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Abstract: In this paper we study the subleading contributions to eikonal scattering in

(super)gravity theories with particular emphasis on the role of both elastic and inelastic

scattering processes. For concreteness we focus on the scattering of various massless parti-

cles off a stack of Dp-branes in type II supergravity in the limit of large impact parameter

b. We analyse the relevant field theory Feynman diagrams which naturally give rise to

both elastic and inelastic processes. We show that in the case analysed the leading and

subleading eikonal only depend on elastic processes, while inelastic processes are captured

by a pre-factor multiplying the exponentiated leading and subleading eikonal phase. In ad-

dition to the traditional Feynman diagram computations mentioned above, we also present

a novel method for computing the amplitudes contributing to the leading and subleading

eikonal phases, which, in the large b limit, only involves knowledge of the onshell three and

four-point vertices. The two methods are shown to give the same results. Furthermore we

derive these results in yet another way, by computing various one-point amplitudes which

allow us to extract the classical solution of the gravitational back reaction of the target

Dp-branes. Finally we show how our expressions for the leading and subleading eikonal

agree with the calculation of the metric and corresponding deflection angle for massless

states moving along geodesics in the relevant curved geometry.
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1 Introduction

In the Regge high energy limit the 2 → 2 scattering process is dominated by the contri-

butions of the highest spin states in the theory [1–3]. So, in a gravitational theory that

reduces to (super)gravity at large distances, this scattering is dominated at large values

of the impact parameter by ladder diagrams involving the exchange of gravitons between

the external states. The leading energy contributions of this class of diagrams resums into

an exponential; this is the so-called eikonal phase and is directly related to the classical

quantities characterising this scattering such as the deflection angle or the time delay.

While this picture applies to any weakly coupled gravitational theory, new features arise

when one goes beyond two derivative gravity. For instance, in string theory the eikonal

phase is promoted to an eikonal operator; since we are now dealing with objects that have

a characteristic length, in certain regimes tidal forces [4, 5] can become important and

excite the incoming state to different final states so as to produce an inelastic transition.

At the leading order in the high energy, large impact parameter expansion, this stringy

eikonal operator is obtained [2, 6–8] from the standard eikonal phase, written in terms

of the impact parameter b, simply via a shift b → b + X̂, where X̂ contains the bosonic

string oscillation modes. A non-trivial eikonal operator also appears in the context of a

gravitational effective field theory with higher derivative terms that modify the onshell

3-graviton vertex [9]. If the scale `hd at which the higher derivative corrections become

important is much bigger than the Planck scale `P , then, by resumming the leading energy

behaviour of the ladder diagrams as mentioned above, it is possible to use the effective field

theory description to derive an eikonal operator also valid at scales b ∼ `hd � `P . Again

from this result it is possible to derive classical quantities, such as the time delay, that

are now obtained from the eigenvalues of the eikonal operator. Generically when b ∼ `hd
the time delay for some scattering process calculated in the effective field theory becomes

negative. This causality violation most likely signals a breakdown of the effective field

theory approach and in fact is absent when the same process is studied in a full string

theory setup [9, 10].

Since the appearance of inelastic processes in the leading eikonal approximation is the

signal of novel physical phenomena such as those mentioned above, it is interesting to see

whether there are new features of this type in the subleading eikonal, which captures the

first corrections in the large impact parameter expansion for the same 2 → 2 scattering. The

aim of this paper is to provide an explicit algorithm that allows us to derive this subleading

eikonal from the knowledge of the amplitudes contributing to the scattering process under

consideration. In the literature there are several explicit calculations of the subleading

eikonal in various gravitational field theories in the two derivative approximation, see for

instance [8, 11–16]. However in these studies the process was assumed to be elastic to start

with, while here we wish to spell out the conditions under which this is the case. Hopefully

this will also provide a step towards a full understanding of the subleading eikonal operator

at the string level [17]. Another goal of our analysis is to highlight that both the leading

and the subleading eikonal depend on onshell data. The leading eikonal follows from the

spectrum of the highest spin states and the onshell three-point functions, while in the case of
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the subleading eikonal some further information is necessary as new states in the spectrum

may become relevant and the onshell four-point functions provide a non-trivial contribution.

For the sake of concreteness we cast our analysis in the setup of type II supergravities

focusing on the scattering of massless states off a stack of N Dp-branes [8], but the same

approach can be applied in general to capture the subleading contributions of the large

impact parameter scattering in any gravitational theory. In the limit where the mass

(density) NTp/κD of the target Dp-branes is large and the gravitational constant κD is

small, with NTpκD fixed, the process describes the scattering in a classical potential given

by the gravitational backreaction of the target. In this case the eikonal phase is directly

related (by taking its derivative with respect to the impact parameter) to the deflection

angle of a geodesic in a known background. When considering the scattering of a dilaton

in the maximally supersymmetric case, there is perfect agreement for the deflection angle

between the classical geodesic and the amplitude calculations including the first subleading

order [8]. However, in the Feynman diagram approach there are inelastic processes, where

a dilaton is transformed into a Ramond-Ramond (RR) field, at the same order in energy

as the elastic terms contributing to the subleading eikonal (see section 3.2). Thus it is

natural to ask what the role of these inelastic contributions is and why they should not

contribute to the classical eikonal even if they grow with the energy of the scattering

process. We will see in section 4 that these contributions arise from the interplay of the

leading eikonal and the inelastic part of the tree-level S-matrix. One should subtract these

types of contributions from the expression for the amplitude in order to isolate the terms

that exponentiate to provide the classical eikonal. In the example of the dilaton scattering

off a stack of Dp-branes analysed in detail here, this subtraction cancels completely the

contribution of the inelastic processes and one recovers for the subleading eikonal the result

found in [8]. In more general setups or at further subleading orders this procedure may

be relevant for isolating the terms that are exponentiated even in the elastic channel and

thus providing a precise algorithm for extracting the classical contribution (the eikonal)

from a Feynman diagram calculation may assist in analysing them. It will be interesting

to study this problem for the centre of mass scattering of two semiclassical objects, since

this result can provide valuable information for the one body effective action [18] in the

post-Minkowskian approximation at the subleading orders, which is used in the analysis of

gravitational waves [19, 20].

The paper is structured as follows. In section 2 we briefly review the kinematics of

the process under study and provide the results for the tree-level amplitudes describing

the elastic dilaton to dilaton and the inelastic dilaton to RR scatterings. In section 3

we study the one-loop diagrams that contribute to the same processes. We perform the

calculation in two ways; one is the traditional approach of using Feynman rules, while in a

second approach we provide a prescription for treating onshell bulk amplitudes as effective

vertices and gluing them to the Dp-branes. We check that these two approaches provide

the same classical eikonal since they agree at the level of the amplitudes except for possible

contributions that are localised on the Dp-branes (i.e. terms that are proportional to a delta

function in the impact parameter space). In section 4 we study the Regge high energy limit

of the amplitudes we derived and, as mentioned above, provide a prescription to extract

– 2 –
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the classical eikonal at subleading orders from the amplitude. In section 5 we rederive the

same diagrams analysed in section 3 in a slightly different way, which allows us to extract

the classical solution representing the gravitational backreaction of the target Dp-branes.

In this section we also compare the eikonal with the appropriate classical deflection angle.

In all our calculations the contributions of the different fields are separated, thus it is

straightforward to focus just on the graviton exchanges and obtain both the metric and

the deflection angle for pure Einstein gravity which agrees with the results in the literature

(see [12, 15, 16] and references therein). In section 6 we present our conclusions and discuss

some possible applications of our approach.

2 Scattering in the Born approximation

In the Born approximation the interaction between a perturbative state and a stack of Dp-

branes is described by a tree-level diagram with two external states [21–23]. In the limit

where the distance between the Dp-branes and the external states is large, this interaction

is captured by a tree-level Feynman diagram with the exchange of a single massless state

between the Dp-branes and a bulk three-point vertex. In this section, we briefly summarise

the kinematics of this interaction and then discuss its large energy behaviour. The leading

term in this limit is dominated by the exchange of the particles with the highest spin;

here we focus mainly on the field-theory limit of the full string setup and so the highest

spin state is the graviton. This leading term is elastic and universal, i.e. the polarisation

of the in and the out states are identical and, the result depends only on the momentum

exchanged and the energy density of the Dp-brane target.

In this section we are also interested in the first subleading correction in the large

energy limit. As expected, this contribution depends on the exchange of lower spin states,

such as the Ramond-Ramond forms in supergravity. This means that the result depends

on other features (besides the energy density) of the target Dp-brane, such as its charge

density or its angular momentum. In general at this order, the transition is not elastic

and so displays a non-trivial Lorentz structure. As mentioned in the introduction, this

result will be important in defining the eikonal limit beyond the leading order in the large

distance limit.

2.1 Kinematics

We can write the momenta of the two massless external particles scattering off a stack of

Dp-branes as follows,

k1 = (E, . . . , E) k2 = (−E, . . . ,q,−E + qD−1) , (2.1)

where the dots are over the p spatial components along the Dp-brane in k2, q denotes

the D − p − 2 spatial components transverse to the direction of the incoming particle of

momentum exchange vector q = k1 + k2 and qD−1 is the last component of q. Note that in

the Regge limit

q2 � E2, (2.2)
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and qD−1 is of order E−1. Writing out the explicit kinematics as above we can see that

(k1)
2
‖ = (k2)

2
‖ = −E2 and (k1 · k2)‖ = E2. Throughout this paper we will be using the

following definitions for the Mandelstam variables, s = −2k1 · k2, u = −2k1 · k3 and

t = −2k1 · k4.

2.2 Elastic and inelastic diagrams

The elastic scattering of a dilaton with a graviton being exchanged with the D-branes can

easily be calculated in supergravity by using the Feynman rules in appendix A

Add
1 = i(2π)p+1δp+1(k1 + k2) Add

1 , where Add
1 =

2NTpκDE
2

q2
, (2.3)

where N is the number of D-branes in the stack. Notice that the result does not depend on

the dimensionality p of the D-branes. In the limit (2.2), the leading energy contribution of

any elastic scattering is still described by (2.3) multiplied by a kinematic factor forcing the

polarisation of the ingoing and outgoing polarisation to be the same (for instance, ε ν
1µ ε

µ
2ν

in the graviton-graviton case). For general states there are subleading energy corrections

to this formula, but they start at order E0.

In the inelastic case, in contrast, it is possible to have order E contributions. As an

example, let us start from the amplitude where the incoming particle is a dilaton and the

outgoing one is an RR state. Again the first amplitude contributing to this process can be

derived by using the Feynman rules in appendix A

AdR
1 = i(2π)p+1δp+1(k1 + k2) AdR

1 , where AdR
1 =

2a(D)NTpκDE q
µCµ1...p

q2
, (2.4)

where Cµ1...µp+1 is the polarisation of the RR potential describing the second external state

and a(D) is defined in appendix A; in 10D type II supergravity we find a(D = 10) = p−3
2 .

Notice that it is possible to derive the same results by using a different approach that

uses only on onshell data. The idea is simply to start from an onshell 3-particle vertex

in the bulk1 instead of using the full Feynman rules. As an example, consider the vertex

with two dilatons and one graviton (A.9): on shell we can ignore the term proportional to

k1 ·k2 = (k1+k2)
2/2 = q2/2, where q is the momentum of the graviton. When this effective

vertex is used in a diagram, we exploit the condition q2 = 0 to simplify the numerator of the

momentum space amplitude. Terms proportional to q2 appearing in the standard Feynman

diagram calculation would produce contributions localised on the D-branes as they cancel

the pole of the massless propagator 1/q2, so we can ignore them for our purposes. Indeed,

by using the onshell two dilatons and one graviton vertex, the standard propagator (A.6),

multiplying by −Tpηρσ‖ for the boundary coupling and imposing the onshell conditions in

the numerator obtained in this way, one can easily reproduce (2.3) up to terms that do

not depend on q and so are localised on the D-branes in the impact parameter space (after

performing the Fourier transform (4.1)).

1Strictly speaking the onshell vertices between three massless states often vanish in Minkowski space;

as usual, one can define a non-trivial three-point vertex by analytic continuation on the momenta or

equivalently by thinking of changing the spacetime signature.
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k3 k4

k1 k2

Figure 1. A schematic diagram showing our procedure for calculating effective one-loop ampli-

tudes. The circular blob represents the four-point effective vertex and the two oval blobs represent

the D-branes. The four-point vertex is sewed with the D-branes by using the appropriate propagator

and boundary coupling.

We conclude by mentioning that it is possible to write the amplitudes above including

all string theory corrections simply by implementing the following change to the expression

A1 above

TpκD → TpκD
Γ
(
1− α′E2

)
Γ
(

1 + α′q2

4

)
Γ
(

1− α′E2 + α′q2

4

) ∼ TpκD Γ

(
1 +

α′q2

4

)
eiπ

α′q2
4 (α′E2)1−

α′q2
4 ,

(2.5)

where in the final step we have written the result explicitly in the Regge limit.

3 Double exchange scattering

In this section we use the onshell approach mentioned in the previous section to calculate

the amplitudes with a double exchange of particles between the probe and the D-branes.

As before we are interested in the classical limit where the gravitational constant is small;

κD → 0, with NTpκD fixed. The general idea is that we can use the bulk four-point

amplitudes Abulk as effective vertices and sew them with the relevant propagator to the

D-branes, so as to construct diagrams such as the one sketched schematically in figure 1.

Again this procedure requires an offshell extension of the bulk four-point vertex, but,

as we argue below, the ambiguity related to this step is irrelevant for the large distance

(small q) scattering. Thus after sewing the D-brane boundary couplings to the relevant

external legs of the onshell effective vertex, schematically, we can write the double exchange

amplitude as,

A2 =

∫
d⊥ki
(2π)⊥

d⊥kj
(2π)⊥

(
1

2
[Bi]

[Gi]

k2i
[Bj ]

[Gj ]

k2j
δ⊥(ki + kj − q)Abulk(k1, . . . , k4)

)
, (3.1)

where ⊥= D − p − 1 is the number of directions transverse to the D-branes and the

overall factor of 1/2 is a symmetry factor due to the two identical sources. Here we have

“attached” the ith and jth external leg by using the boundary couplings [Bi] and the

standard propagators [Gi], see appendix A. Terms proportional to k2i or k2j in Abulk are
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absent in the onshell result and would kill one of the propagators attached to the D-branes.

We then have a variation of the cancelled propagator argument discussed after (2.4); terms

without one of the propagators attached to the D-branes either yield integrals without scale

and so can be set to zero in dimensional regularisation or can only produce contributions

that are independent of q and so are localised on the D-branes.

In appendix B we list the integrals that are relevant for the amplitude in figure 1.

For instance the 3-propagator integral (B.2), relevant for the diagrams in figure 2a and

figure 3a, is

I3(q⊥) =

∫
d⊥k

(2π)⊥
1

k2(k1 − k)2⊥(k + k2)2⊥
. (3.2)

We can see that, when one of the perpendicular propagators is cancelled, the integral

can only depend on the quantities k1 (or k2), ηµν and η‖µν . Since these terms do not

depend on the exchanged momentum q = k1 + k2, we find that in impact parameter space

their contributions are delta functions. The presence of factors proportional to q in the

numerator (arising from the vertices) does not spoil the argument, as in this case the impact

parameter result is proportional to derivatives of the delta function and so is still localised

on the D-branes. Notice that this cancelled propagator argument generalises to the ladder

type diagrams with any number of propagators. Another type of integral appearing in the

explicit evaluation of (3.1) is (see appendix B.2)

I2(q⊥) =

∫
d⊥k

(2π)⊥
1

k2⊥(k − q)2⊥
. (3.3)

In this case, if one of the two propagators in the integrand is cancelled, one obtains an

integral without a scale and so again the ambiguities related to the offshell extension of

the four-point bulk amplitudes are irrelevant for the calculation we are interested in.

In order to complete the argument and show that using the bulk four-point amplitude

in (3.1) is sufficient for our purposes, one should consider also the transverse conditions

that are enforced on the onshell vector and graviton fields, such as kµi ε
(i)
µν = 0 for the case

of a graviton. This same issue does not arise when attaching RR fields as we will see in

subsection 3.1.1. We will discuss this point in more detail in the following subsections

where we derive (3.1) explicitly for the elastic dilaton-brane scattering amplitudes when

the interaction is mediated by RR fields, gravitons and dilatons.

3.1 Dilaton to dilaton elastic scattering

We first apply the approach sketched above to the elastic dilaton-brane scattering deriving

the full subleading amplitude. From a diagrammatic point of view there are three types of

contributions due to the exchange of RR, graviton and dilaton fields between the external

particles and the D-branes. We will also compare these results with those obtained from

using the supergravity Feynman rules outlined in appendix A.

3.1.1 RR sources

We start by analysing the RR exchange. By using the four-point two NS-NS (with these

states taken to be dilatons), two RR closed string amplitude found in [24] we obtain, in

– 6 –
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the field theory limit, the following onshell vertex

iAddRR
bulk =

iκ2D
2

1

n!

2

stu

[
a(D) stuF34 + nFαµ34

(
a(D) suk2αk3µ

+ a(D) stk2µk4α + (2a2(D) s2 − 8tu)k2αk2µ

)]
=
iκ2D
n!

[
a(D)F34 + nFαµ34

(
a(D)

1

t
k2αk3µ

+ a(D)
1

u
k2µk4α +

(
2a2(D)

(
−1

t
− 1

u

)
− 8

s

)
k2αk2µ

)]
, (3.4)

where the various symbols are defined in appendix A and n = p+ 2. In order to properly

attach the D-branes to AddRR
bulk we need to express Fαµ34 as,

Fµν34 = F
µµ1...µn−1

3 F ν4µ1...µn−1

=
(
kµ3C

(3)µ1...µn−1 + (−1)n−1kµ13 C(3)µ2...µn−1µ + . . .
)

×
(
kν4C

(4)
µ1...µn−1

+ (−1)n−1k4µ1C
(4)
µ2...µn−1

ν + . . .
)

= kµ3 k
ν
4C

(3)µ1...µn−1C(4)
µ1...µn−1

+ (n− 1)k3 · k4C(3)µµ2...µn−1C(4)ν
µ2...µn−1

, (3.5)

where we have used the facts that k3 and k4 only have components perpendicular to the D-

branes and C(3) and C(4) only have components parallel to the D-branes, which therefore

implies that ki · C(j) = 0. We now take derivatives with respect to the gauge fields to

make this an effective vertex to use when we attach the D-branes to the RR fields. We

need to also take into account the different sets of labels that the C fields can carry, i.e.

µ1µ2 . . . µn−1 = 01 . . . p or µ1µ2 . . . µn−1 = 12 . . . p0, etc., for which we note there are (n−1)!

sets of possible labels for C(3)µ1...µn−1C
(4)
µ1...µn−1 , as there are (n−1) contracted indices, and

(n− 2)! for C(3)µµ2...µn−1C
(4)ν
µ2...µn−1 . Putting this together allows us to write,

Fµν34 = (n− 1)!kµ3 k
ν
4 + (n− 1)(n− 2)!k3 · k4ηµν‖

= (n− 1)!(kµ3 k
ν
4 + k3 · k4ηµν‖ ) . (3.6)

From the last line above we can also deduce that F34 = n!k3 ·k4. Note that these expressions

only hold when both RR fields are attached to the D-branes. We can now use (3.6) as well

as (k2)
2
‖ = −E2 and (k2 · k3)‖ = (k2 · k4)‖ = 0 to rewrite the contribution to (3.1) due to

the onshell vertex (3.4) when the RR fields are attached to the D-branes. In this case the

integrand of (3.1) then reads

i(NµpκD)2

2

1

n!

(n− 1)!

k23k
2
4

[
2a2(D)n

(
s

4
+

s2

2tu
E2

)
+ n

(
−2tu

s
− 4E2

)]
, (3.7)

where N has been inserted to take into account the N D-branes in the stack. We can write

the full answer in terms of the momentum integrals defined in appendix B,

iAddRR
2 = i(NTpκD)2

[
2a2(D)

(s
4
I2 + sE2I3

)
−
(

8

s
k1µk2νIµν2 + 4E2I2

)]
. (3.8)
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k1 k2

(a)

k1 k2

(b)

k1 k2

(c)

Figure 2. The various topologies of diagrams that contribute to AddRR. In 2a we have the t- and

u-channels, in 2b we have the s-channel diagram and finally in 2c we have the contact diagram. The

solid lines represent dilatons, wavy lines represent gravitons and the dashed lines represent RR fields.

We want to compare (3.8) with the equivalent result arising from performing the same

calculation using Feynman diagrams. We can calculate all the relevant onshell Feynman

diagrams for this process. The four contributions to the full amplitude are given by,

iAddRR
FT,u = [V

φ1F
(n)
3 C(n−1) ]µ2...µn [V

φ2F
(n)
4 C(n−1) ]

µ2...µn [GC(n−1) ]

=
iκ2D

(n− 1)!

2a2(D)

(k1 + k3)2
Fµν34 (k1 + k3)µ(k1 + k3)ν (3.9)

iAddRR
FT,t = [V

φ2F
(n)
3 C(n−1) ]µ2...µn [V

φ1F
(n)
4 C(n−1) ]

µ2...µn [GC(n−1) ]

=
iκ2D

(n− 1)!

2a2(D)

(k1 + k4)2
Fµν34 (k1 + k4)µ(k1 + k4)ν (3.10)

iAddRR
FT,s = [Vφ1φ2h]µν [Gh]µν;ρσ[V

F
(n)
3 F

(n)
4 h

]ρσ

= −
2iκ2D
n!

1

(k1 + k2)2
(nFµν34 (k1µk2ν + k2µk1ν)− k1 · k2F34) (3.11)

iAddRR
FT,c = [V

φ1φ2F
(n)
3 F

(n)
4

]

= −
2iκ2D
n!

a2(D)F34 , (3.12)

where we have neglected to write the various momentum conserving delta functions. For

simplicity we have written the expressions above without including the boundary vertex

corresponding to the D-branes. In order to obtain the amplitudes with the D-branes

attached one needs to multiply the amplitudes above by [GC(n−1) ][BC(n−1) ] for every D-

brane that is attached.

We now need to sum (3.9)–(3.12) and include the factors of [GC(n−1) ][BC(n−1) ] we

excluded earlier. We also need to use expressions such as, Fµν34 (k1µk2ν + k2µk1ν) =

−2Fµν34 k2µk2ν + k3·k4
n F34, F

αµ
34 k2αk3µ = − t

2nF34 and Fαµ34 k4αk2µ = − u
2nF34, which are

straightforward to derive using (3.6) as a reference. We find that the full amplitude is

given by,

iAddRR
FT = −(iNµp)

2 1

2

∫
d⊥k3
(2π)⊥

d⊥k4
(2π)⊥

1

k23

1

k24
δ⊥(k3 + k4 − q)

×
iκ2D

2

2

(n− 1)!

(
2a2(D)

s

tu
− 8

s

)
Fµν34 k2µk2ν . (3.13)
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Using equation (3.6) we find,

iAddRR
FT = i(NTpκD)2

[
2a2(D)

(s
4
I2 + sE2I3

)
−
(

8

s
k1µk2νIµν2 + 4E2I2

)]
. (3.14)

Comparing (3.14) with (3.8) we find that we have been able to reproduce the same results

we produced using our “effective bulk vertex” prescription by using traditional supergravity

Feynman rules.

3.1.2 Graviton sources

As we have done in the previous subsection for RR fields, we want to derive the full

field theory amplitude for graviton exchange by using the four-point NS-NS closed string

amplitude (with two external states taken to be dilatons and two taken to be gravitons) as

the effective four-point vertex. When attaching a D-brane sourcing a graviton one replaces

the polarisation of the relevant external graviton in Addgg
bulk as follows

εµν → [Gh]µν;ρσ[Bh]ρσ = −NTp
(
ηµν‖ −

p+ 1

D − 2
ηµν
)

, (3.15)

which is effectively the combination one needs to use in (3.1) alongside the bulk vertex in

order to obtain the amplitude with the D-branes attached.

In the case when we sew D-branes that are sourcing gravitons we have the added

complication that, as one can see from (3.15), the polarisations of the legs we attach the

D-branes are neither transverse nor traceless. However the bulk four-point amplitudes

we will use as effective four-point vertices in this subsection assume that the external

graviton polarisations are traceless and transverse. This implies that by using momentum

conservation and the onshell conditions, it is easy to write equivalent onshell vertices that

in general yield different results2 when sewn to the D-branes. Thus we need to add a

prescription on what additional properties the effective vertex should have before sewing

it to the D-branes. The onshell vertex vanishes for any longitudinal polarisation of any

massless particle, i.e. in the case of gravitons it is zero when we substitute εµνi = ζµi k
ν
i +ζνi k

µ
i .

Of course when checking this property one needs in general to use momentum conservation

and the onshell properties of the remaining external states. However, the momenta of the

gravitons glued to the D-branes will appear as integrated variables in the final expression

and at that stage it is not always possible to use momentum conservation to write them

in terms of the external momenta. Thus we require a further constraint on the onshell

bulk effective vertex that can be used to derive a loop diagram: when one of the gravitons

that will be glued to the D-branes is longitudinal, the bulk amplitude must vanish whilst

not explicitly using momentum conservation in the products kiεj and ζikj , but only doing

so on products between momenta kikj (i.e. only using s + t + u = 0 in our analysis). In

the case of a four-point bulk onshell amplitude, as long as it includes both momenta of

the external legs that will be attached to the D-branes in its “momentum set” (i.e. the

three independent momenta with which the amplitude is expressed), then the condition

mentioned above is met.
2For instance by using directly the expression (3.16) one does not obtain (3.17), as discussed below.
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k1 k2

(b)
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(c)

Figure 3. The various topologies of diagrams that contribute to Addgg. In 3a we have the t- and

u-channels, in 3b we have the s-channel diagram and finally in 3c we have the contact diagrams.

The solid lines represent dilatons and the wavy lines represent gravitons.

We start by recalling the field theory limit of the four-point two dilaton, two graviton

amplitude [25] which we can write as

iAddgg
bulk =

iκ2D
2

2

stu

(
u2t2 εµν3 ε4µν + 4u2 kµ1 k

ν
1k

ρ
2k

σ
2 ε3ρσε4µν − 4tu2 kµ1 k

ν
2ε3ν

ρε4µρ

−4t2u kµ1 k
ν
2ε3µ

ρε4νρ + 8ut kµ1 k
ν
1k

ρ
2k

σ
2 ε3µρε4νσ + 4t2 kµ1 k

ν
1k

ρ
2k

σ
2 ε3µνε4ρσ

)
. (3.16)

In this form the bulk vertex does not satisfy the requirement mentioned above for the two

gravitons, but if we take this equation and use momentum conservation to express it using

(k1, k3, k4) or (k2, k3, k4), we obtain an expression that can be glued to the D-branes simply

by replacing the graviton polarisations with (3.15). Then we find for the integrand of (3.1)

i(NTpκD)2

4

1

k23k
2
4

2

stu

(
4E4s2 + 4E2stu+

(D − p− 3)(1 + p)

D − 2
u2t2

)
, (3.17)

where we have also used the relevant kinematics mentioned in section 2.1. By including

the appropriate integrals one obtains

iAddgg
2 = i(NTpκD)2

(
4E4I3 +

(D − p− 3)(1 + p)

D − 2

2

s
k1µk2νIµν2 + 2E2I2

)
. (3.18)

We want to compare (3.18) with the equivalent result arising from using Feynman

diagrams as we have done in the RR case. We first calculate the relevant Feynman diagrams

for this process. Note that since we will be attaching the D-branes to the graviton external

legs we will not be imposing ki · εi = 0 or Tr(εi) = 0, i.e. we will keep the gravitons offshell.

The four contributions to the full amplitude are given by the following diagrams,

iAddgg
FT,u = ε3µνε4ρσ[Vφ1φ2h]µν [Vφ1φ2h]ρσ[Gφ] (3.19)

iAddgg
FT,t = ε3ρσε4µν [Vφ1φ2h]µν [Vφ1φ2h]ρσ[Gφ] (3.20)

iAddgg
FT,s = ε3ρσε4λτ [Vφ1φ2h]γδ[Gh]µν;γδ

(
Tµν;ρσ;λτ (q,k3,k4)+T ρσ;µν;λτ (k3, q,k4) (3.21)

+Tµν;λτ ;ρσ(q,k4,k3)+T ρσ;λτ ;µν(k3,k4, q)+T λτ ;µν;ρσ(k4, q,k3)+T λτ ;ρσ;µν(k4,k3, q)
)

iAddgg
FT,c = ε3ρσε4λτ [Vφφ′hh′ ]

ρσλτ , (3.22)
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where we have not explicitly written the resulting Lorentz structure for brevity and ε3, ε4
are the graviton polarisations which need to be replaced with [Gh]µν;ρσ[Bh]ρσ. Doing so

and using the kinematics outlined in section 2.1 we have for the u-channel,

iAddgg
FT,u = −(−i)(−iκD)2(NTp)

24E4 1

2

∫
d⊥k3
(2π)⊥

d⊥k4
(2π)⊥

1

k23

1

k24
δ⊥(k3 + k4 − q)

1

u

= i(NTpκD)22E4I3 , (3.23)

with an equivalent contribution for the t-channel. These two diagrams are the only ones

that contribute to leading order in energy, O(E3), in the full amplitude as we have seen

with the result derived from using our effective bulk vertex method. We can now look at

the two remaining diagrams which contribute to subleading order in energy, O(E2). The

s-channel diagram gives,

iAddgg
FT,s =−(−iκD)(−2iκD)

(
− i

2

)
(NTp)

2 1

2

∫
d⊥k3
(2π)⊥

d⊥k4
(2π)⊥

1

k23

1

k24
δ⊥(k3+k4−q)

×
[
4E2 (D−2p−4)

D−2
+

(D−p−3)(1+p)

D−2

(
4

s
(k2 ·k3)(k2 ·k3)+2(k1 ·k3)

)]
. (3.24)

We also have for the contact diagram,

iAddgg
FT,c =

(
iκ2D

2

)
(NTp)

2 1

2

∫
d⊥k3
(2π)⊥

d⊥k4
(2π)⊥

1

k23

1

k24
δ⊥(k3 + k4 − q)

(
16E2(D − p− 3)

D − 2

+
4(1 + p)(D − p− 3)

D − 2
(k1 · k2)

)
. (3.25)

Summing the above two contributions yields

iAddgg
FT,c+iA

ddgg
FT,s = i(NTpκD)2

∫
d⊥k3
(2π)⊥

d⊥k4
(2π)⊥

1

k23

1

k24

(
4E2+

(D−p−3)(1+p)

D−2
(k1 ·k3)(k2 ·k3)

)
.

(3.26)

We can easily see by summing (3.23) and (3.26) that we are able to reproduce (3.18) using

the supergravity Feynman rules.

3.1.3 Dilaton sources

Here we calculate the amplitude for elastic dilaton-brane scattering with dilaton exchange

by using the four-point dilaton string amplitude as the effective vertex. We have in the

field theory limit of the string theory amplitude [26],

iAdddd
bulk = iκ2D

(
st

u
+
su

t
+
ut

s

)
. (3.27)

As before, using our prescription, we include the relevant integrals arising from (3.1). When

attaching dilatons the relevant factor, arising from [Gφ][Bφ], is −
(
iNTp

a(D)√
2

)2
. Using this

we have,

iAdddd
2 = −i

(
NTpκD

a(D)√
2

)2(
sk2µIµ2 + sk1µIµ2 +

2

s
k1µk2νIµν2

)
. (3.28)

It is trivial to compare these results with those found using supergravity Feynman rules

and we will not be comparing them explicitly here.
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Figure 4. A schematic diagram showing our procedure for calculating the effective one-loop

amplitude for dilaton to RR inelastic scattering. The circular blob represents the four-point effective

vertex AdRgR
bulk and the two oval blobs represent the D-branes. As before the solid lines correspond

to dilatons, the wavy lines correspond to gravitons and the dashed lines correspond to RR fields.

3.2 Dilaton to RR inelastic scattering

As with the elastic dilaton scattering case that we have considered in the previous subsec-

tion we can use equation (47) in [24] for the four-point two NS-NS (with one state taken

to be a dilaton and the other a graviton), two RR closed string amplitude as an effective

vertex for calculating the amplitude for an inelastic transition from a dilaton to an RR

field via the exchange of a graviton and an RR field with the D-branes. The bulk vertex

needed is given by,

iAdRgR
bulk =−

iκ2D√
2

16a(D)

n!

[
F24ε

µν
3

(
s2k2µk2ν+tk4µ (tk4ν−2sk2ν)

)
+nu

(
(n−1)uFαβµν24 ε3βνk3αk3µ−Fαµ24 (tkν4−skν2 )(ε3µνk3α−ε3ανk3µ)

)]
, (3.29)

where the labels here correspond as follows; label 1 is associated with the external dilaton,

label 2 is associated with the external RR field, label 3 is associated with the internal

graviton and label 4 is associated with the internal RR field as shown in figure 4. After

using our prescription and expressing (3.29) with momentum set (k1, k3, k4) we find that

the expression satisfies the condition described at the beginning of section 3 as required.

By following the same approach discussed in the previous subsection, we find that after

attaching the graviton to the D-branes, the integrand of (3.1) reads

16iN2Tpµpκ
2
D√

2

1

k23

1

k24

a(D)

n!

[
s

ut
F24E

2 + F24
1 + p

D − 2

s

t
+ nFαβ24

{
1

t

(
η‖βνk

ν
1k3α

− η‖ανk
ν
1k3β

)
+

1 + p

D − 2

(
1

t
(k1αk3β − k1βk3α) +

u

ts
((n− 1)k3αk3β − k4αk3β)

)}
− u

ts
Fαβµν24 η‖βνk3αk3µ

]
, (3.30)

where the first term has been identified in advance as the term with potential to contribute

to the leading energy behaviour of the amplitude. In order to attach an RR leg to the

D-branes, we need to rewrite the field strengths in terms of the potentials. We have

explicitly calculated all the necessary combinations of field strengths that arise in (3.30)
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in appendix C. Using these expressions we can write the integrand in (3.1) relevant to the

inelastic dilaton to RR amplitude,

− i(N2Tpµpκ
2
D)

16a(D)√
2

1

k23k
2
4

[
s

ut

(
−E3(k4 · C(2))1...p − E2(k2 · k4)C(2)0...p

)
− u

4
C(2)0...p

+
E

2
(k4 · C(2))1...p +

1 + p

D − 2

{
C(2)0...p

(
s

2t
E2 +

(3 + n)u

4
+
u2

4t

)
+

s

2t
E(k4 · C(2))1...p

(k3 · C(2))1...pE

(
1

2
− u

2t
n

)}]
. (3.31)

Inserting the integrals as per our prescription we obtain,

iAdRgR
2 =−i(N2Tpµpκ

2
D)

8a(D)√
2

[
−(q ·C(2))1...pE3I3−(q ·k2)C(2)0...pE2I3+

1

2
k1µIµ2C

(2)0...p

+
1

2
EC(2)

µ
1...pIµ2 +

1+p

D−2

{
C(2)0...p

(
−s

2
E2I3−

(2+n)

2
k1µIµ2 +

s

4
I2−

s2

4
I3
)

− s
4
E(q ·C(2))1...pI3+

1

2
EC(2)

µ
1...pIµ2 +EC(2)

µ
1...p

(
1

2
Iµ2 −

s

4
qµI3

)}]
, (3.32)

where q = k1 + k2 is the momentum exchanged.

4 The supergravity eikonal

In this section we will focus on and derive explicit expressions for the leading and subleading

high-energy behaviour of the various amplitudes we considered in section 3 and analyse

their behaviour in the context of the eikonal approximation.

We can transform any of the amplitudes we have considered into impact parameter

space by using,

Ah(E, b) =

∫
dD−p−2q

(2π)D−p−2
eib·qAh(E, q) , (4.1)

where h refers to the number of boundaries of the amplitude (i.e. the number of exchanges

with the D-branes). We start by focusing on the elastic case where the leading energy

behaviour of the tree-level amplitude, one-loop amplitude and amplitudes with a higher

number of boundaries is universal and so does not display any non-trivial Lorentz structure.

By summing these contributions, we find that the S-matrix approximates to,

Sl(E, b) ≈ 1 +

∞∑
h=1

A(1)
h (E, b)

2E
= eiχ

(1)(E,b) , (4.2)

where A(1)
h (E, b) is the leading energy contribution of the amplitude with h boundaries

and χ(1)(E, b) = A(1)
h=1(E, b)/(2E) is called the leading eikonal. Note that Sl(E, b) captures

all the information in the leading energy term of all amplitudes. We can write something

similar for the subleading energy contribution by starting from h = 2 and summing all the

subleading contributions of the amplitudes at each number of boundaries. In this case we

have the subleading eikonal given by χ(2)(E, b) = A(2)
h=2(E, b)/(2E) where A(2)

h (E, b) is the

subleading contribution to the amplitude with h boundaries.
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In the following we want to generalise the construction of the S-matrix in the eikonal

approximation to include more general situations as for instance the presence of inelas-

tic processes. Traditionally, for elastic processes, we write, including all contributions to

all orders,

S(E, b) ≈ exp
(
iχ(1)(E, b) + iχ(2)(E, b) + . . .

)
, (4.3)

where χ(1)(E, b) is the leading eikonal and χ(2)(E, b) is the subleading eikonal mentioned

above. In subsection 4.1 we show that this statement holds in the case of elastic dilaton

scattering that we have already studied. In order to study this let us write the tree-level

(h = 1) and one-loop (h = 2) amplitudes as,

iA1(E, b)

2E
= i(NTpκD)

(
A

(1)
h=1(b)E +A

(2)
h=1(b)E

0 + . . .
)

(4.4)

iA2(E, b)

2E
= i(NTpκD)2

(
A

(1)
h=2(b)E

2 +A
(2)
h=2(b)E +A

(3)
h=2(b)E

0 + . . .
)

, (4.5)

where we have divided by 1√
2E

for each of the two external particles involved and where

the A symbols correspond to A/2E where the dependence on energy has been factored

out.3 Note here that in order to express the leading contributions as an exponential of the

leading eikonal we have iA
(1)
h=2(b) = −1

2(A
(1)
h=1(b))

2.

In equations (4.4) and (4.5) we have also allowed for terms of order E0 that, as we will

see, are not present in the elastic dilaton scattering, but appear in the inelastic dilaton to

RR scattering. We would like to extend the construction of the S-matrix in the eikonal

approximation when these extra terms are present. Our proposal is that, in this more

general case, (4.3) is written as follows,

S(E, b) = exp

[
i

2
(χ(1)(E, b) + χ(2)(E, b) + . . .)

]
(1 + T (E, b))

× exp

[
i

2
(χ(1)(E, b) + χ(2)(E, b) + . . .)

]
, (4.6)

where χ(1)(E, b) and χ(2)(E, b) are the leading eikonal and subleading eikonal respectively.

The symbol T (E, b) corresponds to all the non-diverging contributions to the amplitudes

with any number of boundaries. For example the first contribution to T (E, b) is A
(2)
h=1(b);

the first contribution to the tree-level dilaton to dilaton scattering process that does not

grow with E. We have written (4.6) in this way to account for when the eikonal and

subleading eikonal behave as operators instead of phases. As can be seen from [5], in string

theory eikonal operators become important and it could therefore be useful for future

considerations to be aware of this fact. In the cases considered in this paper the eikonal

operators behave as phases and one can therefore recombine the exponentials. From the

definitions above we see that to properly define the subleading eikonal we need,

i
χ(2)(E, b)

(NTpκD)2
= iA

(2)
h=2(b)E −

(
1

2
iA

(2)
h=1(b)iA

(1)
h=1(b)E +

1

2
iA

(1)
h=1(b)iA

(2)
h=1(b)E

)
, (4.7)

3We also note here that we are using the amplitudes once stripped of factors of i(2π)p+1δp+1(k1 + k2).
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where all the symbols have been defined above and we note that A
(2)
h=2(b) represents the

full subleading energy contribution derived from the one-loop amplitude in (4.5). Note

that we have written (4.7) in the most general way possible accounting for the possibility

that iA
(1)
h=1(b) is an operator instead of a phase. In the cases we consider in this paper the

eikonal operators become phases and the equation above reads

iχ(2)(E, b) = (NTpκD)2
(
iA

(2)
h=2(b)E − iA

(2)
h=1(b)iA

(1)
h=1(b)E

)
.

4.1 Elastic contributions to the eikonal

We will calculate and discuss some explicit results in the high-energy limit for the interac-

tions discussed in section 3 for elastic dilaton scattering and show how this relates to the

elastic eikonal scattering amplitude framework discussed at the start of this section.

4.1.1 RR sources

The first and second terms of (3.8) do not contribute to the high-energy limit. The first

term is trivially E0 as can be seen from the explicit expression for I2 in appendix B.2. The

second term is more subtle but is also not of O(E2) due to the extra propagator present

in the integrals (the 1/u and 1/t) which brings down a factor of 1/E after performing the

integral, I3. The remaining terms we have are,

iAdd (2)
h=2 ≈ −i(NTpκD)2

(
4

s
k1µk2νIµν2 + 2E2I2

)
. (4.8)

Substituting the results for the various integrals,

iAdd (2)
h=2 ≈ i(NTpκD)2E2 1

(4π)
D−p−1

2

Γ
(
3−D+p

2

)
Γ2
(
D−p−1

2

)
Γ(D − p− 1)

(q2⊥)
D−p−5

2 (4(D − p− 2)− 2) .

(4.9)

Note that here and throughout this and the following section the ≈ signifies that we

have dropped some terms that are subleading in energy which arise from performing

the integrals.

4.1.2 Graviton sources

We can now substitute the relevant results for the integrals in (3.18) and identify which

terms contribute to each power of energy. We have for the leading contribution,

iAdd (1)
h=2 = i(NTpκD)24E4I(1)3

≈ −(NTpκD)2E3 2
√
π

(4π)
D−p−1

2

Γ
(
6−D+p

2

)
Γ2
(
D−p−4

2

)
Γ(D − p− 4)

(q2⊥)
D−p−6

2 . (4.10)

Note that in the last line we have used the solution for the leading energy contribution of

I3 in appendix B which we have denoted as I(1)3 . This is the only contribution at leading
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order in energy. The u- and t-channel diagrams which produce this leading contribution

also have subleading contributions arising from the subleading term in I3,

iAdd (2)
h=2 = i(NTpκD)24E4I(2)3

= −i(NTpκD)2E2 2

(4π)
D−p−1

2

Γ
(
5−D+p

2

)
Γ2(D−p−32 )

Γ(D − p− 4)
(q2⊥)

D−p−5
2 , (4.11)

where I(2)3 the subleading energy contribution to I3. The other subleading contributions

that arise from the second and third terms in (3.18) are,

iAdd (2)
h=2 = i(NTpκD)2

(
−2(D − 2p− 4)

D − 2
E2I2 +

2(D − p− 3)(1 + p)

D − 2

1

s
k1µk2νIµν2

)
≈ i(NTpκD)2E2

(
4(D − 2p− 4)(D − p− 2)

D − 2
+

(D − p− 3)(1 + p)

D − 2

)

× 1

(4π)
D−p−1

2

Γ
(
3−D+p

2

)
Γ2
(
D−p−1

2

)
Γ(D − p− 1)

(q2⊥)
D−p−5

2 , (4.12)

and,

iAdd (2)
h=2 = i(NTpκD)2E2 4(D − p− 3)

D − 2
I2

= −i(NTpκD)2E2 8(D − p− 3)(D − p− 2)

D − 2

1

(4π)
D−p−1

2

×
Γ
(
3−D+p

2

)
Γ2
(
D−p−1

2

)
Γ(D − p− 1)

(q2⊥)
D−p−5

2 , (4.13)

where we have separated the second and third terms of (3.18) into (4.12) and (4.13) pur-

posefully in order to be able to more easily compare with the results obtained in section 5.

4.1.3 Dilaton sources

The only term contributing to the leading energy behaviour in this case is,

iAdd (2)
h=2 = −2iκ2D

(
NTp

a(D)√
2

)2 1

s
k1µk2νIµν2

≈ i(NTpκD)2
(
a(D)√

2

)2

E2 1

(4π)
D−p−1

2

Γ
(
3−D+p

2

)
Γ2
(
D−p−1

2

)
Γ(D − p− 1)

(q2⊥)
D−p−5

2 , (4.14)

where we have used the kinematics outlined in section 2.1.

4.1.4 Eikonal scattering

We can use the results derived above to explicitly show that (4.2) holds for the elastic

scattering of dilatons from D-branes. Writing the leading energy behaviour of the tree-level

– 16 –



J
H
E
P
1
0
(
2
0
1
8
)
0
3
8

and one-loop amplitudes in the form of (4.4) and (4.5) respectively and by converting these

expressions into impact parameter space using (B.9), we find for the tree-level amplitude,

iA
(1) e
h=1(b) =

i

4π
D−p−2

2

Γ
(
D−p−4

2

)
bD−p−4

, (4.15)

iA
(2) e
h=1(b) = 0 , (4.16)

and for the one-loop amplitude,

iA
(1) e
h=2(b) = − 1

32πD−p−2

Γ2
(
D−p−4

2

)
b2D−2p−8

, (4.17)

iA
(2) e
h=2(b) = i

1

16πD−p−3/2

Γ2
(
D−p−3

2

)
Γ
(
2D−2p−7

2

)
Γ (D − p− 4)

1

b2D−2p−7
, (4.18)

where here we are focusing on the elastic component as reminded by the superscript e. We

note that for the one-loop amplitude the contributions to A
(2) e
h=2(b) arising from (4.9), (4.12),

(4.13) and (4.14) sum to zero. This means that the only contribution to the subleading

eikonal arises from the subleading contribution to the leading energy contribution, (4.11),

where we recall that I3 has contributions at different powers of E.

We can now easily confirm that iA
(1) e
h=2(b) = −1

2(A
(1) e
h=1(b))2 as required in order to see

the exponentiation of the leading eikonal χ(1)(E, b) in the elastic channel. We therefore

find that the elastic dilaton scattering process we have considered behaves as predicted by

the leading eikonal expression (4.2).

4.2 Inelastic contributions to the eikonal

As we’ve done in section 4.1 for the elastic dilaton scattering process, we can find the

leading energy behaviour of the inelastic scattering of a dilaton and an RR field from the

stack of D-branes that we studied in section 3.2. Looking at the leading energy contribution

of (3.32) we find,

iAdR (2)
h=2 = i(NTpκD)28a(D)(q · C(2))1...pE3I(1)3

≈ −(NTpκD)22a(D)E2(q · C(2))1...p
2
√
π

(4π)
D−p−1

2

Γ
(
6−D+p

2

)
Γ2
(
D−p−4

2

)
Γ(D − p− 4)

(q2⊥)
D−p−6

2 .

(4.19)

We can now apply the prescription outlined in (4.6) to (4.19). Writing the tree-level

amplitude (2.4) in the form of (4.4) we find that

iA
dR(1)
h=1 (b) = 0 (4.20)

T (E, b) ≈ iAdR(2)
h=1 (b) = i

a(D)

4
(q · C)1...p

1

π
D−p−2

2

Γ
(
D−p−4

2

)
bD−p−4

. (4.21)
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The other ingredients we need are A
(1)
h=2(b) and A

(2)
h=2(b) that we can read by compar-

ing (4.19) and (4.5),

iA
dR(1)
h=2 (b) = 0 (4.22)

iA
dR(2)
h=2 (b) = −a(D)

16
(q · C)1...p

1

πD−p−2

Γ2
(
D−p−4

2

)
b2D−2p−8

. (4.23)

We then need to calculate iA
(1) e
h=1(b)iA

dR(2)
h=1 (b) as this will show us what to subtract in order

to obtain the well defined subleading eikonal χ(2)(E, b), including the inelastic contributions

discussed above. We note here that although this inelastic process does not contribute to

the total A
(1)
h=1(b) we have to take into account the contribution from the elastic processes

described in section 4.1.4. We can easily verify by using (4.15) and (4.21) that,

iA
dR(2)
h=2 (b)− iA(1) e

h=1(b)iA
dR(2)
h=1 (b) = 0 (4.24)

and so we see that the inelastic dilaton to RR channel does not contribute to the subleading

eikonal (4.7), as the corresponfing component of iA
(2)
h=2(b)E− iA

(1)
h=1(b)iA

(2)
h=1(b)E vanishes.

5 Alternative computation of the leading and subleading eikonal

In this section we discuss a more conventional way to compute the elastic scattering of

a dilaton from a stack of Dp-branes both in Einstein gravity and in a theory of gravity

extended to include the dilaton and RR fields. We will take the high energy limit and

extract the leading and subleading eikonal, which agrees with the ones computed in the

previous section. The leading eikonal is obtained from the tree diagram corresponding to

the exchange of a graviton, while the subleading eikonal is derived from a number of one-

loop diagrams that depend on which theory of gravity we consider. Since three of the one-

loop diagrams are most easily obtained by first computing the one-point graviton amplitude

and then attaching the three-point vertex containing two dilatons and one graviton, in the

first subsection we compute the one-point amplitudes for the graviton, dilaton and RR

field at the tree and one-loop level and we show that they are directly related to the large

distance behaviour of the classical solution describing the Dp-branes to which the graviton,

dilaton and RR field are coupled. In the second subsection we compute the contribution of

the various field theory diagrams to the elastic dilaton scattering and from them we extract

the leading and subleading eikonal.

5.1 One-point amplitudes and the classical solution

In this subsection we will write the one-point functions for the graviton, dilaton and RR

field in the gravity theory described by the bulk action given in (A.1) and the boundary

action given by (A.3) as in the previous sections. Using these two actions one can compute

the contribution to the one-point amplitude of the diagram with the 3-graviton vertex

– 18 –



J
H
E
P
1
0
(
2
0
1
8
)
0
3
8

yielding,4

〈hλτ 〉(5a) = N2κDJ
2
h

[
|q⊥|D−p−5

(4π)
D−p−1

2

Γ

(
3−D + p

2

)
Γ2(D−p−12 )

Γ(D − p− 1)

]

×

{
(D − 3− p)(p+ 1)

2(D − 2)

[
η⊥λτ − (3−D + p)

q⊥λq⊥τ
q2⊥

]
− 2

(D − p− 2)(p+ 1)(D − p− 3)

D − 2

q⊥λq⊥τ
q2⊥

− 2(D − p− 2)(D − p− 3)2

(D − 2)2
η‖λτ −

2(D − p− 2)(p+ 1)2

(D − 2)2
η⊥λτ

}
, (5.1)

The sum of the contributions from the diagrams with the dilaton and the RR field is

given by

〈h〉(5b)+(5c) = N2κD

[
|q⊥|D−p−5

(4π)
D−p−1

2

Γ

(
3−D + p

2

)
Γ2(D−p−12 )

Γ(D − p− 1)

]

×

{
J2
φ

2

[
η⊥λτ − (3−D + p)

q⊥λq⊥τ
q2⊥

]
(5.2)

+
µ2p
2

[
− 2(D − p− 2)(D − p− 3)

D − 2
η‖λτ +

2(D − p− 2)(p+ 1)

D − 2
η⊥λτ

−
[
η⊥λτ − (3−D + p)

q⊥λq⊥τ
q2⊥

] ]}
.

Summing the three contributions we get

〈h〉(5a)+(5b)+(5c) = N2κD

[
|q⊥|D−p−5

(4π)
D−p−1

2

Γ

(
3−D + p

2

)
Γ2(D−p−12 )

Γ(D − p− 1)

]

×

{
− 2

(D − p− 2)(p+ 1)(D − p− 3)

D − 2

q⊥λq⊥τ
q2⊥

− 2(D − p− 2)

D − 2
(D − p− 3)η‖λτ

[
J2
h

D − p− 3

D − 2
+
µ2p
2

]

− 2(D − p− 2)

D − 2
(p+ 1)η⊥λτ

[
J2
h

p+ 1

D − 2
−
µ2p
2

]}
, (5.3)

where from the expressions for Jφ, µp and a(D) defined in appendix A, we have used the

fact that the following quantity vanishes,

(D − p− 3)(p+ 1)

2(D − 2)
J2
h +

J2
φ

2
−
µ2p
2

= 0 . (5.4)

We neglect for a moment the term in the second line of (5.3) that corresponds to a gauge

transformation of the metric as we will discuss it in subsection 5.3 where we will see that

it must be neglected if we want the metric in the harmonic gauge.

4In all one-point amplitudes we omit to explicitly write a δ-function that constrains the longitudinal

component of the momentum to be vanishing.
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(a) (b) (c)

Figure 5. The various contributions to the one-point function at subleading order used to construct

the classical solution. Figure 5a is the contribution with the 3-graviton vertex and figures 5b and 5c

are the contributions with RR fields and dilaton sources respectively. As before the solid lines

correspond to dilatons, the wavy lines correspond to gravitons and the dashed lines correspond to

RR fields.

Going from momentum to impact parameter space, (5.3) becomes

〈h̃µν〉(5a)+(5b)+(5c) =
N2κD
D−2

(
1

(D−p−3)ΩD−p−2rD−p−3

)2

(5.5)

×

{
η‖µν(D−p−3)

[
J2
h

D−p−3

D−2
+
µ2p
2

]
+(p+1)η⊥µν

[
J2
h

p+1

D−2
−
µ2p
2

]}
,

where we note that the tilde signifies the Fourier transform to impact parameter space.

The expression in impact parameter space can be obtained by using (B.9). Inserting the

explicit quantities (5.5) becomes

〈2κDh̃µν〉(5a)+(5b)+(5c) =
1

2

(
Rp
r

)2(D−p−3)

×
{
η‖µν

D−p−3

D−2

[
D−p−3

D−2
+1

]
+
p+1

D−2
η⊥µν

[
p+1

D−2
−1

]}
, (5.6)

where we have introduced the following quantity,

2NκDTp
(D − p− 3)ΩD−p−2rD−p−3

≡
(
Rp
r

)D−p−3
; Ωd ≡

2π
d+1
2

Γ(d+1
2 )

. (5.7)

We note that (5.6) provides the total one-loop contribution to the one-point graviton

amplitude. The tree contribution can also be easily computed from the bulk and boundary

actions yielding,

〈2κDh̃µν(x)〉1 = −
(
Rp
r

)D−p−3(D − p− 3

D − 2
η‖µν −

p+ 1

D − 2
η⊥µν

)
, (5.8)

which is the Fourier transform of the following amplitude in momentum space,

〈hµν〉1 = −NTp
q2⊥

(
D − p− 3

D − 2
η‖µν −

p+ 1

D − 2
η⊥µν

)
. (5.9)

Note that we are using the same notation as in section 3 with subscripts 1 and 2 representing

tree diagrams and one-loop diagrams respectively. In an extended gravity theory also
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containing the dilaton and the RR field we have to include the one-point amplitude for the

dilaton and the RR field. The one-loop one-point amplitude for the dilaton is given by the

sum of two diagrams. One with the vertex containing two dilatons and one graviton and

the other with the vertex with one dilaton and two RR fields. It turns out that the first

diagram is vanishing while the second one gives,

〈φ〉2 =
a(D)

√
2N2κD
2

µ2p(2−D + p)

[
|q⊥|D−p−5

(4π)
D−p−1

2

Γ

(
3−D + p

2

)
Γ2(D−p−12 )

Γ(D − p− 1)

]
, (5.10)

where the dilaton field has been canonically normalised. From (5.10) we can go to impact

parameter space,

〈
√

2κDφ̃〉2 =
a(D)

4

(
2NκDTp

(D − p− 3)ΩD−p−2rD−p−3

)2

=
a(D)

4

(
Rp
r

)2(D−p−3)
, (5.11)

where we have used that µp =
√

2Tp. We also have the tree diagram that in momentum

space gives the following contribution

〈φ〉1 = NJφ
1

q2⊥
, (5.12)

which in impact parameter space becomes,

〈
√

2κDφ̃〉1 =
Jφ√
2Tp

(
Rp
r

)D−p−3
= −a(D)

2

(
Rp
r

)D−p−3
. (5.13)

The one-loop one-point amplitude for the RR fields gets a contribution from two diagrams;

one with the vertex involving two RR fields and one graviton and the other involving again

two RR fields and a dilaton. The sum of the two is equal, in momentum space, to

〈C01...p〉2 = 4N2TpκDµp(D − p− 2)

[
|q⊥|D−p−5

(4π)
D−p−1

2

Γ

(
3−D + p

2

)
Γ2(D−p−12 )

Γ(D − p− 1)

]
, (5.14)

which in impact parameter space becomes,

〈C̃01...p〉2 = −4N2TpκDµp
1

2

(
1

(D − p− 3)ΩD−p−2rD−p−3

)2

, (5.15)

where the field C01...p is canonically normalised. In order to compare this with the classical

solution, we need the quantity,

〈
√

2κDC̃01...p〉2 = −
(

2NκDTp
(D − p− 3)ΩD−p−2rD−p−3

)2

= −
(
Rp
r

)2(D−p−3)
. (5.16)

The tree diagram can also be easily computed, we find

〈
√

2κDC̃01...p〉1 = − 2NTpκD
(D − p− 3)ΩD−p−2rD−p−3

=

(
Rp
r

)D−p−3
. (5.17)
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The previous diagrammatic results, obtained for the various one-point amplitudes, can

be compared with the large distance expansion of the classical solution. It turns out that

the tree diagrams reproduce the first correction to the flat limit of the classical solution

when r →∞, while the one-loop diagrams reproduce the subleading correction to the flat

limit. The classical solution is given by [27],

ds2 ≡ gµνdxµdxν = [H(r)]−
D−p−3
D−2 dx2‖ + [H(r)]

p+1
D−2dx2⊥

e−
√
2κDφ = (H(r))a(D)/2 ;

√
2κDC01...p = 1−H−1(r) , (5.18)

where

H(r) = 1 +

(
Rp
r

)D−p−3
. (5.19)

Expanding the two terms appearing in the metric, we get

[H(r)]−
D−p−3
D−2 = 1− D − p− 3

D − 2

(
Rp
r

)D−p−3
+

1

2

D − p− 3

D − 2

(
D − p− 3

D − 2
+ 1

)(
Rp
r

)2(D−p−3)
+ . . . (5.20)

and

[H(r)]
p+1
D−2 = 1 +

p+ 1

D − 2

(
Rp
r

)D−p−3
+

1

2

p+ 1

D − 2

(
p+ 1

D − 2
− 1

)(
Rp
r

)2(D−p−3)
+ . . . (5.21)

Remembering that in our notation gµν = ηµν + 2κDhµν , we see that for r → ∞ we get

the flat Minkowski metric. Then, comparing (5.18), (5.20) and (5.21) with (5.8) and (5.6),

we see that the first correction to the flat space metric is given by the tree diagram of the

one-point graviton amplitude, while the next correction is given by the one-loop diagram

contribution to the one-point graviton amplitude. Expanding in a similar way the classical

solution for the dilaton we get

−
√

2κDφ =
a(D)

2
log

(
1 +

(
Rp
r

)D−p−3)

=
a(D)

2

((
Rp
r

)D−p−3
− 1

2

(
Rp
r

)2(D−p−3)
+ . . .

)
.

(5.22)

These two terms are reproduced by the tree diagram in (5.13) and the one-loop term

in (5.11) respectively. Similarly expanding the solution for the RR field we get

√
2κDC01...p = 1−H−1 =

(
Rp
r

)D−p−3
−
(
Rp
r

)2(D−p−3)
+ . . . (5.23)

Again we find that these two terms are equal to those in (5.17) and (5.16).

In conclusion, we have shown that the various terms of the expansion of the classical so-

lution can be reproduced by computing the one-point amplitude of the corresponding fields.
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5.2 Elastic dilaton scattering in extended gravity

In this subsection we compute the elastic dilaton scattering amplitude in an extended

theory of gravity with a dilaton and an RR field as in section 4.1. It consists of one tree

diagram and five one-loop diagrams. The tree diagram and the sum of three one-loop

diagrams can be obtained directly from the one-point amplitude computed in the previous

subsection by saturating it with the three-point amplitude of two dilatons and one graviton

given in (A.9). For the tree diagram we find the following,5

iAdd
1 = i

2NTpκD
(−s)

(
D − p− 3

D − 2
(k1 · k2)‖ −

p+ 1

D − 2
(k1 · k2)⊥

)
= i

2NTpκDE
2

(−s)
, (5.24)

where we have neglected terms without the pole at s ∼ 0 as well as terms negligible at high

energy (see kinematics in (2.1)). We find that this is in agreement with (2.3).

The first one-loop diagram corresponds to the separate exchange of two gravitons that

are then attached to the Dp-branes. One gets

iAddgg
2,u = i(NκDTp)

24E4

∫
dD−p−1k

(2π)D−p−1
1

(k1 − k)2⊥k
2(k2 + k)2⊥

, (5.25)

where k2 ≡ −E2 + k2⊥. At high energy we obtain a leading term given by

iAddgg
2,u ≈ −

2(NκDTp)
2E3√π

(4π)
D−p−1

2

Γ
(
6−D+p

2

)
Γ2(D−p−42 )

Γ(D − p− 4)
(q2⊥)

D−p−6
2 , (5.26)

and a subleading term equal to

iAddgg
2,u ≈ −i

(NκDTp)
22E2

(4π)
D−p−1

2

Γ(5−D+p
2 )Γ2(D−p−32 )

Γ(D − p− 4)
(q2⊥)

D−p−5
2 . (5.27)

Comparing (5.26) and (5.27) with the equivalent results (4.10) and (4.11) derived in

section 4 we again find agreement. The second diagram contains a vertex with two dilatons

and two gravitons with the gravitons attached to the D-branes. We find that

iAddgg
2,c = i(NκDTp)

2

∫
dD−p−1k

(2π)D−p−1
1

k2⊥(q − k)2⊥

× D − 3− p
D − 2

(
−(p+ 1)(k1 · k2) + 4(k1 · k2)‖

)
. (5.28)

In the high energy limit we can neglect the first term in the round bracket in the second

line and we find,

iAddgg
2,c ≈ −i

(NκDTp)
28E2

(4π)
D−1−p

2

(D − p− 3)(D − p− 2)

D − 2

Γ(3−D+p
2 )Γ2(D−p−12 )

Γ(D − p− 3)
(q2⊥)

D−p−5
2 .

(5.29)

5In this case we also omit writing the factor (2π)p+1δ(p+1)(k1 + k2) of momentum conservation along

the directions of the Dp-brane.
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We can easily see that this is equivalent to (4.13). Finally, the last three one-loop diagrams

are obtained by saturating the one-point amplitudes in (5.1) and (5.2) with the vertex

in (A.9). Let us start with the one-loop diagram in (5.1). The term with (k1 · k2) in (A.9)

and the second term in the second line and the term in the third line of (5.1) do not

contribute at high energy. The remaining terms give,

iAddgg
2,s ≈ i

(NκDTpE)2

D − 2

1

(4π)
D−p−1

2

Γ(3−D+p
2 )Γ2(D−p−12 )

Γ(D − p− 1)
(q2⊥)

D−p−5
2

× ((D − p− 3)(p+ 1) + 4(D − p− 2)(D − 2p− 4)) . (5.30)

Once again comparing this with our results from section 4 we see that the equation above

is equivalent to (4.12). Let us do the same analysis with (5.2). Again the term with (k1 ·k2)
in (A.9) does not contribute at high energy. Also the terms with q⊥λq⊥τ do not contribute

at high energy. We are therefore left with the following expression,

iAddRR
2,s + iAdddd

2,s ≈ iN2κ2DE
2 1

(4π)
D−p−1

2

Γ(3−D+p
2 )Γ2(D−p−12 )

Γ(D − p− 1)
(q2⊥)

D−p−5
2 ×

×
(
J2
φ + µ2p (2(D − p− 2)− 1)

)
. (5.31)

Inserting the relevant expression for Jφ and using µp =
√

2Tp,

iAddRR
2,s + iAdddd

2,s ≈ i(NκDTpE)2
1

(4π)
D−p−1

2

Γ(3−D+p
2 )Γ2(D−p−12 )

Γ(D − p− 1)
(q2⊥)

D−p−5
2 ×

×
[(

2− (p+ 1)(D − p− 3)

D − 2

)
+ (4(D − p− 2)− 2)

]
, (5.32)

where the first round bracket in the second line comes from the dilaton, while the second

round bracket comes from the RR contribution. This can be compared to the sum of (4.9)

and (4.14), which agrees with what is written above.

The total eikonal, including both leading and subleading contributions, is defined as

χ(b, E) = χ(1)(E, b) +χ(2)(E, b), where the χ(i)(E, b) have been defined in section 4. From

the various expressions computed in this section we arrive at the following expression,

χ(b, E) =
Nκ2Dτp

4
E

Γ(D−p−42 )

π
D−p−2

2 bD−p−4
+

(Nκ2Dτp)
2E Γ2(D−p−32 )Γ(D − p− 7

2)

16πD−p−
3
2 Γ(D − p− 4) b2D−2p−7

+
(Nκ2Dτp)

2E Γ(D − p− 7
2)Γ2(D−p−12 )

16(3 + p−D)Γ(D − p− 1) πD−p−
3
2 b2D−2p−7

×

{
− 8(D − p− 2)(D − p− 3)

D − 2

+
(p+ 1)(D − p− 3)

D − 2
+

4(D − p− 2)(D − 2p− 4)

D − 2

+ [4(D − p− 2)− 2] +

[
2− (p+ 1)(D − p− 3)

D − 2

]}
, (5.33)
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where τp is the physical Dp-brane tension, τp =
Tp
κD

. The first line contains the leading

contribution given by the tree diagram with a graviton exchange and the subleading term

of one-loop diagram with two graviton exchanges, the third line gives the contribution of

the one-loop seagull diagram and the fourth line gives the contribution of the one-loop

diagram with the 3-graviton vertex. Finally the first square bracket in the last line gives

the contribution of the one-loop diagram with the RR fields attached to the Dp-branes,

while the last square bracket gives that of the dilaton attached to the Dp-branes.

It is easy to show, in this extended theory of gravity, that the subleading contribution

contained inside the big curly brackets vanishes. In this case the sum of the leading

and subleading eikonal reduces just to the expression in the first line of (5.33). This is in

agreement with the same result obtained in [8] for D = 10 and the results found in section 4.

5.3 Pure Einstein gravity

In this section we will consider the case of pure Einstein gravity. Let us start by considering

the one-point graviton amplitude where only the tree diagram with the graviton exchange

and the one-loop diagram with the three-graviton vertex contribute. They are given in

momentum space by (5.8) and (5.1), respectively. Going to impact parameter space we find,

〈ηµν+2κDhµν〉=

[
1−D−p−3

D−2

(
Rp
r

)D−p−3
+

1

2

(
D−p−3

D−2

)2(Rp
r

)2(D−p−3)
+. . .

]
η‖µν

+

[
1+

p+1

D−2

(
Rp
r

)D−p−3
−1

4

(
(D−p−3)2(p+1)

2(D−2)(D−p−2)
−2

(
p+1

D−2

)2
)(

Rp
r

)2(D−p−3)
+. . .

]
η⊥µν

− 1

4(5+p−D)

(
(D−p−3)2(p+1)

2(D−2)(D−p−2)
− 2(p+1)(D−p−3)

D−2

)
×
(
η⊥µν−2(D−p−3)

rµrν
r2

)(Rp
r

)2(D−p−3)
, (5.34)

where in the right-hand-side we have added the contribution of the flat Minkowski metric

for r →∞. Notice that in the equation above we have now included the term in the third

line of (5.1) that was neglected in subsection 5.1 and the term in the second line of the

same equation that was cancelled by the additional contributions of the dilaton and RR

field. It can be checked that the term in the third line of (5.1), that we have neglected,

gives the second term in the second to last line of (5.34).

To make contact with existing literature let us consider the case D = 4 and p = 0 where

Nτ0 =
NT0
κ4
≡M ; Rp → 4GNM . (5.35)

Then (5.34) becomes

〈ηµν+2κ4hµν〉=

[
1− 4MGN

2r
+

1

8

(
4MGN

r

)2

+. . .

]
η00 (5.36)

+

[
1+

4MGN
2r

+
1

4

(
1

4
+1

)(
4MGN

r

)2
]
ηij+

(
1

8
−1

)
rirj
2r2

(
4MGN

r

)2

,
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where the second term in the two round brackets in the last line comes from the term

in the third line of (5.1). The subscript 0 corresponds to the time coordinate, while i, j

correspond to the three spatial coordinates. It is easy to check that the previous metric

satisfies the following condition at each order in GN ,

∂νhνµ −
1

2
∂µh = 0 ; h ≡ hµνηµν . (5.37)

If we want the one-point amplitude in the harmonic gauge the term of order G2
N must

satisfy (54) of [28] instead of the equation above. This is obtained by neglecting in (5.36)

the second term in the two round brackets. With this gauge choice (5.36) becomes,

〈gµν〉=
(

1− 2MGN
r

+
2M2G2

N

r2

)
η00+

(
1+

2MGN
r

+
M2G2

N

r2

)
ηij+

rirj
r2

M2G2
N

r2
. (5.38)

In the final part of this subsection we consider the leading and subleading eikonal in

the case of pure Einstein gravity. It can be easily obtained from the one in (5.33) by

neglecting the last line. We find that,

χ(b, E) =
Nκ2Dτp

4
E

Γ(D−p−42 )

π
D−p−2

2 bD−p−4
+

(Nκ2Dτp)
2E Γ2(D−p−32 )Γ(D − p− 7

2)

16πD−p−
3
2 Γ(D − p− 4) b2D−2p−7

+
(Nκ2Dτp)

2E Γ(D − p− 7
2)Γ2(D−p−12 )

16(3 + p−D)Γ(D − p− 1) πD−p−
3
2 b2D−2p−7

×

{
− 4(D − p− 2) +

(p+ 1)(D − p− 3)

D − 2

}
. (5.39)

If we look at the case for D = 4 and p = 0, we see that the last term in the first line does

not contribute and regularising the first term,

Γ(D−p−42 )

bD−p−4
=⇒ −2 log b , (5.40)

we find that,

χ(D=4;p=0) = −4GNME log b+
π(GNM)2E

2b

(
8− 1

2

)
= −4GNME log b+

15π(GNM)2E

4b
, (5.41)

where the first term in the round bracket comes from the seagull diagram, while the second

comes from the one-loop diagram with the 3-graviton vertex. It agrees with the classical

part of the eikonal derived in [15] and with the eikonal derived in [12, 16]. From the eikonal

we can derive the deflection angle for a massless particle,

θ = − 1

E

∂

∂b
χ(D=4;p=0) =

4GNM

b
+

15π(GNM)2

4b2
+ . . . (5.42)

where the dots refer to terms with higher powers of b in the denominator. The first

term is the old result from Einstein, while the second term agrees with recent calculations

in [12, 15, 16, 29].
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Using (5.39) we can also calculate the deflection angle for D dimensions and p = 0.

We find,

θ = − 1

E

∂

∂b
χ(p=0) =

√
π

Γ
(
D
2

)
Γ
(
D−1
2

) (Rs
b

)D−3
+

√
π

2

Γ
(
D − 1

2

)
Γ (D − 2)

(
Rs
b

)2D−6
, (5.43)

where Rs is the “Schwarzschild radius” defined in appendix D. Comparing this result

with (D.12), where the deflection angle has been calculated from the metric for the D-

dimensional generalisation of a Schwarzschild black hole, we find perfect agreement. Note

that we cannot compare the result for general p because the D-brane coupling used in [30]

is different to the one we are using here.

6 Discussion

We have discussed how to extract, from scattering amplitudes, classical quantities such as

the classical solution related to the backreaction of a heavy source and the eikonal describing

a scattering process in the Regge regime. The general ideas are well known and have been

exploited in several previous papers to obtain these quantities in the limit of large distance

or impact parameter, see for instance [31, 32]. In this paper we have presented a detailed

analysis of the first subleading corrections to the limit mentioned above by focusing on type

II supergravity in the presence of a stack of parallel Dp-branes as an example. In the case

of the eikonal, these corrections are determined by the subleading energy contributions in

the Regge regime and so probe the structure of the gravitational theory in more detail.

For instance the leading eikonal receives contributions only from ladder diagrams where

gravitons are exchanged, while the subleading eikonal involves diagrams with different

topologies and lower spin states. This raises the possibility, at the first subleading order,

that the eikonal should be described by an operator instead of a simple phase since inelastic

processes become possible.6

We studied this possibility in the context of type II supergravity focusing on the

scattering of massless perturbative states from a stack of Dp-branes. The two main points

of our analysis for the subleading eikonal are that the relevant information is encoded in

the onshell three and four-point vertices (see section 3) and that its derivation requires

us to disentangle cross terms between leading and subleading energy contributions (see

section 4). In the case under study, the inelastic contributions which grow with energy in

the one-loop amplitudes are completely accounted for by the cross terms mentioned above

and thus the final expression for the first subleading eikonal in supergravity is described

fully by the elastic processes and is given by,

χ(2)(E, b) =
(NTpκD)2E

16πD−p−
3
2

Γ2
(
D−p−3

2

)
Γ
(
2D−2p−7

2

)
Γ (D − p− 4)

1

b2D−2p−7
, (6.1)

which agrees with [8]. We do not know a general argument proving that this is always

the case and so we think that it would be interesting to check this pattern both in more

6In gravitational theories with a higher derivative modification of the 3-graviton vertex this happens

already at the level of leading eikonal [9].
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complicated theories and at further subleading orders. For instance, an analysis of the

eikonal operator in string theory beyond the leading order [2, 6, 7] is missing. Of course

we could use the full four-point string amplitudes in our derivation of section 3 simply by

reinstating the α′ dependence that in maximally supersymmetric theories appears just in

the overall combination of gamma functions,

Γ(1− α′s
4 )Γ(1− α′t

4 )Γ(1− α′u
4 )

Γ(1 + α′s
4 )Γ(1 + α′t

4 )Γ(1 + α′u
4 )

. (6.2)

For instance in the first contribution to the dilaton to dilaton scattering we analysed, this

amounts to including the factor defined above in the vertex (3.4). However this is not

sufficient to reconstruct the full string eikonal as, of course, we need to include also the

contributions due the exchanges of the leading and subleading Regge trajectories between

the Dp-branes and the perturbative states. It seems possible to generalise, along these lines,

the analysis of this paper to the full string setup by using the formalism of the Reggeon

vertex [5, 33–35].

A parallel development, entirely within field theory, is to analyse further subleading

contributions to the eikonal. As mentioned in the introduction, there is a practical motiva-

tions for doing so since from these results it is possible to extract new information on the

one body effective action which is used in the analysis of gravitational waves. Of course,

in this context, the interesting setup is that of 2 → 2 scattering with objects with large

but finite masses, m1 and m2. The approach discussed here could also be applied in this

case. A further interesting generalisation is to include a non-zero angular momentum for

the external massive states, so that they can represent spinning black holes, and extract

information on the one body effective action in this case [36, 37]. On the more conceptual

side, it would be interesting to check if in these more general cases the subleading contribu-

tions to the eikonal are still universal or if there are inelastic effects that induce differences

between the various states as we know happens when the 3-graviton vertex is modified [9].
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A Feynman rules

Here we will outline the Feynman rules that we have used throughout this paper. We

will neglect writing the various momentum conserving delta functions associated with the

various vertices. We take the dilaton as φ, the graviton as h and the RR gauge field as

C(n−1), where n = p + 2 and p is the dimension of the Dp-brane world-volume. We start

by writing the bulk action that we will use to derive the Feynman rules,

S =

∫
dDx
√
−g
[

1

2κ2D
R− 1

2
∂µφ∂

µφ− 1

2n!
e−a(D)

√
2κDφF 2

n

]
, (A.1)
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where the expression for a(D) can be found in [27] and is given by,7

a2(D) = 4− 2(p+ 1)(D − p− 3)

D − 2
. (A.2)

Note that by convention we will use the positive root of the expression above. We will use

the following boundary action which is being sourced by the Dp-branes,∫
dDx δD−p−1(x) (Jhh

α
α (x) + Jφφ(x) + µpC01...p(x)) (A.3)

where the quantities Jh, Jφ, µp are the couplings of the graviton, dilaton and RR to the

Dp-brane. They are given by

Jh = −Tp ; µp =
√

2Tp ; Jφ = −a(D)√
2
Tp . (A.4)

We expand the metric as,

gµν = ηµν + 2κDhµν (A.5)

and from the quadratic part of the action (A.1) plus the de Donder gauge fixing term, we

obtain the following graviton propagator of momentum q

[Gh]µν;ρσ =
−i
2q2

(
ηµρηνσ + ηµσηνρ − 2

D − 2
ηµνηρσ

)
. (A.6)

Similarly, from the RR kinetic term and the Feynman gauge fixing term we obtain the RR

field propagator

[GC(n−1) ]µ1...µn−1
ν1...νn−1

=
−i
q2

(n− 1)!δµ1[ν1 . . . δ
µn−1

νn−1]
. (A.7)

Finally we have the standard scalar propagator for the dilaton

[Gφ] =
−i
k2

. (A.8)

The couplings that are relevant for the scattering process involving RR fields as sources

are the φ2h

[Vφ1φ2h] = −iκD (k1µk2 ν + k1 νk2µ − k1 · k2ηµν)hµν , (A.9)

where k1 and k2 are the momenta associated with the dilatons. The φ C(n−1)C(n−1) vertex

is given by,

[V
φF

(n)
1 C

(n−1)
2

] = − ia(D)
√

2κD
(n− 1)!

(F1 µ1µ2...µnk
µ1
2 Cµ2...µn2 ) , (A.10)

where (1) and (2) are labels of the two RR fields and Fi µ1...µn is the field strength associated

with the (p + 1)-form gauge field Ci µ2...µn , Fi µ1...µn = (dCi)µ1...µn . The h C(n−1)C(n−1)

vertex is given by,

[V
F

(n)
1 F

(n)
2 h

] =
iκD
n!

(2nFµν12 − η
µνF12)h

µν , (A.11)

7In 10D type II supergravity, a(D = 10) = p−3
2

.
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where Fµν12 = Fµ1 µ2...µnF
νµ2...µn
2 and we also have F12 = Fµν12 ηµν . The φ2 C(n−1)C(n−1)

vertex is given by,

[V
φφ′F

(n)
1 F

(n)
2

] = −2iκ2

n!
a2(D)F12 . (A.12)

The extra Feynman rules that are relevant for when considering graviton sources are shown

below. The h3 vertex is given by,

[Vh1kh2ph3q ](k, p, q) = −2iκD

(
−1

2
pµqνηλρητσ + 2pµqσηλνητρ − ηρσpµqλητν −

1

2
ηµνpτηλρqσ

+
1

4
ηµνηλρητσp · q − ηρσpληµτqν +

1

2
ηρσpµηλτqν − ηµρηνσpλqτ +

1

2
ηµνηρσpλqτ

+ ηµρηνσηλτp · q −
1

4
ηµνηρσηλτp · q − ηµσηνληρτp · q + ηµσpληντqρ

)
hµν1 hρσ2 hλτ3 + . . . ,

(A.13)

where the dots stand for the sum over the permutations of the external states and, as usual,

k, p and q indicates their momenta. The φ2h2 vertex is given by,

[Vφ1φ2h3h4 ] = (iκ2D)

[
k1k2

(
1

2
ηρσηλτ − ηρτησλ

)
+ 4k1ρk2τησλ − 2k1ρk2σηλτ

]
hρσ3 hλτ4 + . . . ,

(A.14)

where the dots stand for the symmetrisation between the two dilatons and the two gravi-

tons, while k1 and k2 are the momenta of the dilatons. From the Born-Infeld boundary

action we read the Dp-brane graviton coupling

[Bh] = −iTpηµν‖ hµν
∫

d⊥k

(2π)⊥
, (A.15)

where ‖ denotes the p + 1 directions along the Dp-brane and ⊥ denotes the D − p − 1

directions transverse to the Dp-brane. The boundary coupling with the dilaton is given by

[Bφ] = −iTp
a(D)√

2

∫
d⊥k

(2π)⊥
(A.16)

and the coupling with RR gauge potential is given by,

[BC(n−1) ] = iµpC01...p

∫
d⊥k

(2π)⊥
. (A.17)

B Integral reference

We define an m-index, p-propagator integral as,

Iµ1...µmp =

∫
d⊥k

(2π)⊥
kµ1 . . . kµm

k2(k − l1)2⊥ . . . (k − lp−1)2⊥
, (B.1)

where the variables l contain only external momenta and ⊥= D − p − 1. We give some

explicit results below which are useful when considering high-energy contributions.
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B.1 3-propagator scalar integral

For the scalar integral with three propagators we have,

I3(q⊥) =

∫
d⊥k

(2π)⊥
1

k2(k1 − k)2⊥(k + k2)2⊥
= I(1)3 (q⊥) + I(2)3 (q⊥) + . . . , (B.2)

where k2 = k2⊥ − E2 and I(1)3 (q⊥) is the leading energy contribution given by,

I(1)3 (q⊥) =

√
π

(4π)
D−p−1

2

(q2⊥)
D−p−6

2
i

2E

Γ
(
6−D+p

2

)
Γ2(D−p−42 )

Γ(D − p− 4)
, (B.3)

and I(2)3 (q⊥) is the subleading contribution,

I(2)3 (q⊥) = − 1

(4π)
D−p−1

2

(q2⊥)
D−p−5

2
1

2E2

Γ
(
5−D+p

2

)
Γ2(D−p−32 )

Γ(D − p− 4)
. (B.4)

We briefly review what happens when looking at I3, if we remove the k + k2 propagator

in (B.2) to explicitly recognise that these contributions are localised on the D-branes when

working in impact parameter space. We find after introducing Schwinger parameters,

I3,3 =

∫
d⊥k

(2π)⊥
1

k2(k1 − k)2⊥
=

∫
dt1dt2

(π
T

)⊥
2

exp

[
t22k

2
1⊥
T

+ t21E
2 − t2k21⊥

]
(B.5)

where I3,3 refers to the fact that we’ve killed the third propagator in the integral and

T = t1 + t2 where t1, t2 are the Schwinger parameters. From this we can see that I3,3 =

f(E) which means that the result is not a function of the momentum exchanged, q⊥. If

we calculate the impact parameter space expression for this integral we find that Ĩ3,3 =

f(E)δ⊥−1(b), which as described before suggests that these types of terms can only produce

contributions which are localised on the D-branes. Note that the same happens when you

remove the second propagator k1 − k. However if one removes the propagator k we find

that I3,1 = I2 as expected.

B.2 2-propagator integrals

For the scalar integral with two propagators we have,

I2(q⊥) =

∫
d⊥k

(2π)⊥
1

k2⊥(k−q)2⊥
=

1

(4π)
D−p−1

2

(q2⊥)
D−p−5

2

Γ
(
3−D+p

2

)
Γ2
(
D−p−1

2

)
Γ(D−p−1)

(−2(D−p−2)) .

(B.6)

For the 1-index integral with two propagators we have,

Iµ2 (q⊥) =

∫
d⊥k

(2π)⊥
kµ

k2⊥(k−q)2⊥
=

1

(4π)
D−p−1

2

(q2⊥)
D−p−5

2 qµ
Γ
(
5−D+p

2

)
Γ
(
D−p−1

2

)
Γ
(
D−p−3

2

)
Γ(D−p−2)

.

(B.7)
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For the 2-index integral with two propagators we have,

Iµν2 (q⊥) =

∫
d⊥k

(2π)⊥
kµkν

k2⊥(k − q)2⊥
=

1

(4π)
D−p−1

2

(q2⊥)
D−p−3

2

Γ
(
3−D+p

2

)
Γ2
(
D−p−1

2

)
2Γ(D − p− 1)

×
(
ηµν⊥ − (D − p− 1)

qµqν

q2

)
. (B.8)

B.3 Other integrals

Here we list some of the other integrals that we have used throughout the paper. In order

to calculate the impact parameter space expressions in sections 4 and 5 we have used,∫
dDk

(2π)D
eik·b(k2)ν =

22ν

πD/2
Γ(ν + D

2 )

Γ(−ν)

1

(b2)ν+
D
2

. (B.9)

C Relations for manipulating RR field strengths

In this appendix we will explicitly analyse the various types of products between field

strengths and momenta that arise in (3.30). It is important to recall that in these expres-

sions one of the RR fields is attached to the D-branes (with label 4) and one is an external

state (with label 2). We will first focus on the term that is relevant for the leading energy

contribution and subsequently look at all other combinations. We have,

E2F24 = E2
(
kµ12 C(2)µ2...µn + (−1)n−1kµ22 C(2)µ3...µnµ1 + . . .

)
×
[
k4µ1C

(4)
µ2...µn + (−1)n−1k4µ2C

(4)
µ3...µnµ1 + . . .

)
(C.1)

= E2
(
n(k2 · k4)C(2)µ2...µnC(4)

µ2...µn + (−1)n−1n(n− 1)kµ12 C(2)µ2...µnk4µ2C
(4)
µ3...µnµ1

]
,

where we have identified the two terms in the last line above to be the only two distinct

types of terms that arise, with the associated counting taken into account. The indices on

C(4) have to lie in the space parallel to the D-brane world volume so µ3 . . . µn = 1 . . . p and

we note that there are (n − 2)! ways to do this. Furthermore (kµ12 )‖ only has a non-zero

component for µ1 = 0 (µ1 has to also lie along the D-branes as it is one of the indices on

C(4)) and so we have to all orders in E,

E2F24 = E3n!(k4 · C(2))1...pC
(4)
0...p + E2n!(k2 · k4)C(2)0...pC

(4)
0...p (C.2)

where we have used (k2)
0 = −E and (−1)n−1C

(4)
1...p0 = −C(4)

0...p.

We now look at types of terms which contribute to the subleading energy behaviour

of (3.30),

Fαµ24 η‖ανk
ν
1k3µ = F 0µ

24 (k1)0k3µ

=
(

(k2)
0C(2)µ2...µn + (−1)n−1kµ22 C(2)µ3...µn0 + . . .

)
×
(
kµ4C

(4)
µ2...µn + (−1)n−1k4µ2C

(4)
µ3...µn

µ + . . .
)

(k1)0k3µ

=
(

(k2)
0C(2)µ2...µn + (−1)n−1kµ22 C(2)µ3...µn0 + . . .

)(
kµ4C

(4)
µ2...µn

)
(k1)0k3µ

= (n− 1)!
(

(k2)
0C(2)0...p + (−1)n−1k02C

(2)1...p0
)(

(k3 · k4)C(4)
0...p

)
(k1)0

= 0 , (C.3)
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where we have used the fact that the µ index has to be along the D-branes but (k3)‖ = 0 in

the third line and in the last line we have again used the fact that (−1)n−1C
(2)
1...p0 = −C(2)

0...p.

We also need,

Fαβ24 η‖βµk
µ
1 = Fαµ2...µn2

(
kβ4C

(4)
µ2...µn + (−1)n−1k4µ2C

(4)
µ3...µn

β + . . .
)
η‖βµk

µ
1

= −(n− 1)!Fαµ21...p2 k4µ2(k1)
0C

(4)
0...p

= −(n− 1)!E
[
(k4 · C(2))1...pkα2 − (k2 · k4)C(2)α1...p

]
C

(4)
0...p , (C.4)

where in the second line we have used the fact that (k1 · k4)‖ = 0. We also require,

Fαβ24 k1β = Fαµ2...µn2

(
kβ4C

(4)
µ2...µn + (−1)n−1k4µ2C

(4)
µ3...µn

β + . . .
)
k1β

= (n− 1)!
(

(k1 · k4)Fα0...p2 C
(4)
0...p − k4µ2(k1)

0Fαµ21...p2 C
(4)
0...p + . . .

)
= (n− 1)!

[
(k1 · k4)

(
kα2C

(2)0...p + EC(2)α1...p
)

− E(k4 · C(2))1...pkα2 + E(k2 · k4)C(2)α1...p
]
C

(4)
0...p , (C.5)

where we have used the properties of the gauge potentials outlined previously. We can

also have,

Fαβ24 k3β = Fαµ2...µn2

(
kβ4C

(4)
µ2...µn + (−1)n−1k4µ2C

(4)
µ3...µn

β + . . .
)
k3β

= (n− 1)!
(

(k3 · k4)Fα0...p2 C
(4)
0...p

)
= (n− 1)!(k3 · k4)

(
kα2C

(2)0...p + EC(2)α1...p
)
C

(4)
0...p , (C.6)

where in the second line we have again used the fact that the index β must lie parallel to

the D-branes but (k3)‖ = 0. Finally we have,

Fαβµν24 η‖βνk3αk3µ =Fαβµ3...µn2

(
kµ4C

(4)ν
µ3...µn+(−1)n−1kν4C

(4)
µ3...µn

µ+(−1)n−1k4µ3C
(4)
µ4...µn

µν

+. . .
)
η‖βνk3αk3µ

= (n−2)!
(
Fα0...p2 kµ4C

(4)
0...p+(−1)n−1Fαβµ32...p2 k4µ3C

(4)
2...p

µνη‖βν

)
k3αk3µ

= (n−2)!(k3 ·k4)
(

(k2 ·k3)C(2)0...p+E(k3 ·C(2))1...p
)
C

(4)
0...p , (C.7)

where in the third line we have again used the fact that the index µ must lie parallel to

the D-branes but (k3)‖ = 0.

D Deflection angle for D-dimensional Schwarzschild black hole

The metric for the D-dimensional Schwarzschild black hole is given by,

ds2 = −
(

1− Rns
rn

)
dt2 +

(
1− Rns

rn

)−1
dr2 + r2dΩ2

n+1 , (D.1)
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where n = D − 3 and Rs is the Schwarzschild radius. Note that the Schwarzschild radius

is related to the various constants of the stack of (p = 0) D-branes by,

Rns =
NκDTp=0

Ωn+1(n+ 1)
. (D.2)

We can express the deflection angle of a test probe in this background metric as,

Φ = 2

∫ ∞
r0

dr
1

r2
√

1
b2
− 1

r2
+ 1

r2

(
Rs
r

)n − π , (D.3)

where r0 is the point of closest approach and b is the impact parameter. The point of

closest approach is obtained by solving,

1

b2
− 1

r20
+

1

r20

(
Rs
r0

)n
= 0 . (D.4)

Since r0 � Rs, to first order we have r0 ≈ b. Note that if we write u0 = b/r0, then (D.4)

becomes 1 − u20 + u2+n0 (Rs/b)
n = 0. We can then solve this perturbatively and to second

order the solution is given by u0 ≈ 1 + c(Rs/b)
n where c is found to be 1/2 by substi-

tution. In terms of r0 this corresponds to letting r0 ≈ b(1 + c(Rs/b)
n) with c = −1/2.

Substituting (D.4) into (D.3) yields,

Φ = 2

∫ ∞
r0

dr
1

r2
√

1
r20
− 1

r20

(
Rs
r0

)n
− 1

r2
+ 1

r2

(
Rs
r

)n − π . (D.5)

If we then perform the substitution u = r0/r we find that,

Φ = 2

∫ 1

0
du

1√
1−

(
Rs
r0

)n
− u2 + u2+n

(
Rs
r0

)n − π . (D.6)

By using the binomial expansion we find to second order in (Rs/r0)
n,

Φ = 2

∫ 1

0
du

1√
1− u2

(
1 +

u2+n − 1

1− u2

(
Rs
r0

)n)−1/2
− π

≈ 2

∫ 1

0
du

1√
1− u2

+ 2

∫ 1

0
du

1− u2+n

2(1− u2)3/2

(
Rs
r0

)n
+ 2

∫ 1

0
du

3

8

(1− u2+n)2

(1− u2)5/2

(
Rs
r0

)2n

− π . (D.7)

Each of the integrals over u can be readily solved,

2

∫ 1

0
du

1√
1− u2

= π , (D.8)

2

∫ 1

0
du

1− u2+n

2(1− u2)3/2
=
√
π

Γ
(
3+n
2

)
Γ
(
2+n
2

) , (D.9)

2

∫ 1

0
du

3

8

(1− u2+n)2

(1− u2)5/2
=

√
π

2

(
Γ
(
5+2n

2

)
Γ(1 + n)

−
2Γ
(
3+n
2

)
Γ
(
n
2

) )
. (D.10)
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If we substitute these results into (D.7) we find,

Φ =
√
π

Γ
(
3+n
2

)
Γ
(
2+n
2

) (Rs
r0

)n
+

√
π

2

(
Γ
(
5+2n

2

)
Γ(1 + n)

−
2Γ
(
3+n
2

)
Γ
(
n
2

) )(
Rs
r0

)2n

+ . . . (D.11)

We want to express this in terms of the impact parameter b. As we mentioned before we

can perturbatively write r0 in terms of the impact parameter as r0 ≈ b(1 − 1/2(Rs/b)
n).

If we substitute this into (D.11), keeping terms up to second order we find,

Φ =
√
π

Γ
(
3+n
2

)
Γ
(
2+n
2

) (Rs
b

)n
+

√
π

2

Γ
(
5+2n

2

)
Γ(1 + n)

(
Rs
b

)2n

+ . . . (D.12)
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