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1 Introduction

The quantum theory of gravity is expected to be formulated in a non-gravitational space-

time whose dimension is less than that of the bulk gravitational spacetime [1–3]. The

holographic theories for general spacetimes are not explicitly known, but we expect that

they are strongly coupled based on the known holographic correspondence between con-

formal field theories (CFT) and quantum gravity in asymptotically anti-de Sitter (AdS)

spacetimes [4]. If cosmological spacetimes do indeed admit holographic descriptions, it is

critical to find the appropriate dual theories in order to understand the quantum nature of

gravity in our universe. In an effort to find such theories, we take a bottom-up approach

and calculate quantities that can help identify them.

A particular quantity that characterizes a strongly coupled system is the butterfly

velocity [5–7], which can be viewed as the effective speed of the spread of information

relevant for an ensemble of states. Recently, Qi and Yang [8] generalized the concept to

general subspaces of a Hilbert space, including a code subspace of a holographic theory [9,

10]. They then discussed its relationship to the causal structure of an emergent bulk theory.

In this paper, we investigate butterfly velocities in holographic theories of general

spacetimes, described in refs. [11, 12]. In particular, we calculate butterfly velocities for bulk

local operators in the holographic theory of cosmological flat Friedmann-Robertson-Walker

(FRW) spacetimes and analyze their properties. We find that they admit a certain universal

scaling, independent of the fluid component and the dimension of the bulk spacetime. This

emerges in the limit that the boundary region representing a bulk operator becomes small,

where we expect that the butterfly velocity reflects properties of the underlying theory.
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We also provide an extension of the prescription of ref. [8] for computing the butterfly

velocity to include more general operators in the bulk. This generalization allows us to cal-

culate the butterfly velocities of bulk local operators in some entanglement shadow regions.

Together with the monotonicity property of the change of the volume of the holographic

space [13–15] and the behavior of the entanglement entropies of subregions of a holographic

space [11, 16], our results provide important data for finding explicit holographic theories

of general spacetimes. In particular, our results seem to indicate a certain relation between

spatial and temporal scaling in the holographic theory of flat FRW spacetimes.

The organization of the paper is as follows. In section 2, we define the butterfly

velocity in holographic theories and discuss (extended) prescriptions of calculating it using

the bulk effective theory. In section 3, we compute butterfly velocities in the holographic

theory of flat FRW universes and analyze their properties. In section 4, we discuss possible

implications of our results.

Throughout the paper, we take units where the bulk Planck length is unity. We assume

that the bulk spacetime satisfies the null and causal energy conditions. These impose the

conditions ρ ≥ −p and |ρ| ≥ |p|, respectively, on the energy density ρ and pressure p of an

ideal fluid component, so that the equation of state parameter, w = p/ρ, satisfies |w| ≤ 1.

2 Definition of the butterfly velocity in holographic theories of general

spacetimes

We are interested in the spread of information in holographic theories of general spacetimes.

The butterfly velocity is a quantity that characterizes the spread of correlations of operators

acting within a certain subspace of a Hilbert space. In particular, we can restrict our

attention to a code subspace of states in which observables correspond to operators acting

within the bulk effective theory.

We work within the framework described in ref. [11]. The theory is defined on the

holographic spacetime, which for a fixed semiclassical bulk spacetime corresponds to a

holographic screen [17], a special codimension-1 surface in the bulk. The holographic

screen is uniquely foliated by surfaces called leaves; this corresponds to a fixed time slicing

of the holographic theory. We study how the support of an operator dual to a bulk local

operator spreads in time. In section 2.1, we follow ref. [8] and define the butterfly velocity

in this context. We then describe how to calculate it using the bulk effective theory. We

also discuss conceptual issues associated with this procedure. In section 2.2, we extend the

definition to include bulk operators in entanglement shadows.

2.1 Butterfly velocities on holographic screens

We are interested in how the support of a holographic representation of a bulk local oper-

ator, O, changes in time in the holographic theory.

This analysis is complicated by the fact that each bulk local operator can be repre-

sented in multiple ways in the holographic space (which we may loosely refer to as the

boundary, borrowing from AdS/CFT language) [18–20]. For example, suppose the opera-

tor is represented over the whole boundary, as in the global representation in AdS/CFT.
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There is then no concept of the operator spreading in time. Following ref. [8], we avoid

this issue by representing a bulk operator at a point p such that p is on the Hubeny-

Rangamani-Takayanagi (HRT) surface [21] of a subregion of the boundary. Specifically, we

consider a subregion A on a leaf σ0 (not of an arbitrary spatial section of the holographic

screen) and represent a bulk local operator O located on the HRT surface, γA, of A. Based

on intuition arising from analyzing tensor network models [10, 22], we expect that such a

representation is unique. We denote the operator in the boundary theory represented in

this way on A as OA.

We want to know the spatial region B on the leaf σ∆t, which is in the future of σ0 by

time ∆t, such that every operator B supported on B satisfies

〈Ψi|[OA,B]|Ψj〉 = 0. (2.1)

Here, |Ψi〉 and |Ψj〉 are arbitrary states in the code subspace. Recall that there is a

natural way of relating regions on different leaves of a holographic screen [15]. The spatial

coordinates on σ∆t can be defined from those on σ0 by following the integral curves of a

vector field orthogonal to every leaf on the holographic screen. We can then define the

region A′ on σ∆t corresponding to A on σ0 by following such curves. This allows us to

define the distance, ∆d, of the operator spread for each point q on the boundary, ∂A′, of

A′ as the distance from q to the region B in the direction orthogonal to ∂A′.

For an arbitrary operator in A, there is no reason that the distance ∆d is independent

of the location on ∂A′. The butterfly velocity can then be defined using the largest of ∆d

along ∂A′ [8]:

vB ≡ max
θi

∆d

∆t
, (2.2)

where {θi} are the coordinates of q on ∂A′.

We now discuss how to calculate vB using the bulk effective theory. For this, we

must understand how time evolved operators in the bulk are represented in the boundary

theory. More specifically, given a particular representation, OA, of O in the holographic

Hilbert space, what representation of the time evolved bulk operator (within the light

cone of p) does the time evolution of OA corresponds to? Without an explicit boundary

theory it is not possible to answer this question, but we can still make some headway using

intuition. First, we may expect that the region B on σ∆t (defined above) fully excludes A′.

This is the statement that the support of the operator does not shrink in any direction.

Second, we want the “minimal necessary extension” of the leaf subregion A. For instance,

it seems unphysical that a bulk operator represented on subregion A should immediately

time evolve into the full boundary representation of the future bulk operator. We thus

seek the correspondingly “maximal” region B whose entanglement wedge does not contain

the interior of light cone of p. Excluding the light cone ensures that no information can

be sent in the bulk which would compromise the commutativity between OA and B within

the code subspace.

From these considerations, we come up with two possible procedures for calculating

the butterfly velocity of a bulk operator at a point p:
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1. Maximize the volume of subregion B′ subject to the constraint that A′ ∩B′ = ∅ and

that the entanglement wedge of B′ does not contain the interior of the light cone of

p. The resulting subregion then gives B.

2. Find the subregion B with the distance from ∂B to ∂A′ being both minimal and inde-

pendent of the location on ∂B, again subject to the constraint that the entanglement

wedge of B does not contain the light cone of p.

One can certainly consider other possibilities as well, but these are the two most intuitively

obvious candidates. However, we find that the first possibility leads to discontinuous

behavior of B as p moves across the tip of the HRT surface of a spherical cap region.

We therefore focus on the second possibility, which aligns with ref. [8].1

Essentially, this possibility postulates that the support of the operator OA spreads

uniformly:
∂∆d

∂θi
= 0. (2.3)

We assume that this is indeed the case. The prescription of calculating the butterfly

velocity can then be given explicitly as follows. We first consider a region B′(∆λ) on σ∆t
which is (i) ∆λ away from A′, i.e. the distance from any point on ∂A′ to B′(∆λ) is ∆λ

in the direction orthogonal to ∂A′ and (ii) the entanglement wedge of B′(∆λ) does not

contain the interior of the light cone of p. The butterfly velocity of OA is then obtained

by finding B′(∆λ) with the smallest ∆λ

vB = min
∆λ

∆λ

∆t
. (2.4)

Note that the resulting vB depends on how the bulk operator O is represented initially, i.e.

A and the location of O on γA.

If the assumption of eq. (2.3) is not valid in general, then our results for the “off-center”

operators, f 6= 0, in section 3 (as well as any related results in ref. [8]) would have to be

reinterpreted as representing something other than vB defined in eq. (2.2). However, our

results for the operators at the tip of the HRT surface, f = 0, are still correct in this case,

since eq. (2.3) is guaranteed by the symmetry of the setup.

2.2 Bulk operators in entanglement shadows

In the prescription given in the previous subsection, the bulk operator O was on the HRT

surface of a subregion A on a leaf. Motivated by the idea that a bulk local operator can

be represented in the holographic theory not only at an intersection of HRT surfaces but

also at an intersection of the edge of the entanglement wedges (associated with subregions

of leaves) [12, 25], we expect that we can similarly calculate the butterfly velocity for

an operator OA corresponding to a bulk operator at a point p on the boundary of the

entanglement wedge of A, EW(A).

1It is possible that the validity of these procedures may be analyzed by explicitly calculating the boundary

dual of bulk local operators located on an HRT surface by using recently proposed methods of entanglement

wedge reconstruction [23, 24].
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There is no obstacle in using either of the prescriptions detailed in the previous sub-

section, except now we take p to be on the edge of the entanglement wedge. In this case,

we must be careful to exclude the entire light cone of p when finding B. We find that the

behavior of vB is qualitatively different depending on whether p is on the future or past

boundary of EW(A).

Suppose p is on the past boundary of EW(A). In this case, EW(B) is not limited by

excluding the part of p’s light cone infinitesimally close to p (as is the case when p is on

γA), but by the part of the light cone that is just to the future of γA. Aside from this,

there is no other new aspect compared with the case in which p is on γA. In particular, A′

is forced to spread relative to A in both prescriptions.

There is, however, a subtlety when p is on the future boundary of EW(A). This arises

because EW(Ā′) automatically excludes the light cone of points located on the future

boundary of EW(A). Here, Ā′ is the complement of A′ on σ∆t. A direct application of the

first prescription from the previous subsection would then result in a butterfly velocity of

0 for bulk operators at all points on the future boundary of EW(A). This is due to the

constraint that A′ ∩B = ∅, forcing vB ≥ 0. This constant vB = 0 behavior may encourage

us to abandon the constraint, but doing so leads to severely discontinuous behavior of

B. Namely, the resulting region B on σ∆t is independent of the original region A on σ0,

because B will always find the same global maximum.

The second prescription has more interesting behavior so long as we allow for the

distance from ∂B to ∂A′ to be negative. Doing so, we see that B is now constrained by

excluding the past light cone of p, and for the resulting B, A′ ∩ B 6= ∅, so that vB ≤ 0.

This is interesting because as we move forward in the boundary time, we are actually

tracking the past time evolution of a bulk local operator. The shrinking support of OA
could indicate that this is a finely tuned boundary operator.

This generalization to the boundary of entanglement wedges allows us to calculate the

butterfly velocity of operator OA representing a bulk local operator in an entanglement

shadow, i.e. a spacetime region in which HRT surfaces do not probe.

3 Butterfly velocities for the holographic theory of FRW universes

In this section, we compute butterfly velocities for the holographic theory of (3 + 1)-

dimensional flat Friedmann-Robertson-Walker (FRW) universes:

ds2 = a2(η)
[
−dη2 + dr2 + r2(dψ2 + sin2ψ dφ2)

]
, (3.1)

where a(η) is the scale factor with η being the conformal time. We mainly focus on the

case in which a universe is dominated by a single ideal fluid component with the equation

of state parameter w = p/ρ with |w| ≤ 1.

In section 3.1, we derive an analytic expression for the butterfly velocity of a bulk local

operator near the holographic screen. In section 3.2, we numerically calculate the butterfly

velocity for a bulk operator located at the tip of an HRT surface with an arbitrary depth.

In section 3.3, we extend the result of section 3.1 to arbitrary spacetime dimensions.
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3.1 Local operators near the holographic screen

Consider a spherical cap region

Γ : 0 ≤ ψ ≤ γ, (3.2)

on the leaf at a time η∗, which is located at

r =
a(η)

ȧ(η)

∣∣∣∣
η=η∗

≡ r∗. (3.3)

Following ref. [11], we go to cylindrical coordinates:

ξ = r sinψ, z = r cosψ − r∗ cos γ, (3.4)

in which the boundary of Γ, ∂Γ, is located at

ξ = r∗ sin γ ≡ ξ∗, z = 0. (3.5)

In the case that γ � 1, i.e. ξ∗ � r∗, the HRT surface anchored to ∂Γ can be expressed

in a power series form. Denoting the surface by η and z as functions of ξ, we find

η(ξ) = η∗ + η(2)(ξ) + η(4)(ξ) + · · · , (3.6)

z(ξ) = 0, (3.7)

where

η(2)(ξ) =
ȧ

2a
(ξ2∗ − ξ2), (3.8)

η(4)(ξ) = − ȧ

16a3
(ξ2∗ − ξ2)

{
4ȧ2ξ2∗ − aä(3ξ2∗ − ξ2)

}
, (3.9)

with

a ≡ a(η∗), ȧ ≡ da(η)

dη

∣∣∣∣
η=η∗

, ä ≡ d2a(η)

dη2

∣∣∣∣
η=η∗

. (3.10)

We consider a bulk local operator on this surface.

We parameterize the location, p, of the operator by a single number f (0 ≤ f < 1)

representing how much fractionally the operator is “off the center,” i.e. the operator is

located on the surface

ψ = fγ, (3.11)

with η and r determined by the condition that it is also on the HRT surface of eq. (3.6);

see figure 1. (The value of φ is arbitrary because of the symmetry of the problem; below

we take φ = 0 without loss of generality.) In cylindrical coordinates, this implies that the

location of the operator, (η, ξ, z) = (ηB, ξB, zB), is given by

ηB = η∗ +
ȧ

2a
(ξ2∗ − ξ2B)− ȧ

16a3
(ξ2∗ − ξ2B)

{
4ȧ2ξ2∗ − aä(3ξ2∗ − ξ2B)

}
, (3.12)

ξB =
tan(fγ)

tan γ
ξ∗, (3.13)

zB = 0, (3.14)

– 6 –
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Figure 1. A local operator at p, represented by the dot, is on the HRT surface anchored to the

boundary of a spherical cap region, 0 ≤ ψ ≤ γ, on the leaf at time η∗, located at r = r∗. Note

that the figure suppresses the time direction; for example, the operator is not at the same time as

the leaf.

where we have ignored the terms higher order than η(4)(ξ) in eq. (3.6), which are not

relevant for our leading order calculation. The future light cone associated with p is then

given by

η = ηB +
√

(x− ξB)2 + y2 + z2, (3.15)

where we have introduced the coordinates x = ξ cosφ and y = ξ sinφ.

In order to derive the butterfly velocity for the operator at p, we need to find the

smallest spherical cap region on the leaf at η = η∗ + δη

Γ′ : 0 ≤ ψ ≤ γ + δγ, (3.16)

so that the entanglement wedge associated with the complement of Γ′ on the leaf does not

contain the interior of the future light cone of p, eq. (3.15). This occurs for the value of δγ

at which the HRT surface anchored to ∂Γ′

η(ξ) = η∗ +
ȧ

2a
(ξ2∗ − ξ2)−

ȧ

16a3
(ξ2∗ − ξ2)

{
4ȧ2ξ2∗ − aä(3ξ2∗ − ξ2)

}
+ δη − ȧ2

2a2

(
1− aä

ȧ2

)
(ξ2∗ − ξ2)δη

+
ȧ

a
ξ∗δξ∗ −

ȧ

4a3
{

2ȧ2(2ξ2∗ − ξ2)− aä(3ξ2∗ − 2ξ2)
}
ξ∗δξ∗, (3.17)

z(ξ) =

(
1− aä

ȧ2

)
cos γ δη − a

ȧ
sin γ δγ, (3.18)

is tangent to the light cone. Here,

δξ∗ =

(
1− aä

ȧ2

)
sin γ δη +

a

ȧ
cos γ δγ, (3.19)

and we have suppressed (some of) the terms that do not contribute to the leading order

result.
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The conditions for the tangency are given by2

η(x) = ηB +
√

(x− ξB)2 + y2 + z(x)2, (3.20)

dη(x)

dx
=

x− ξB√
(x− ξB)2 + y2 + z(x)2

, (3.21)

y = 0, (3.22)

where the functions η(x) and z(x) are given by eqs. (3.17) and (3.18). These yield the

relation between δη and δγ

δη =
ȧ2

4a2
(3ξ2∗ − 2ξ2B)ξ∗δγ, (3.23)

as well as the location in which the HRT surface touches the light cone

x = ξB −
ȧ

a
ξ∗ξBδγ. (3.24)

Using eq. (3.13), eq. (3.23) becomes

δγ

δη
=

4ȧ

a

1

3− 2f2
1

γ3
, (3.25)

where we have used ξ∗ = γa/ȧ; see eqs. (3.3) and (3.5). Representing the butterfly velocity

vB in terms of the coordinate distance along the holographic space, δλ = r∗δγ, and the

conformal time, we finally obtain

vB ≡
δλ

δη
=

4

3− 2f2
1

γ3
. (3.26)

There are several features one can see in eq. (3.26). First, the butterfly velocity is

non-negative, vB ≥ 0, as expected. Second, for γ � 1, which we are focusing on here, the

butterfly velocity is much faster than the speed of light. This is not a problem because

the boundary theory is not expected to be Lorentz invariant as suggested by the fact that

the time foliation of the holographic screen is unique. Note that a superluminal butterfly

velocity in the boundary theory does not mean that Lorentz invariance is violated in the

bulk. This can be seen by considering a bulk point close to the boundary. A small amount

of signal propagation in the bulk direction away from the screen causes a large spread of

the operator in the boundary because the relevant HRT surfaces are almost tangent to the

holographic screen. This contrasts with the analogous AdS/CFT case because the HRT

surfaces are always perpendicular to the conformal boundary and hence the spread of the

operator is determined by the bulk signal propagation parallel to the boundary.

In fact, the butterfly velocity in the holographic theory of flat FRW universes diverges

as γ → 0 with the specific power of γ−3. When the operator is at the tip of the HRT

surface, i.e. f = 0, the butterfly velocity takes the particularly simple form

vB|f=0 =
4

3

1

γ3
. (3.27)

2We would like to thank Yiming Chen, Xiao-Liang Qi, and Zhao Yang for correcting the wrong tangency

condition in a previous version. The results now agree with the monotonicity statement in ref. [8], which

we believed did not apply to our setup.
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vBΓ
3

Figure 2. Butterfly velocity vB multiplied by γ3 as a function of f . Here, γ is the angular size of

the leaf region, and f is the fractional displacement of the bulk local operator from the tip of the

HRT surface; see eq. (3.11).

In figure 2, we plot vBγ
3 as a function of f . We find that the butterfly velocity increases

as the operator moves closer to the holographic screen:

dvB
df

=
16f

(3− 2f2)2
1

γ3
> 0. (3.28)

This is consistent with the monotonicity result in ref. [8].

It is interesting that the scale factor has completely dropped out from the final ex-

pression of eq. (3.26). This implies that regardless of the content of the universe, the short

distance behavior of the butterfly velocity is universal in the holographic theory of flat FRW

spacetimes. As we will see in the next subsection, the butterfly velocity’s dependence on the

scale factor appears as we move away from the γ � 1 limit. This suggests that the details

of the FRW bulk physics are related with long distance effects in the holographic theory.

3.2 Local operators at arbitrary depths

Beyond the γ � 1 limit, we must resort to a numerical method in order to solve for the

butterfly velocity. For this purpose, we focus on the case in which the universe is dominated

by a single ideal fluid component with the equation of state parameter w. In this case, the

scale factor behaves as

a(η) ∝

 η
2

1+3w

ecη (c > 0)
for η

{
6= −1

3

= −1
3

. (3.29)

When the universe is dominated by a single fluid component, the butterfly velocity vB,

expressed in terms of angle γ, does not depend on time η. This can be seen by using ap-

propriate coordinate transformations, in a way analogous to the argument in section III A 1

of ref. [11] showing that a screen entanglement entropy normalized by the leaf area does

not depend on time.
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w = 1

w = 1

3

w = 0

w = - 1
3

w = - 2
3
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1

10

100

1000

10
4

vB

Figure 3. Butterfly velocity vB of a bulk local operator at the tip of the HRT surface, f = 0, as

a function of the angular size γ of the leaf region for w = 1, 1/3, 0, −1/3, and −2/3 (solid curves,

from top to bottom). The dashed curve represents vB = 4/3γ3, the analytic result obtained for

γ � 1 in eq. (3.27). The horizontal dashed line represents the speed of light.

In figure 3, we show the results of our numerical calculations of the butterfly velocity,

vB, as a function of γ for a bulk operator located on the tip of the HRT surface, f = 0,

for w = 1, 1/3, 0, −1/3, and −2/3. We find that beyond γ � 1, the butterfly velocity

deviates from the limiting expression of eq. (3.27), which is depicted by the dashed curve.

In fact, the functional form of vB|f=0(γ) is not universal and depends on w.

We find that for sufficiently large values of w the butterfly velocity vB|f=0 is always

faster than the speed of light (depicted by the horizontal dashed line), while for smaller

values of w it can be slower than the speed of light for γ close to π/2 (i.e. when the

subregion on the leaf becomes large, approaching a hemisphere). The boundary between

the two behaviors lies at w = −1/3, when the expansion of the universe changes between

deceleration and acceleration.

3.3 Arbitrary spacetime dimensions

There is no obstacle in performing the same calculations as in the previous subsections

in arbitrary spacetime dimensions. Here we present the analytic results corresponding to

those in section 3.1 for (d+ 1)-dimensional flat FRW universes.

The butterfly velocity, corresponding to eq. (3.26), is given by

vB =
2

d+3
d+1 − f2

1

γ3
. (3.30)

Again, this is non-negative and does not depend on the scale factor. We also find that the

exponent of γ is universal

vB ∼
1

γ3
, (3.31)
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regardless of the spacetime dimension. The f dependence of vB is given by

dvB
df

=
4f(

d+3
d+1 − f2

)2 1

γ3
> 0, (3.32)

which is consistent with the monotonicity result of ref. [8].

4 Discussion

Our investigation has used a definition of butterfly velocity that differs from that in the

literature regarding lattice systems and spin chains. The main difference is that in our

case, the excitations of concern (in the boundary theory) are not local operators. They

have support on a large subregion of the space. This is in contrast to the lattice definition

which considers commutators of local operators separated in space and time. But the

conceptual overlap is clear; we are concerned with when and where operators commute.

The investigation of this paper allows us to find the effective “light cone” in the holographic

theory.

Sending γ → 0 would correspond to a local operator in the holographic theory, and

the result that the butterfly velocity diverges in this limit may seem to indicate that the

holographic theory is highly nonlocal. However, this is not necessarily the case, as the

divergent velocity is integrable. By setting f = 0 in eq. (3.30) and converting λ to γ (see,

e.g., eqs. (3.25) and (3.26)), we obtain

dγ

dη
=
qd
η

2(d+ 1)

(d+ 3)γ3
, (4.1)

where qd = 2/(d− 2 + dw). From this expression, we find

γ(tH) =

[
8(d+ 1)

d+ 3
tH

] 1
4

, (4.2)

where tH = qd ln(η/ηi), the number of Hubble times elapsed since the excitation. This

shows that the light cone spreads like t1/4, regardless of dimension.

Sub-linear growth like this is not an uncommon phenomenon in physics. A localized

heat source subject to the heat equation will diffuse as t1/2. Even spin chain systems where

the Lieb-Robinson bound applies (and suggests a linear dispersion) can admit power law

behavior for the effective growth of operators [26]. The specific relationship of ∆x ∼ ∆t1/4

suggests that we should be looking for a theory with dynamical exponent z = 4, and the fact

that this holds regardless of spacetime dimension may indicate that a Lifshitz field theory

with z = 4 is the appropriate dual theory for flat FRW spacetimes. Note that results from

ref. [8] show that vB → 1 as γ → 0 for asymptotically AdS spacetimes. Similarly analyzing

this result would suggest that a z = 1 theory is the appropriate dual for AdS, as is indeed

the case. These ideas will be investigated in future work.
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