i

κ1,i ri , Tr(R3) ≡
∑

i

κ3,i r
3
i , (2.13)

where κ1 = κ3 = 1 for a left Weyl spinor.

Constant term ∼ β0. Motivated by the study of explicit examples of standard chiral

and vector multiplets, the constant C2 in (2.6) was conjectured in [20] to be equal to the log-

arithm of the supersymmetric partition function of the dimensionally reduced theory on S37

C2 = k ≡ logZsusy
S3 . (2.14)

Logarithmic term ∼ log β. The coefficient C3 of the logarithmic term in (2.6) was

conjectured to be [20]

C3 = −4 (2a− c), (2.15)

again motivated by the examples of chiral and vector multiplets.8

6Related observations appeared previously in [49, 51, 52] with further developments in [20, 53–56].
7To be precise, the Ansatz in [20] is slightly different by a multiple of log(2π) because the logarithmic

term in (2.6) or (2.7) is written as log β

2π
. We claim that the identification (2.14) is correct if the logarithmic

term is simply log β, see appendix D.
8Let us note that the combination 2 a − c plays a special role in the analysis of the N = 2 models

in [58, 59] where it is essentially the sum of dimensions of operators parametrizing the Coulomb branch.
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Linear term ∼ β. As already mentioned, the coefficient of the linear term in (2.7) is

the “supersymmetric” analog of Casimir energy.9 The relation (2.4) may be studied in

the low temperature β → ∞ or high temperature β → 0 limit. For β → ∞ the leading

contribution comes only from the energy exponential, i.e.

Zsusy β→∞∼ e−β Esusy , I(β)
β→∞∼ 1 , (2.16)

where the asymptotics of the index corresponds to the vacuum contribution. Equivalently,

Esusy = − limβ→∞
d
dβ logZsusy. On the other hand, in the β → 0 limit the partition function

(and the index) is governed by the high-energy part of the spectrum. This leads to the

singular Cardy-type term in (2.6).10 The relation (2.5) of Esusy to the conformal anomaly

coefficients was demonstrated explicitly in the case of the chiral and vector multiplets [29,

34]. In addition, a general derivation was proposed in [61] based on a representation of Esusy

in terms of the anomaly polynomial and assuming the standard relations (2.11) between

the anomaly coefficients.

Higher order terms ∼ βn. It was claimed in [20] that the O(β2) corrections are

exponentially suppressed, i.e. schematically go as e−1/β for β → 0. Let us recall, as

an analogy, that absence of βn (n ≥ 2) corrections for in the case of the logarithm of

the thermodynamic partition function Z(β) was observed in the past for the standard

conformal fields [62] where this follows from a simple modular transformation property of

Z(β). It is unclear if similar modular properties play a role in the supersymmetric context.

The above discussion leaves several open questions. One is whether the prediction (2.9)

and thus (2.8) for the leading-order coefficient C1 is completely universal, i.e. holds for gen-

eral N = 1 superconformal theories, including also non-unitary and higher spin multiplets.

The argument in [19] relying on Chern-Simons term in the reduced 3d effective theory

appears to be specific to case of standard Weyl fermions. As we shall see below, the

relation (2.9) indeed requires a generalization in the non-unitary case.

The second question is about the expression (2.15) for coefficient C3 of the log β term

which was checked only for standard multiplets. We shall find that (2.15) needs a modifica-

tion in the case of higher spin superconformal multiplets. We shall propose an alternative

universal expression for the log β term in terms of the integer numbers of conformal Killing

tensors associated with each conformal gauge field in the multiplet.

Finally, it is not clear a priori if the non-unitary multiplets will also have exponentially

decaying corrections in their index expansion, i.e. if all power β2, β3, . . . corrections in (2.7)

9The effective Hamiltonian appearing in (2.3) is Hsusy = ∆ − 1
2
R. Normal ordering :Hsusy: = Hsusy −

〈Hsusy〉 = Hsusy − Esusy is implicitly understood, and is essentially the reason why Zsusy is not equal to

the index in (2.4) (see [29] for details). This is a general feature of the relation between the QFT partition

function and the thermodynamic partition function Tr(e−βH) [60].
10For comparison, let us mention what happens in the case of the standard partition function of a non-

supersymmetric CFT. For example, for a free conformal scalar the derivative E(β) ≡ −∂β log Tr(e−β∆)

obeys E(β) = π4

15β4 − 1
240

+
(

2π
β

)4 E( 2π
β
). For β → 0 we get E(β) β→0

= π4

15β4 − 1
240

+ . . . (up to exponentially

suppressed terms). This implies log Tr(e−β∆)
β→0
= C

β3 + Ecas β + . . . ., where Ecas is the standard Casimir

energy 〈H〉=〈∆〉.

– 6 –
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will be absent. Indeed, we shall find that such power corrections will survive for multiplets

containing higher spin (s > 1) conformal spins.

To address these questions, below we shall consider several non-unitary (higher deriva-

tive and higher spin) superconformal multiplets that appear in the context of extended

conformal supergravities. For each of these free multiplets we will explicitly compute the

index (2.3), obtain the coefficients in its small β expansion and compare them with their

expected values based on relations found earlier in the studies of unitary multiplets.

3 Higher derivative N = 1 superconformal multiplets

Here we will describe the content of the four basic higher-derivative N = 1 superconformal

multiplets for which we will later compute the index (2.3). They naturally appear in the

decomposition of N ≤ 4 conformal supergravities in terms of N = 1 multiplets.

3.1 N = 1 multiplet content of extended conformal supergravities

Let us start with reviewing the field content of conformal supergravities (for details see [3,

4]). Expanded near flat-space vacuum they are given by a collection of the following free

conformal fields:

φ: standard 2-derivative real scalar, L ∼ φ�φ

φ(4): 4-derivative real scalar, L ∼ φ(4)
�

2φ(4)

ψ: standard Weyl fermion, L ∼ ψ̄ /∂ψ

ψ(3): 3-derivative Weyl fermion, L ∼ ψ̄(3)/∂
3
ψ(3)

Vµ: standard gauge vector, L ∼ FµνF
µν

Tµν : non-gauge real antisymmetric tensor, L ∼ ∂µT+
µν∂λT

−λν , T± = T ± T ∗

Ψµ: conformal gravitino, L ∼ Ψµ/∂
3
Ψµ

hµν : conformal (Weyl) graviton, L ∼ h�2h

The N = 1 multiplet content of extended conformal supergravities (CSG) is [4]

N = 1 CSG = [2],

N = 2 CSG = [2] +

[
3

2

]
+ [1],

N = 3 CSG = [2] + 2

[
3

2

]
+ 4 [1] +

[
1

2

]
+ 2 [0],

N = 4 CSG = [2] + 3

[
3

2

]
+ 8 [1] + 3

[
1

2

]
+ 6 [0] + [0′] . (3.1)

Here [0] = (2φ, ψ) and [1] = (Vµ, ψ) are the standard unitary scalar and vector multiplets

while [2], [32 ], [
1
2 ] and [0′] are the four non-unitary multiplets containing higher derivative

fields:

[
0′
]
= (2φ(4), ψ(3), 2φ) ,

[
1

2

]
= (ψ, 2φ, Tµν , ψ

(3)) ,

[
3

2

]
= (Ψµ, 2Vµ, Tµν , ψ) , [2] = (hµν ,Ψµ, Vµ) . (3.2)
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φ φ(4) ψ ψ(3) Tµν Vµ Ψµ hµν

a 1
360 − 7

90
11
720 − 3

80 −19
60

31
180 −137

90
87
20

c 1
120 − 1

15
1
40 − 1

120
1
20

1
10 −149

60
199
30

Table 1. Conformal anomaly coefficients of fields appearing in N = 1 superconformal multiplets.

The maximal N = 4 supergravity has local SU(4) R-symmetry under which the fields

transform in various representations. Decomposing SU(4) → SU(3) × U(1) allows one to

identify the U(1) with the N = 1 R-symmetry corresponding to the N = 1 multiplets and

thus fix the r-charges of the component fields. In particular, the conformal graviton is a

singlet so has r = 0 while for other fields one finds

Ψµ : 4 = 11
[2]

+3−1/3

3 [ 3
2
]

, Tµν : 6 = 3 2
3

3 [ 3
2
]

+3− 2
3

3 [ 1
2
]

,

Vµ : 15 = 10
[2]

+3−4/3 + 34/3︸ ︷︷ ︸
3 [ 3

2
]

+80
[1]
,

φ(4) : 2× 10
[0′]

, ψ(3) : 4 = 1−1
[0′]

+31/3
3 [ 1

2
]

,

φ : 2× 10 = 2× 1−2
[0′]

+2× 3−2/3

3 [ 1
2
]

+2× 62/3
6 [0]

,

ψ : 20 = 3−1/3

3 [ 3
2
]

+3−5/3

3 [ 1
2
]

+6−1/3
6[0]

+ 81
8 [1]

. (3.3)

Here we indicated how the SU(4) representations of each field in N = 4 theory is decom-

posed, resulting N = 1 R-charges and the N = 1 multiplets each field belongs to. For

example, the 4 gravitinos of the N = 4 supergravity split into the one belonging to [2] and

having r = 1, and three from the three [32 ] multiplets with r = −1
3 . The resulting R-charge

values are in agreement with the representation theory of N = 1 superconformal algebra

discussed below.

For future reference in table 1 we list the conformal anomaly coefficients of the individ-

ual fields (see [4, 63, 64]). In table 2 we present the resulting values of a and c for the basic

unitary and non-unitary multiplets introduced above. We also give particular combinations

of a and c corresponding to the expected values of (i) the coefficients Tr(R) and Tr(R3)

of the gravitational and R-symmetry chiral anomalies computed according to (2.12) (ii)

Esusy as given by (2.5), and (iii) the coefficient C3 as defined in (2.15). It is interesting to

observe [4] that the values for the [1] and [0′] multiplets are exactly opposite to each other.

Note also that the combinations 3Tr(R) and C3 are always integer.

3.2 Structure of the N = 1 multiplets

Let us now discuss the N = 1 superfield description of the above multiplets that allows

one to independently fix the R-charges of the individual fields which will be in agreement

the R-charge assignment in (3.3) following from the N = 4 conformal supergravity.
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a c Tr(R) Tr(R3) Esusy C3

[0] (2φ, ψ) 1
48

1
24 −1

3 − 1
27

7
324 0

[1] (Vµ, ψ)
3
16

1
8 1 1 1

12 -1

[0′] (2φ(4), ψ(3), 2φ) − 3
16 −1

8 -1 -1 − 1
12 1

[
1
2

]
(ψ, 2φ, Tµν , ψ

(3)) −1
3

1
12 −20

3 −92
27 − 1

81 3
[
3
2

]
(Ψµ, 2Vµ, Tµν , ψ) −71

48 −53
24

35
3 −37

27 −389
324 3

[2] (hµν ,Ψµ, Vµ) 3 17
4 -20 4 7

3 -7

Table 2. The values of the conformal anomaly coefficients and their combinations Tr(R) = 16 (a−
c), Tr(R3) = 16

9 (5 a − 3 c), ESUSY = 4
27 (a + 3c), and C3 = −4(2a − c) for the 2 unitary and 4

non-unitary superconformal N = 1 multiplets.

As a consistency check, we will then be able to show that the resulting chiral anomaly

coefficients Tr(R) and Tr(R3) computed directly from (2.13) will be in agreement with the

values in table 2 found assuming the supersymmetry-implied relations (2.12).

To this end we will need, in addition to the values of R-charges ri, also the field-

dependent chiral gravitational and gauge anomaly coefficients κ1 and κ3 in (2.13). Their

values for the fields contributing to the chiral anomalies — Weyl fermions ψ, ψ(3) ∼ (12 , 0),

Weyl conformal gravitino Ψµ ∼ (1, 12) and self-dual tensor T+
µν ∼ (1, 0) are given by (see [65–

68])

ψ ψ(3) T+
µν Ψµ

κ1 1 1 8 −20

κ3 1 1 −4 4

(3.4)

The chiral anomaly does not depend on extra derivatives in the kinetic term and thus is

the same for ψ and ψ(3). The Lorentz index of the gravitino is inert under R-symmetry

and thus its gauge anomaly is 4 times that of the Weyl spinor (cf. [69]). The non-trivial

cases of the antisymmetric non-gauge tensor and conformal gravitino are further reviewed

in appendix B.

3.2.1 Unitary scalar [0] and vector [1] multiplets

The [0] chiral multiplet containing one complex scalar and one Weyl fermion corresponds

to a chiral superfield Φ = φ+ θψ + θ2ϕ. Omitting the auxiliary field ϕ and using that θα

has R-charge 1 we then find the following dimensions ∆ and R-charges

∆ (j1, j2) r

φ 1 (0, 0) r

ψα
3
2 (12 , 0) r − 1

∆ (j1, j2) r

φ 1 (0, 0) −r

ψα̇
3
2 (0, 12) −r + 1

(3.5)

The N = 1 superconformal algebra requires that for the superconformal primary or the

lowest chiral superfield component (here the scalar field) one should have r = 2
3∆ (see,
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e.g., [70]). This fixes r = 2
3 , consistently with the SU(4) decomposition in (3.3). The

resulting chiral anomaly coefficients in (2.13), (3.4) are then

Tr(R) = r − 1︸ ︷︷ ︸
ψ

= −1

3
, Tr(R3) = (r − 1)3︸ ︷︷ ︸

ψ

= − 1

27
, (3.6)

in agreement with the values in table 2. Similar agreement will be found for all other

multiplets discussed below.

The vector multiplet [1] is related to the chiral spinor field strength superfield Wα =

ψα + θβF+
αβ + . . . so that we find

∆ (j1, j2) r

ψα
3
2 (12 , 0) r

F+
αβ 2 (1, 0) r − 1

∆ (j1, j2) r

ψα̇
3
2 (0, 12) −r

F−

α̇β̇
2 (0, 1) −r + 1

(3.7)

The symmetric tensors F+
αβ and F−

α̇β̇
are the (anti) self-dual parts of the Maxwell field

strength in spinor notation. Here the lowest component is ψα so that r = 2
3∆ψ = 1. This

gives, in agreement with table 2,

Tr(R) = r︸︷︷︸
ψ

= 1, Tr(R3) = r3︸︷︷︸
ψ

= 1. (3.8)

3.2.2 Higher derivative scalar multiplet [0′]

A general discussion of N = 1 non-unitary multiplets can be found in [71] (at the level of

states), and in [72] (at the level of fields). We need to embed the [0′] multiplet in (3.2) into

a chiral superfield with the superconformal primary being the 4-derivative scalar φ(4) of

dimension 0. Other fields are then obtained by applications of the supersymmetry generator

Qα ∼ (12 , 0) leading to

∆ (j1, j2) r

φ(4) 0 (0, 0) r

ψ
(3)
α

1
2 (12 , 0) r − 1

φ 1 (0, 0) r − 2

∆ (j1, j2) r

φ
(2)

0 (0, 0) −r

ψ
(3)
α̇

1
2 (0, 12) −r + 1

φ̄ 1 (0, 0) −r + 2

(3.9)

This multiplet may be viewed as resulting from the application of extra � to the standard

chiral multiplet, i.e. (φ, ψ, ϕ) → (φ(4), ψ(3), φ), where, in particular, the auxiliary field ϕ

becomes a (complex) dynamical scalar. As this multiplet is non-unitary, it is not a priori

obvious how to fix the value of r. Nevertheless, from the analysis of [72] (see also [73])

the vanishing scaling dimension ∆ = 0 should imply r = 0, i.e. vanishing chiral weight. In

practice, this is still consistent with the rule r = 2
3∆φ(4) = 0. From the point of view of

N = 4 supergravity (cf. (3.3)) this is also consistent with the higher derivative scalar being

an SU(4) singlet. The direct evaluation of Tr(R) and Tr(R3) then gives

Tr(R) = r − 1︸ ︷︷ ︸
ψ(3)

= −1, Tr(R3) = (r − 1)3︸ ︷︷ ︸
ψ(3)

= −1 , (3.10)

in agreement with the values in table 2.
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3.2.3 Tensor multiplet
[
1

2

]

The superfield embedding of this multiplet can be found, e.g., in [74].11 The field content

in (3.2) may be organized into a chiral superfield, see appendix A. Its lowest component is

ψ
(3)
α and other components are built by acting with Qα decreasing r by one (or, in conjugate

case, with Qα̇ increasing r by one). As a result, we find

∆ (j1, j2) r

ψ
(3)
α

1
2 (12 , 0) r

φ 1 (0, 0) r − 1

T+
αβ 1 (1, 0) r − 1

ψα
3
2 (12 , 0) r − 2

∆ (j1, j2) r

ψ
(3)
α̇

1
2 (0, 12) −r

φ 1 (0, 0) −r + 1

T−

α̇β̇
1 (0, 1) −r + 1

ψα̇
3
2 (0, 12) −r + 2

(3.11)

The R-charge is again determined by r = 2
3∆ψ(3) = 1

3 . The direct computation of the

chiral anomaly coefficients Tr(R) and Tr(R3) based on (2.13), (3.4) involves summing up

contributions from all the fields but the scalars

Tr(R) = r︸︷︷︸
ψ(3)

+8 (r − 1)︸ ︷︷ ︸
T+

+r − 2︸ ︷︷ ︸
ψ

=
1

3
+ 8×

(
−2

3

)
− 5

3
= −20

3
,

Tr(R3) = r3︸︷︷︸
ψ(3)

−4 (r − 1)3︸ ︷︷ ︸
T+

+(r − 2)3︸ ︷︷ ︸
ψ

=

(
1

3

)3

− 4×
(
−2

3

)3

+

(
−5

3

)3

= −92

27
. (3.12)

3.2.4 Conformal gravitino multiplet
[
3

2

]

A review of the conformal gravitino supermultiplet can be found in appendix C of [75]. It

was also discussed recently in [76] in the context of higher spin generalizations. In general,

one can consider a superconformal multiplet associated with an integer superspin s and

described in terms of an unconstrained superfield

Ψα(s) α̇(s−1) ≡ Ψα1...αsα̇1...α̇s−1 , Ψα(s−1) α̇(s) ≡ Ψα1...αs−1α̇1...α̇s , (3.13)

where α(s) denotes a set of s symmetrized indices. The gauge freedom is

s > 1 : δΨα1...αsα̇1...α̇s−1 = D(α1
Λα2...αs)α̇1...α̇s−1

+D(α̇1
ζα1...αsα̇2...α̇s−1), (3.14)

s = 1 : δΨα = DαΛ + ζα , (3.15)

with unconstrained gauge parameters Λα(s−1)α̇(s−1) and ζα(s)α̇(s−2). The superfield

Ψα(s) α̇(s−1) has superconformal weights (q, q) = (− s
2 ,

1−s
2 ) [76], so that its dimension and

R-charge are ∆ = q + q = 1
2 − s and r = 2

3(q − q) = −1
3 . One may choose a Wess-Zumino

gauge where

Ψα1...αsα̇1...α̇s−1(θ, θ) = θβθ
β̇
ψ(βα1...αs)(β̇α̇1...α̇s−1)

+ θ
2
θβT(βα1...αs)α̇1...α̇s−1

− θ2θ
β̇
Vα1...αs(β̇α̇1...α̇s−1)

+ θ2θ
2
ψα1...αsα̇1...α̇s−1 , (3.16)

11In [74] the antisymmetric tensor component is the standard gauge-invariant one but this is not relevant

for the purpose of fixing R-charges we are concerned with here.
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with complex bosonic fields Vα1...αs(β̇α̇1...α̇s−1)
= (V + i V ′)α1...αs(β̇α̇1...α̇s−1)

and

Tα(s+1)α̇(s−1). Specialization to our case of interest s = 1 gives

Ψα(θ, θ) = θβθ
β̇
ψ(αβ)β̇ + θ

2
θβT(αβ) − θ2θ

β̇
Vαβ̇ + θ2θ

2
ψα , (3.17)

with the same field content as in (3.2). For s > 1 the fields Vα(s)α̇(s) and Tα(s+1)α̇(s−1) have

residual gauge invariances. In the special case of s = 1 the field T(αβ) ≡ T+
αβ is a non-gauge

one [76]. From (3.17) we find (here Ψ(αβ)β̇ is the gravitino in spinor notation)

∆ (j1, j2) r

Ψ(αβ)β̇
1
2

(
1, 12

)
r

Vαα̇ 1
(
1
2 ,

1
2

)
r − 1

T+
αβ 1 (1, 0) r + 1

ψα
3
2

(
1
2 , 0

)
r

∆ (j1, j2) r

Ψ(α̇β̇)β
1
2

(
1
2 , 1

)
−r

Vαα̇ 1
(
1
2 ,

1
2

)
−r + 1

T−

α̇β̇
1 (0, 1) −r − 1

ψα̇
3
2

(
0, 12

)
−r

(3.18)

According to the above general discussion here we should have r = −1
3 .

It is useful to consider also an alternative and more transparent description of the [32 ]

multiplet in terms of the gauge-invariant chiral superfield (see [77])

Wαβ = T+
αβ + θγ (Ψαβγ + εγ(αψβ)) + θ2 Fαβ , (3.19)

where Ψαβγ is the gravitino field strength (i.e. the self-dual part of ∂[µΨν]) and F is the field

strength of the complex vector. Here the dimensions of the components are ∆ = 1, 32 , 2 and

the R-charges are r + 1, r, r − 1 (here we set r
T
≡ r + 1 to match the notation in (3.18)).

As this is a chiral superfield, its lowest component should have ∆ = 3
2 r. This implies

r+1 = 2
3 and once again r = −1

3 . The chiral anomaly coefficients Tr(R) and Tr(R3) receive

contributions from all the fields except the vectors and thus we find from (2.13), (3.4)

Tr(R) = −20 r︸ ︷︷ ︸
Ψµ

+8 (r + 1)︸ ︷︷ ︸
T+

+r︸︷︷︸
ψ

= −20

(
−1

3

)
+ 8

(
2

3

)
− 1

3
=

35

3
,

Tr(R3) = 4 r3︸︷︷︸
Ψµ

−4 (r + 1)3︸ ︷︷ ︸
T+

+r3︸︷︷︸
ψ

= 4

(
−1

3

)3

− 4

(
2

3

)3

+

(
−1

3

)3

= −37

27
. (3.20)

3.2.5 Conformal graviton multiplet [2]

The superfield description of the linearized N = 1 conformal supergravity multiplet [2] was

discussed in [2, 3]. The corresponding real superfield starting with graviton contains (in a

Wess-Zumino gauge) the components corresponding to the fields in (3.2)

∆ (j1, j2) r

h(αβ)(α̇β̇) 0 (1, 1) r

Ψ(αβ)β̇
1
2 (1, 12) r + 1

Ψ(α̇β̇)β
1
2 (12 , 1) r − 1

Vαα̇ 1 (12 ,
1
2) r

(3.21)
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The expected value of the graviton R-charge is r = 0. To confirm this one may consider

the corresponding chiral field strength superfield [77, 78] (cf. (3.19))

Wαβγ = Ψαβγ + θδ(Cαβγδ + εδ(αFβγ) + θ2Φαβγ , (3.22)

where Ψαβγ is the gravitino field strength and Φαβγ is the “second” gravitino field strength

(self-dual part of the strength of Φµ ∼ γν∂[µΨν]). Here Ψαβγ should have ∆Ψ = 3
2rΨ = 3

2

so that rΨ = 1 and thus in (3.21) we should have r = 0 (equivalently, this follows from the

fact that Weyl tensor Cαβγδ has r
C
= rΨ − 1 = 0).

The chiral anomaly coefficients Tr(R) and Tr(R3) here receive contributions only from

the Weyl gravitino (see (2.13), (3.4))

Tr(R) = −20 (r + 1)︸ ︷︷ ︸
Ψµ

= −20, Tr(R3) = 4 (r + 1)3︸ ︷︷ ︸
Ψµ

= 4 . (3.23)

These values, like those in (3.12) and (3.20), are once again in agreement with the cor-

responding values in table 2 demonstrating consistency with the supersymmetry which

underlies the relations (2.12).

4 The superconformal index of N = 1 multiplets

The explicit evaluation of the index (2.1) in a free superconformal theory can be done in

terms of the plethystic exponential12

log I(p, q) =
∞∑

n=1

1

n
i(pn, qn), (4.1)

where the single-particle index i(p, q) can be computed by letter counting [15–17]. We shall

consider the special case of p = q = e−β ≡ t corresponding to (2.3) and use the notation,

cf. (2.3),

I(e−β , e−β) ≡ I(β), i(e−β , e−β) ≡ i(β) . (4.2)

Below we will first compute the single-particle index i(β) for the multiplets introduced in

the previous section and then discuss the β → 0 expansion.

4.1 Computing the single-particle index

For the familiar unitary multiplets [0] and [1] one finds [70]

i[0](β) =
t
2
3 − t

4
3

(1− t)2
, i[1](β) = − 2 t

1− t
, t ≡ e−β . (4.3)

12Eq. (4.1) is a standard way to build symmetric multi-particle states in terms of the single-particle states.

This is made explicit by the illustrative relation

exp
∞
∑

n=1

∞
∑

m=1

pnγm = 1 +
∞
∑

m=1

pγm +
∑

m≤m′

pγm+γ
m

′ +
∑

m≤m′≤m′′

pγm+γ
m

′+γ
m

′′ + . . . .
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∆ (j1, j2) r (−1)F t2j2+r

φ(4) 0 (0,0) 0 1

φ
(2)

0 (0,0) 0 1

ψ
(3)

−̇
1
2 (0,−1

2) 1 -1

∂±−̇ψ
(3)

+̇
3
2 (±1

2 , 0) 1 −2t

∂±−̇φ 2 (±1
2 ,−1

2) 2 2t

Table 3. Contributions to the index of the [0′] multiplet. j1 and j2 (which can take positive and

negative values) stand for third components of the two SU(2) spins which label the states in the

superconformal index. Each undotted (dotted) ± index contributes ± 1
2 to j1(j2).

For the [0′] multiplet in (3.9) the analysis goes as follows. One has to consider the fields

X (“letters”) with δ ≡ ∆− 2 j2 − 3
2 r = 0 contributing

δ(X) = 0 : i|X = (−1)F t2j2+r = (−1)F t∆− r
2 . (4.4)

Applying derivatives ∂αα̇ one builds new letters. In the following it will be convenient to

denote the spinor indices α = 1, 2 by ±: 1 → + and 2 → − (and similar for dotted indices).

The +/− notation is convenient because each type of index (dotted or undotted) with such

a value increases/decreases the third component of the associated Lorentz spin by 1
2 . The

derivatives ∂±+̇ do not change δ. They can be applied repeatedly leading to a universal

factor 1/(1 − t)2 in the single-particle index i. Instead, ∂±−̇ increase δ by two units. Any

derivative ∂αα̇ does not change r so, on the δ = 0 states, it increases 2j2 + r
δ=0
= ∆− r

2 by

one unit. This gives the set of contributions in table 3. The descendants (obtained by the

application of ∂±+̇ leaving δ invariant) that have the form of equations of motion are

∂−+̇(∂+−̇φ) ∼ �φ = 0 , (4.5)

∂±+̇∂−+̇(∂+−̇ψ
(3)

+̇ ) ∼ �∂±+̇ψ
(3)

+̇ = 0 . (4.6)

This gives the index (cf. (4.3))

i[0′](β) =
1 + 1− 1− 2 t+ (2 t− t2)

(1− t)2
=

1− t2

(1− t)2
. (4.7)

A similar analysis can be carried out for the tensor multiplet [12 ] in (3.11). In this case,

the list of non-zero contributions is collected in table 4. The contribution of the last line

of this table should not be included: due to the spinor equations of motion, this derivative

may be replaced by another one with δ 6= 0. This gives the contributions −2 t
1
3 and +2 t

5
3

from the “left” and “right” chiral fields. Next, we have to take into account the equations

of motion for the (j1, j2) = (1, 0) and (j1, j2) = (0, 1) chiral components. One can check

that there are no contributions with δ = 0 and thus

i[ 1
2
](β) =

−2 t
1
3 + 2 t

5
3

(1− t)2
. (4.8)
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∆ (j1, j2) r (−1)F t2j2+r

ψ
(3)
±

1
2 (±1

2 , 0)
1
3 −2 t

1
3

ψ
(3)

+̇
1
2 (0,+1

2) −1
3 −t

2
3

φ 1 (0, 0) 2
3 t

2
3

T−

+̇−̇
1 (0, 0) 2

3 t
2
3

∂±−̇T
−

+̇+̇
2 (±1

2 ,
1
2)

2
3 2 t

5
3

ψ−̇
3
2 (0,−1

2)
5
3 −t

2
3

∂±−̇ψ+̇
5
2 (±1

2 , 0)
5
3 −2 t

5
3

Table 4. Contributions to the index of the [ 12 ] multiplet. The components of the (anti) self-dual

tensor are symmetric in the (dotted) undotted indices.

∆ (j1, j2) r (−1)F t2j2+r

T+
αβ 1 (j1, 0)j1=0,±1

2
3 3 t

2
3

Fαβ 2 (j1, 0)j1=0,±1
4
3 3 t

4
3

T−

+̇+̇
1 (0,+1) −2

3 t
4
3

Ψ+̇+̇−̇
3
2 (0,+1

2)
1
3 −t

4
3

∂±−̇Ψ+̇+̇+̇
5
2 (±1

2 , 1)
1
3 −2 t

7
3

Φ+̇+̇+̇
5
2 (0,+3

2) −1
3 −t

8
3

ψ+̇
3
2 (0,+1

2)
1
3 −t

4
3

F+̇−̇ 2 (0, 0) 4
3 t

4
3

∂±−̇F+̇+̇ 3 (±1
2 ,+

1
2)

4
3 2 t

7
3

Table 5. Contributions to the index of the [ 32 ] multiplet.

To find the index for the gravitino multiplet [32 ] in (3.18) we should take into account that

relevant letters should be gauge invariant, i.e. use the gravitino field strength in (3.19) and

also the “second” gravitino field strength Φαβγ (cf. (3.22)). The latter obeys the Bianchi

identity

∂ β̇
α ∂ γ̇

β Ψα̇β̇γ̇ = ∂ γ
α̇ Φαβγ , (4.9)

and thus its dimension is 5
2 while the R-charge is opposite to that of Ψαβγ . The non-zero

contributions are collected in table 5. The Bianchi identity for the (complex) Maxwell field

strength

∂ β̇
α Fα̇β̇ = ∂β

α̇ Fαβ (4.10)

lead to additional vector contribution −2 t
4
3
+1−2 t

7
3 = −4 t

7
3 . Finally, we should account for

the equations of motion of T+
αβ , i.e. ∂αα̇∂ββ̇ T

+αβ = 0 getting another −t
2
3
+2 contribution.

As a result, the final expression for the index is

i[ 3
2
](β) =

−2t
8
3 − 4 t

7
3 + 3 t

4
3 + 3 t

2
3

(1− t)2
. (4.11)

For the graviton multiplet [2] in (3.21) the computation of the index should be again done

in terms of the gauge invariant field strengths appearing in (3.22). The resulting non-zero
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∆ (j1, j2) r (−1)F t2j2+r

Ψαβγ
3
2 (j1, 0)j1=± 1

2
,± 3

2
1 −4 t

Ψ+̇+̇+̇
3
2 (0,+3

2) -1 −t2

Φ+̇+̇−̇
5
2 (0,+1

2) 1 −t2

∂±−̇Φ+̇+̇+̇
7
2 (±1

2 ,+1) 1 −2 t3

C+̇+̇+̇−̇ 2 (0,+1) 0 t2

∂±−̇C+̇+̇+̇+̇ 3 (±1
2 ,+

3
2) 0 2 t3

F +̇+̇ 2 (0,+1) 0 t2

Table 6. Contribution to the index of the [2] multiplet.

[0] [1] [0′] [12 ] [32 ] [2]

P (t) t
2
3 − t

4
3 −2t+ 2t2 1− t2 −2 t

1
3 + 2 t

5
3 −2t

8
3 − 4 t

7
3 + 3 t

4
3 + 3 t

2
3 −4t+ 4t3

Table 7. Numerators P (t) of the single particle indices i(β) = P (t)
(1−t)2 of the N = 1 multiplets.

contributions are collected in table 6. Before taking into account Bianchi identities, the

index is simply −4t
(1−t)2

. The Bianchi identities may only contribute a term proportional to

t3. The condition of vanishing of the index numerator for t = 1 then gives13

i[2](t) =
−4t+ 4 t3

(1− t)2
. (4.12)

The summary of the computed indices is presented in table 7.14

4.2 Small β expansion of the index I(β)

Let us now use the above results for i(β) to compute the small β expansion of the supercon-

formal index I(β) in order to compare with the expected expansion (2.7). A generalization

to a 2-parameter family of unequal p and q in (2.1) will be discussed in appendix E.

The usual approach to derivation of the small β expansion of the index for models

involving unitary multiplets starts from the summation in (4.1) in terms of elliptic Γ func-

tion. Modular properties of the resulting expressions [79] are then exploited to discuss the

small β limit. Here we propose a simpler approach based on the techniques developed for

studying similar limit of standard partition functions using that I(β) has a formal structure

of a partition function. Let m be a label a particular multiplet and let us define the Mellin

transform of the single-particle index i(β) as

zm(u) ≡
1

Γ(u)

∫ ∞

0
dβ βu−1 im(β) . (4.13)

13This extra +4 t3 comes from the field in the 4th line of the table 6 (which enters a Bianchi identity

contributing +2t3) and from ∂α
α̇∂

β

β̇
Ψαβγ + · · · = 0 (which is another Bianchi identity similar to (4.9)

conserving δ = 0 when α̇ = β̇ = − and γ = ± is arbitrary).
14The supersymmetric index is the n = 1 case of similar indices for theories on the lens space S1

β ×S3/Zn

that have been computed in [32] for unitary theories. In the n > 1 cases the index receives contributions

from twisted sectors. It would be interesting to extend the analysis to the non-unitary multiplets considered

here and explore the n → ∞ limit when S3/Zn → S2 and the index reduces to that of a 3d theory.
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Then for I(β) in (4.2) one finds15

log Im(β) =
∞∑

n=1

1

n
im(nβ) =

1

2π i

∫ v+i∞

v−i∞
du β−u Γ(u) ζ(u+ 1) zm(u) , (4.14)

which is valid when v is sufficiently large. When the vertical contour in (4.14) is moved

to the left, we pick up residues of poles at integer u and this has the form of a small β

expansion with the coefficients involving the residues of zm(u).
16 In general, given a term

tq

(1−t)2
in the index, we may use that

∞∑

n=0

1

Γ(u)
(n+ 1)

∫ ∞

0
dβ βu−1 e−nβe−q β =

∞∑

n=0

(n+ 1)(n+ q)−u

= ζ(u− 1, q) + (1− q) ζ(u, q), (4.15)

and taking residues in (4.14) we immediately obtain the expansion of the index.

Let us apply this method to the known cases of the chiral and vector multiplets. For

the [0] chiral multiplet we have from (4.3)

z[0](u)=
1

Γ(u)

∫ ∞

0
dββu−1 e

− 2
3
β−e−

4
3
β

(1−e−β)2
=

1

Γ(u)

∞∑

n=0

(n+1)

∫ ∞

0
dββu−1e−nβ (e−

2
3
β−e−

4
3
β)

=
∞∑

n=0

(n+1)

[(
n+

2

3

)−u

−
(
n+

4

3

)−u]

= ζ

(
u−1,

2

3

)
−ζ

(
u−1,

4

3

)
+
1

3
ζ

(
u,

2

3

)
+
1

3
ζ

(
u,

4

3

)
. (4.16)

Multiplying this by Γ(u)ζ(u+1)β−u (to get the integrand in (4.14)) and taking the residues

of the poles, we get contributions to (4.14) coming from u = −1, 0, 1 only. As a result,

log I[0](β) =
π2

9β
+ k[0] +

7

324
β +O(e−1/β), (4.17)

where

k[0] =
π

9
√
3
− 1

6
log 3− ψ(1)

(
1
3

)

6
√
3π

. (4.18)

This is in full agreement with (2.7) with the proposed values of the coefficients Ci,

see (2.5), (2.8), (2.14), (2.15) and table 2. The constant k[0] can be identified with the 3d

15Eq. (4.14) follows from the Mellin inversion formula and may be checked for a typical single-particle

contribution to the single-particle index starting from the relation e−β = 1
2πi

∫ v+i∞

v−i∞
duβ−u Γ(u) valid for

v > 0 (see, e.g., [80]). Here ζ(u+ 1) is the Riemann zeta function. Note that the relations below apply to

both fermions and bosons (as fermions are treated as periodic on the circle).
16In some cases symmetry properties of the integrand allow one to relate the contour associated with −v

to that at +v. Then the remainder of the small β (high temperature) pole expansion can be found explicitly

and gives rise to a “temperature inversion” relation [80].
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partition function logZsusy
S3 .17 Similarly, for a vector multiplet [1] we find using (4.3)

z[1](u) = − 2

Γ(u)

∫ ∞

0
dβ βu−1 e−β

1− e−β
=

= − 2

Γ(u)

∞∑

n=0

∫ ∞

0
dβ βu−1e−(n+1)β = −2

∞∑

n=0

(n+ 1)−u = −2 ζ(u) . (4.19)

Taking residues in (4.14), we obtain

log I[1](β) = − π2

3β
− log β + log(2π) +

1

12
β +O(e−1/β) . (4.20)

This is again in agreement with (2.7) and (2.5), (2.8), (2.15) and table 2. Eq. (4.20)

implies that k[1] = logZsusy
S3 = log(2π). Consistency of this result is further discussed in

appendix (D.2).

Applying the same method also to the four non-unitary multiplets with single-particle

indices given in table 7 the final results can be summarized as follows18

[0] = (2φ, ψ) : log I[0](β) =
π2

9β
+ k[0] + 0 · log β +

7

324
β +O(e−1/β),

[1] = (Vµ, ψ) : log I[1](β) = − π2

3β
+ k[1]− log β +

1

12
β +O(e−1/β),

[0′] = (2φ(4), ψ(3), 2φ) : log I[0′](β) =
π2

3β
+ k[0′] + 0 · log β − 1

12
β +O(e−1/β),

[
1

2

]
= (ψ, 2ϕ, Tµν , ψ

(3)) : log I[ 12 ]
(β) = −4π2

9β
+ k

[
1

2

]
+ 0 · log β − 1

81
β +O(e−1/β),

[
3

2

]
= (Ψµ, 2Vµ, Tµν , ψ) : log I[ 32 ]

(β) =
13π2

9β
+ k

[
3

2

]
+ 6 log β − 389

324
β +O(β2),

[2] = (hµν ,Ψµ, Vµ) : log I[2](β) = −4π2

3β
+ k[2]− 8 log β +

7

3
β +O(β2) , (4.21)

where

k[0] =
π

9
√
3
− 1

6
log 3− ψ(1)

(
1
3

)

6
√
3π

, k[1] = log(2π) ,

k[0′] = 0 , k

[
1

2

]
=

2π

9
√
3
+

2

3
log 3− ψ(1)(13)

3
√
3π

,

k

[
3

2

]
=

π

9
√
3
− 49

6
log 3− ψ(1)(13)

6
√
3π

, k[2] = 4 log(2π). (4.22)

17According to [81] logZsusy

S3 = ℓ( 1
3
), where ℓ(R) = −R log(1− e2π iR)− 1

2π i
Li2(e

2π iR) + i π R2

2
− i π

12
. It

is possible to prove that k[0] = ℓ( 1
3
). The relation of the index to 3d partition function in the β → 0 limit

after the removal of singular terms is a non-trivial fact depending on regularization, see [49, 82–86]. For a

discussion of this relation in the case of non-supersymmetric conformal partition functions see appendix D.
18Let us note that for the [0′] multiplet one has to be careful with the contribution of the higher derivative

scalar φ(4). This field has canonical dimension 0 (like a scalar in 2d) and one finds terms of the form
∑∞

n=0 n
−u. The n = 0 term is ambiguous and we used the natural analytical continuation 0−u ≡ 0 for all

(complex) u.
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These constant terms will be further discussed in appendix D.2.19

5 Structure of small β expansion of the index of non-unitary multiplets

Let us now compare the explicit values of the coefficients appearing in the small β expan-

sion (2.6) of the indices in (4.21) with their expected values discussed in section 2, i.e. with

the previously suggested relations (2.9), (2.14), (2.5).20 We shall denote the true values of

the coefficients as Ĉi with Ci being the expected values:

log I(β)
β→0
= Ĉ1

π2

β
+ Ĉ2 + Ĉ3 log β + . . . . (5.1)

Leading term ∼ 1/β. Comparing the values of the coefficient of the π2/β term in (4.21)

with their expected (2.9) values C1 = −1
3 Tr(R) in table 2, we find agreement for the

[0], [1], [0′] multiplets but discrepancies for the non-unitary multiplets [12 ], [
3
2 ], [2] contain-

ing the antisymmetric tensor or conformal gravitino:

Ĉ1 = C1 −
1

3
ν = −1

3

[
Tr(R) + ν

]
, (5.2)

ν[0] = ν[1] = ν[0′] = 0 , ν[ 12 ]
= 8, ν[ 32 ]

= −16, ν[2] = 24. (5.3)

Remarkably, the correction terms νm are all integer multiples of 8. For the collection of

multiplets appearing (3.1) in the N -extended conformal supergravities we then get ν
N=1 =

24, ν
N=2 = 8, ν

N=3 = ν
N=4 = 0 . The N = 3 and N = 4 conformal supergravities also

have a = c [4] or trR = 0 and thus Ĉ1 = C1 = 0. The same result is found also for N = 4

vector multiplet or [1] + 3[0], i.e.

Ĉ1N=1CSG = −4

3
, Ĉ1N=2CSG = −2

9
, Ĉ1N=3CSG = Ĉ1N=4CSG = 0, Ĉ1N=4SYM = 0. (5.4)

The reason why the relation (2.9) between the 1/β term and Tr(R) suggested in [19]

fails to be universal may be due to the fact that the argument in [19] may not directly

apply to theories containing more complicated chiral fields (self-dual tensors, conformal

gravitions, etc.) rather than just the standard Weyl fermions.21 One possibility is that in

reconstructing 3d effective action by matching anomalies there is an integer-shift ambiguity

19Let us note that part of the expansions in (4.21) can be found by a naive procedure of first expanding the

single-particle index and then applying (4.1) term by term. In general, i(β) =
A−1

β
+A0+A1 β+A2 β

2+ . . . .

From (4.1), we then formally obtain: log I(β) = ζ(2)
A−1

β
+ ζ(1)A0 + ζ(0)A1 β + ζ(−1)A2 β

2 + · · · =
A−1

6
π2

β
+ ζ(1)A0 − 1

2
A1 β − 1

12
β2 + . . . . One can check that

A−1

6
is indeed the coefficient of the leading

term in (4.21) in all cases. The same agreement is found for the linear in β term. The term proportional to

A0 is ill-defined but a heuristic replacement rule ζ(1) → − log β reproduces indeed the log β term in (4.21).

However, all other subleading corrections are not captured correctly by this procedure.
20Here we will not attempt to compare the expressions in (4.22) with their expected (2.14) values logZsusy

S3

since to compute the latter requires first the construction of the explicit supersymmetric Lagrangians for

the non-unitary multiplets on S1 × S3 that should contain extra couplings to the R-symmetry gauge field

background. Nevertheless, we remark that k[ 1
2
] = 2

3
ℓ( 2

3
) + 8

3
ℓ( 1

3
), where ℓ(R) was defined in footnote 17.

21Indications that there are subtleties in reconstruction of 3d effective actions in the case of (non-

conformal) gravitinos appeared in [87, 88].

– 19 –



J
H
E
P
1
0
(
2
0
1
8
)
0
8
7

in the coefficient of the 3d Chern-Simons term used in [19] leading in general to the presence

of the correction term ν in (5.2). Note that a shift of Ĉ1 from its value C1 in (2.8) was also

discussed for non-abelian gauge theories in [21].

Let us note also that the presence of the correction ν is similar to what happens in

non-unitary 2d CFT. In a generic CFT the partition function Z(β) is related to the density

of states ρ(E) dE. Writing the energies in terms of the conformal dimensions and the 2d

central charge, E = 2π (∆+∆− 1
12c), the modular invariance Z(β) = Z(β−1) implies that

the limit β → 0 is related to the β → ∞ one in which Z is dominated by the lowest-energy

states Z(β → ∞) ∼ Aβ−λe−β Emin . Here λ is non-zero for gapless systems so that [89, 90]

Z(β) =

∫
dE ρ(E) e−β E β→0∼ Aβλ e

π
6 β

ceff , ceff = − 6

π
Emin = c− 24∆min, (5.5)

where ∆min ≡ 1
2 min(∆ + ∆). In unitary theories one has ∆min = 0 and ceff = c. Instead,

in non-unitary theories, ∆min is typically negative and ceff > c. This inequality may be

violated in the case of supersymmetric partition function where fermions are taken to be

periodic and contribute with a negative sign. In non-unitary case one has generically [90]

ceff(B) − ceff(F) 6= c(B) − c(F). The correction ∆min in ceff = c − 24∆min is analogous to

the parameter ν in (5.2). There are, however, important differences: modular invariance is

not available in general and the role of the 2d central charge is played by c− a (cf. (2.8)).

Nevertheless, it is tempting to relate the presence of the non-zero ν in (5.2) with the

existence of negative norm states in the case of non-unitary multiplets.

Logarithmic term ∼ log β. The comparison between the coefficients of log β in (4.21)

and the suggested values C3 = −4 (2a− c) in (2.15) [20] given in table 2 again implies the

presence of an integer correction:

Ĉ3 = C3 + γ = −4 (2a− c) + γ , (5.6)

γ[0] = γ[1] = 0 , γ[0′] = −1, γ[ 1
2
] = −3, γ[ 3

2
] = 3, γ[2] = −1 , (5.7)

Ĉ3 [0] = Ĉ3 [0′] = Ĉ3 [ 1
2
] = 0 , Ĉ3 [1] = −1 , Ĉ3 [ 3

2
] = 6 , Ĉ3 [2] = −8 . (5.8)

Considering the collections of multiplets appearing in N -extended conformal supergravi-

ties (3.1) one finds

Ĉ3N=1CSG = 24, Ĉ3N=2CSG = 8, Ĉ3N=3CSG = 0, Ĉ3N=4CSG = 2, Ĉ3N=4SYM = −1.

(5.9)

Instead of trying to understand why Ĉ3 is, in general, different from C3 = −4 (2a − c)

proposed in [20] let us suggest an alternative general expression for it. Let us start by noting

that the logarithmic term in the expansion of the index is the same as in the expansion

of the supersymmetric partition function (2.6) and thus may have a universal origin. One

may attempt to interpret the singular log β term appearing in the β → 0 limit as associated

with the KK modes that become “massless” in the limit of shrinking S1. In practice, this

relation is not straightforward and depends on regularization, see also appendix D.22 One

22Let us note also that the log β term in the case of unitary non-abelian gauge theories was discussed

in [21] where its coefficient was related to the dimension of the space of flat directions (with no curvature

coupling) in the 3d theory.
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may then expect that the coefficient of the log β term should be the same as in the standard

partition function for the conformal gauge fields on S1
β×S3 (with both bosons and fermions

taken to be periodic on the circle). Then the log β term should receive contributions only

from the conformal gauge fields in each multiplet. These can be found from the conformal

higher spin partition functions derived in [5] and reviewed in appendix C below.

The analysis in appendix C shows that the log β contribution comes from a specific

SO(4, 2) conformal character and is determined by a particular integer equal up to sign

to the number nCKT of conformal Killing tensors for the bosons and the number nCKS of

conformal Killing spinor-tensors for the fermions.23

We propose that the coefficients Ĉ3 of the log β term in the expansion of the super-

symmetric partition function on S1
β × S3 for a generic superconformal multiplet should be

given by the sum of the contributions from the conformal higher spin gauge fields in this

multiplet, i.e.

Ĉ3 ≡ −n , n =
∑

i

nCKT(i)−
∑

i

nCKS(i) . (5.10)

In the case of the multiplets discussed in this paper the relevant conformal gauge fields

are the standard vector Vµ (s = 1), the conformal graviton hµν (s = 2) and the conformal

gravitino Ψµ (s = 1) for which we find from (C.4), (C.6):

nCKT(V ) = 1, nCKT(h) = 15, nCKS(Ψ) = 8 . (5.11)

As a result, from (3.2) we get

Ĉ3 [0] = 0 , Ĉ3 [1] = −1 , Ĉ3 [0′] = 0, Ĉ3 [ 12 ]
= 0 , (5.12)

Ĉ3 [ 32 ]
= 2× (−1) + 8 = 6 , Ĉ3 [2] = −1− 15 + 8 = −8 , (5.13)

exactly in agreement with (4.21) and (5.8).

Linear term ∼ β. For this term there is full agreement between the expected values of

the supersymmetric energy (2.5) in table 2 and the coefficients in (4.21).

Higher order corrections. Higher order corrections in the small β expansion of log I(β)

can be found by taking residues in (4.14) at the points u = −2,−3, . . . . For the unitary

multiplets one can check that (4.16) as well as (4.19) have no poles at these points. This

means that the corrections to the expansions in (4.21) are exponentially suppressed as

β → 0 (see (4.17), (4.19)). The same conclusion can be drawn by repeating the analysis

for the “non-gauge” multiplets [0′] and [12 ].

23Note that the UV finite partition function on S1
β×S3 where S3 has radius R (set to 1 in the above discus-

sion) contains the log β term as part of the dimensionless log(β/R) term. This suggests (see also appendix D)

that may be the dependence on R coming from some zero modes is determined by n
CKT

. The total power of

R depends on a regularization of the contribution of all other modes (for a related discussion on S3 see [91]).
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Instead, for the non-unitary multiplets [32 ] and [2] containing gauge fields we find, in

addition to the leading terms given in (4.21), an infinite series of power corrections

log I[ 32 ]
(β) = . . .− 389

324
β +

β2

18
− β4

6480
+

11β6

11022480
− 43β8

5290790400
+

19β10

261894124800
+ . . . ,

log I[2](β) = . . .+
7

3
β − β2

6
+

β4

720
− β6

45360
+

β8

2419200
− β10

119750400
+ . . . . (5.14)

A similar pattern is found for the non-supersymmetric partition function of the conformal

higher spin fields. For instance, in the case of a spin s bosonic conformal field the correction

to (C.3) can be written as

logZs = terms in (C.3) +Rs(β) , (5.15)

where Rs(β) is a infinite series that can be found in a closed form

Rs(β) =
1

3

s−1∑

k=1

k(k + 1)
[
(2s+ 1) k − 3s2 − 2s− 1

]
log

2 sinh
[
(s−k)

2 β
]

(s− k)β
. (5.16)

This vanishes for the Maxwell field (s = 1), while for s > 1 one finds

Rs(β) = −(s− 1)s2(s+ 1)2(s+ 2)(2s+ 1)

2160
β2

+
(s− 1)s2(s+ 1)2(s+ 2)(2s+ 1)

(
9s2 + 9s− 26

)

7257600
β4 + . . . . (5.17)

To summarize, the above analysis of non-unitary N = 1 multiplets shows that in

general (cf. (2.7))

log I(β)
β→0
= −

[
16 (a− c) + ν

] π2

3β
− n log β + k +

4

27
(a + 3c)β +R(β) . (5.18)

Here ν is a integer multiple of 8 which is non-zero for non-unitary multiplets with higher spin

fields and n = Ĉ3 given by (5.10) is another integer which is non-zero only for multiplets

with gauge fields. k ≡ C2 is a constant that should be related (2.14) to the partition

function on S3 and R(β) contains power-like corrections for multiplets with conformal

higher spin gauge fields but is O(βke−1/β) otherwise.

It is of interest to consider special combinations of the basic N = 1 multiplets [0], [1]

and [2], [32 ], [
1
2 ], [0

′] that have vanishing leading β−1 and β coefficients in the expansion of

the index (5.18), i.e. have vanishing total a, c and ν coefficients

atot = ctot = 0 , νtot = 0 :

[2] + (k + 3)

[
3

2

]
+ k′[1] + (2k + 3)

[
1

2

]
+ (22k + 18)[0] + (k′ − 9k − 11)[0′] . (5.19)

Here k and k′ are integers and we assumed that there is just one graviton multiplet. As

k > −1 (for the number of [0] not to be negative) the simplest solutions are k = 0 and
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k′ = 11, 12, . . . for which there are 4 conformal gravitini as inN = 4 conformal supergravity.

Using (5.13) we then find that the coefficient n of the log β term in (5.18) is n=10− k′.

The case with k = 0, k′ = 12, i.e. [2]+3[32 ]+12[1]+3[12 ]+18[0]+[0′], corresponds to the

familiar case of the N = 4 conformal supergravity coupled to four copies of N = 4 SYM

multiplets ([1]4 = [1]1 + 3[0]1) which is a superconformal theory not only at the quadratic

but also the interacting level [4, 92]. The small β expansion of the superconformal index of

this theory (which does not depend on the conformal supergravity and the SYM coupling

constants) is given by

log I(β)
β→0
= −2 log β + k +

β4

1080
+O(β6) , (5.20)

where the infinite series of power corrections come only from the N = 4 conformal super-

gravity contribution (cf. (5.14)).

The minimal solution for the superconformal theory (5.19) having k = 0, k′ = 11

has a smaller field content (it corresponds to removing the pair [0′] + [1] that has zero

anomalies, see table 2): [2]+3[32 ]+11[1]+3[12 ]+18[0]. It has similar expansion of the index:

log I(β)=− log β+k+ . . .. This combination cannot be written as a collection of N = 3 or

N = 2 multiplets; it was not included in classification of finite theories in section 6.3 of [4]

as having separate [32 ] multiplets that are not part of an extended conformal supergravity

theory is not expected to lead to a classically consistent theory at a non-linear level.
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A Free action for the
[
1

2

]
multiplet

Let us first recall the action for the standard chiral multiplet described by a chiral superfield

Φ = φ(y) + θψ(y) + θ2 ϕ(y) (with yαα̇ = xαα̇ + i θαθ̄α̇)

S =

∫
d4x d4θ Φ†Φ →

∫
d4x

[
φ∗

�φ+ ψα∂αα̇ψ
α̇
+ ϕ∗ϕ

]
. (A.1)

If instead one starts with a chiral spinor superfield

Φα = χα + θβ Qαβ + θ2 ψα, Qαβ = Tαβ + εαβφ , (A.2)

where χα is a spinor with dimension 1
2 , ψα is a standard dimension 3

2 spinor and the

boson Qαβ is a combination of symmetric tensor Tαβ (corresponding to self-dual part of

the antisymmetric tensor Tµν) and a complex scalar φ. The corresponding conformally

invariant action is then

S =

∫
d4x d4θΦα∂αα̇Φ

α̇
. (A.3)
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In components this gives

S =

∫
d4x

[
χα

�∂αα̇χ
α̇ +Qαβ ∂αα̇∂ββ̇ Q

α̇β̇
+ ψα∂αα̇ψ

α̇
]
, (A.4)

where the bosonic term may be written explicitly as

∫
d4xQαβ ∂αα̇∂ββ̇ Q

α̇β̇
=

∫
d4x

[
φ∗

�φ+ Tαβ∂αα̇∂ββ̇T
α̇β̇

]
. (A.5)

Eqs. (A.4), (A.5) give the action for the superconformal [12 ] multiplet in (3.2) (after the

renaming χ → ψ(3)). The action for the antisymmetric tensor in (A.5) in spinor notation is

equivalent to ∂µT+
µν∂λT

−λν in vector notation with T+ → Tαβ ∼ (1, 0), T− → T α̇β̇ ∼ (0, 1).

B Chiral anomalies of conformal gravitino and non-gauge tensor field

To compute anomalies of a higher spin field one needs to couple it to a gravitational

and gauge fields (assuming certain chiral transformation properties), take into account

contribution of ghosts, etc. One may use, e.g., a perturbative approach, computing triangle

diagrams corresponding to the matrix element of the chiral current between the vacuum

and a two-graviton state, or two chiral symmetry gauge fields.

An alternative topological approach is based on relating the anomaly of the chiral

current to the Atiyah-Singer index of a certain elliptic operator mapping fields to fields

of opposite chirality. This approach is somewhat heuristic and is practically useful only

if the starting (higher-spin) field theory is consistent. For a detailed comparison of the

perturbative and topological methods for standard gravitino see [69].

Here we shall discuss the chiral gravitational and gauge anomalies of the conformal

gravitino and the antisymmetric non-gauge tensor field Tµν justifying the values of their

coefficients κ1 and κ2 given in (3.4).24 Their embedding into conformal supergravity means

that it is possible to consistently couple them to gravity and the chiral gauge field. Using

topological approach we shall assume the existence of a suitable elliptic operator whose

index computes the chiral anomaly. Earlier results for the chiral anomaly coefficients

in (3.4) can be found in [66, 67, 69, 94].

Following [95], let us consider a compact 4-manifold M4 and a field belonging to the

general spinor bundle Xmn ≡ Xm,n, i.e. a tensor X(α1...αm)(β̇1...β̇n)
with m symmetric spinor

indices and n symmetric dotted spinor indices. In particular, the gravitino Ψµ corresponds

to X2,1+X1,2 (modulo gauge symmetry) while the tensor Tµν to X2,0+X0,2 (i.e. to the sum

of the self-dual and antiselfdual parts in spinor notation). The index theorem computes the

analytical index of the universal chirality-swapping elliptic operator Dmn : Xmn → Xnm

in terms of topological quantities. In 4 dimensions, it reads

indDmn =
chXmn − chXnm

e(TM)
td(TM ⊗ C), (B.1)

24The standard antisymmetric tensor gauge field of rank 2n with self-dual strength H = dB has gravita-

tion anomaly in d = 4n+ 2 dimensions [93], i.e. not in 4 dimensions where Bµν is dual to a scalar.
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where TM is the tangent bundle, and td, e, ch are the Todd class, the Euler class and

the Chern character. It is understood that one has to extract the part of degree 4 and

evaluate it on M4. If the fields transform in a non-trivial U(1) gauge bundle V , we have

to multiply the index by the Chern character ch(V ) = 1 − c2 + . . . . The degree 4 terms

give the gravitational and pure gauge contributions to the divergence of the corresponding

chiral current (see, e.g., [95–98])

Amn = ind
[
Dmn ch(V )

]∣∣∣
deg 4

=

− (m+ 1)(n+ 1)

720

[
n(n+ 2)(3n2 + 6n− 14)−m(m+ 2)(3m2 + 6m− 14)

]
p1

− 1

6
(m− n)(m+ 1)(n+ 1)(m+ n+ 2) c2 , (B.2)

where c2 = − 1
8π2Tr(F∧F ) is the second Chern class and p1 =

1
8π2 tr(R∧R) is the Pontryagin

class. For a Weyl fermion we get (cf. (2.10), (2.13), (3.4))

A1,0 = − 1

24
p1 − c2. (B.3)

For the conformal gravitino (taking into account the ghost subtraction [67]) and the self-

dual 2-tensor or symmetric bispinor, we get

A2,1 −A1,0 =
5

6
p1 − 4 c2, A2,0 =

1

3
p1 − 4 c2 . (B.4)

Thus in units of the Weyl fermion anomaly the chiral gravitational anomaly of the conformal

gravitino is 5
6 : (− 1

24) = −20 while its gauge anomaly is 4.25

For the self-dual antisymmetric tensor Tαβ the chiral gravitation anomaly is (−1)13 :

(− 1
24) = 8 while its gauge anomaly is −4 (where we have included a −1 factor due to the

different statistics of the tensor with respect to the Weyl fermion). These values are in

agreement with those given in (3.4).

The reason why the real Tµν tensor contributes [66] to the chiral anomaly can be

understood from the analogy of its kinetic operator in spinor basis in (A.5) with the (square

of) Dirac operator for a Weyl spinor. Its chiral gravitational anomaly can be also obtained

by adapting the analysis of [99], i.e. by observing that the antisymmetric tensor anomaly

related to a chiral rotation between the self-dual and anti-selfdual parts is the same as the

electromagnetic duality anomaly of a Maxwell field (cf. also [68, 100]).

C Conformal higher spin partition function on S1

β
× S3

Here we shall review the expression for the conformal higher spin partition function Z(β)

on S1
β × S3 and consider the small β expansion of logZ(β) focussing on the interpretation

of the coefficient of the log β term.

25Let us mention for completeness that in the case of the standard gravitino the total ghost contribution

(taking into account chiralities) leads to an extra subtraction −A1,0 compared to the conformal gravitino

case, i.e. A2,1 − 2A1,0 = 7
8
p1 − 3 c2, so that the chiral gravitational anomaly coefficient is -21, while the

gauge anomaly is +3 [67, 69, 94].
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Let us start with the bosonic fields. The Maxwell vector and the conformal graviton

are simplest cases of the 4d conformal higher spin fields with �
s kinetic term for a spin s

field [4]. The standard partition function (or character of the corresponding representation

of the conformal group) for the conformal higher spin s field on S1
β × S3 is given by [5]

logZs(β) =
∞∑

n=1

1

n
Zs(nβ) , (C.1)

Zs(β) =
2 (2s+ 1) t2 − 2 (s+ 1)2 ts+2 + 2 s2 ts+3

(1− t)4
, t = e−β . (C.2)

Here Zs is the single-particle partition function playing the role as the single-particle index

in (4.1).

Using the method sketched in (4.14)–(4.17) one finds that the small β expansion of

logZs has the form26

logZs=
π4 s(s+1)

45β3
− π2 s(s+1)(s2+s+1)

18β
+ks−nCKT logβ+Ecasβ+O(β2) , (C.3)

nCKT =
s2(s+1)2(2s+1)

12
, Ecas=

s(s+1)(18s4+36s3+4s2−14s−11)

720
β . (C.4)

Here the coefficient of the log β is simply minus the number nCKT of conformal Killing

tensors in 4 dimensions.27 Ecas is the standard Casimir energy. The constant ks in (C.3)

has a non-polynomial dependence on s and may be expressed as a linear combination of

transcendental constants.28

Similarly, for the fermionic conformal fields with spin s = s + 1
2 (with s = 0 corre-

sponding to Weyl spinor, s = 1 to conformal gravitino, etc.) one finds [101]

Zs(β) = 4
(s + 1) t

3
2 + (s + 1) t

5
2 − (s + 1)(s + 2) t

5
2
+s + s(s + 1) t

7
2
+s

(1− t)4
. (C.5)

26Note that on general grounds the leading term in (C.3) should scale as ∼ β−d where d is the space-time

dimension. The reason why the first term in the corresponding expansion of the supersymmetric partition

function in (2.6) has “softer” β−1 behaviour is due to supersymmetric cancellations.
27For a spin s field it is the dimension of the SO(4, 2) representation (s−1, s−1, 0) labelled by the Young

tableau that has two rows of length s− 1.
28It can be written as

ks =− s (s+ 1)
ζ(3)

4π2
+

1

6
s (s+ 1) (s2 + s+ 1) log(2π)− 1

3
(s+ 1)(s+ 2)s3 logΓ0(s+ 3)

+
1

3

(

3s2 + 6s+ 2
)

s2 logΓ1(s+ 3)− (s+ 1)s2 logΓ2(s+ 3) +
1

3
s2 logΓ3(s+ 3)

− 1

3
(s+ 1)2

(

3s2 − 1
)

logΓ1(s+ 2) +
1

3
(s− 1)(s+ 1)3s logΓ0(s+ 2) + (s+ 1)2s logΓ2(s+ 2)

− 1

3
(s+ 1)2 logΓ3(s+ 2),

where Bendersky’s generalised gamma function logΓk(n) =
∑n−1

j=1 jk log j comes from simplification of

derivatives of Hurwitz zeta function by logΓk(n) = ζ′H(−k, n)− ζ′(−k).
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The β → 0 expansion of the (periodic) fermionic partition function is given by

logZs = −2π4(s + 1)2

45β3
+

π2(s + 1)2(2s + 1)(2s + 3)

36β
+ ks + nCKS log β + Ecas β +O(β2) ,

nCKS =
s(s + 1)3(s + 2)

3
, Ecas = −(s + 1)2(144s4 + 576s3 + 584s2 + 16s− 51)

2880
. (C.6)

Here nCKS is the number of the conformal Killing spinor-tensors. As in the bosonic case,

the constant ks has a non-polynomial dependence on s.

To further investigate why the coefficient of log β is related to the integers nCKT and

nCKS let us write a general single particle partition functions associated with a conformal

field in 4d as

Z(β) =
P (t)

(1− t)4
, P (t) =

∑

q

cq t
q, t = e−β , (C.7)

where q runs over some finite set of integers or half-integers. This covers the cases of the

bosonic and fermionic conformal higher spin fields in (C.2), (C.5) as well as other “matter”

conformal fields in section 3.1 above [5]

Pφ(t) = t(1− t2), Pφ(4)(t) = 1− t4, PT (t) = 6 t(1− t2),

Pψ(t) = 4 t
3
2 (1− t), Pψ(3)(t) = 4t

1
2 (1− t3). (C.8)

For a general P (t) one finds using (C.1)29

logZ(β) =
ζ(5) p0
β4

+
π4 (2p0 − p1)

90β3
+

ζ(3) (3p2 − 9p1 + 11p0)

6β2
(C.9)

− π2 (p3 − 3p2 + 6p1 − 6p0)

36β
− 30p4 − 60p3 + 150p2 − 270p1 + 251p0

720
log β

+ kP +
6p5 + 10p3 − 30p2 + 57p1 − 54p0

1440
β +O(β2) , pn ≡ dn

dtn
P (t)

∣∣∣∣
t=1

.

The transcendental constant kP is determined by the form of P (t), but cannot be expressed

as a linear combination of its derivatives at t = 1. For a theory on S1
β × S3, the β → 0 or

t → 1 singularity of Z(β) is ∼ 1/(1 − t)3, i.e. P (t) should have an explicit 1 − t factor.30

This implies the constraint p0 = P (1) = 0. Besides, for all conformal fields we get one

extra constraint on P (t)31

P ′′(1)− 3P ′(1) = 0 , (C.10)

29This expression is formally valid for all fields as we assume that the fermions are also taken to be

periodic on the “thermal” cycle S1
β .

30This follows both from the conformal group representation theory and from the simple remark that

1/(1− t)3 factor takes into account the contributions of states on S3 corresponding to all spatial derivatives

of the field.
31This relation was discussed in [102] where it was related to the absence of suitable counterterms in the

heat kernel calculation of the “energy” E(β) = −∂β logZ(β).
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that implies the vanishing of the coefficient of the 1/β2 term in (C.9). Assuming these

constraints, the expansion (C.9) simplifies to

logZ(β) = −π4 p1
90β3

− π2 (p3 − 3p1)

36β
+ kP − p4 − 2p3 + 6p1

24
log β

+
6p5 + 10p3 − 33p1

1440
β +O(β2). (C.11)

This has similar structure as the expansion of the superconformal index in (2.7) (apart

from the leading 1/β3 term that cancels in a supersymmetric combinations of fields).

The coefficient of the log β term is thus related to a particular combination p4−2p3+6p1
of derivatives of P (t) at t = 1. To understand the meaning of this combination we may use

the relation between the 4d conformal partition function and its AdS5 counterpart.32 As

discussed in [5] there exists a close relation between the single-particle partition function

Z of a conformal field on S1
β × S3 and the partition function ZHS of the associated higher

spin field in AdS5 with quantum numbers determined by the Lorentz spins and conformal

dimension of the 4d conformal field:33

Z(t) = ZHS(t
−1)−ZHS(t) + σ(t) . (C.12)

Here the function σ(t) is a finite polynomial in t+t−1 and is generically present in the case of

4d conformal higher spin fields related to massless higher spin fields in AdS5. It is given by

the character of the finite dimensional irreducible representation of SO(4, 2) corresponding,

in bosonic case, to the conformal Killing tensors in 4 dimensions. Its value at t = 1 gives the

dimension of this representation, i.e. the total number of conformal Killing tensors σ(1) =

nCKT .
34 Using the conformal group representation theory and (C.12) one can show that

ZHS =
Q(t)

(1− t)4
, i.e. P (t) ≡ (1− t)4Z(t) = t4Q(t−1)−Q(t) + (1− t)4 σ(t), (C.13)

where Q(t) is a smooth function. The conditions P (1) = 0 and (C.10) can be checked to

hold automatically and the coefficient of the log β term in (C.11) then reads as

− p4 − 2p3 + 6p1
24

= −σ(1) = −nCKT . (C.14)

Thus the coefficient of the logarithmic term is simply minus the number of the conformal

Killing tensors of a rank related to the spin of the conformal gauge field. Similar result is

found for the fermionic conformal higher spin fields.

For non-gauge conformal fields (like the scalars φ, φ(4), spinors ψ, ψ(3), and the tensor

Tµν) one finds that σ(t) = 0 and thus there is no log β term in the small β expansion of

the corresponding logZ(β).

32Let us note that use of the AdS connection is useful but is not really necessary for the final conclusion

as the form of Z(β) used below can be justified purely on the basis of the conformal group representation

theory discussed in appendix F in [5].
33Changing notation slightly here instead of β we use t = e−β as the argument of the partition functions.
34The general expression for σ(t) for a bosonic conformal spin s field is

σs(t) =
1
6
s (s+ 1) (s2 + s+ 1)− 1

6

∑s−1
p=1 p (p+ 1)

[

(2s+ 1)p− 3s2 − 2s− 1
]

(ts−p + t−s+p).

Some special cases are σ1(t) = 1, σ2(t) = 7 + 4 (t+ t−1), σ3(t) = 26 + 20 (t+ t−1) + 9 (t2 + t−2).
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D Expansion of partition function in terms of regularized theory on S3

It is possible to compute the constant and logarithmic contributions to the small β ex-

pansion of the partition function directly in terms of the spectrum of the dimensionally

reduced 3d theory. Below we shall explain this starting with the example of the standard

(non-supersymmetric) partition function on S1
β × S3.

D.1 Standard bosonic partition function

In general, for a free conformal field on S1
β × S3, we can write the single particle partition

function and the full partition function in terms of the (square roots of) eigenvalues λn and

their multiplicities dn of the corresponding Laplacian on S3 (equal to energies of states or

dimensions of CFT operators)

Z(β) =
∑

n

dn e
−βλn , logZ(β) = −

∑

n

dn log(1− e−βλn). (D.1)

Instead of following the systematic derivation of the small β expansion of logZ following

the approach of section 4.2, one may attempt the direct β → 0 expansion of the expression

for logZ in (D.1):35

logZ(β) = −
∑

n

dn log β −
∑

n

dn log λn + . . . → −n log β + k + . . . , (D.2)

n =
∑

n

dn

∣∣∣
reg

, k = −
∑

n

dn log λn

∣∣∣
reg

. (D.3)

Thus the coefficient of log β should be directly related to the (regularized) sum of the

multiplicities, while the constant term k should be the partition function of the reduced

3d theory on S3. Note that as in a conformal theory Z depends only on dimensionless

ratio β/R where R is the radius of S3 (the square roots of eigenvalues λn scale as R−1) the

dependence on R is also controlled by the regularized total number of the eigenvalues or n.36

The natural regularization is the spectral ζ-function one: if ζ∆(z) =
∑

n dnλ
−z
n then

n = ζ∆(0) and k = ζ ′∆(0). This analytic regularization can be implemented simply by

adding the factors e−ελn , doing the sums and then dropping all terms which are singular

in the limit ε → 0.

As an example, let us consider the partition function of a conformally coupled scalar

on S1
β × S3 where (t ≡ e−β)

Z0(β) =
t− t3

(1− t)4
=

∞∑

n=1

n2 tn, logZ0(β) = −
∞∑

n=1

n2 log(1− e−β n). (D.4)

Using the method of section 4.2 one can show that the exact small β expansion of logZ0 is

logZ0(β) =
π4

45β3
+

0

β
+ 0 · log β − ζ(3)

4π2
+

1

240
β +O(e−1/β). (D.5)

35The leading singular 1/βn terms (cf. (C.9)) are not explicit in this naive expansion approach.
36Notice that n is also the coefficient of the β0 term in the small β expansion of the single particle

partition function Z(β), cf. (D.1).
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The same results of the coefficient n = 0 of log β term and the constant term k = − ζ(3)
4π2

are indeed found by using directly the corresponding regularized expressions in (D.3) (here

λn = n and dn = n2)

n =
∞∑

n=1

e−ε n n2
∣∣∣
ε0

=
2

ε3
+O(ε)

∣∣∣
ε0

= 0 , (D.6)

k = −
∞∑

n=1

e−ε n n2 log n
∣∣∣
ε0

=
2 log ε

ε3
+

−3 + 2 γE
ε3

− ζ(3)

4π2
+O(ε)

∣∣∣
ε0

= −ζ(3)

4π2
. (D.7)

Thus the constant in (D.5) may be identified with the partition function of the dimension-

ally reduced scalar 3d theory on S3 computed using natural analytic regularization.37

Similar computation can be done for the Maxwell vector field where

Z1(β) =
∞∑

n=1

2n(n+ 2) tn+1, logZ1(β) = −
∞∑

n=1

2n(n+ 2) log(1− e−β (n+1)). (D.8)

Here λn = n+1 (n = 1, 2, . . .) is the square root of the eigenvalue of the transverse 3-vector

Laplacian on S3 and 2n(n + 2) is its degeneracy [5]. The exact small β expansion of Z1

computed as in section 4.2 reads

logZ1(β) =
2π4

45β3
− π2

3β
− log β + log(2π)− ζ(3)

2π2
+

11

120
β +O(e−1/β). (D.9)

Using instead the direct expansion and (D.3) we find gives

n =

∞∑

n=1

e−ε (n+1) 2n(n+ 2)
∣∣∣
ε0

=
2(3eǫ − 1)

(eǫ − 1)3

∣∣∣
ε0

=

[
4

ε3
− 2

ε
+ 1 +O(ε)

]

ε0
= 1,

k = −
∞∑

n=1

e−ε (n+1) 2n(n+ 2) log(n+ 1)
∣∣∣
ε0

=
4 log ε+ 4γE − 6

ǫ3
+

−2 log ε− 2γE
ǫ

+ log(2π)− ζ(3)

2π2
+O(ε)

∣∣∣
ε0

= log(2π)− ζ(3)

2π2
, (D.10)

in agreement with the coefficients of the log β and the constant term in (D.9).

Another non-trivial example is that of the conformal graviton for which [5]38

Z2(β) =
∞∑

n=0

2 (3n2 + 12n+ 5) tn+2 , (D.11)

n =
∞∑

n=0

e−ε(n+2)2 (3n2 + 12n+ 5)
∣∣∣
ε0

=
2(9 sinh ε+ cosh ε+ 5)

(eε − 1)3

∣∣∣
ε0

=
12

ε3
− 14

ε
+ 15 +O(ε)

∣∣∣
ε0

= 15 , (D.12)

37Note that the dimensionally reduced 3d theory does not, of course, correspond to a conformal scalar

on S3: the 4d conformal scalar operator −∇2 + R
6

reduces to the same one on S3 (with R here being the

curvature of S3) while the conformally coupled scalar on S3 would have the kinetic operator −∇2 + R
8
.

38Here to determine the effective λn = n+2, dn = 2 (3n2 +12n+5) we re-expanded the final expression

for the single-particle partition function of the conformal graviton on S1 × S3 in eq. (3.22) of [5] that

was obtained by combining the contributions of the transverse graviton and vector Laplacians on S3.

In the notation of [5], these are respectively Z2,0 =
∑∞

n=0 2 (n + 1)(n + 5) (tn+2 + tn+4) and Z1,1 =
∑∞

n=1 2 (n+ 1)(n+ 3) tn+2 with Z2 = Z2,0 + Z1,1.
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in agreement with (5.11).

Similar computations can be done also for other conformal fields appearing in the

N = 1 multiplets discussed in the text, confirming that n = 0 for non-gauge fields and is

always an integer (see (5.10), (C.4), (C.6), (C.14)) for the gauge fields. This fact suggests

that it should have some “zero-mode” interpretation which remains to be clarified (cf. [91]).

D.2 Supersymmetric case

The supersymmetric partition function is the same as the superconformal index up to

the normal ordering supersymmetric Casimir energy factor in (2.4). This means that we

may use the expansion of the index to extract the analogs of dn and λn in (D.1). These

will have again the meaning of multiplicities and eigenvalues of the single particle (free)

supersymmetric spectrum.

Application of (D.3) is expected to give the constant and logarithmic terms in the

expansion of the index. Let us check this claim for few examples of N = 1 multiplets using

the expressions in table 7. For the chiral multiplet, we have

i[0](β) =
t
2
3 − t

4
3

(1− t)2
=

∞∑

n=0

(n+ 1) (tn+
2
3 − tn+

4
3 ). (D.13)

Hence, from (D.3),

n[0]=
∞∑

n=0

[
e−ε(n+ 2

3
)−e−ε(n+ 4

3
)
]
(n+1)

∣∣∣
ε0
=

2

3ε
+O(ε)

∣∣∣
ε0

= 0 , (D.14)

k[0]=−
∞∑

n=0

[
e−ε(n+ 2

3
) log

(
n+

2

3

)
−e−ε(n+ 4

3
) log

(
n+

4

3

)]
(n+1)

∣∣∣
ε0

= lim
a→0

∂a

{
1

3
e−

4
3
ǫ

[
3Φ

(
e−ǫ,−a−1,

4

3

)
−Φ

(
e−ǫ,−a,

4

3

)]
(D.15)

− 1

3
e−

2
3
ǫ

[
3Φ

(
e−ǫ,−a−1,

2

3

)
+Φ

(
e−ǫ,−a,

2

3

)]}∣∣∣∣∣
ε0

=
π

9
√
3
− 1

6
log3− ψ(1)

(
1
3

)

6
√
3π

,

where Φ(z, s, α) =
∑∞

k=0
zk

(k+α)s is the Lerch function and we expanded around ε = 0 using

Φ(z, s, α) = ζ(s, α) + (z − 1) [ζ(s− 1, α+ 1)− αζ(s, α+ 1)] + . . . . (D.16)

As a result, these values of n[0] = 0 and k[0] are in agreement with (4.21).

For the vector multiplet

i[1](β) =
−2t+ 2t2

(1− t)2
= −2

∞∑

n=1

tn, (D.17)

and applying again (D.3) we find

n[1] = −2
∞∑

n=1

e−ε n
∣∣∣
ε0

= −2

ε
+ 1 +O(ε)

∣∣∣
ε0

= 1 , (D.18)

k[1] = 2
∞∑

n=1

e−ε n log n
∣∣∣
ε0

=
−2 log ε− 2 γE

ε
+ log(2π) +O(ε)

∣∣∣
ε0

= log(2π), (D.19)
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in agreement with (4.21).

In the case of the graviton multiplet [2] we have

i[2](β) =
−4t+ 4t3

(1− t)2
= −4t− 8

∞∑

n=2

tn, (D.20)

and then the values of n[2], k[2] are, again, in agreement with (4.21)

n[2] = −4− 8
∞∑

n=2

e−ε n
∣∣∣
ε0

= −8

ε
+ 8 +O(ε)

∣∣∣
ε0

= 8 , (D.21)

k[2] = 8
∞∑

n=2

e−ε n logn
∣∣∣
ε0

= 4k[1] = 4 log(2π) . (D.22)

Similar agreement with values in (4.21) is found also for other multiplets.

E Superconformal index corresponding to N = 1 multiplets on squashed

S3

In this appendix we shall consider the generalized 2-parameter superconformal in-

dex (2.1), (4.1) which happens to be related [14, 48, 49] to the supersymmetric partition

on S1
β × S3

b where b is the squashing parameter of the 3-sphere. The corresponding choice

of the fugacities generalizing p = q = e−β in (2.2), (2.3) is

p = e−β/b , q = e−β b . (E.1)

The small β expansion of the corresponding index for the scalar chiral multiplet [0] was

found in [20]

log I[0](β, b) =
b+ b−1

18

π2

β
+

(
b+ b−1

216
+

b3 + b−3

162

)
β + . . . . (E.2)

The supersymmetric Casimir energy, entering the general relation (2.4), is expected to have

the general form [29, 34]

Esusy =
2

9
(b+ b−1) a− 2

27
(b3 + b−3) (2 a− 3 c), (E.3)

that reduces to (2.5) for b → 1. We can easily obtain the expansion (E.2) by the ζ-function

methods described in section 4.2. Let us first recall that for general p, q the single-particle

superconformal index in (4.1) is [70] (reducing to (4.3) for b = 1 or p = q = t))

i[0](p, q) =
(pq)

1
3 − (pq)

2
3

(1− p)(1− q)
. (E.4)

The Mellin transform (4.13) of the index gets the following contribution from a term of the

form e−aβ

(1−e−β b)(1−e−β b−1
)

ζ2(u; b, b
−1, a) =

∞∑

n,m=0

(a+ b n+ b−1m)−u , (E.5)
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where we adopted the standard notation for the Barnes double zeta function [103]. Ex-

panding around u = 1, 0,−1 we have (cf. (4.14))

β−uΓ(u)ζ(u+ 1) =





π2

6β + . . . , u → 1,
1
u2 − 1

u log β + . . . , u → 0,
β

2 (u+1) + . . . , u → −1.

(E.6)

Using [103, 104]

Res
u=1

ζ2(u; b, b
−1, a) =

b+ b−1

2
− a, ζ2(0; b, b

−1, a) =
1

4
+

b2 + b−2

12
− a

2
(b+ b−1) +

a2

2
,

ζ2(−1; b, b−1, a) = −b+ b−1

24
+

(
1

4
+

b2 + b−2

12

)
a− b+ b−1

4
a2 +

a3

6
, (E.7)

we obtain from (E.4) the following expression for zm(u) defined in (4.13)

z[0](u) = ζ2

(
u; b, b−1,

1

3
(b+ b−1)

)
− ζ2

(
u; b, b−1,

2

3
(b+ b−1)

)
. (E.8)

Combining the results in (E.7) with (E.6) we reproduce (E.2).

A similar computation can be done for the vector multiplet index where

i[1](p, q) = − p

1− p
− q

1− q
=

−p− q + 2pq

(1− p)(1− q)
. (E.9)

In this case

z[1](u) = −ζ2
(
u; b, b−1, b

)
− ζ2

(
u; b, b−1, b−1

)
+ 2 ζ2

(
u; b, b−1, b+ b−1

)
, (E.10)

and using again (E.7) with (E.6) we find

log I[1](β, b) = −b+ b−1

6

π2

β
+ k([1], b)− log β +

b+ b−1

24
β + . . . , (E.11)

which matches the expression in eq. (A.19) in [20]. Notice that the -1 coefficient of log β is

independent of b, i.e. is the same as in (4.20), supporting its “topological” interpretation.

The same analysis can be repeated for the non-unitary multiplets. For the higher

derivative multiplet [0′] using the data in table 3 to sum (−1)F pj1+j2+r/2 q−j1+j2+r/2 and

dividing by (1− p)(1− q) we find

i[0′](p, q) =
1− pq

(1− p)(1− q)
, (E.12)

leading to the small β expansion

log I[0′](β, b) =
b+ b−1

6

π2

β
+ k([0′], b) + 0 · log β − b+ b−1

24
β + . . . . (E.13)
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For the [12 ] multiplet in table 4 we obtain

i[ 1
2
](p, q) =

−p
2
3 q−

1
3 + p

4
3 q

1
3 − q

2
3 p−

1
3 + p

1
3 q

4
3

(1− p)(1− q)
, (E.14)

log I[ 1
2
](β, b) = −2

9
(b+ b−1)

π2

β
+ k

([
1

2

]
, b

)
+ 0 · log β (E.15)

+

[
− 2

27
(b+ b−1) +

11

162
(b3 + b−3)

]
β + . . . .

For the gravitino multiplet [32 ] in table 5 we get

i[ 3
2
](p, q) =

1

(1− p)(1− q)

[
− 2p

5
3 q

2
3 − 2p

4
3 q

4
3 + p

4
3 q−

2
3 (E.16)

− 2p
2
3 q

5
3 + p

2
3 q

2
3 + q

4
3 p−

2
3 + p

5
3 q−

1
3 + q

5
3 p−

1
3 + p

1
3 q

1
3

]
,

log I[ 3
2
](β, b) =

13

18
(b+ b−1)

π2

β
+ k

([
3

2

]
, b

)
+ 6 log β (E.17)

+

[
− 71

216
(b+ b−1)− 22

81
(b3 + b−3)

]
β + . . . .

A similar result is found for the graviton multiplet [2] in table 6

i[2](p, q) =
−p− q − p2q−1 − q2p−1 + 2p2q + 2pq2

(1− p)(1− q)
, (E.18)

log I[2](β, b) = −2

3
(b+ b−1)

π2

β
+ k([2], b) + 8 log β (E.19)

+

[
2

3
(b+ b−1) +

1

2
(b3 + b−3)

]
β + . . . .

The pattern is thus the same as in the previous cases. In particular, the coefficient of log β

does not depend on b and has the same (integer) value as we found in the undeformed case

(see (4.21)).

F Small β expansion of superconformal index for (1, 0) multiplets in six

dimensions

The above discussion of the index in four dimensions can be readily extended to six dimen-

sional (1, 0) superconformal theories. Here we shall briefly outline what one finds for the

unitary scalar and tensor multiplets, as well as for a non-unitary higher derivative vector

multiplet.

The superconformal index for a (1, 0) 6d theory is defined similarly to (2.1) [28]

I(t, u, v) = Tr
[
(−1)F t∆− r

2 uj1 vj2
]
∆=2 r+ 1

2
(j1+2j2+3j3)

(F.1)

Here (∆, r, j1, j2, j3) are associated to the subgroups of OSp(8∗|2) ⊂ SO(2, 6) × SU(2)r ⊃
U(1)∆×SU(4)×SU(2)r with (j1, j2, j3) being the Dynkin labels of SU(4). We are interested

in the specialization corresponding to a supersymmetric partition function on S1
β × S5

I(β) ≡ I(e−β , 1, 1) . (F.2)
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α β γ δ

S(1,0) = 4φ+ 2ψ− 0 0 7
240 − 1

60

T(1,0) = φ+ 2ψ− +B− 1 1
2

23
240 −29

60

V(1,0) = 3φ+ 2ψ(3)+ + V (4) −1 −1
2 − 7

240
1
60

Table 8. Anomaly coefficients of (1, 0) superconformal multiplets in six dimensions.

Leading terms in the β → 0 expansion are expected to be related to the coefficients of the

8-form polynomial A8 encoding the chiral (R-symmetry and gravitational) anomaly (which

in turn are related to the 6d conformal anomaly coefficients). These will play a role similar

to that of the TrR and TrR3 in (2.11) or to the conformal anomaly coefficients a and c in

four dimensions. The structure of A8 is [93, 105, 106]

A8 =
1

4!
(α c22 + β c2 p1 + γ p21 + δ p2),

c1 = trF, c2 = trF 2, p1 = −1

2
trR2, p2 = −1

4
trR4 +

1

8
(trR2)2 . (F.3)

According to [19, 107], the small β expansion should have the following structure

log I(β) =
8π4

9β3

(
γ +

1

4
δ

)
+

π2

6β

(
9

2
β − 8γ + δ

)
− n log β + k + Esusy β + . . . , (F.4)

where the six-dimensional supersymmetric Casimir energy is [61, 108]

Esusy = − 27

128
α+

9

32
β − 3

8
γ − 1

8
δ . (F.5)

The constant k and log β term were not, in fact, discussed in [19, 107] (the values of n and

k given below will thus be new) but they should be expected from the general analysis we

gave above in four dimension.

To test the validity of (F.4) let us consider the standard unitary (1,0) scalar S(1,0) and

tensor T(1,0) 6d multiplets and also a non-unitary higher derivative multiplet V(1,0); their

field content and anomaly coefficients are summarized in table 8 (where we indicated chiral-

ities of the fields). The scalar and tensor multiplets contain combinations of the 2-derivative

scalar φ, the Majorana-Weyl (MW) spinor ψ and the standard gauge (anti)selfdual 2-tensor

B−. The higher-derivative (1,0) vector multiplet V(1,0) contains a 4-derivative gauge vector

V (4) and a 3-derivative spinor ψ(3) (in addition to scalars) [7, 109].39

For the 6d scalar and tensor multiplets the single-particle superconformal index is given

by [111]

iS(β) = 2
t
3
2 − t

5
2

(1− t)4
, iT(β) =

−3t2 + 4t3 − t4

(1− t)4
. (F.6)

39This multiplet may be identified with the n = 2 case of the O∗(n) multiplets recently discussed in [110].
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Using the method of section 4.2 used above in 4d case we find

log IS(β) =
π4

45

1

β3
− π2

24

1

β
+ 0 · log β + kS −

17

1920
β +O(e−1/β), (F.7)

log IT(β) = −π4

45

1

β3
+

π2

6

1

β
+

1

2
log β + kT − 11

240
β +O(e−1/β). (F.8)

The singular terms ∼ β−3 and ∼ β−1 as well as the Casimir term are in full agreement

with (F.4), (F.5). In addition, we thus find that

nS = 0, kS =
1

8
log 2 +

3ζ(3)

16π2
, nT = −1

2
, kT = −1

2
log(2π) +

ζ(3)

4π2
. (F.9)

For the non-unitary V(1,0) multiplet, the following educated Ansatz for the single-particle

index

iV(β) =
−3t+ 6t2 − 5t3 + 2t4

(1− t)4
, (F.10)

gives the following expansion

log IV(β) = −π4

45

1

β3
− π2

3

1

β
− log β + kV +

19

240
β +O(e−1/β). (F.11)

A check of the consistency of (F.10) is that the coefficients of the leading ∼ β−3, ∼ β−1

and β terms are again in agreement with (F.4), (F.5) and values in table 8. In addition,

we find that

nV = 1, kV = log(2π) +
ζ(3)

4π2
. (F.12)

The constant term k has a natural interpretation of the logarithm of the partition function

of the 5-dimensional reduced theory found in the limit β → 0.

As for the log β term, it is present for the tensor and non-unitary vector multiplets. To

understand its origin, let us briefly explain how to generalize the 4d analysis of appendix C

to the present 6d case. As in the 4d case, we expect that the log β correction should come

only from gauge fields in the multiplets. These are the gauge tensor B− in the tensor

multiplet and the 4-derivative gauge vector V (4) (with kinetic term (∂µF
µν)2) in the vector

multiplet. We also expect it to be related to the 6d analog of the σ(t) term in (C.12), (C.14),

i.e. n = σ(1).

To check this claim, let us begin with the V (4) field. The associated dual higher spin

field in AdS7 (see discussion before (C.12)) has the SO(2, 6) representation content [7]

(5; 1, 0, 0)− (6; 0, 0, 0), (F.13)

where (∆+;h) ≡ (∆+;h1, h2, h3) denote SO(2, 6) quantum numbers (here ∆+ = 6 − ∆

where ∆ is canonical dimension of 6d field). Each representation contributes to the analog

of the partition function in (C.12) as Z+
HS(t) = d(h) t∆

+

(1−t)6
where

d(h) =
1

12
(1+h1−h2)(1+h2−h3)(1+h2+h3)(2+h1−h3)(2+h1+h3)(3+h1+h2) (F.14)
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is the dimension of the SO(6) representation with Dynkin labels h. Thus, the higher spin

partition function of the AdS7 field transforming as (F.13) is given by

Z+
HS(t) =

d(1, 0, 0) t5 − d(0, 0, 0) t6

(1− t)6
=

6t5 − t6

(1− t)6
. (F.15)

The analog of the representation (C.12) then implies that the 6d partition function of V (4)

is given by

ZV (4)(t) = Z+
HS(t

−1)−Z+
HS(t) + σ(t) =

−1 + 6t− 6t5 + t6

(1− t)6
+ σ(t)

= (−1 + 15 t2 + 70 t3 + . . . ) + σ(t). (F.16)

The 15 t2 term is associated with the lowest dimension field which is the field strength Fµν

(which has indeed dimension 2 and
(
6
2

)
= 15 components). Hence, we need σ(t) = +1 in

order to cancel the spurious −1 and get the correct 6d partition function for the conformal

field V (4).40 Thus, the expansion of log IV should contain the term −σ(1) log β = − log β

(same as for the 4d vector multiplet in (4.21)).

The gauge field B− of the tensor multiplet is dual to the AdS7 field with the conformal

representation content [7]

1

2

[
(4; 1, 1, 0)− (5; 1, 0, 0) + (6; 0, 0, 0)

]
, (F.17)

where the prefactor 1
2 takes into account the anti-selfduality constraint, cf. table 1 of [7].

Repeating the steps leading to (F.16), here we find

ZB−(t) = Z+
HS(t

−1)−Z+
HS(t) + σ(t) =

1− 6t+ 15t2 − 15t4 + 6t5 − t6

2 (1− t)6
+ σ(t)

=

(
1

2
+ 10 t3 + 45 t4 + . . .

)
+ σ(t). (F.18)

Again, the first t-dependent term 10 t3 is associated with the lowest dimension field which in

this case is the strength H−
µνρ of B− (which has indeed dimension 3 and 1

2

(
6
3

)
= 10 compo-

nents). Then cancellation of the constant term requires σ(t) = −1
2 and thus the expansion

of log IT should contain the term −σ(1) log β = +1
2 log β, in agreement with (F.8).

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

40The pattern is completely similar to the case of a Maxwell vector in 4d where the dual higher spin

partition function in AdS5 is the s = 1 case of Z+
HS,s(t) = (s+1)2 ts+2−s2 ts+3

(1−t)4
[5]. This gives Z1(t) =

Z+
HS,1(t

−1)−Z+
HS,1(t) + σ(t) = (−1 + 6 t2 + 16 t3 + . . . ) + σ(t). The partition function here starts from the

contribution of the field strength Fµν which has dimension 2 and
(

4
2

)

= 6 components and thus contributes

6 t2. The −1 term is spurious and is canceled by σ1(t) = 1. This is, of course, the s = 1 case of the

general expression for σs(t) in footnote 34. Canceling spurious terms with a polynomial in t + t−1 is

in general a convenient way to fix σ(t). A non-trivial example is 4d conformal graviton where Z2(t) =

Z+
HS,2(t

−1) − Z+
HS,2(t) + σ(t) = (−4t−1 − 7 − 4 t + 10 t2 + 40 t3 + . . . ) + σ(t). Here the first contribution

to Z2(t) should be from the Weyl tensor Cµνρσ that has dimension 2 and 10 components. and thus

σ2(t) = 7 + 4 (t+ t−1) [5], again in agreement with footnote 34.
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[93] L. Álvarez-Gaumé and E. Witten, Gravitational anomalies, Nucl. Phys. B 234 (1984) 269

[INSPIRE].

[94] P. van Nieuwenhuizen, Relations between Chern-Simons terms, anomalies and conformal

supergravity, in Nuffield Workshop on Supersymmetry and its Applications, Cambridge,

U.K., 23 June–14 July 1985, pg. 0063 [INSPIRE].

[95] H. Romer, Axial anomaly and boundary terms for general spinor fields,

Phys. Lett. B 83 (1979) 172 [INSPIRE].

[96] H. Romer, Atiyah-Singer index theorem and quantum field theory, in Proceedings,

Differential Geometric Methods In Mathematical Physics, Clausthal, Germany, (1978),

pg. 167 [INSPIRE].

[97] N.K. Nielsen, M.T. Grisaru, H. Romer and P. van Nieuwenhuizen, Approaches to the

gravitational spin 3/2 axial anomaly, Nucl. Phys. B 140 (1978) 477 [INSPIRE].

– 42 –

https://doi.org/10.1006/aima.2000.1951
https://doi.org/10.1103/PhysRevD.74.084009
https://arxiv.org/abs/hep-th/0606186
https://inspirehep.net/search?p=find+EPRINT+hep-th/0606186
https://doi.org/10.1007/JHEP05(2012)159
https://arxiv.org/abs/1012.3210
https://inspirehep.net/search?p=find+EPRINT+arXiv:1012.3210
https://doi.org/10.1016/j.physletb.2011.09.007
https://arxiv.org/abs/1104.1787
https://inspirehep.net/search?p=find+EPRINT+arXiv:1104.1787
https://doi.org/10.1007/JHEP12(2012)003
https://arxiv.org/abs/1104.2592
https://inspirehep.net/search?p=find+EPRINT+arXiv:1104.2592
https://doi.org/10.1007/JHEP09(2011)133
https://arxiv.org/abs/1104.4482
https://inspirehep.net/search?p=find+EPRINT+arXiv:1104.4482
https://doi.org/10.1007/JHEP07(2012)075
https://arxiv.org/abs/1205.2086
https://inspirehep.net/search?p=find+EPRINT+arXiv:1205.2086
https://doi.org/10.1007/JHEP08(2013)011
https://arxiv.org/abs/1211.2808
https://inspirehep.net/search?p=find+EPRINT+arXiv:1211.2808
https://doi.org/10.1007/JHEP11(2013)205
https://arxiv.org/abs/1211.3850
https://inspirehep.net/search?p=find+EPRINT+arXiv:1211.3850
https://doi.org/10.1007/JHEP11(2015)048
https://arxiv.org/abs/1508.01608
https://inspirehep.net/search?p=find+EPRINT+arXiv:1508.01608
https://doi.org/10.1209/0295-5075/2/2/004
https://inspirehep.net/search?p=find+J+%22Europhys.Lett.,2,91%22
https://doi.org/10.1016/0550-3213(91)90426-X
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B358,600%22
https://doi.org/10.1007/JHEP10(2013)016
https://arxiv.org/abs/1306.5242
https://inspirehep.net/search?p=find+EPRINT+arXiv:1306.5242
https://doi.org/10.1016/0370-2693(84)90668-3
https://inspirehep.net/search?p=find+J+%22Phys.Lett.,B134,187%22
https://doi.org/10.1016/0550-3213(84)90066-X
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B234,269%22
https://inspirehep.net/search?p=find+R+ITP-SB-85-70
https://doi.org/10.1016/0370-2693(79)90678-6
https://inspirehep.net/search?p=find+J+%22Phys.Lett.,B83,172%22
https://inspirehep.net/search?p=find+recid+138875
https://doi.org/10.1016/0550-3213(78)90008-1
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B140,477%22


J
H
E
P
1
0
(
2
0
1
8
)
0
8
7

[98] T. Eguchi, P.B. Gilkey and A.J. Hanson, Gravitation, gauge theories and differential

geometry, Phys. Rept. 66 (1980) 213 [INSPIRE].

[99] J. Erdmenger, Gravitational axial anomaly for four-dimensional conformal field theories,

Nucl. Phys. B 562 (1999) 315 [hep-th/9905176] [INSPIRE].

[100] A.D. Dolgov, I.B. Khriplovich, A.I. Vainshtein and V.I. Zakharov, Photonic chiral current

and its anomaly in a gravitational field, Nucl. Phys. B 315 (1989) 138 [INSPIRE].

[101] M. Beccaria and A.A. Tseytlin, Iterating free-field AdS/CFT: higher spin partition function

relations, J. Phys. A 49 (2016) 295401 [arXiv:1602.00948] [INSPIRE].

[102] A. Cherman, D.A. McGady and M. Yamazaki, Spectral sum rules for confining large-N

theories, JHEP 06 (2016) 095 [arXiv:1512.09119] [INSPIRE].

[103] S. Ruijsenaars, On Barnes’ multiple zeta and gamma functions, Adv. Math. 156 (2000) 107.

[104] M. Spreafico, On the Barnes double zeta and gamma functions,

J. Number Theor. 129 (2009) 2035.

[105] P.H. Frampton and T.W. Kephart, Explicit evaluation of anomalies in higher dimensions,

Phys. Rev. Lett. 50 (1983) 1343 [Erratum ibid. 51 (1983) 232] [INSPIRE].

[106] B. Zumino, Y.-S. Wu and A. Zee, Chiral anomalies, higher dimensions and differential

geometry, Nucl. Phys. B 239 (1984) 477 [INSPIRE].

[107] J.T. Liu and B. McPeak, The Weyl anomaly from the 6D superconformal index,

arXiv:1804.04155 [INSPIRE].

[108] S. Yankielowicz and Y. Zhou, Supersymmetric Rényi entropy and anomalies in 6d (1, 0)
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