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1 Introduction

1/2 BPS circular Wilson loops in 4d N = 4 U(N) super Yang-Mills (SYM) serve as a useful

testing ground for precision holography between N = 4 SYM and the type IIB string theory

on AdS5×S5, since their expectation values can be computed exactly by a Gaussian matrix

model at finite N with arbitrary value of the ’t Hooft coupling λ [1–3].

At the leading order in the large N limit, the expectation value of the 1/2 BPS Wil-

son loops are shown to agree with the on-shell action of fundamental string, D3-brane, or

D5-brane for the Wilson loops in the fundamental, symmetric, or anti-symmetric represen-

tations, respectively [4–11] (see also [12] for a review). We can even go further to study the

1/N corrections to these cases, but the status of the matching at the subleading order is

still unsettled [13–18]. One can also consider the Wilson loops in very large representations

where the backreaction to the bulk geometry is so large and the dual geometry is no longer

a pure AdS5 but it is replaced by a bubbling geometry with non-trivial topology [19–22].

We hope that one can also study such effect of topology change in the regime of quantum

gravity using the exact result of 1/2 BPS Wilson loops.

To explore the behavior of 1/2 BPS Wilson loops with various size of representations,

it is important to evaluate the Gaussian matrix integral in a closed form for arbitrary repre-

sentations. This problem was partly solved in [23], but the result for general representation

still involves a complicated summation over partitions. In the case of anti-symmetric repre-

sentations, their generating function has a rather simple form and we can study its behavior
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either analytically or numerically. This study was initiated in [24] and the 1/N corrections

of anti-symmetric Wilson loops are further studied in [18, 25, 26].

In this paper, we point out that the connected correlator of winding Wilson loops has

a simple expression at finite N , where the Wilson loops in question are on top of each

other along the same circle.1 This is expected since the natural object to compute in the

matrix model is not the trace of matrix in a irreducible representation but the correlator of

resolvents with fixed number of holes and handles. We also show that the 1/N expansion

of the exact result of connected correlator of winding Wilson loops is correctly reproduced

from the topological recursion of Gaussian matrix model, as demonstrated in [25] in the case

of anti-symmetric representation. We also write down the generating function of 1/2 BPS

Wilson loops in the symmetric representations. We find an interesting relation between

the generating functions of the symmetric and the anti-symmetric Wilson loops.

This paper is organized as follows. In section 2, we write down the exact expression of

the connected correlator of 1/2 BPS winding Wilson loops at finite N . In section 3, we show

that the 1/N corrections to such connected correlators are systematically obtained by the

topological recursion of Gaussian matrix model. In section 4, we compare the exact result

of connected correlator at finite N and the analytic result of 1/N expansion obtained from

the topological recursion, and we find perfect match for both small λ and finite λ regimes.

In section 5, we comment on the limit of large winding number and the bulk D3-brane

picture of connected correlators. In section 6, we write down the exact generating function

of 1/2 BPS Wilson loops in the symmetric representation and comment on its relation to

the generating function of anti-symmetric representation. We conclude in section 7 with a

brief discussion on the future problems.

2 Connected correlator of winding Wilson loops at finite N

As shown in [1–3], the expectation value of 1/2 BPS circular Wilson loop in 4d N = 4

U(N) SYM is exactly given by a Gaussian matrix model. The expectation value of the

Wilson loop in the representation R is written as

〈TrR U〉 =
〈

TrR e

√
λ
2N

M
〉
mm

, (2.1)

where U is the 1/2 BPS Maldacena-Wilson loop [4]

U = P exp

[∮
C
ds
(
Aµẋ

µ + iΦ|ẋ|
)]
, (2.2)

with Φ being one of the six adjoint scalar fields in N = 4 SYM. The contour C is a circle.

In (2.1), the expectation value 〈· · ·〉 on the left hand side is taken in the N = 4 SYM while

that on the right hand side 〈· · ·〉mm is defined by a hermitian matrix model with a Gaussian

potential

〈O〉mm =

∫
dMe−TrM2O∫
dMe−TrM2 . (2.3)

1When Wilson loops are separated in spacetime, there is a phase transition at some critical value of the

distance between loops [27, 28]. We will not consider such cases in this paper.
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In the following we will mainly consider the expectation value of the operator of the form

O = det f(M) for some function f(x)

〈
det f(M)

〉
mm

=
〈 N∏
i=1

f(xi)
〉
mm

, (2.4)

where xi (i = 1, · · · , N) are the eigenvalues of the matrix M . As shown in [9], the eigenvalue

integral of Gaussian matrix model can be written as a system of N fermions in a harmonic

potential

〈
det f(M)

〉
mm

=

∫ ∏N
i=1 dxie

−x2i f(xi)∆(x)2∫ ∏N
i=1 dxie

−x2i ∆(x)2
=

1

N !

∫ N∏
i=1

dxiΨ(x1, · · · , xN )2
N∏
i=1

f(xi),

(2.5)

where ∆(x) denotes the Vandermonde determinant and Ψ(x1, · · · , xN ) is the Slater deter-

minant of harmonic oscillator wavefunctions

Ψ(x1, · · · , xN ) = det
1≤i,j≤N

(
ψi−1(xj)

)
,

ψn(x) =
1√

2nn!
√
π
Hn(x)e−

1
2
x2 ,

(2.6)

with Hn(x) being the Hermite polynomial. The N -particle wavefunction Ψ(x1, · · · , xN ) is

also written as
Ψ(x1, · · · , xN ) = 〈x1, · · · , xN |Ψ〉,
|Ψ〉 = |0〉 ∧ |1〉 ∧ · · · ∧ |N − 1〉,

(2.7)

where |n〉 is the n-th excited state of harmonic oscillator

|n〉 =
(a†)n√
n!
|0〉, [a, a†] = 1. (2.8)

In other words, |Ψ〉 is the state of N fermions occupying the lowest N levels of harmonic

oscillator. In terms of the state |Ψ〉, the expectation value in (2.5) can be also written as

〈
det f(M)

〉
mm

=
1

N !
〈Ψ|

N∏
i=1

f

(
ai + a†i√

2

)
|Ψ〉 (2.9)

where [ai, a
†
j ] = δi,j and ai acts on the i-th factor of the state |Ψ〉 in (2.7). One can easily

show that (2.9) is further rewritten as a determinant of N ×N matrix〈
det f(M)

〉
mm

= det
0≤n,m≤N−1

(fn,m), (2.10)

where

fn,m =
〈
n
∣∣∣f (a+ a†√

2

) ∣∣∣m〉. (2.11)

Now let us consider the correlator of Wilson loop TrUk with winding number k. The

Wilson loop in the fundamental representation corresponds to k = 1. The correlator of
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winding Wilson loops is also exactly written as an expectation value in the Gaussian matrix

model (2.3) 〈 h∏
i=1

TrUki
〉

=
〈 h∏
i=1

Tr e
ki

√
λ
2N

M
〉
mm

. (2.12)

Note that our winding Wilson loops TrUki are located along the same circle with the same

radius. Namely, they are on top of each other in spacetime. In order to make use of

the relation (2.10), we notice that the trace of matrix appears at the linear order of the

characteristic polynomial

det

(
1 + yie

ki

√
λ
2N

M
)

= 1 + yi Tr e
ki

√
λ
2N

M
+O(y2i ). (2.13)

Then we can rewrite (2.12) as a contour integral around yi = 0〈 h∏
i=1

TrUki
〉

=

∮ h∏
i=1

dyi
2πiy2i

G, (2.14)

where G is given by

G =

〈
h∏
i=1

det
(

1 + yie
ki

√
λ
2N

M
)〉

mm

=

〈
det

(
h∑

m=0

∑
i1<···<im

yi1 · · · yime
√

λ
2N

(ki1+···+kim )M

)〉
mm

.

(2.15)

Applying the relation (2.10) to the above form of G, we find

G = det

(
h∑

m=0

∑
i1<···<im

yi1 · · · yimA(ki1 + · · ·+ kim)

)
, (2.16)

where the matrix A(k) is given by

A(k)n,m = 〈n|ek
√

λ
4N

(a+a†)|m〉 =

√
n!

m!
e
k2λ
8N

(
k2λ

4N

)m−n
2

Lm−nn

(
−k

2λ

4N

)
, (2.17)

and Lm−nn (z) denotes the associated Laguerre polynomial. Note that A(k) is a symmetric

N ×N matrix2

A(k)n,m = A(k)m,n, (n,m = 0, · · · , N − 1). (2.18)

From (2.14), G can be thought of as the generating function of the correlator of winding

Wilson loops. As we learned from quantum field theory textbooks, the connected part of

correlator can be extracted by taking the log of this generating function G〈 h∏
i=1

TrUki
〉
conn

=

∮ h∏
i=1

dyi
2πiy2i

logG. (2.19)

2It is emphasized in [26] that the matrix A(k) is closely related to the truncated harmonic oscillator,

which is widely used in quantum optics community. In our approach, the truncation arises by taking the

expectation value with respect to the “Fermi sea” state |Ψ〉 (2.9).
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Finally, using the identity log detX = Tr logX, we arrive at the exact finite N expression

of the connected correlator of winding Wilson loops〈 h∏
i=1

TrUki
〉
conn

=

∮ h∏
i=1

dyi
2πiy2i

Tr log

(
h∑

m=0

∑
i1<···<im

yi1 · · · yimA(ki1 + · · ·+ kim)

)
.

(2.20)

One can easily see that the known expectation value of single Wilson loop [2] is repro-

duced from our exact result (2.20)

〈TrUk〉 =

∮
dy

2πiy2
Tr log

(
1 + yA(k)

)
= TrA(k). (2.21)

The trace of A(k) is evaluated as [2]

TrA(k) = e
k2λ
8N L1

N−1

(
−k

2λ

4N

)
. (2.22)

In a similar manner, we can write down the connected higher point correlation functions

of winding Wilson loops. The two-point function is given by

〈TrUk1 TrUk2〉conn = Tr
[
A(k1 + k2)−A(k1)A(k2)

]
. (2.23)

This reproduces the known result in [2, 29].

We can proceed to more higher point functions. For instance, the three-point function

is given by

〈TrUk1 TrUk2 TrUk3〉conn

= Tr
[
A(k1 + k2 + k3) +A(k1)A(k2)A(k3) +A(k1)A(k3)A(k2)

−A(k1)A(k2 + k3)−A(k2)A(k1 + k3)−A(k3)A(k1 + k2)
]
,

(2.24)

and the four-point function is given by

〈TrUk1 TrUk2 TrUk3 TrUk4〉conn

= Tr
[
A(k1 + k2 + k3 + k4)

+A(k1 + k2){A(k3), A(k4)}+A(k1 + k3){A(k2), A(k4)}
+A(k1 + k4){A(k2), A(k3)}+A(k2 + k3){A(k1), A(k4)}
+A(k2 + k4){A(k1), A(k3)}+A(k3 + k4){A(k1), A(k2)}
−A(k1 + k2)A(k3 + k4)−A(k1 + k3)A(k2 + k4)−A(k1 + k4)A(k2 + k3)

−A(k1)A(k2 + k3 + k4)−A(k2)A(k1 + k3 + k4)

−A(k3)A(k1 + k2 + k4)−A(k4)A(k1 + k2 + k3)

−A(k1)A(k2)A(k3)A(k4)−A(k1)A(k3)A(k2)A(k4)

−A(k2)A(k1)A(k3)A(k4)−A(k2)A(k3)A(k1)A(k4)

−A(k3)A(k1)A(k2)A(k4)−A(k3)A(k2)A(k1)A(k4)
]

(2.25)

where {A,B} denotes the anti-commutator: {A,B} = AB +BA.
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3 1/N expansion from topological recursion

As demonstrated in [25], the 1/N correction of 1/2 BPS Wilson loops can be computed

systematically using the topological recursion of Gaussian matrix model. Let us consider

the 1/N expansion of connected correlator〈 h∏
i=1

TrUki
〉
conn

=

∞∑
g=0

N2−2g−hCg,h(k1, · · · , kh). (3.1)

The genus-g contribution to the h-point connected correlator Cg,h is written as

Cg,h(k1, · · · , kh) =

∫ h∏
i=1

duiρg,h(u1, · · · , uh)
h∏
i=1

e
√
λkiui , (3.2)

where the multi-point density ρg,h(u1, · · · , uh) is obtained from the discontinuity of the

connected correlator Wg,h(xi) of the resolvents in Gaussian matrix model〈
h∏
i=1

Tr
1

xi −M

〉
conn

=
∞∑
g=0

N2−2g−hWg,h(x1, · · · , xh). (3.3)

Here we have rescaled the matrix M →
√

2NM so that the measure of Gaussian ma-

trix model becomes
∫
dMe−2N TrM2

. In this normalization, the eigenvalues are dis-

tributed along the cut [−1, 1] and the eigenvalue density is given by the Wigner semi-circle

distribution

ρ0,1(u) =
2

π

√
1− u2. (3.4)

More generally, the multi-point density ρg,h in (3.2) is obtained from Wg,h by taking the

discontinuity across the cut ui ∈ [−1, 1] for all variables (x1, · · · , xh)

ρg,h(u1, · · · , uh) =

(
h∏
i=1

Disci

)
Wg,h, (3.5)

where Disci denotes the discontinuity of the i-th variable xi

DisciWg,h =
Wg,h(xi = ui + i0)−Wg,h(xi = ui − i0)

2πi
. (3.6)

As shown in [30],3 Wg,h is determined recursively by the following relation

4x1Wg,h(x1, · · · , xh) = Wg−1,h+1(x1, x1, x2, · · · , xh) + 4δg,0δh,1

+
∑

I1tI2={2,··· ,h}

g∑
g′=0

Wg′,1+|I1|(x1, xI1)Wg−g′,1+|I2|(x1, xI2)

+

h∑
j=2

∂

∂xj

Wg,h−1(x1, · · · , x̂j , · · · , xh)−Wg,h−1(x2, · · · , xh)

x1 − xj
.

(3.7)

Using this recursion relation, one can easily compute Wg,h starting from W0,1

W0,1(x) =

∫ 1

−1
duρ0,1(u)

1

x− u
= 2x− 2

√
1− x2. (3.8)

3See also [31] for a review of topological recursion.
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3.1 Two-point function

Let us compute the genus-g contribution of the two-point function Cg,2. The genus-zero part

C0,2 is exceptional: it is not given by the general expression (3.2) but C0,2 is written as [32]

C0,2(k1, k2) =
1

4π2

∫ 1

−1
du

∫ 1

−1
dv

1− uv√
(1− u2)(1− v2)

(ek1
√
λu − ek1

√
λv)(ek2

√
λu − ek2

√
λv)

(u− v)2
.

(3.9)

As shown in [33], this integral can be evaluated in a closed form in terms of the modified

Bessel function of the first kind Iν(x)

C0,2(k1, k2) =

√
λk1k2

2(k1 + k2)

[
I0(k1

√
λ)I1(k2

√
λ) + I1(k1

√
λ)I0(k2

√
λ)
]
. (3.10)

Next consider the genus-one part C1,2. From the topological recursion, W1,2 is found

to be

W1,2 =
5(1 + x1x2)

64

(
1

r31r
7
2

+
1

r71r
3
2

)
+

3(1 + x1x2)

64r51r
5
2

+
1

16

(
1

r31r
5
2

+
1

r51r
3
2

)
, (3.11)

where we introduced the notation ri by

ri =
√
x2i − 1. (3.12)

As discussed in [25], in order to compute Cg,h in (3.2) we need to rewrite (3.11) using the

formula
1

r2n+1
i

=
(−1)n

(2n− 1)!!
∂ni tn(xi),

xi

r2n+1
i

=
(−1)n

(2n− 1)!!
∂ni tn−1(xi),

(3.13)

where ∂i = ∂
∂xi

and tn(xi) is related to the Chebychev polynomial of the first kind Tn(xi) by

tn(xi) =
Tn(xi)

ri
. (3.14)

Then W1,2 in (3.11) is written in terms of tn as

W1,2 =
1

192

[
∂1∂

3
2(t1t3 + t0t2) + (x1 ↔ x2)

]
+

1

192
∂21∂

2
2(t2t2 + t1t1)

− 1

48

[
∂1∂

2
2t1t2 + (x1 ↔ x2)

]
,

(3.15)

where the product tntm should be understood as tn(x1)tm(x2).

Now, C1,2 is obtained from W1,2 in (3.15) using the prescription (3.2) and (3.5). The

u-integral in (3.2) is easily evaluated by the formula∫ 1

−1
du

Tn(u)

π
√

1− u2
ek
√
λu = In(k

√
λ). (3.16)
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After performing the integration by parts, we find that C1,2 is given by

C1,2(k1, k2) =
λ2

192

[
k1k

3
2I1(k1

√
λ)I3(k2

√
λ) + k1k

3
2I0(k1

√
λ)I2(k2

√
λ)

+ k31k2I3(k1
√
λ)I1(k2

√
λ) + k31k2I2(k1

√
λ)I0(k2

√
λ)

+ k21k
2
2I2(k1

√
λ)I2(k2

√
λ) + k21k

2
2I1(k1

√
λ)I1(k2

√
λ)
]

+
λ3/2

48

[
k1k

2
2I1(k1

√
λ)I2(k2

√
λ) + k21k2I2(k1

√
λ)I1(k2

√
λ)
]
.

(3.17)

In a similar manner, we can in principle compute the 1/N genus expansion up to any

desired order. For instance, the genus-two correction W2,2 is given by

W2,2 =
11

30720
∂31∂

3
2(5t3t3+2t2t2)

+

[
− 29

184320
∂31∂

4
2(t3t4+t2t3)−

1

12288
∂21∂

5
2(t2t5+t1t4)+

7

46080
∂21∂

4
2(8t2t4+3t1t3)

− 13

3840
∂21∂

3
2t2t3−

1

640
∂1∂

4
2t1t4+

1

92160
∂1∂

5
2(43t1t5+18t0t4)−

1

36864
∂1∂

6
2(t1t6+t0t5)

+(x1↔x2)

]
, (3.18)

and this can be translated to the genus-two correction of the two-point function C2,2(k1, k2)
using the prescription (3.2) and (3.5). For simplicity, here we write down the expression

for k1 = k2 = 1

C2,2(1,1)

=
29λ7/2

(
I2(
√
λ)I3(

√
λ)+I4(

√
λ)I3(

√
λ)
)

92160
+
λ7/2

(
I1(
√
λ)I4(

√
λ)+I2(

√
λ)I5(

√
λ)
)

6144

+
λ7/2

(
I0(
√
λ)I5(

√
λ)+I1(

√
λ)I6(

√
λ)
)

18432

+
13λ5/2I2(

√
λ)I3(

√
λ)

1920
+

1

320
λ5/2I1(

√
λ)I4(

√
λ)+

11λ3
(

2I2(
√
λ)2+5I3(

√
λ)2
)

30720

+
7λ3

(
3I1(
√
λ)I3(

√
λ)+8I2(

√
λ)I4(

√
λ)
)

23040
+
λ3
(

18I0(
√
λ)I4(

√
λ)+43I1(

√
λ)I5(

√
λ)
)

46080
.

(3.19)

3.2 Three-point and four-point functions

We can compute the three-point and four-point functions in a similar way. For simplic-

ity, we write down the genus-zero part when all winding numbers are unity: ki = 1

(i = 1, · · · , h). We find that the genus-zero part of the three-point function is given by

C0,3(1, 1, 1) =
λ

3
2

8

[
3I0(
√
λ)2I1(

√
λ) + I1(

√
λ)3
]
, (3.20)
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and the genus-zero part of the four-point function is given by

C0,4(1, · · · ,1) =
3λ2

16

[
4I0(
√
λ)2I1(

√
λ)2+I1(

√
λ)4

]
(3.21)

+
λ

5
2

8

[
3I0(
√
λ)2I1(

√
λ)I2(

√
λ)+I1(

√
λ)3I2(

√
λ)+3I0(

√
λ)I1(

√
λ)3+I0(

√
λ)3I1(

√
λ)

]
.

4 Comparison between the exact result and the 1/N expansion

In this section, we compare the exact finite N result in section 2 and the 1/N expansion

obtained from the topological recursion in section 3.

4.1 Small λ regime

Lets us consider the two-point function with k1 = k2 = 1. The exact result (2.23) in this

case reads

〈(TrU)2〉conn = Tr[A(2)−A(1)2]. (4.1)

In this subsection we consider the small λ expansion of this exact result. It turns out that

the each term in the small λ expansion receives only a finite number of 1/N corrections

〈(TrU)2〉conn =
1

4
λ+

3

32
λ2 +

(
5

384
+

1

192N2

)
λ3 +

(
35

36864
+

55

36864N2

)
λ4

+

(
7

163840
+

49

294912N2
+

1

23040N4

)
λ5

+

(
77

58982400
+

119

11796480N2
+

49

4915200N4

)
λ6 +O(λ7).

(4.2)

The coefficient of O(λn) term can be easily obtained from the small λ expansion of the

exact result (4.1) at first few N ’s (N = 1, 2, · · · , [(n+ 1)/2]). This expansion (4.2) can be

reorganized into the form of the genus expansion (3.1)

〈(TrU)2〉conn = C0,2 +
1

N2
C1,2 +

1

N4
C2,2 +O(N−6) (4.3)

with

C0,2 =
1

4
λ+

3

32
λ2 +

5

384
λ3 +

35

36864
λ4 +

7

163840
λ5 +

77

58982400
λ6 +O(λ7),

C1,2 =
1

192
λ3 +

55

36864
λ4 +

49

294912
λ5 +

119

11796480
λ6 +O(λ7),

C2,2 =
1

23040
λ5 +

49

4915200
λ6 +O(λ7).

(4.4)

As expected, this agrees with the small λ expansion of C0,2 in (3.10), C1,2 in (3.17), and

C2,2 in (3.19) obtained from the topological recursion.

We have performed a similar test for the three-point function and the four-point func-

tion at genus-zero and find perfect agreement between the exact finite N result (2.24), (2.25)

and the analytic result (3.20), (3.21) obtained from the topological recursion.
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λ
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C0,2

(a) C0,2

2 4 6 8 10
λ

10-4

0.001

0.010

0.100

1

10

100

C1,2

(b) C1,2

2 4 6 8 10
λ10-7

10-4

0.1

100

C2,2

(c) C2,2

Figure 1. Plot of two-point function Cg,2 as a function of λ for (a) g = 0, (b) g = 1, and (c) g = 2.

The red dots are the exact values of the right hand side of (4.5) at N = 200. The blue solid curves

are the analytic result of Cg,2 obtained from the topological recursion.

2 4 6 8 10
λ

0.1

1

10

100

1000

C0,3

(a) C0,3

2 4 6 8 10
λ

0.1

10

1000

105

C0,4

(b) C0,4

Figure 2. (a) and (b) are the plots of genus-zero three-point function C0,3 and four-point function

C0,4, respectively. The red dots are the exact values of the right hand side of (4.5) at N = 200, while

the blue solid curves are the analytic result of C0,3 and C0,4 obtained from the topological recursion.

4.2 Finite λ regime

In the finite λ regime, we can test numerically the agreement between the finite N result

and the 1/N expansion obtained from the topological recursion.

We can extract the genus-g contribution Cg,h from the exact finite N result in (2.20)

assuming that Cg′,h with g′ ≤ g − 1 are already known

Cg,h ≈ N−2+2g+h

〈 h∏
i=1

TrUki
〉
conn
−

g−1∑
g′=0

N2−2g′−hCg′,h

 , (N � 1). (4.5)

Then we can compare this with the analytic form of Cg,h obtained from the topological

recursion. Once we have checked that Cg,h in (4.5) agrees with the analytic result, we can

proceed to check the next order Cg+1,h by plugging the analytic result of Cg,h into the right

hand side of (4.5).

In figure 1, we show the result of this comparison for the two-point function with

k1 = k2 = 1. As we can see from this figure, the 1/N corrections correctly match between

the exact finite N result (4.1) and the analytic result in (3.10), (3.17), and (3.19) obtained

from the topological recursion.

In figure 2, we show the similar plot for the genus-zero part of the three-point function

C0,3 and the four-point function C0,4 with all winding numbers set to ki = 1. Again, we

find a perfect agreement between the exact finite N result (2.24), (2.25) and the analytic

result (3.20), (3.21) of the topological recursion.
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5 Comment on large winding number

When the winding number k becomes of the order of N , we can take a scaling limit where

the following combination of κ is held fixed [6]

k,N →∞ with κ =
k
√
λ

4N
fixed. (5.1)

In this limit, the holographically dual object of winding Wilson loop is not a fundamental

string but a D3-brane [6]. In this limit, the expectation value scales as

〈TrUk〉 = TrA(k) ≈ eNF (κ), (5.2)

where F (κ) is identified with the on-shell action of D3-brane

F (κ) = 2κ
√
κ2 + 1 + 2 arcsinh(κ). (5.3)

For the connected two-point function of large winding loops, we observed numerically that

the first term in (2.23) is dominant if the two loops are parallel, i.e. k1 and k2 are both

positive. For instance, when k1 = k2 = k > 0, we find

〈TrUk TrUk〉conn ≈ TrA(2k) ≈ eNF (2κ). (5.4)

On the other hand, the anti-parallel loops with opposite sign of windings are considered

in [33]. We observed numerically that the second term in (2.23) is dominant in this case

〈TrUk TrU−k〉conn ≈ −TrA(k)A(−k) ≈ −e2NF (κ). (5.5)

In the bulk D3-brane picture, k corresponds to the electric flux on the worldvolume of

D3-brane [6]. Comparing (5.2) and (5.4), the parallel case (5.4) seems to correspond to a

D3-brane with twice as much electric flux as the one for the single loop 〈TrUk〉 in (5.2).

On the other hand, the anti-parallel case (5.5) seems to correspond to two D3-branes. It

would be interesting to understand the bulk D-brane picture of parallel and anti-parallel

cases more clearly.

6 Generating function of symmetric representations

Using our formalism (2.10), we can easily write down the generating function of 1/2 BPS

Wilson loops in the k-th symmetric representation Sk

∞∑
k=0

zk〈TrSk U〉 =

〈
det

(
1

1− ze
√

λ
2N

M

)〉
mm

=

〈
det

(
1 +

∞∑
k=1

zke
k
√

λ
2N

M

)〉
mm

. (6.1)

From (2.10), this is written as a determinant of N ×N matrix

∞∑
k=0

zk〈TrSk U〉 = det

(
1 +

∞∑
k=1

zkA(k)

)
. (6.2)
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From this generating function, we can in principle study the behavior of Wilson loop in

the symmetric representation at finite N . In particular, it would be interesting to study

the 1/N correction along the lines of [26].

In the large winding number limit (5.1), it turns out that the dominant contribution

to 〈TrSk U〉 comes from the single trace Wilson loop with winding number k

〈TrSk U〉 ≈ TrA(k) ≈ eNF (κ). (6.3)

The difference between 〈TrSk U〉 and 〈TrUk〉 = TrA(k) is exponentially suppressed in the

limit (5.1).

Now let us compare the generating function of symmetric Wilson loops (6.2) and that

of the anti-symmetric representations Ak found in [23]

∞∑
k=0

zk〈TrAk U〉 =
〈

det

(
1 + ze

√
λ
2N

M
)〉

mm
= det

(
1 + zA(1)

)
. (6.4)

As we will see below, we find an interesting relation between the log of the generating

functions (6.2) and (6.4)

JS

(
z, λ,

1

N

)
=

1

N
Tr log

(
1 +

∞∑
k=1

zkA(k)

)
,

JA

(
z, λ,

1

N

)
=

1

N
Tr log

(
1 + zA(1)

)
.

(6.5)

As we have seen in section 4, the coefficient of the small λ expansion receives only a finite

number of 1/N corrections and hence it can be determined from the small λ expansion of

exact finite N result for the first few N ’s. From the exact finite N result in (6.4), the 1/N

expansion of JA was obtained in [25] in the small λ regime

JA

(
z, λ,

1

N

)
=
∞∑
n=0

N−nJ
(n)
A (z, λ) (6.6)

where the lower order terms are given by

J
(0)
A (z, λ) = log(1 + z) +

z

8(1 + z)2
λ+

z(1− 4z + z2)

192(1 + z)4
λ2

+
z
(
z4 − 26z3 + 66z2 − 26z + 1

)
9216(1 + z)6

λ3 +O(λ4),

J
(1)
A (z, λ) =

z2

8(1 + z)2
λ− z2(2z − 3)

64(1 + z)4
λ2 −

z2
(
z3 − 15z2 + 23z − 5

)
768(1 + z)6

λ3 +O(λ4),

J
(2)
A (z, λ) =

z
(
1− 4z + 13z2

)
384(1 + z)4

λ2 +
z
(
19z4 − 170z3 + 168z2 − 26z + 1

)
4608(1 + z)6

λ3 +O(λ4),

J
(3)
A (z, λ) = −

z2
(
5z3 − 30z2 + 21z − 4

)
1536(1 + z)6

λ3 +O(λ4).

(6.7)
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One can perform a similar computation for the generating function of symmetric represen-

tation in (6.2)

JS

(
z, λ,

1

N

)
=

∞∑
n=0

N−nJ
(n)
S (z, λ) (6.8)

where the lower order terms are given by

J
(0)
S (z, λ) = − log(1− z) +

z

8(1− z)2
λ+

z(1 + 4z + z2)

192(1− z)4
λ2

+
z
(
z4 + 26z3 + 66z2 + 26z + 1

)
9216(1− z)6

λ3 +O(λ4),

J
(1)
S (z, λ) =

z2

8(1− z)2
λ+

z2(2z + 3)

64(1− z)4
λ2 +

z2
(
z3 + 15z2 + 23z + 5

)
768(1− z)6

λ3 +O(λ4),

J
(2)
A (z, λ) =

z
(
1 + 4z + 13z2

)
384(1− z)4

λ2 +
z
(
19z4 + 170z3 + 168z2 + 26z + 1

)
4608(1− z)6

λ3 +O(λ4),

J
(3)
A (z, λ) =

z2
(
5z3 + 30z2 + 21z + 4

)
1536(1− z)6

λ3 +O(λ4).

(6.9)

From (6.7) and (6.9), we observe that JA and JS are related by

JS

(
z, λ,

1

N

)
= −JA

(
−z, λ,− 1

N

)
. (6.10)

Although we do not have a proof of this relation, we expect that (6.10) holds at least in

the small λ and 1/N expansion to all orders. It would be interesting to understand the

bulk D-brane interpretation of this relation, if any.

7 Conclusion

In this paper, we have studied the connected correlator of 1/2 BPS winding Wilson loops.

They are on top of each other along the same circle. We found the exact expression of the

connected correlator at finite N , which is written as a trace of some combination of the

matrix A(k). We also obtained the analytic expressions of the 1/N corrections of these

correlators using the topological recursion of Gaussian matrix model. We have checked the

agreement between the exact finite N result and the analytic result of topological recursion.

We also wrote down the exact form of the generating function of 1/2 BPS Wilson loops in

the symmetric representations.

There are several open questions. It would be very interesting to study the 1/N

corrections of symmetric Wilson loops using our exact result at finite N (6.2) along the

lines of [26] and see if the result of [17] is reproduced. Also, it would be nice to understand

the bulk D-brane picture of the connected correlator in the large winding number limit (5.1).

Lastly, it would be very interesting to study the Wilson loop labeled by a Young diagram

with number of boxes of order N2. Such a Wilson loop is expected to correspond to a

bulk geometry with non-trivial topology, known as the bubbling geometry. It would be

very interesting to study the emergence of non-trivial bulk geometry and its behavior in

the quantum regime from the exact result of Wilson loops at finite N .
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