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Abstract: Since the standard model contribution is virtually absent, any observation

of direct CP violation in the Cabibbo-favored charmed meson decays would be evidence

of new physics. In this paper, we conduct a quantitative study on direct CP violation in

D0 → K−π+, D+
s → ηπ+ and D+

s → η′π+ decays in the SU(2)L×SU(2)R×U(1)B−L gauge

extension of the standard model. In the model, direct CP violation arises mainly from the

interference between the decay amplitude coming from the SM left-left current operators

and that from the right-right current operators induced by W+
R gauge boson exchange.

Interestingly, the strong phase between the two amplitudes is evaluable, since it stems

from difference in QCD corrections to the left-left and right-right current operators, which

is a short-distance QCD effect given by ∼ (αs(M
2
WL

)/4π) log(M2
WR

/M2
WL

). We assess the

maximal direct CP violation in the above decays in the SU(2)L×SU(2)R×U(1)B−L model.

Additionally, we present a correlation between direct CP violation in these modes and one in

K → ππ decay parametrized by ε′, since W+
R gauge boson has a sizable impact on the latter.
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1 Introduction

In the standard model (SM), direct CP violation in the Cabibbo-favored charmed meson

decays is highly suppressed at the level of O(10−10) [1] because no multiple tree and/or

penguin diagrams with different CP phases can interfere. Hence, if discovered, direct

CP violation in these modes would immediately be a sign of new physics. This is in

contrast to the singly-Cabibbo-suppressed decays, where tree and penguin diagrams in

the SM interfere to yield direct CP violation, and also c → ss̄u and c → dd̄u processes

interfere through long-distance effects and may lead to sizable direct CP violation in the

SM [2]. In this paper, we conduct a quantitative study on direct CP violation in Cabibbo-

favored charmed meson decays with no final-state K0, namely, D0 → K−π+, D+
s → ηπ+

and D+
s → η′π+ decays, in the SU(2)L × SU(2)R × U(1)B−L gauge extension of the SM.

Here, the absence of final-state K0 ensures that Cabibbo-favored decay amplitudes do not

interfere with doubly-Cabibbo-suppressed decay amplitudes via K0-K̄0 mixing to induce

SM contributions to direct CP violation [3, 4].

In the SU(2)L × SU(2)R × U(1)B−L model, the right-right current operators,

(s̄c)V+A(ūd)V+A, coming from W+
R gauge boson exchange and the left-right current opera-

tors, (s̄c)V±A(ūd)V∓A, induced by W+
L -W+

R mixing both contribute to the Cabibbo-favored

decays. However, the Wilson coefficients for the latter are suppressed by ∼ 2mb/mt ' 1/20

compared to the former if the model naturally accommodates the bottom and top quark

Yukawa couplings. Therefore, we assume throughout this paper that the contribution of

the right-right current operators dominates over that of the left-right ones. As a support
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for this assumption, we comment that the dominance of the right-right current contribu-

tion has been observed in the study [5] of direct CP violation in K → ππ decay in the

SU(2)L× SU(2)R×U(1)B−L model, where we have found that the right-right current con-

tribution is larger by factor 5 than the left-right one, which indicates that although the

hadronic matrix elements of the left-right operators are enhanced, this is insufficient to

overcome the suppression of 2mb/mt ' 1/20 on their Wilson coefficients.

The hadronic matrix elements of the right-right current operators are simply the minus

of those of the left-left current operators, due to parity symmetry of QCD. Nevertheless,

the decay amplitude from the right-right current operators and that from the left-left ones

acquire a non-trivial relative strong phase from difference in QCD corrections to the right-

right and left-left current operators, which manifests itself as a difference between the ratio

of the Wilson coefficients for (s̄αcα)V+A(ūβdβ)V+A and (s̄αcβ)V+A(ūβdα)V+A operators

and the ratio of those for (s̄αcα)V−A(ūβdβ)V−A and (s̄αcβ)V−A(ūβdα)V−A operators (α, β

denote color indices) at a given renormalization scale. Ultimately, this difference is because

the quark-gluon-quark-W+
L (W+

R ) box diagram in the fundamental theory contains terms

proportional to logM2
WL

(logM2
WR

), and hence the amount of QCD corrections to W+
L and

W+
R gauge boson exchange diagrams differ by ∼ (αs(M

2
WL

)/4π) log(M2
WR

/M2
WL

). Interest-

ingly, this fact allows us to evaluate the relative strong phase, since the difference in QCD

corrections at scales between µ ∼MWR
and µ ∼MWL

is a short-distance effect. Also, the

scale-and-scheme-independent combinations [6] of Wilson coefficients and hadronic matrix

elements for (s̄αcα)V−A(ūβdβ)V−A and (s̄αcβ)V−A(ūβdα)V−A operators can be estimated

reliably with the diagrammatic approach with SU(3) flavor symmetry [7–11], which works

successfully on the Cabibbo-favored charmed meson decays into two pseudoscalars [12, 18].1

Combining the strong phase thus evaluated and new CP-violating phases in the

SU(2)L × SU(2)R × U(1)B−L model, we assess the maximal direct CP violation in

D0 → K−π+, D+
s → ηπ+ and D+

s → η′π+ decays. Additionally, we investigate a

correlation between direct CP violation in the above modes and one in K → ππ decay

parametrized by ε′. Previously, the authors have found [5] that W+
R gauge boson in the

SU(2)L × SU(2)R × U(1)B−L model with ‘charge symmetry’ [19] has a sizable impact on

ε′/ε because W+
R exchange contributes to it at tree level. It has been further revealed that

the model with O(10) TeV W+
R boson mass can account for the incompatibility between

the experimental data on ε′/ε [20–22] and the upper bound on ε′/ε [23, 24] obtained with

dual QCD approach and supported by lattice-based evaluations [25–30].2 Therefore, it is

of particular interest how ε′/ε and direct CP violation in Cabibbo-favored charmed meson

decays are correlated in the SU(2)L × SU(2)R × U(1)B−L model, and how the former

constrains or predicts the latter.

This paper is organized as follows: In section 2, we briefly review the SU(2)L×SU(2)R×
U(1)B−L gauge extension of the SM. In section 3, we give the effective Hamiltonian for the

Cabibbo-favored charmed meson decays. Section 4 presents our new results, where the dia-

grammatic amplitudes are reorganized in such a way that the decay amplitude coming from

1Earlier studies on the application of the diagrammatic approach with SU(3) flavor symmetry to charmed

meson decays into two pseudoscalars are found in refs. [13, 14] and in refs. [15–17].
2For other works on new physics contributions to ε′/ε, see refs. [31–43].
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Field Lorentz SO(1, 3) SU(3)C SU(2)L SU(2)R U(1)B−L

QiL (2, 1) 3 2 1 1/3

Qc iR (2, 1) 3̄ 1 2 −1/3

LiL (2, 1) 1 2 1 −1

Lc iR (2, 1) 1 1 2 1

Φ 1 1 2 2 0

∆L 1 1 3 1 2

∆R 1 1 1 3 −2

Table 1. Matter content and charge assignments with i being generation indices.

the right-right current operators are expressed in terms of the ratio of the Wilson coefficients

that is calculable in short-distance QCD, and the diagrammatic amplitudes. In section 5,

we show the results of our analysis on direct CP violation in D0 → K−π+, D+
s → ηπ+ and

D+
s → η′π+ decays, including its correlation with ε′/ε. Section 6 summarizes the paper.

2 SU(2)L × SU(2)R ×U(1)B−L model

We briefly describe the SU(2)L×SU(2)R×U(1)B−L gauge extension of the SM. Remind that

charge symmetry [19] is not imposed, unlike ref. [5]. We summarize the matter content in

table 1. SU(2)L×SU(2)R×U(1)B−L gauge interactions and Yukawa interactions of quarks

are described as

−L ⊃ Qi †L σ̄µ

(
1

2
gLσ

aW aµ
L +

1

3
gXX

µ

)
QiL +Qc i †R σ̄µ

(
−1

2
gR(σa)TW aµ

R − 1

3
gXX

µ

)
Qc iR

+(Yq)ij Q
i †
L Φεs(Q

c j
R )∗ + (Ỹq)ij Q

i †
L (εTg Φ∗εg)εs(Q

c j
R )∗ + H.c. (2.1)

∆R acquires a VEV, vR, to break SU(2)R×U(1)B−L → U(1)Y , and Φ further gains a VEV,

〈Φ〉 = diag(v sinβ, v cosβei α) with v ' 246 GeV, to trigger the electroweak symmetry

breaking. As a result, the charged SU(2)L gauge boson, W+
L , and the charged SU(2)R

gauge boson, W+
R , mix and form two mass eigenstates W+, W ′+ as

−L⊃M2
WW

+W−+M2
W ′W

′+W ′
−
,

(
W+
L

W+
R

)
=

(
cosζ −e−iα sinζ

eiα sinζ cosζ

)(
W+

W ′+

)
, (2.2)

sinζ ' gR
gL

M2
W

M2
W ′

sin(2β) for M2
W ′�M2

W . (2.3)

The up-type quark mass matrix, Mu, and the down-type one, Md, are given by3

Mu =
v√
2

(
sinβYq + cosβe−i αỸq

)
, Md =

v√
2

(
cosβei αYq + sinβỸq

)
, (2.4)

3U iR ≡ εs(U
c i
R )∗, Di

R ≡ εs(D
c i
R )∗.
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which are diagonalized as Mu = V †uLdiag(mu, mc, mt)VuR and Md =

V †dLdiag(md, ms, mb)VdR with unitary matrices VuL, VuR, VdL, VdR. Then, we obtain

the SM Cabibbo-Kobayashi-Maskawa matrix as VL = VuLV
†
dL, and the corresponding

flavor mixing matrix for right-handed quarks as VR = VuRV
†
dR. From eq. (2.2), we find

that the charged-current interactions are described by the following term in the unitary

gauge:

−L ⊃ 1√
2
Ū iW+µγµ

{
gL(VL)ij cos ζPL + gR(VR)ij e

i α sin ζPR
}
Dj

+
1√
2
Ū iW ′+µγµ

{
−gL(VL)ij e

−i α sin ζPL + gR(VR)ij cos ζPR
}
Dj + H.c. (2.5)

From eq. (2.4), it is clear that the top and bottom Yukawa couplings are derived with-

out fine-tuning only when tan β ' mb/mt holds, which, combined with eq. (2.3), gives

sin ζ ' (2mb/mt)(gR/gL)(M2
W /M

2
W ′). Then, one finds from eq. (2.5) that the Wilson

coefficients for the left-right currents obtained by integrating out W+ are suppressed by

2mb/mt compared to those for the right-right currents obtained by integrating out W ′+.

3 Effective Hamiltonian for Cabibbo-favored ∆C = 1 process

The effective Hamiltonian for Cabibbo-favored ∆C = 1 process reads,

H∆C=1
eff =

2∑
i=1

(CLL
i QLL

i + CRR
i QRR

i ). (3.1)

The operators above are defined as

QLL
1 = (s̄αcβ)V−A(ūβdα)V−A, QLL

2 = (s̄αcα)V−A(ūβdβ)V−A,

QRR
1 = (s̄αcβ)V+A(ūβdα)V+A, QRR

2 = (s̄αcα)V+A(ūβdβ)V+A, (3.2)

where (q̄q′)V−A and (q̄q′)V+A stand for q̄γµ(1−γ5)q′ and q̄γµ(1+γ5)q′, respectively, and α, β

denote QCD color indices. CLL
i (i = 1, 2) in eq. (3.1) represents the SM contribution, while

CRR
i arises from W+

R gauge boson exchange. In this paper, we neglect the left-right current

operators (s̄c)V±A(ūd)V∓A induced by W+
L -W+

R mixing, because the corresponding Wilson

coefficients are suppressed by 2mb/mt ' 1/20 compared to CRR
i if there is no fine-tuning

in deriving the bottom quark Yukawa coupling.

The renormalization group equation (RGE) of the Wilson coefficients is divided into

two pieces for chirality-flipped sectors. At leading order, it reads

µ
d

dµ
~CLL = γT ~CLL, µ

d

dµ
~CRR = γT ~CRR, γ =

(
−2 6

6 −2

)
αs
4π
, (3.3)
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where ~CLL = (CLL
1 , CLL

2 )T, ~CRR = (CRR
1 , CRR

2 )T, and the anomalous dimension matrix γ

is common for LL and RR sectors. The initial conditions for the RGE at leading order are

CLL
1 (µW ) = 0, (3.4)

CLL
2 (µW ) =

GF√
2
V L∗
cs V

L
ud, (3.5)

CRR
1 (µW ′) = 0, (3.6)

CRR
2 (µW ′) =

GF√
2
V R∗
cs V

R
ud

(
gR
gL

MW

MW ′

)2

, (3.7)

with µW ∼ MW , µW ′ ∼ MW ′ . The RGE (3.3) is diagonalized in the basis of CLL
± =

CLL
1 ± CLL

2 and CRR
± = CRR

1 ± CRR
2 so that the RG evolution is simply described without

operator mixing.

4 Decay amplitudes from right-right current operators

Hereafter, we exclusively work under the assumption of SU(3) flavor symmetry of u, d, s

quarks. The amplitudes of charmed meson decays to two pseudoscalars (D → PP ) can be

categorized by diagrammatic topologies [12–18]. For the Cabibbo-favored D → PP decays,

the diagrammatic amplitudes consist of T (tree), C(color-suppressed tree), A(annihilation)

and E(exchange) diagrams. In addition, ref. [6] has clarified the correspondence between

the diagrammatic amplitudes and the scale-and-scheme-independent combinations of Wil-

son coefficients and operators.

For the left-left and right-right current contributions, the diagrammatic amplitudes

are rewritten as

TLL = CLL
1 (µ) 〈Q1(µ)〉CE + CLL

2 (µ) 〈Q2(µ)〉DE ,

TRR = −CRR
1 (µ) 〈Q1(µ)〉CE − C

RR
2 (µ) 〈Q2(µ)〉DE , (4.1)

CLL = CLL
1 (µ) 〈Q1(µ)〉DE + CLL

2 (µ) 〈Q2(µ)〉CE ,

CRR = −CRR
1 (µ) 〈Q1(µ)〉DE − C

RR
2 (µ) 〈Q2(µ)〉CE , (4.2)

ALL = CLL
1 (µ) 〈Q1(µ)〉CA + CLL

2 (µ) 〈Q2(µ)〉DA ,

ARR = −CRR
1 (µ) 〈Q1(µ)〉CA − C

RR
2 (µ) 〈Q2(µ)〉DA , (4.3)

ELL = CLL
1 (µ) 〈Q1(µ)〉DA + CLL

2 (µ) 〈Q2(µ)〉CA ,

ERR = −CRR
1 (µ) 〈Q1(µ)〉DA − C

RR
2 (µ) 〈Q2(µ)〉CA , (4.4)

where µ denotes a common renormalization scale for the Wilson coefficients and oper-

ators of both left-left and right-right currents. 〈Qi(µ)〉 denotes a hadronic matrix ele-

ment defined by 〈Qi(µ)〉 = 〈PP |QLL
i (µ) |D〉, whose subscript represents the connected

emission (CE), the disconnected emission (DE), the connected annihilation (CA) and

the disconnected annihilation (DA), respectively [6]. We have used 〈PP |QLL
i (µ) |D〉 =

−〈PP |QRR
i (µ) |D〉 (i = 1, 2) that follows from parity conservation of QCD. We empha-

size that each of TLL, TRR, CLL, CRR, ALL, ARR, ELL, ERR is independent of renormalization

scale and scheme [6].

– 5 –
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By rewriting QLL
1 as (s̄αdα)V−A(ūβcβ)V−A through the Fierz rearrangement, we obtain

the following relations based on SU(3) flavor symmetry of u, d, s quarks:

〈Q1(µ)〉CE = 〈Q2(µ)〉CE , (4.5)

〈Q1(µ)〉DE = 〈Q2(µ)〉DE , (4.6)

〈Q1(µ)〉CA = 〈Q2(µ)〉CA , (4.7)

〈Q1(µ)〉DA = 〈Q2(µ)〉DA . (4.8)

Henceforth, the subscripts of the operators are omitted. Using eqs. (4.5)–(4.8), we can

re-express the diagrammatic amplitudes in terms of CLL
± = CLL

1 ± CLL
2 as

TLL = CLL
+

〈Q〉CE + 〈Q〉DE

2
+ CLL

−
〈Q〉CE − 〈Q〉DE

2
, (4.9)

CLL = CLL
+

〈Q〉CE + 〈Q〉DE

2
− CLL

−
〈Q〉CE − 〈Q〉DE

2
, (4.10)

ALL = CLL
+

〈Q〉CA + 〈Q〉DA

2
+ CLL

−
〈Q〉CA − 〈Q〉DA

2
, (4.11)

ELL = CLL
+

〈Q〉CA + 〈Q〉DA

2
− CLL

−
〈Q〉CA − 〈Q〉DA

2
. (4.12)

It follows that the right-right current contributions can be rewritten as

TRR = −
CRR

+

CLL
+

TLL + CLL

2
−
CRR
−
CLL
−

TLL − CLL

2
, (4.13)

CRR = −
CRR

+

CLL
+

TLL + CLL

2
+
CRR
−
CLL
−

TLL − CLL

2
, (4.14)

ARR = −
CRR

+

CLL
+

ALL + ELL

2
−
CRR
−
CLL
−

ALL − ELL

2
, (4.15)

ERR = −
CRR

+

CLL
+

ALL + ELL

2
+
CRR
−
CLL
−

ALL − ELL

2
. (4.16)

The ratio of the Wilson coefficients, CRR
± /CLL

± , in eqs. (4.13)–(4.16) is independent of

renormalization scale and scheme. As a reference, we find, at the leading order,

CRR
± (µ)

CLL
± (µ)

= (ηµWµW ′ )
−λ0±

2β0

(
gR
gL

MW

MW ′

)2 V R∗
cs V

R
ud

V L∗
cs V

L
ud

, (4.17)

where λ0+ = 4, λ0− = −8, and β0 = 11−2nf/3 with nf = 6, and we have defined the QCD

correction factor as ηµ1µ2 = αs(µ1)/αs(µ2). The next-leading order (NLO) QCD corrections

to eq. (4.17) are found in eq. (A.1).

The diagrammatic amplitudes have been determined through a phenomenological fit-

ting of D → PP decay partial widths in ref. [12] (see also ref. [18]). In that study, an impor-

tant assumption is that OZI-suppressed diagrams for D0 → K̄0η, D0 → K̄0η′, D+
s → π+η,

D+
s → π+η′ decays are negligible in the partial widths. Also, the SU(3) flavor symmetry

is assumed. These assumptions are justified for the Cabibbo-favored decays, since a good

fit with χ2 = 1.79 for 1 degree of freedom for fixed η − η′ mixing angle is obtained in

– 6 –
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that study.4 In this paper, we employ the result of ref. [12] by fixing the η − η′ mixing

angle at 19.5◦. Assuming that the contributions of the right-right current operators to the

partial widths are negligible, one finds [12] (in 10−6 GeV unit), TLL = 2.927±0.022, CLL =

(2.337 ± 0.027) exp[i(−151.66 ± 0.63)◦], ALL = (0.33 ± 0.14) exp[i(70.47 ± 10.90)◦] and

ELL = (1.573± 0.032) exp[i(120.56± 1.03)◦].

5 Numerical analysis on direct CP violation

In the SM, direct CP violation in the Cabibbo-favored decays is generated via the interfer-

ence between the tree diagram and the box and di-penguin diagrams [1]. CP asymmetry

in D0 → K−π+ decay rate is estimated to be 1.4 × 10−10 in ref. [1]. We infer that direct

CP violation is suppressed similarly in all Cabibbo-favored modes, and therefore neglect

the SM contribution in all modes. Provided the contribution of the right-right current is

small, CP asymmetry in the decay rates can be expanded as

AD→fCP =
Γ[D → f ]− Γ[D̄ → f̄ ]

Γ[D → f ] + Γ[D̄ → f̄ ]
' Re

[
(Af )RR

(Af )LL
−

(Āf̄ )RR

(Āf̄ )LL

]
. (5.1)

The diagrammatic amplitude of each Cabibbo-favored decay is given in table 2. By using

the relations eqs. (4.13)–(4.16) and the leading order expression for the Wilson coefficient

ratio eq. (4.17), we find that the asymmetry takes a simple form,

AD→fCP = FD→fCP

[(
ηµWµW ′

)− 2
7 −

(
ηµWµW ′

) 4
7

](
gR
gL

MW

MW ′

)2

Im

(
V R∗
cs V

R
ud

V L∗
cs V

L
ud

)
, (5.2)

where FD→fCP is a process-dependent factor, which is summarized in table 2. The QCD

correction factor and CP phase dependence in eq. (5.2) are common for all Cabibbo-

favored modes. Note that AD
0→K̄0π+

CP vanishes because TRR + CRR and TLL + CLL have

an identical strong phase. In appendix A, NLO QCD corrections with the appropriate

threshold corrections at the matching scales µW and µW ′ , which we use in the numerical

analysis, are given.

In figure 1, maximal CP asymmetries in D0 → K−π+, D+
s → π+η and D+

s → π+η′ in

the SU(2)L × SU(2)R × U(1)B−L are plotted by taking Im
(
V R∗
cs V

R
ud/V

L∗
cs V

L
ud

)
= 1/ cos2 θC

(θC denotes the SM Cabibbo angle). To estimate theoretical uncertainty, we have varied

the matching scales µW and µW ′ in the range MW /2 ≤ µW ≤ 2MW and MW ′/2 ≤ µW ′ ≤
2MW ′ , respectively. Also, the 1σ errors of the diagrammatic amplitudes in ref. [12] are

considered as a source of uncertainty. We observe in figure 1 that the asymmetry is specially

enhanced in D+
s → π+η decay, due to the relatively large process-dependent factor. Note

that we do not study the other Cabibbo-favored decays, because they include a final-state

K̄0 and are thus observed via K0-K̄0 mixing. Hence, the amplitudes of Cabibbo-favored

and doubly-Cabibbo-suppressed decays interfere to yield non-negligible CP asymmetry in

the SM.

4A better fit has been found in ref. [48], where factorization-assisted topological-amplitude approach

with the inclusion of SU(3) breaking effects is used.
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In real experiments, one measures the difference of the CP asymmetries in two pro-

cesses, to nullify asymmetry in the production cross sections at pp colliders or a slight

asymmetry in the production kinematics at e+e− colliders (due to Z-photon interference),

and asymmetry in the efficiency of charged meson detection. Consequently, most of the

systematic uncertainties cancel. For the search for direct CP violation in Cabibbo-favored

decays in the SU(2)L × SU(2)R ×U(1)B−L model, we suggest that one measure

AD
+
s →π+η

CP −AD
+
s →π+η′

CP , (5.3)

because the two asymmetries are predicted to have opposite signs in table 2 (note the

signs of FD→fCP ) and AD
+
s →π+η

CP is sizable. Also, asymmetries in the D±s production and

the π± detection efficiency largely cancel between the two processes. In figure 2, we plot

the maximal difference in the CP asymmetries in D+
s → π+η and D+

s → π+η′ by again

taking Im
(
V R∗
cs V

R
ud/V

L∗
cs V

L
ud

)
= 1/ cos2 θC . We comment that, as shown in appendix B, our

prediction for the CP asymmetry difference eq. (5.3), which has been derived by assuming

SU(3) flavor symmetry, is not much affected by SU(3) flavor symmetry breaking.

We make a crude estimate on the statistical uncertainty in a measurement of eq. (5.3)

at Belle II with 50 ab−1 of data. Reference [44] reports that with 791 fb−1 of data at

Belle, statistical uncertainty of the CP asymmetry in the number of reconstructed events

(Nrec(D → f) − Nrec(D̄ → f̄))/(Nrec(D → f) + Nrec(D̄ → f̄)) is 1.13% for D+ → π+η

and 1.12% for D+ → π+η′. Assuming that the signal efficiencies (1.6%-1.7%) are the same

for D+ → π+η(′) and D+
s → π+η(′), and using the branching ratios found in ref. [45], we

estimate the statistical uncertainty at Belle II with 50 ab−1 of data to be ∆(AD
+
s →π+η

CP −
AD

+
s →π+η′

CP ) =0.08%. Next, we estimate the statistical uncertainty in a measurement of

eq. (5.3) at LHCb with 50 fb−1 of data. Reference [46] reports that with 1 fb−1 of data

at 7 TeV and 2 fb−1 of data at 8 TeV LHCb, the signal yield of D±s → π±η′ processes

is 152×103. Making a rough approximation that the signal yield with 2 fb−1 of data at

8 TeV is twice the yield with 1 fb−1 of data at 7 TeV, and performing a näıve rescaling of

the number of events by ×200 based on ref. [47], the signal yield of D±s → π±η′ processes

with 50 fb−1 of data is estimated to be 107. Further assuming that the signal efficiencies for

D±s → π±η′ and D±s → π±η are the same, the statistical uncertainty with 50 fb−1 of data is

found to be ∆(AD
+
s →π+η

CP −AD
+
s →π+η′

CP ) =0.06%. We find that if the SU(2)R gauge coupling

is enhanced as gR = 2gL, one may hope to discover direct CP violation in Cabibbo-favored

decays even with MW ′ = 4 TeV (this parameter point is nearly consistent with the bound

on Z ′ derived in refs. [49, 50]).

In figure 3, a correlated prediction for the CP asymmetry difference AD
+
s →π+η

CP −
AD

+
s →π+η′

CP and Re(ε′/ε) calculated in ref. [5] in the SU(2)L × SU(2)R × U(1)B−L model

is presented. Here, as with ref. [5], we impose ‘charge symmetry’ [19] on the model, which

gives gL = gR and V R
ud = (V L

ud)
∗e−i ψd , V R

cs = (V L
cs)
∗ei(φc−ψs), V R

us = (V L
us)
∗e−i ψs with

ψd, ψs, φc being arbitrary CP-violating phases. We thereby forbid ad hoc tuning of model

parameters, rendering the model more predictive. In our calculation of Re(ε′/ε), we have

considered all contributions including those from the left-right current operators, unlike in

our calculation of direct CP violation in D → PP decays. In the plot, ψd, ψs, φc and α

– 8 –
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D→ f Af FD→fCP # of FD→fCP

D+→ K̄0π+ T +C 0 0

D0→K−π+ T +E Im
[
CLL+ALL
TLL+ELL

]
0.146±0.042

D0→ K̄0π0 (C−E)/
√

2 Im
[
TLL−ALL
CLL−ELL

]
0.958±0.030

D0→ K̄0η C/
√

3 Im
[
TLL
CLL

]
0.595±0.015

D0→ K̄0η′ −(C+3E)/
√

6 Im
[
TLL+3ALL
CLL+3ELL

]
−0.479±0.076

D+
s →K+K̄0 C+A Im

[
TLL+ELL
CLL+ALL

]
−0.213±0.072

D+
s →π+η (T −2A)/

√
3 Im

[
CLL−2ELL
TLL−2ALL

]
−1.367±0.074

D+
s →π+η′ 2(T +A)/

√
6 Im

[
CLL+ELL
TLL+ALL

]
0.1726±0.039

Table 2. Diagrammatic amplitudes [12], process-dependent factors for CP asymmetry, and their

numerical values for Cabibbo-favored charmed meson decays. The uncertainty comes from the 1σ

errors of the diagrammatic amplitudes. Here, we fix the η − η′ mixing angle at arcsin(1/3).

(which appears in eq. (2.2)) are randomly generated in the range [0, 2π]. We observe that

when the experimental value of Re(ε′/ε) is naturally accounted for, the CP asymmetry

difference is about 10−6. Conversely, to have AD
+
s →π+η

CP − AD
+
s →π+η′

CP as large as 10−4, one

must fine-tune the new CP-violating phases to satisfy the 1σ range of Re(ε′/ε).

We comment in passing that for W+
R gauge boson in the SU(2)L × SU(2)R ×U(1)B−L

model, the constraint from indirect CP violation in kaons, Re(ε), is mild compared to that

from direct CP violation Re(ε′/ε), because W+
R gauge boson exchange contributes to the

latter at tree level while it contributes to the former only at loop levels. However, it should

be noted that unless the scalar potential is fine-tuned, the contribution from the heavy

neutral scalar exchange to Re(ε) is sizable, which is investigated in detail in refs. [51, 52].

6 Summary

We have studied the contribution of the right-right current operators in the SU(2)L ×
SU(2)R×U(1)B−L model to direct CP violation in Cabibbo-favored charmed meson decays,

for which the SM contribution is virtually absent. Interestingly, this contribution is evalu-

able, because it stems from difference in QCD corrections to the left-left current operators

induced by W+
L boson and the right-right ones induced by W+

R boson, which is a short-

distance effect ∼ (αs(M
2
WL

)/4π) log(M2
WR

/M2
WL

). Combining a short-distance calculation

of this difference with the result of the diagrammatic approach to the Cabibbo-favored de-

cay amplitudes, we numerically evaluate the CP asymmetry in D0 → K−π+, D+
s → π+η

– 9 –
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Figure 1. Absolute value of the maximal CP asymmetry of the partial width of Cabibbo-favored

charmed meson decays in the SU(2)L×SU(2)R×U(1)B−L model (without charge symmetry). The

bands represent the combination of theoretical uncertainty evaluated by varying the matching scales

as MW /2 ≤ µW ≤ 2MW and MW ′/2 ≤ µW ′ ≤ 2MW ′ , and uncertainty from the 1σ errors of the

diagrammatic amplitudes.

and D+
s → π+η′ decay rates. We have found that the asymmetry in D+

s → π+η is specially

sizable, and further suggested the measurement of the difference in the CP asymmetries

in D+
s → π+η and D+

s → π+η′ decays. For MW ′ (almost equal to MWR
) about 4 TeV

and gR = 2gL, one may hope to observe this CP asymmetry difference at Belle II with

50 ab−1 of data or at LHCb with 50 fb−1 of data. Finally, we have presented a correlated

prediction for the CP asymmetry difference in D+
s → π+η and D+

s → π+η′ decays, and

direct CP violation in K → ππ decay Re(ε′/ε), under the assumption of ‘charge symmetry’

in the SU(2)L×SU(2)R×U(1)B−L model. We have observed that if the experimental data

on Re(ε′/ε) are naturally accounted for, the CP asymmetry difference in D+
s → π+η and

D+
s → π+η′ decays is as small as 10−6, and that a fine-tuning of the new CP-violating

phases is mandatory to anticipate the discovery of direct CP violation in Cabibbo-favored

charmed meson decays.
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Figure 2. Maximal difference in the CP asymmetry in D+
s → π+η and D+

s → π+η′ in the SU(2)L×
SU(2)R × U(1)B−L model (without charge symmetry). The bands represent the combination of

theoretical uncertainty evaluated by varying the matching scales as MW /2 ≤ µW ≤ 2MW and

MW ′/2 ≤ µW ′ ≤ 2MW ′ , and uncertainty from the 1σ errors of the diagrammatic amplitudes.

A NLO formulas

Here, we summarize NLO QCD corrections to the observables which are discussed in this

paper. At NLO, the ratio of the Wilson coefficients in eq. (4.17) is modified to

CLL
± (µ)

CRR
± (µ)

∣∣∣∣
NLO

= UNLO
±

(
gR
gL

MW

MW ′

)2 V R∗
cs V

R
ud

V L∗
cs V

L
ud

, (A.1)

UNLO
± = (ηµWµW ′ )

−λ0±
2β0

[
1− αs(µW )

4π

(
β1λ0±
2β2

0

− λ1±
2β0

+
λ0±

2
log

M2
W

µ2
W

−B±
)]

×
[
1 +

αs(µW ′)

4π

(
β1λ0±
2β2

0

− λ1±
2β0

+
λ0±

2
log

M2
W ′

µ2
W ′
−B±

)]
, (A.2)

where β1 is the six-flavor NLO QCD β function coefficient, λ1± are the NLO γ function

coefficients for CLL
± and CRR

± , and B± are constants (see, e.g., ref. [53]). Note that each of

λ1± and B± is renormalization-scheme-dependent, but their scheme dependences cancel.

Thus at NLO, the CP asymmetry in eq. (5.2) is

AD→fCP |NLO = FD→fCP

[
UNLO

+ − UNLO
−

](gR
gL

MW

MW ′

)2

Im

(
V R∗
cs V

R
ud

V L∗
cs V

L
ud

)
. (A.3)
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Figure 3. Correlated prediction for difference in the CP asymmetry in D+
s → π+η and D+

s → π+η′,

and Re(ε′/ε), in the SU(2)L × SU(2)R × U(1)B−L model with charge symmetry. The red, green

and blue dots represent the parameter points with randomly generated values of new CP violating

phases for MW ′ = 5 TeV, 10 TeV and 50 TeV, respectively. The cyan band stands for the 1σ range

of the experimental value of Re(ε′/ε) [45].

B Effect of SU(3) flavor symmetry breaking

We study the effect of SU(3) flavor symmetry breaking on our prediction, which is not

discussed in the main text. Our prediction of CP asymmetries depends crucially on V-

spin symmetry (symmetry of u and s, which is part of SU(3) flavor symmetry), since our

prediction is derived from eqs. (4.5)–(4.8), which are obtained by assuming V-spin. In

particular, the isospin symmetry cannot lead to the above results. The effect of V-spin

breaking on eqs. (4.5)–(4.8) is estimated to be simply fK/fπ − 1 ' 0.2. This is in con-

trast to singly-Cabibbo-suppressed decays, where SU(3) breaking gives rise to corrections

of order (fK/fπ)2 − 1 ' 0.4 in factorized tree amplitudes, and also enhances penguin am-

plitudes (suppressed by VcbV
∗
ub in the SU(3) limit) leading to a further splitting of c→ dd̄u-

induced amplitudes and c → ss̄u-induced amplitudes [54]; all these effects are absent in

the Cabibbo-favored decays.

Let us see how corrections of order fK/fπ − 1 ' 0.2 to eqs. (4.5)–(4.8) affect our

prediction of CP asymmetries. First we concentrate on T (tree) and C(color-suppressed

tree) diagrams. When eqs. (4.5), (4.6) are not valid, TLL and CLL are written as

TLL = CLL
+

〈Q1〉CE + 〈Q2〉DE

2
+ CLL

−
〈Q1〉CE − 〈Q2〉DE

2
, (B.1)

CLL = CLL
+

〈Q2〉CE + 〈Q1〉DE

2
− CLL

−
〈Q2〉CE − 〈Q1〉DE

2
. (B.2)
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The first and second terms on the right-hand side of eqs. (B.1), (B.2) are individually

renormalization-scale-and-scheme independent. Therefore, we can parametrize the V-spin

breaking effects in terms of renormalization-scale-and-scheme independent parameters εE+

and εE− as

CLL
+

〈Q1〉CE + 〈Q2〉DE

2
= CLL

+

〈Q2〉CE + 〈Q1〉DE

2
(1 + εE+), (B.3)

CLL
−
〈Q1〉CE − 〈Q2〉DE

2
= CLL

−
〈Q2〉CE − 〈Q1〉DE

2
(1 + εE−), (B.4)

where we estimate the V-spin breaking parameters as |εE+| ∼ |εE−| ∼ fK/fπ − 1 ' 0.2. In

the leading order of εE+, εE−, we find

TLL + (1 + εE−)CLL = CLL
+ (〈Q2〉CE + 〈Q1〉DE)(1 + εE−/2 + εE+/2), (B.5)

TLL − (1 + εE+)CLL = CLL
− (〈Q2〉CE − 〈Q1〉DE)(1 + εE−/2 + εE+/2). (B.6)

Consequently, TRR and CRR can be expressed in terms of TLL, CLL and the V-spin breaking

parameters as

TRR = −
CRR

+

CLL
+

TLL(1 + εE+/2− εE−/2) + CLL(1 + εE+/2 + εE−/2)

2

−
CRR
−
CLL
−

TLL(1− εE+/2 + εE−/2)− CLL(1 + εE+/2 + εE−/2)

2
, (B.7)

CRR = −
CRR

+

CLL
+

TLL(1− εE+/2− εE−/2) + CLL(1− εE+/2 + εE−/2)

2

+
CRR
−
CLL
−

TLL(1− εE+/2− εE−/2)− CLL(1 + εE+/2− εE−/2)

2
. (B.8)

We obtain analogous expressions for ARR and ERR, with εE+, εE− replaced with different

V-spin breaking parameters εA+, εA−. The above V-spin breaking corrections solely affect

the factor FD→fCP in the formula for CP asymmetry eq. (5.2). For the phenomenologically

interesting modes D+
s → π+η, D+

s → π+η′ and D0 → K−π+, this factor is altered from

table 2 to

FD
+
s →π+η

CP = Im

[
CLL − 2ELL

TLL − 2ALL

]
+ Im

[
CLL(εE+/2 + εE−/2)− 2ELL(εA+/2 + εA−/2)

TLL − 2ALL

]
+Im

[
TLL(εE+/2− εE−/2)− 2ALL(εA+/2− εA−/2)

TLL − 2ALL

]
, (B.9)

FD
+
s →π+η′

CP = Im

[
CLL + ELL

TLL + ALL

]
+ Im

[
CLL(εE+/2 + εE−/2) + ELL(εA+/2 + εA−/2)

TLL + ALL

]
+Im

[
TLL(εE+/2− εE−/2) +ALL(εA+/2− εA−/2)

TLL +ALL

]
, (B.10)

FD
0→K−π+

CP = Im

[
CLL + ALL

TLL + ELL

]
+ Im

[
CLL(εE+/2 + εE−/2) + ALL(−εA+/2− εA−/2)

TLL + ELL

]
+Im

[
TLL(εE+/2− εE−/2) + ELL(−εA+/2 + εA−/2)

TLL + ELL

]
. (B.11)
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Depending on the phases of V-spin breaking parameters εE+, εE−, εA+, εA−, the second and

third terms of eqs. (B.9)–(B.11) can be enhanced far beyond fK/fπ − 1 ' 0.2. However,

as we will show below, the most promising observable, AD
+
s →π+η

CP −AD
+
s →π+η′

CP , is not much

affected by the V-spin breaking. To see this, note that this observable is proportional to

FD
+
s →π+η

CP − FD
+
s →π+η′

CP . Since |ALL| is small, it can be approximated as

FD
+
s →π+η

CP −FD
+
s →π+η′

CP = Im

[
CLL−2ELL

TLL−2ALL

]
− Im

[
CLL +ELL

TLL +ALL

]
(B.12)

−3Im

[
ELL(εA+/2+εA−/2)

TLL

]
−3Im

[
ALL(εA+/2−εA−/2)

TLL

]
=−1.54−3Im

[
ELL(εA+/2+εA−/2)

TLL

]
−3Im

[
ALL(εA+/2−εA−/2)

TLL

]
, (B.13)

where the first term −1.54 is the prediction in the V-spin limit, while the second and third

terms represent V-spin breaking effects. The second term is at most ±3|ELL/TLL|(fK/fπ−
1) ' ±0.32 and the third term is at most ±3|ALL/TLL|(fK/fπ − 1) ' ±0.07. Thus, we

conclude that the V-spin breaking corrections do not significantly change our prediction of

FD
+
s →π+η

CP − FD
+
s →π+η′

CP and hence of AD
+
s →π+η

CP −AD
+
s →π+η′

CP .

We note in passing that the fitted values of TLL, CLL, ELL, ALL in ref. [12], which

we have adopted throughout the paper, are themselves obtained under the assumption of

SU(3) flavor symmetry, but we expect that the SU(3) breaking effects are properly reflected

in the errors of the fitted values.
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