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Abstract: We use holographic duality to study the entanglement entropy (EE) of Con-

formal Field Theories (CFTs) in various spacetime dimensions d, in the presence of various

deformations: a relevant Lorentz scalar operator with constant source, a temperature T ,

a chemical potential µ, a marginal Lorentz scalar operator with source linear in a spatial

coordinate, and a circle-compactified spatial direction. We consider EE between a strip

or sphere sub-region and the rest of the system, and define the “entanglement density”

(ED) as the change in EE due to the deformation, divided by the sub-region’s volume.

Using the deformed CFTs above, we show how the ED’s dependence on the strip width

or sphere radius, L, is useful for characterizing states of matter. For example, the ED’s

small-L behavior is determined either by the dimension of the perturbing operator or by

the first law of EE. For Lorentz-invariant renormalization group (RG) flows between CFTs,

the “area theorem” states that the coefficient of the EE’s area law term must be larger in

the UV than in the IR. In these cases the ED must therefore approach zero from below as

L → ∞. However, when Lorentz symmetry is broken and the IR fixed point has different

scaling from the UV, we find that the ED often approaches the thermal entropy density

from above, indicating area theorem violation.
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1 Introduction, summary, and outlook

1.1 Introduction and motivation

A central goal of physics is to characterize and classify states of matter. At temperatures

T low enough that quantum effects determine the properties of matter, the goal is to

characterize and classify patterns of quantum entanglement. A growing body of evidence

suggests that entanglement entropy (EE) between a sub-region and the rest of the system,

and specifically EE’s dependence on the sub-region’s size L (the radius of a sphere, for

example), can play a central role in reaching that goal. For example, EE receives char-

acteristic contributions ∝ lnLd−1 from a Goldstone boson [1], ∝ Ld−1 lnL from a Fermi

surface [2–5], or independent of L from topologically-ordered degrees of freedom [6–9].

In this paper, we study how EE may characterize Conformal Field Theories (CFTs)

deformed by: RG flows to infra-red (IR) CFTs (section 3), temperature T (section 4),

chemical potential µ that leads to either a (0 + 1)-dimensional IR fixed point (section 5) or

hyperscaling-violating (HV) fixed point (section 6), a marginal scalar operator with source

linear in a spatial coordinate, x (section 7), and compactification of x (section 8). Each

of these has one or more illustrative features, distinct from all others: all have gapless IR

degrees of freedom, except the compactification, all are translationally invariant, except

the source linear in x, etc.
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In this paper we define an “entanglement density” (ED),1 and explore the extent to

which it characterizes the deformed CFTs mentioned above. Specifically, given the EE

of the deformed CFT, S, the EE of the undeformed CFT’s vacuum state, SCFT, and the

volume of the entangling region, V , we defined the ED as

σ ≡ S − SCFT

V
. (1.1)

In continuum quantum field theories (QFTs), S generically has short-distance divergences

from large correlations across the entangling surface (the sub-region’s boundary). We reg-

ulate these with an ultra-violet (UV) cutoff, ε. For our deformed CFTs, these divergences

are identical to those of the parent CFT, hence the subtraction S − SCFT renders σ finite

and cutoff-independent, and therefore physically meaningful. (Actually, regulating σ when

x is compactified is slightly more subtle, as we discuss in section 8.)

Of course, we could remove the divergences in other ways, for instance by adding

counterterms [12–14], and we could divide by other quantities intrinsic to the entangling

surface besides V , such as surface area, A. However, our definition of ED is motivated by

the so-called “entanglement temperature,” Tent [15, 16], defined as follows. For two states

infinitesimally close in a QFT’s Hilbert space, positivity of their relative entropy implies a

“first law” of EE (FLEE), namely the difference in EE is equivalent to the change of the

expectation value of the modular Hamiltonian [16]. For a spherical sub-region in a CFT,

the latter is simply the change of energy inside the sphere, or more precisely the change in

the expectation value 〈Ttt〉, where Tµν is the stress-energy tensor and t is time, divided by

the quantity (d + 1)/(2πL). Similarly, for CFTs holographically dual to Einstein gravity

theories in (d + 1)-dimensional Anti-de Sitter space, AdSd+1 [17, 18], and for a strip sub-

region, defined as two parallel planes separated by a distance L, the change of EE is also

equivalent to the change of energy inside the strip, divided by a quantity ∝ 1/L [15]. In

these cases, Tent is defined as the change in energy divided by the change in EE. In other

words, Tent is precisely the quantity ∝ 1/L in each case, which depends on d, but not on

any other details of the CFT or its states.

For states with constant 〈Ttt〉, and for sufficiently small L, our σ = 〈Ttt〉T−1
ent ∝ 〈Ttt〉L.

However, our σ generalizes T−1
ent to any change of energy, including zero change. For ex-

ample, our σ is well-defined in states with constant 〈Ttt〉 for any L, not just for small L,

and also for Lorentz-invariant states, which have 〈Ttt〉 = 0. Moreover, σ is well-defined not

only for a change of the state, but also for some changes of the Hamiltonian, as occurs for

example in certain RG flows. In short, while T−1
ent is the change in EE per unit energy for

a change of the state, σ is the change in EE per unit volume for a change of the state or

Hamiltonian.

Our goal is to characterize the deformed CFTs above using σ’s dependence on L.

We will consider only holographic QFTs because holography is currently the easiest way

to compute S in interacting QFTs. Typically holographic QFTs are non-Abelian gauge

theories in the ’t Hooft large-N limit with large ’t Hooft coupling [19]. As we review in

1Our ED should not be confused with the entanglement density of refs. [10, 11], defined as a second

variation of EE under infinitesimal changes to the sub-region’s boundary.
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section 2, in the holographically dual geometry S is given by the area of the minimal surface

that approaches the entangling surface at the asymptotic AdSd+1 boundary [20–22]. We

will consider only d ≥ 3 and only strip or sphere sub-regions. In section 2 we consider an

asymptotically AdSd+1 metric of a general form that encompasses all our later examples,

except that of section 8. In particular, we derive equations for S for the strip or sphere in

terms of metric components. In the subsequent sections we then numerically solve for S

and hence σ case-by-case.

For deformations of the state but not the Hamiltonian, such as T or µ,2 the FLEE

requires σ ∝ 〈Ttt〉L at small L, as mentioned above. For deformations of the Hamiltonian,

in general σ’s small-L behavior is determined by the dimension ∆ of the perturbing operator

and whether the operator’s source depends on x, as we discuss in sections 3, 6, and 7.

As L→∞ relative to any other scale, the leading behavior of the EE is

S = s V + αA+ . . . , (1.2)

where s is the thermodynamic entropy density (s = 0 in some of our examples), α is a

dimensionful constant, and . . . represents terms sub-leading in 1/L relative to those shown.

The leading “volume law” term ∝ V in eq. (1.2) is expected for excited states, such

as thermal states. In such cases, intuitively when L → ∞ the sub-region becomes the

entire system, and the sub-region’s reduced density matrix becomes the total density

matrix, which for a thermal state implies S → sV . In holography, the volume law ap-

pears in thermal states because the minimal area surface lies along a horizon [23, 24] with

Bekenstein-Hawking entropy density s [25]. For a sphere V ∝ Ld−1 while for the strip

V ∝ Vol
(
Rd−2

)
L, where Vol

(
Rd−2

)
is the (infinite) area of the “wall” of the strip.

The sub-leading contribution ∝A in eq. (1.2) is the well-known “area law” term [26–29].

For a sphere, A ∝ Ld−2, and in the vacuum of a CFT, the only other scale is the UV cutoff,

ε, so that α ∝ 1/εd−2 by dimensional analysis. If the CFT is then deformed, then in general

α is a sum of terms, including the term ∝ 1/εd−2 plus terms set by whatever scales are

available, such as T , µ, mass scales, etc. For a strip, A ∝ 2Vol
(
Rd−2

)
, and in the vacuum

of a CFT, two other scales are available, ε and L. Indeed, in that case α is a sum of two

terms, one ∝ 1/εd−2 and the other ∝ 1/Ld−2 [20, 21]. If the CFT is then deformed, then

in general α is a sum of terms, including the terms ∝ 1/εd−2 and ∝ 1/Ld−2, and other

terms set by whatever scales are available. Some deformations can also produce in S a term

∝ A lnA, such as µ in a free fermion CFT, producing a Fermi surface [2–5], as mentioned

above. For discussions about the conditions under which such “area law violation” can

occur, see for example ref. [30].

Crucially, for Lorentz-invariant RG flows to a d-dimensional CFT in the infra-red (IR),

α obeys a kind of (weak) c-theorem, called the “area theorem” [21, 31–33]: the value of

α in the UV CFT, αUV, must be greater than or equal to that of the IR CFT, αIR. Of

course, as mentioned above both αUV and αIR include a term ∝ 1/εd−2, and hence diverge

2Crucially, in thermal equilibrium µ can be introduced either as a deformation of the Hamiltonian, i.e.

a source for the charge operator, or as a deformation of the state, with no change to the Hamiltonian, i.e.

restrict the path integral such that a bosonic or fermionic field of charge q acquires a factor ±eqµ/T around

the Euclidean time circle, respectively. We have the latter approach in mind.
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as ε→ 0. However, these terms ∝ 1/εd−2 cancel in the difference ∆α ≡ αUV − αIR, so the

meaningful statement of the area theorem is ∆α ≥ 0. To be precise, the area theorem has

been proven for a sphere in d = 3, using strong sub-additivity [32], for a sphere in any d ≥ 3

using positivity of relative entropy [33], and for a strip in any d ≥ 3, using holography,

and specifically the Null Energy Condition (NEC) [31]. Roughly speaking, the NEC is

holographically dual to strong sub-additivity [34, 35]. All of our holographic examples will

obey the NEC.

Whenever a quantity is proven to decrease monotonically along an RG flow, a number

of questions naturally arise. For example, does the quantity count degrees of freedom in

any precise sense? A pre-requisite is that the quantity must be dimensionless, like the

central charge c of the c-theorem. In this respect ∆α for the strip may be preferable to

that of the sphere. For the sphere, by dimensional analysis ∆α will depend on the mass

scale(s) generated along the RG flow. However, for the strip ∆α ∝ 1/Ld−2, and the area

theorem translates into an inequality for the dimensionless proportionality constant.

Another natural question is: does the monotonicity extend to other types of deforma-

tions, such as T , µ, operators or sources that break Lorentz invariance, etc. [36]? We will

answer some of these questions for ∆α, in holographic systems, using our σ. In particular,

eq. (1.2) implies that when L→∞ relative to all other scales, σ’s leading behavior is

σ = s−∆α
A

V
+ . . . , (1.3)

where the difference −∆α = αIR − αUV appears because in eq. (1.1) we subtract the UV

CFT vacuum contribution, S − SCFT. For both the sphere and strip A/V ∝ 1/L. In

section 2 we borrow techniques from refs. [24, 37, 38] to show that for geometries with a

horizon the leading large-L correction to σ is ∝ A/V for both the strip and sphere, as

expected.

Eq. (1.3) shows how we can easily extract the sign of ∆α from σ’s large-L behavior: as

L→∞, if σ approaches s from below (σ → s−) then ∆α > 0, while if σ approaches s from

above (σ → s+) then ∆α < 0. The sign of ∆α will therefore be immediately obvious to

the naked eye, as our examples will illustrate. Dividing by V in eq. (1.1) is thus technically

trivial but practically useful: otherwise, to obtain ∆α’s sign we would have to extract

(typically by numerical fitting) a subtle correction in 1/L from the EE itself. In section 2,

we write the coefficient of the 1/L correction as an integral over bulk metric components,

which typically must be performed numerically. This integral’s sign gives us ∆α’s sign.

1.2 Summary of results

Table 1 summarizes our main results, which we discuss in detail in this subsection.

In section 3 we consider Lorentz-invariant RG flows, described holographically by grav-

ity coupled to a single real scalar field with self-interaction potential designed to produce a

“domain wall” solution interpolating between an AdSd+1 near the boundary and another

AdSd+1 deep in the bulk [39]. Lorentz invariance implies 〈Tµν〉 = 0 and s = 0. We mostly

focus on d = 4, and consider flows driven either by a source for the relevant scalar operator

O dual to the bulk scalar field, or driven by 〈O〉 6= 0 with zero source. As mentioned above,

– 4 –
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section System Deformation(s) FLEE? Area Theorem Violation?

3 (d+ 1) AdS-to-AdS O No No

4 (d+ 1) AdS-SCH T Yes Yes, for d > dcrit

5 (d+ 1) AdS-RN T , µ Yes Yes, for d > dcrit or low T

6 (d+ 1) AdS-to-HV O, T , µ No Yes, for some d, ζ, θ

7 AdS4-Linear Axion γ xO, T , µ No Yes, for low T

8 (d+ 1) AdS Soliton compact x No No

Table 1. Summary of our main results, discussed in detail in this subsection.

the FLEE does not apply in these cases, and O’s dimension ∆ controls the leading power

of L in σ at small L. We find that σ < 0 for all L, and in particular σ → 0− as L→∞, as

required by the area theorem. To connect the small- and large-L limits, σ must have one or

more minima as a function of L. We show how various scalar potentials, all consistent with

the NEC, can produce various behaviors in σ at intermediate L, such as multiple minima

or a discontinuous first derivative. We thus learn that, although universal principles such

as the area theorem may govern σ’s asymptotics, no universality is immediately obvious

at intermediate L. We expect similar results for other d.

In section 4 we consider the AdS-Schwarzschild (AdS-SCH) black brane, dual to a

translationally and rotationally invariant state of a holographic CFT deformed by T . In

this case, the FLEE requires σ ∝ 〈Ttt〉L at small L. Section 4’s main result is the existence

of a critical dimension, dcrit ≈ 6.7, such that if d < dcrit then as L increases σ rises

monotonically, and σ → s− as L→∞, so that ∆α > 0, consistent with the area theorem.

However, if d > dcrit then σ increases to a single global maximum, which by dimensional

analysis is at an L ∝ 1/T , and then σ → s+ as L→∞, so that ∆α < 0, violating the area

theorem. Figure 1 depicts these two behaviors schematically. (These results have also been

obtained using the exact results for EE of a strip in AdS-SCH, i.e. without numerics, in

ref. [40].) More generally, for any CFT excited state in which the FLEE applies and s 6= 0,

these are the two simplest ways to connect σ ∝ 〈Ttt〉L at small L to σ → s± at large L.

In section 5 we consider an AdS-Reissner-Nordström (AdS-RN) charged black brane,

dual to a translationally and rotationally invariant state of a holographic CFT deformed by

T and µ, in which only Tµν and the charge density have non-zero expectation values [41].

When T/µ→∞, so that µ is negligible, AdS-RN approaches AdS-SCH, and we recover the

results of section 4, including in particular the existence of dcrit. However, when T/µ→ 0,

so that T is negligible, AdS-RN is dual to a “semi-local quantum liquid” state [42], which

at T/µ = 0 has a mysterious extensive ground state entropy s 6= 0. If d > dcrit then for

all T/µ, σ resembles the upper curve in figure 1, with a single maximum, whose position

changes as T/µ decreases, and σ → s+ as L → ∞. In particular, when d > dcrit the area

theorem is always violated. On the other hand, if d < dcrit, then at high T/µ we recover

the result of section 4, where σ resembles the lower curve in figure 1, with no maximum

and σ → s− as L→∞. However, as we lower T/µ, a transition occurs at a critical value of
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�/s
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L
0

Figure 1. For a CFT excited state in which the FLEE applies and s 6= 0, we schematically depict

the two simplest possibile behaviors of σ, in units of s, versus L, in arbitrary units. The FLEE

implies σ ∝ L at small L. As L → ∞, either σ → s− (lower curve), consistent with the area

theorem, or σ → s+ (upper curve), violating the area theorem. The latter case necessarily has at

least one maximum, as shown.

T/µ from the lower curve in figure 1 to the upper curve, i.e. a peak appears. In particular,

at the critical T/µ, ∆α changes sign and the area theorem is violated. In short, for any d,

at sufficiently low T/µ, σ resembles the upper curve in figure 1, with a single maximum,

σ → s+ as L→∞, and area theorem violation.

In section 6 we consider the model of ref. [43], namely gravity in AdSd+1 coupled to

a real scalar field and two U(1) gauge fields, which at T = 0 yields domain-wall solutions

from AdSd+1 to HV geometries [44]. Such solutions are dual to CFTs in which µ and O
produce an IR fixed point with HV exponent θ and Lifshitz scaling t → λζt, ~x → λ~x,

with λ ∈ R+, spatial coordinates ~x, and dynamical exponent3 ζ. Similarly to section 3, in

general the FLEE does not apply in these cases, and O’s dimension ∆ controls the leading

power of L in σ at small L. We consider only the three examples of ref. [43], which all have

d < dcrit, and find several different behaviors as T/µ decreases, including both σ → s± as

L → ∞, depending on the values of θ and ζ, and area law violation at T/µ = 0, when

θ = d− 2 [44, 45].

In section 7 we consider the solution of ref. [46], namely gravity in AdS4 coupled to

a U(1) gauge field and real, massless scalar “axion” fields scaling as γx with constant γ,

which at T = 0 is dual to an RG flow from a d = 3 UV CFT driven by µ and a marginal O
with source γ x. The FLEE does not apply in this case, and at small L we find σ is a linear

function of L with slope ∝ 〈Ttt〉 and non-zero intercept ∝ γ2. When γ = 0 the geometry

reduces to AdS-RN, and we recover the results of section 5 with d = 3 < dcrit. When

γ/µ 6= 0 but T/µ = 0 the solutions of ref. [46] are dual to a semi-local quantum liquid

state, similar to AdS-RN with T/µ = 0, with s 6= 0. Indeed, as T/γ decreases we find a

transition similar to that of AdS-RN, from the lower curve in figure 1 to the upper curve.

Finally, in section 8 we consider the AdS soliton, namely AdSd+1 with one direction

x compactified into a circle, with anti-periodic boundary conditions for fermions [25, 47].

3The dynamical exponent is usually called z, but our z is the coordinate normal to the AdSd+1 boundary.
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The compact direction shrinks to zero deep in the bulk, producing a “hard wall,” signaling

mass gap generation and confinement in the dual QFT [25]. The QFT also has negative

Casimir energy, 〈Ttt〉 < 0 [47]. The FLEE does not apply in this case, nevertheless we

find σ ∝ 〈Ttt〉L at small L. We find σ < 0 for all L, and in particular as L increases, σ

decreases to a minimum and then σ → 0− as L → ∞, similar to the relativistic RG flows

of section 3.

In summary, we find area theorem violation in AdS-SCH at large d, AdS-RN at low

T/µ, some models with HV geometries, and the model of ref. [46] at small T/γ. What

do these all have in common? One obvious answer is: an IR fixed point that is not a d-

dimensional CFT like the UV fixed point. In particular, the solutions of section 6 describe

HV IR fixed points at T/µ = 0, while the other cases describe (0 + 1)-dimensional IR

fixed points, meaning invariance under rescaling of t but not ~x [42, 48–50], which can be

interpreted as HV in the limit ζ → ∞ with −θ/ζ fixed [51]. More precisely, in AdS-SCH

when d → ∞, in the near-horizon region t and the holographic radial coordinate, z, form

the SL(2,R)/U(1) group manifold, while ~x forms Rd−1 [50]. In AdS-RN at T/µ = 0 or the

model of ref. [46] at T/γ = 0, in the near-horizon region t and z form AdS2 while the ~x form

Rd−1. As a result, in each near-horizon region, linearized fluctuations of fields transform

covariantly under rescalings that act on t but not ~x [49, 50]. Strictly speaking, such non-

relativistic scale invariance occurs only for a limiting value of some parameter: d = ∞,

T/µ = 0, etc. However, in our examples area theorem violation occurs at intermediate

values of these parameters, as we dial them towards the limits. In other words, area

theorem violation first occurs while the non-relativistic scale invariance is nascent, i.e. not

yet exact, and hence signals the emergence of non-relativistic massless degrees of freedom.

1.3 Outlook

Our results raise various questions for future research. For example, when does area theo-

rem violation occur in holography? Is some version of non-relativistic scale invariance deep

in the bulk necessary? If so, then for exactly what values of d, ζ, and θ? The near-horizon

regions of extremal black branes generically have either AdS2 or AdS3 [52, 53]. Do they

always exhibit area theorem violation? We considered examples of AdS2, but not AdS3,

which is dual to a CFT in d = 2, which typically produces area law violation [54]. What

about a more general holographic classification? Can the properties of the bulk metric that

produce area theorem violation be fully characterized?

What about examples outside of holography? For example, what about SYK-type

models [55, 56], which have s 6= 0 at T = 0 and AdS2 IR scaling, similar to some of

our examples? More generally, what about a complete classification? Can the conditions

for area theorem violation be fully characterized? Is some form of non-relativistic scale

invariance in the IR necessary? If so, does area theorem violation imply that degrees of

freedom with non-relativistic scale invariance somehow count as “more” degrees of freedom

than in a CFT? Even more generally, our results fit into a larger pattern, that various

measures of quantum entanglement do not monotonically decrease under RG flow when

Lorentz symmetry is broken [36]. Can the conditions for a measure of entanglement to be

monotonic or not, in the absence Lorentz symmetry, be fully characterized?

– 7 –
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Returning to our initial questions, our results suggests that σ may indeed help charac-

terize states of matter. For example, using σ’s small- and large L behavior, we can classify

states of matter into those in which the FLEE or area theorem applies or not, respectively.

More generally, we can divide states of matter into those where σ is monotonic, like the

bottom curve in figure 1, and those where σ has one or more extrema, like the top curve in

figure 1. In the latter case, the location of the global extremum provides a characteristic

length scale, namely the scale where the EE per unit volume is maximal or minimal. Such

a characteristic length scale has various potential uses.

For example, in QFT length scales are typically defined as correlation lengths, ex-

tracted from correlators of local operators, and therefore cannot always be compared be-

tween QFTs, since the spectrum of operators is not universal. However, σ can be compared

between QFTs with different operator spectra. Consider for instance two holographic sys-

tems that each obey the FLEE and have a near-horizon AdS2×Rd−1, similar to AdS-RN at

T/µ = 0. In each, σ as a function of L must have at least one maximum, one of which we

assume is a global maximum, as in the top curve in figure 1. Each dual field theory is in a

semi-local quantum liquid state [42], wherein space divides into “patches” of characteristic

size `, defined from the behavior of local correlators: at separations < `, correlators ex-

hibit the (0 + 1)-dimensional scale invariance of AdS2, and at separations > ` they exhibit

exponential decay [42]. (In extremal AdS-RN, ` ∝ 1/µ.) If the two systems have different

operators, then we cannot compare ` precisely. If we instead define ` from the maximum

in σ, then we can.

Turning the holographic duality around, σ can also help characterize geometries. For

example, in a solution such as extremal AdS-RN, σ’s global maximum could provide a

precise division between near- and far-horizon regions. We can also use σ to characterize

scaling geometries deep in the bulk or near a horizon, even away from the strict limit in

which the geometry is scale invariant. Imagine for instance that we did not know the

AdS-RN solution at T/µ = 0 (as often occurs when numerically solving for a metric). Area

theorem violation would occur at finite T/µ, not just at T/µ = 0, already suggesting that

the extremal near-horizon geometry may have scale invariance, but cannot be AdSd+1.

In sum, σ is clearly useful for “fingerprinting” states of QFTs, holographic or otherwise.

We therefore believe σ deserves further exploration in future research.

2 General analysis

In most of our examples we can use the symmetries of translations in t and translations

and rotations in ~x to write the bulk metric in the form

ds2 = gMNdx
MdxN =

R2

z2

(
−f(z)dt2 + d~x2 +

dz2

g(z)

)
, (2.1)

where M,N = 0, 1, . . . d. As z → 0 the metric in eq. (2.1) asymptotically approaches

AdSd+1 of radius R. More precisely, as z → 0,

f(z) = 1−mzd + . . . , g(z) = 1−mzd + . . . , (2.2)

– 8 –



J
H
E
P
1
0
(
2
0
1
7
)
1
3
7

where m is a constant and . . . represents powers of z that go to zero as z → 0 faster than

those shown, and which in general are different in f(z) and g(z). Holographic renormal-

ization [57, 58] shows that f(z)’s asymptotic expansion determines the dual field theory’s

energy density:

〈Ttt〉 =
(d− 1)Rd−1

16πG
m, (2.3)

where G is the (d + 1)-dimensional Newton’s constant. The AdSd+1 metric has f(z) = 1

and g(z) = 1, so in particular m = 0 and hence 〈Ttt〉 = 0, as expected for a CFT vacuum

state. As z increases, i.e. as we move away from the boundary and into the bulk, the

metric may approach that of another AdSd+1, generically with different R (section 3), or

an HV geometry (section 6), or a horizon, where f(zH) = 0, etc. In the case of a non-

extremal horizon, the horizon’s Hawking temperature and Bekenstein-Hawking entropy

density determine the dual field theory’s temperature and entropy density:

T =

√
f ′(zH)g′(zH)

4π
, s =

Rd−1

4G

1

zd−1
H

, (2.4)

where f ′(z) ≡ ∂zf(z), etc. Roughly speaking, z corresponds to the RG scale in the dual

field theory, with z → 0 dual to the UV and large z corresponding to the IR [59, 60].

All our examples conform to the above, with the following exceptions. In the AdS-

to-AdS domain walls of section 3, in f(z) and g(z)’s expansions the leading power of z

depends on ∆, and in some cases is smaller than zd. In sections 5 and 7, the AdS-RN

and AdS linear axion metrics, respectively, have extremal horizons at T = 0. Moreover,

although the AdS linear axion metric is of the form in eq. (2.1), the linear axion itself

breaks rotational and translational symmetry in ~x. In section 8, in the AdS soliton metric

one coordinate of ~x is compactified, which breaks rotational symmetry, hence the metric is

not of the form in eq. (2.1). We address each of these exceptions on a case-by-case basis.

As mentioned in section 1, for spacetimes with metrics of the form in eq. (2.1), we

compute EE holographically via [20–22]

S =
Amin

4G
, (2.5)

where Amin is the area of the minimal surface in the spacetime at a fixed t that approaches

the entangling surface at the asymptotically AdSd+1 boundary z → 0.

As also mentioned in section 1, we consider only strip and sphere sub-regions. The

strip’s entangling surface consists of two infinite parallel planes of spatial co-dimension one,

i.e. two copies of Rd−2, separated by a distance L in the remaining spatial direction, x.

As is well-known [20, 21], using the translational and rotational symmetry of Rd−2 we can

parameterize the minimal surface as x(z), and for metrics of the form in eq. (2.1), the area

functional A depends only on x′(z)2, leading to a first integral of motion. We can then

solve for x′(z) in terms of the first integral. The minimal surfaces “hang down” into the

bulk to a largest z value, z∗, the turn-around point where x′(z) diverges, as depicted in

figure 2 (a). In short, we find a one-parameter family of solutions, where we can choose the
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z

L

z⇤
(a)

L

z

(b)

Figure 2. (a) Schematic depiction of the minimal surface for a strip sub-region of width L. The

asymptotically AdSd+1 boundary is at z → 0. The minimal surface, depicted by the dashed lines,

“hangs down” from the strip at the boundary to a maximal z value, z∗. (b) Similar schematic

depiction of the minimal surface for a sphere sub-region of radius L.

one parameter to be either the first integral or z∗. We choose the latter. We then obtain

L by integrating x′(z) from z∗ to the boundary,

L = 2

∫ z∗

0
dz

zd−1

zd−1
∗

1√
1− (z/z∗)2(d−1)

1√
g(z)

, (2.6)

where the overall factor of 2 appears because the solutions are invariant under the reflection

x(z)→ −x(z). The corresponding minimal area is

Astrip
min = Rd−1 2Vol(Rd−2)

∫ z∗

ε

dz

zd−1

1√
1− (z/z∗)2(d−1)

1√
g(z)

, (2.7)

where the lower endpoint is a cutoff, z = ε, holographically dual to a UV cutoff. For

AdSd+1, where g(z) = 1, we can perform the integrals in eqs. (2.6) and (2.7) exactly,

leading to

L =
Γ
[

d
2(d−1)

]
Γ
[

1
2(d−1)

] 2
√
π z∗. (2.8a)

Sstrip
CFT =

Rd−1

4G

 1

(d− 2)

2Vol(Rd−2)

εd−2
− 2d−2π

d−1
2

(d− 2)

Γ
(

d
2(d−1)

)
Γ
(

1
2(d−1)

)
d−1

2Vol(Rd−2)

Ld−2

 . (2.8b)

In eq. (2.8b) we see the form described below eq. (1.2): an area law with A = 2Vol
(
Rd−2

)
,

where α is a sum of two terms, one ∝ 1/εd−2 and the other ∝ 1/Ld−2.

For the sphere sub-region we first write d~x2 = dr2 + r2ds2
Sd−2 , where r is the radial

coordinate and ds2
Sd−2 is the metric of a round unit-radius Sd−2, and then parameterize

the minimal surface as r(z). The resulting area functional is

Asphere = Rd−1Vol(Sd−2)

∫ z∗

ε
dz

r(z)d−2

zd−1

√
r′(z)2 +

1

g(z)
, (2.9)
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where Vol(Sd−2) is the volume of Sd−2. Extremizing Asphere leads to a non-linear second

order ordinary differential equation for r(z). For AdSd+1, where g(z) = 1, the exact solution

is r(z) =
√
L2 − z2, leading to

Ssphere
CFT =



Rd−1Vol(Sd−2)

4G

(d−2)/2∑
j=1

cj

(
L

ε

)d−2j

+cL log

(
L

ε

)
+c0+O

(
ε2

L2

), (d even)

Rd−1Vol(Sd−2)

4G

(d−1)/2∑
j=1

cj

(
L

ε

)d−2j

+ c̃0 +O
( ε
L

), (d odd)

cj =
(−1)j−1Γ

[
d−1

2

]
(d− 2j)Γ

[
d−2j+1

2

]
Γ[j]

, cL =
(−1)

d−2
2 Γ

[
d−1

2

]
√
π Γ
[
d
2

] , (2.10)

c0 =
(−1)

d−1
2
√
πΓ
[
d−1

2

]
2 Γ
[
d
2

] , c̃0 =
(−1)

d−2
2 Γ

[
d−1

2

]
2
√
π Γ
[
d
2

] (
ψ

[
d

2

]
+ γE + 2 log[2]

)
,

where ψ[d/2] is a Digamma function and γE ≈ 0.577 is the Euler-Mascheroni constant. For

the g(z) in our examples, we have only been able to solve r(z)’s equation of motion numer-

ically, using straightforward shooting algorithms. A schematic depiction of the resulting

minimal surfaces appears in figure 2 (b).

More generally, for a given g(z) in one of our examples we compute σ as follows. First,

we compute S numerically, meaning for the strip we choose z∗ and then integrate eqs. (2.6)

and (2.7) numerically, while for the sphere we solve for r(z) numerically and then plug

the solution into eq. (2.9) and integrate numerically. Next, we subtract the corresponding

SCFT from eq. (2.8b) or (2.10). Finally, we divide by

V =

Vol
(
Rd−2

)
L, (strip)

π
d−1
2

Γ( d+1
2 )

Ld−1. (sphere)
(2.11)

We can determine σ’s small-L behavior following ref. [15]. If L is small compared to

all other length scales except ε, and in particular if mLd � 1, then we can solve for the

minimal surface order-by-order in a small-(mLd) expansion, and expand the integrands in

eqs. (2.6), (2.7), and (2.9) in mLd and integrate order-by-order, ultimately leading to an

expansion of S in powers of mLd. Via eq. (1.1) we then find

σ = 〈Ttt〉T−1
ent +O

(
〈Ttt〉2Ld+1

)
, (2.12)

where for the strip

Tent =
2(d2 − 1)Γ

(
d

2(d−1)

)2
Γ
(

d+1
2(d−1)

)
√
π Γ
(

1
2(d−1)

)2
Γ
(

1
d−1

) 1

L
, (2.13)

and for the sphere Tent = d+1
2π

1
L . In short, σ ∝ 〈Ttt〉L at small L.

For bulk spacetimes with a horizon, we can determine σ’s large-L behavior following

refs. [24, 37, 38]. In eq. (2.7) for Astrip
min , in order to extract the terms that diverge as ε→ 0,
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we add and subtract 1/zd−1 to the integrand, and integate over 1/zd−1,

Astrip
min =Rd−1 2Vol(Rd−2)

[
1

d−2

(
1

εd−2
− 1

zd−2
∗

)
+

∫ z∗

0

dz

zd−1

(
1√

1−(z/z∗)2(d−1)

1√
g(z)
−1

)]
,

where we took ε → 0 at the lower endpoint of the integral, which is now finite (because

g(z) obeys eq. (2.2)). We next change the integration variable from z to u = z/z∗,

Astrip
min = Rd−1 2Vol(Rd−2) (2.14)

×

[
1

d− 2

(
1

εd−2
− 1

zd−2
∗

)
+

1

zd−2
∗

∫ 1

0

du

ud−1

(
1√

1− u2(d−1)

1√
g(z∗u)

− 1

)]
.

Our immediate goal is now to re-write the integral, as much as possible, in terms of that

for L from eq. (2.6), written with the coordinate u,

L = 2z∗

∫ 1

0
du

ud−1√
1− u2(d−1)

1√
g(z∗u)

. (2.15)

To do so, in the integrand of eq. (2.14) we take

u−(d−1)√
1− u2(d−1)

=
u−(d−1) − ud−1 + ud−1√

1− u2(d−1)
=
u−(d−1)(1− u2(d−1)) + ud−1√

1− u2(d−1)

= u−(d−1)
√

1− u2(d−1) +
ud−1√

1− u2(d−1)
, (2.16)

which allows us to re-write eq. (2.14) as

Astrip
min = Rd−1 2Vol(Rd−2) (2.17)

×

 1

d− 2

(
1

εd−2
− 1

zd−2
∗

)
+

1

2

L

zd−1
∗

+
1

zd−2
∗

∫ 1

0

du

ud−1

√1− u2(d−1)

g(z∗u)
− 1

 .
Collecting the 1/zd−2

∗ terms, we find

Astrip
min = Rd−1 2Vol(Rd−2)

[
1

d− 2

1

εd−2
+

1

2

L

zd−1
∗

+
C(z∗)

zd−2
∗

]
,

with the dimensionless coefficient

C(z∗) ≡ −
1

d− 2
+

∫ 1

0

du

ud−1

√1− u2(d−1)

g(z∗u)
− 1

 . (2.18)

Dividing by 4G to obtain Sstrip, subtracting Sstrip
CFT in eq. (2.8b), and dividing by

V = Vol
(
Rd−2

)
L, we obtain the ED,

σstrip =
Rd−1

4G

 1

zd−1
∗

+
C(z∗)

zd−2
∗

2

L
+

2d−2π
d−1
2

(d− 2)

Γ
(

d
2(d−1)

)
Γ
(

1
2(d−1)

)
d−1

2

Ld−1

 . (2.19)
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So far we took no limits of L, i.e. eq. (2.19) is valid for any L. As L →∞, we expect the

minimal surface to probe deep into the bulk, and eventually to lie flat along the horizon,4

so that in particular limL→∞ z∗ = zH . In that case eq. (2.19) gives, using eq. (2.4),

lim
L→∞

σstrip =
Rd−1

4G

1

zd−1
H

= s. (2.20)

We thus find that the leading term in σ’s large-L expansion is the entropy density s, as

expected. The leading 1/L correction is also straightforward to obtain: our examples have

d ≥ 3, so the final term in eq. (2.19) is sub-leading, and thus

σstrip = s+ s zH C(zH)
2

L
+O

(
1

L2

)
. (2.21)

For the strip, A/V = 2/L, hence eq. (2.21) is of the form in eq. (1.3),

σ = s−∆α
A

V
+ . . . , (2.22)

where we identify

∆α = −s zH C(zH). (2.23)

For the sphere, following ref. [24], we solve for the minimal surface in two regimes,

r(z) ≈ L and then, switching parameterization to z(r), also z(r) & zH , and match the

solutions at large L, where the two regimes overlap. The details are practically identical

to those in ref. [24], so for brevity we omit them. Ultimately, we again find the form of

σ in eq. (2.22), with ∆α again given by eq. (2.23). To be clear, z∗ is not defined for the

sphere, hence C(z∗) in eq. (2.18) is not defined. However, in σ’s leading large-L correction,

for the sphere we find exactly the same integral as C(zH), and hence exactly eq. (2.23).

Such agreement between the strip and sphere at L → ∞ is intuitive, since we expect the

L → ∞ limit to suppress any effects from the entangling surface’s curvature. In short,

C(zH) determines whether σ → s± as L→∞, for both the strip and sphere.

Eq. (2.23) is the main novel result of this section, and allows us to test for area theorem

violation, for both the strip and sphere, simply by computing C(zH)’s sign: if C(zH) < 0

then ∆α > 0 and the area theorem is obeyed, while if C(zH) > 0 then ∆α < 0 and the

area theorem is violated.

3 AdS-to-AdS domain walls

In this section we consider a bulk action

Sbulk =
1

16πG

∫
dd+1x

√
−det gMN

[
R− 1

2
∂Mφ∂

Mφ− V (φ)

]
, (3.1)

4In fact, for sufficiently large L two solutions for x(z) may exist. The first is our solution, described

above. The second consists of two segments with constant x(z), stretching from the boundary to the

horizon, which must be connected by a third segment along the horizon, since minimal surfaces cannot

cross a horizon [23]. The third segment contributes zero to the area. However, in all our examples with

horizons we have checked explicitly that the latter solution always has larger area than our solution, i.e. is

not the global minimum of the area functional, and hence may be safely ignored.
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where R is the Ricci scalar and φ is a real scalar field with potential V (φ). We want

solutions to the equations of motion derived from Sbulk that describe Lorentz-invariant RG

flows between CFTs, driven by the scalar operator O holographically dual to φ. We thus

assume V (φ) has (at least) two stationary points, at which the equations of motion reduce

to those of pure AdSd+1 with radius of curvature R given by

8πG V (φ)|stationary = −d(d− 1)

2R2
. (3.2)

Domain-wall solutions that interpolate between an asymptotic AdSd+1, dual to the UV

CFT, and another AdSd+1 deep in the bulk, dual to the IR CFT, have the form

ds2 = gMNdx
MdxN =

R2

z2

(
−dt2 + d~x2 +

dz2

g(z)

)
, φ = φ(z), (3.3)

with 0 ≤ z <∞. Following refs. [39, 61], if we introduce a “superpotential” W via

V (φ) =
1

16πG
(∂φW )2 − 1

2

d

d− 1
W 2, (3.4)

then any solution to the equations of motion derived from Sbulk is also a solution to [39]

φ′ =
d− 1

8πG

1

zW
∂φW, g(z) =

8πG

(d− 1)2
R2W 2. (3.5)

We therefore only need to solve the first-order eq. (3.5). In fact, for our purposes, we can

choose g(z), which then determines W and hence φ(z) via eq. (3.5), which in turn is guar-

anteed to solve the equations of motion for the corresponding potential V (φ) in eq. (3.4).

Crucially, g(z) obeys several constraints. For instance, eq. (3.5) implies

φ′(z)2 =
d− 1

16πG

g′(z)

zg(z)
, (3.6)

so that g′(z) ≥ 0, since by assumption g(z) > 0. The NEC also requires g′(z) ≥ 0, so

any solution of eq. (3.5) is guaranteed to obey the NEC. We also want O to be relevant,

∆ < d, and unitary, ∆ ≥ d−2
2 , and moreover we want to avoid poorly-understood UV

divergences in the EE that the subtraction S − SCFT does not cancel, hence we restrict

to ∆ < (d + 2)/2 [24, 33]. We demand that asymptotically φ(z) = φ0z
∆− + . . ., where

∆− = Min(d−∆,∆), φ0 is proportional either to O’s source (∆− = d − ∆) or to 〈O〉
(∆− = ∆), and . . . represents terms with higher powers of z. Via eq. (3.6), g(z)’s asymp-

totic expansion is then

g(z) = 1 +
8πG∆−
d− 1

φ2
0 z

2∆− + . . . , (3.7)

where again the . . . represents terms with higher powers of z.

The FLEE does not apply to these solutions because on the gravity side g(z) does not

have the asymptotics in eq. (2.2), and on the field theory side we introduce a source for O.

However, with the assumptions above, for the strip we can determine σ’s small-L behavior

by expanding eq. (2.7) for Astrip
min in small z∗, that is, for a minimal surface close to the
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asymptotic AdSd+1 boundary. Expanding also eq. (2.8a) for L in small z∗, inverting order-

by-order, and plugging the result into the expansion for Astrip
min gives the leading small-L

behavior

σ=
2π3/2∆−Γ

(
2∆−+d
2d−2

)
(2∆−+1)(2∆−+2−d)Γ

(
2∆−+1
2d−2

)
 Γ

(
1

2d−2

)
2
√
πΓ
(

d
2d−2

)
2∆−+2−d

φ2
0R

d−1L2∆−+1−d+. . . ,

(3.8)

where . . . represents terms with higher powers of L. When φ0 is proportional to O’s source,

the area theorem requires σ → 0− as L→∞, for both the strip and sphere. Our examples

will conform to these limits.

EE in holographic RG flows has been studied in detail before, for example in

refs. [24, 31, 37, 62], so we focus only on a few cases that illustrate some of σ’s possible

behaviors in L. In particular, we restrict to d = 4 and choose

g(z) =



1 + tanh4(βz), (3.9a)

1 + tanh4(βz) +
3

2
tanh(βz − 2) tanh5(βz), (3.9b)

1 + tanh4(βz) +
20(βz − 1)2 + 1

(βz − 1)2 + 1
[1 + tanh(βz)] tanh4(βz), (3.9c)

1 + tanh3(βz), (3.9d)

1 + tanh7/2(βz), (3.9e)

where in each case β is a constant of mass dimension one, which may be related to φ0

via eq. (3.7). Table 2 summarizes some properties of our choices of g(z). In table 2, the

second column is RIR, the value of the AdS5 radius at z →∞, determined by the value of

limz→∞ g(z). The holographic c-theorem [39] requires RIR ≤ R. The third column shows

g(z)’s leading asymptotic powers of z, which via eq. (3.7) determines ∆−, listed in the fourth

column, with the corresponding ∆ in the fifth column. The sixth column indicates whether

φ0 is proportional to O’s source or to 〈O〉. For g(z) in eqs. (3.9a) to (3.9c), φ(z) saturates

the Breitenlohner-Freedman bound, hence φ(z)’s leading asymptotic terms are z∆− and

z∆− log(z), however, we demand that the coefficient of the log(z) term vanish, so that in

standard quantization φ0 ∝ 〈O〉. In these cases, the RG flow is driven by 〈O〉 6= 0 alone,

with zero source, similar to the RG flow on the moduli space of a supersymmetric theory.

Figure 3 shows our numerical results for σ as a function of L. More specifically, we plot

σ in units of β3R3/G, where R3/G is the UV CFT’s central charge [61], versus L in units of

β. In all cases, σ < 0 for all Lβ, with σ → 0− as Lβ →∞, as required by the area theorem.

Figure 3 (a) shows the simplest behavior, for the g(z) in eq. (3.9a), in which σ ∝ −L at

small L, and then a single minimum appears before σ → 0− as Lβ →∞, for both the strip

and sphere. Figure 3 (b), for the g(z) in eq. (3.9b), is similar, but with a second, local min-

imum, and corresponding local maximum, at intermediate L, for both the strip and sphere.

For the g(z) in eq. (3.9c), for the strip three extremal surfaces exist over a range of

L. Figure 4 shows the difference in area, ∆A, between each of these three surfaces and

the minimal surface in AdS5 with the same L, indicating a “first-order phase transition”
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g(z) RIR Asymptotics ∆− ∆ φ0

(3.9a) R/
√

2 1 + (βz)4 + . . . 2 2 ∝ 〈O〉

(3.9b) R/
√

7/2 1 + (βz)4 + . . . 2 2 ∝ 〈O〉

(3.9c) R/
√

42 1 + 23
2 (βz)4 + . . . 2 2 ∝ 〈O〉

(3.9d) R/
√

2 1 + (βz)3 + . . . 3/2 5/2 source

(3.9e) R/
√

2 1 + (βz)7/2 + . . . 7/4 9/4 source

Table 2. Summary of properties of our choices of g(z) in eq. (3.9).

from one to the other as the global minimum of the area functional, at the critical value

Lβ ≈ 0.65. Correspondingly, σ for the strip exhibits a kink (discontinuous first derivative)

at the critical L, shown in figures 3 (c) and (d). In contrast, for the sphere, no transition

occurs, and therefore σ exhibits no kink, as shown in figure 3 (c).

The g(z) in eq. (3.9d) yields ∆− = 3/2, hence eq. (3.8) implies σ ∝ −L0 at small L,

that is, σ starts at a negative constant value at L = 0, before monotonically rising as L

increases, and then σ → 0− as Lβ → ∞, as shown in figure 3 (e). The g(z) in eq. (3.9e)

yields ∆− = 7/4, hence eq. (3.8) implies σ ∝ −L1/2 at small L. However, aside from the

fractional power of L at small L, figure 3 (f) shows that σ behaves similarly to that in

figure 3 (a), with a single global minimum before σ → 0− as Lβ →∞.

In summary, σ can clearly exhibit a variety of behaviors as a function of L, depending

on details of the RG flow. However, σ often exhibits a unique global minimum, which by

dimensional analysis must be at an L ∝ 1/β. As discussed in section 1, that L can be used

to characterize and compare RG flows. For example, the L of σ’s global minimum could

provide a precise definition of the crossover scale from the UV to IR.

4 AdS-Schwarzschild

In this section we consider a bulk action

Sbulk =
1

16πG

∫
dd+1x

√
− det gMN

(
R+

d(d− 1)

R2

)
. (4.1)

The corresponding Einstein equation admits the (d+1)-dimensional AdS-SCH black brane

solution, of the form in eq. (2.1) with

f(z) = g(z) = 1−mzd, (4.2)

and hence a horizon at zH = m−1/d, with 〈Ttt〉, T , and s given by eqs. (2.3) and (2.4).

As mentioned in section 1, for AdS-SCH the FLEE requires σ ∝ 〈Ttt〉L at small L.

We also expect limL→∞ σ = s. Our main result for AdS-SCH is the existence of a critical

dimension, dcrit, such that σ → s− as L → ∞ when d < dcrit, while σ → s+ as L → ∞
when d > dcrit.

For example, figure 5 shows our numerical results for σ/s as a function of LT for

(a) the strip and (b) the sphere in AdS-SCH with d = 4 and 8. In all cases we find
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Figure 3. The ED, σ, in units of β3R3/G, versus Lβ for RG flows between holographic CFTs in

d = 4. In each plot, the blue solid line is for the strip and the red dashed line is for the sphere.

The label below each plot indicates the g(z) we chose from eq. (3.9). For the g(z) in eq. (3.9c), and

for the strip only, a “first-order phase transition” occurs between different extremal surfaces in the

bulk when Lβ ≈ 0.65, leading to the kink in σ shown in (c), and in close-up in (d), where the blue

solid and black dot-dashed curves meet.

σ/s ∝ (〈Ttt〉/s)L at small LT , as expected. For d = 4 and for both the strip and sphere,

we find σ/s increases monotonically and σ/s → 1− as LT → ∞, whereas for d = 8, σ/s

rises to a global maximum at an L that by dimensional analysis must be ∝ 1/T , and then

σ/s→ 1+ as LT →∞.

The dotted lines in figure 5 show s − ∆αAV divided by s, with ∆α from eq. (2.23).

In other words, the dotted curves show the leading large-L behavior, s, plus the first

correction, which scales as A/V ∝ 1/L. The dotted curves agree with σ/s not only at large

LT , as expected, but over a surprisingly large range of LT , down to LT ≈ 1. Crucially,
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Figure 4. For the g(z) in eq. (3.9c), and for the strip, (a) shows the differences in area, ∆A,

normalized by β2Vol
(
R2
)
/R3, between three extremal surfaces in the bulk (blue solid, orange

dashed, black dot-dashed) and the minimal surface in AdS5 with the same L, indicating a “first-

order phase transition” at Lβ ≈ 0.65 from one (blue solid) to the other (black dot-dashed) as the

area functional’s global minimum. (b) Close-up of (a).
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Figure 5. The ED, σ, in units of entropy density, s, versus LT for (a) the strip and (b) the sphere,

for AdS-SCH in d = 4 (orange dashed) and d = 8 (blue solid). The dotted lines are 1− ∆α
s
A
V , with

∆α in eq. (2.23), representing the LT →∞ limit and first 1/L correction.

the dotted lines reveal that the transition between σ → s± as L → ∞ occurs when the

coefficient −∆α of the 1/L correction changes sign, from −∆α < 0 for d = 4 to −∆α > 0

for d = 8.

Indeed, figure 6 shows the dimensionless coefficient C(zH) ∝ −∆α from eq. (2.23)

as a function of d, which begins at C(zH) ≈ −0.88 when d = 3 and then monotonically

increases as d increases, eventually crossing through zero, which defines the critical dimen-

sion, dcrit ≈ 6.7. We can easily show that C(zH) is monotonically increasing for all d, and

hence has only the single zero at dcrit, by showing ∂C(zH)/∂d ≥ 0, as follows. The ∂
∂d of

eq. (2.18) gives

∂C(zH)

∂d
=

1

(d− 2)2
+

∫ 1

0
du

log(u)

ud−1

(
1− 1

2

2 + u3d−2 − 3ud

(1− ud)3/2(1− u2d−2)1/2

)
. (4.3)
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Figure 6. The dimensionless coefficient C(zH) from eq. (2.23) for AdS-SCH, versus dimension

d. At d = 3, C(zH) ≈ −0.88, and C(zH) then increases monotonically with d, reaching zero at

dcrit ≈ 6.7, indicated by the dashed black vertical line.

Since log(u)
ud−1 ≤ 0 for u ∈ [0, 1], we need to show that

1

2

2 + u3d−2 − 3ud

(1− ud)3/2(1− u2d−2)1/2
≥ 1, (4.4)

for u ∈ [0, 1]. The denominator in eq. (4.4) is positive, so multiplying both sides of eq. (4.4)

by (1− ud)3/2(1− u2d−2)1/2, squaring, and re-arranging, we find(
1 +

1

2
u3d−2 − 3

2
ud
)2

− (1− ud)3(1− u2d−2) ≥ 0. (4.5)

Since u2d−2 ≥ u2d for u ∈ [0, 1], eq. (4.5) implies(
1 +

1

2
u3d−2 − 3

2
ud
)2

− (1− ud)3(1− u2d−2) ≥
(

1 +
1

2
u3d − 3

2
ud
)2

− (1− ud)3(1− u2d)

=
1

4
u2d(1− ud)4 ≥ 0, (4.6)

and thus ∂C(zH)∂d ≥ 0, as advertised.

Figure 7 shows σ/s versus LT for (a) the strip and (b) the sphere for d = 3, 4, . . . , 8,

illustrating the change of behavior at dcrit. For both entangling surfaces, when

d = 3, 4, 5, 6 < dcrit, we find σ/s increases monotonically and σ/s→ 1− as LT →∞. When

d = 7, 8 > dcrit, we find σ/s rises to a global maximum before σ/s→ 1+ as LT →∞. The

maximum occurs at an LT on the order of 100 to 102.

The above pattern extends also to CFTs at non-zero T in d = 2, where S for an interval

of length L is known exactly [63]. Given d = 2 < dcrit, we expect σ → s− as LT → ∞.

Indeed, the result of ref. [63] leads to

σ =
c

3

1

L
ln

[
sinh (πLT )

πLT

]
=
c

3
πT − c

3

ln (2πLT )

L
+O

(
e−2πTL/L

)
,

where c is the CFT’s central charge, and in the second equality we performed the 1/L

expansion. In that expansion, the first term is Cardy’s result for s [64], while the second

term exhibits the area law violating factor ln (2πLT ). Our key observation is: the leading

correction has negative coefficient, so that indeed σ → s− as LT →∞.
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Figure 7. The ED, σ, in units of entropy density s, versus LT for (a) the strip, and (b) the sphere,

for AdS-SCH in d = 3, 4, . . . , 8. For each entangling surface, when d = 3, 4, 5, 6 < dcrit ≈ 6.7, σ/s

monotonically increases with LT and σ/s→ 1− as L→∞, whereas when d = 7, 8 > dcrit, σ/s rises

to a global maximum before σ/s→ 1+ as LT →∞.

The results above have also been obtained using the exact form for EE of a strip in

AdS-SCH derived in ref. [40].

As mentioned in section 1, the change from C(zH) < 0 and ∆α > 0 when d < dcrit

to C(zH) > 0 and ∆α < 0 when d > dcrit represents area theorem violation [21, 31–33].

How does AdS-SCH evade the holographic proof in ref. [31] of the area theorem for the

strip in relativistic RG flows? The proof of ref. [31] relies on the NEC. As mentioned below

eq. (3.6), for relativistic RG flows the NEC implies g′(z) ≥ 0, that is, g(z) is strictly non-

decreasing as z increases. However, for AdS-SCH the NEC imposes no such constraint,

and indeed g(z) = 1 −mzd decreases monotonically as z increases, from g(z = 0) = 1 to

g(z = zH) = 0. Apparently, as d increases, eventually g(z) decreases quickly enough to

render C(zH) > 0.

How does AdS-SCH evade the field theory proofs in refs. [32, 33] of the area theorem for

the sphere in relativistic RG flows? The proofs of refs. [32, 33] relied crucially on Lorentz

invariance, which non-zero T clearly breaks. In fact, in the d→∞ limit AdS-SCH is dual

to an RG flow from a (d+1)-dimensional UV CFT to a (0+1)-dimensional IR CFT, which

is clearly only possible when Lorentz symmetry is broken. More specifically, when d→∞
the AdS-SCH near-horizon geometry becomes SL(2,R)/U(1)×Rd−1, where the latter factor

represents the spatial directions ~x [49, 50]. After a mode decomposition on Rd−1, the action

in eq. (4.1) gives rise to a string theory with target space SL(2,R)/U(1) [50]. Linearized

fluctuations in the near-horizon region then exhibit scale invariance in t and z but not

~x [50, 65]. AdS-SCH thus provides our first hint that area theorem violation can occur

as we dial a parameter towards a limiting value in which an IR fixed point emerges with

scaling different from the UV fixed point. We will find further examples of such behavior

in the following.
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5 AdS-Reissner-Nordström

In this section we consider the bulk action

Sbulk =
1

16πG

∫
dd+1x

√
− det gMN

(
R+

d(d− 1)

R2
−R2FMNF

MN

)
, (5.1)

where FMN = ∂MAN−∂NAM is the field strength for a U(1) gauge field, AM , dual to a con-

served U(1) current. The corresponding equations of motion admit the (d+1)-dimensional

AdS-RN charged black brane solution [61], with metric of the form in eq. (2.1), with

f(z) = g(z) = 1−mzd + q2z2(d−1), (5.2)

where q is proportional to the black brane’s charge density. The solution has a horizon at

the smallest positive root of f(zH) = 0. The gauge field solution’s only non-zero compo-

nent is

At = µ

(
1− zd−2

zd−2
H

)
, µ =

√
d− 1

2(d− 2)
zd−2
H q. (5.3)

AdS-RN is dual to a CFT with non-zero 〈Ttt〉, T , and s, given by eqs. (2.3) and (2.4), and

non-zero chemical potential µ and charge density, proportional to q. In particular,

T =
d

4πR2

1

zH

(
1− d− 2

d
z

2(d−2)
H q2

)
, (5.4)

so that T ≥ 0 implies q2 ≤ d
d−2z

−2(d−1)
H . In the extremal limit, where q saturates the upper

bound and T = 0, an extremal horizon is present, so that s 6= 0. Moreover, when T = 0

the near-horizon geometry becomes AdS2 × Rd−2, with AdS2 of radius R/
√
d(d− 1) in

the t and z directions. When T = 0, the dual is in a semi-local quantum liquid state [42],

describing an RG flow from a (d+1)-dimensional UV CFT to a (0+1)-dimensional IR CFT.

The CFT states are parameterized by T/µ, which determines 〈Ttt〉 and q. When

T/µ� 1, AdS-RN approaches AdS-SCH, and we recover the results of section 4, including

the existence of the critical dimension dcrit ≈ 6.7. For example, figure 8 shows σ/s versus

LT for the strip in AdS-RN with d = 8 > dcrit for various T/µ. We find σ/s ∝ LT at small

L for all T/µ, as required by the FLEE. For T/µ � 1 we find σ/s rises monotonically

to a global maximum, and then σ/s → 1+ as LT → ∞, consistent with our results from

section 4. As T/µ decreases and AdS-RN increasingly deviates from AdS-SCH, the global

maximum persists, moving to smaller LT while growing taller and narrower, such that

σ/s→ 1+ for all T/µ.

Figure 9 shows σ/s versus LT for the strip in AdS-RN with d = 4 < dcrit for various

T/µ. When T/µ � 1 we find σ/s rises monotonically as LT increases, and eventually

σ/s → 1− as LT → ∞, consistent with our results from section 4. However, as T/µ

decreases we find a transition in which a global maximum appears and σ/s → 1+ as

LT → ∞, shown in figure 9 (a). The transition actually occurs in stages, as shown in

figure 9 (b). First, at T/µ ≈ 0.107, a local minimum and maximum appear, with σ/s < 1

for all LT . Second, at T/µ ≈ 0.102, the maximum rises above σ/s = 1, becoming a global
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Figure 8. The ED, σ, in units of entropy density, s, versus LT for the strip in AdS-RN with d = 8,

for T/µ = 5 down to 0.1.

d (T/µ)1 (T/µ)2 (T/µ)3

3 6.343× 10−4 4.858× 10−4 2.967× 10−4

4 0.107 0.102 0.098

5 0.407 0.403 0.399

6 1.219 1.215 1.213

Table 3. For the strip in AdS-RN with d < dcrit ≈ 6.7, as (T/µ) decreases, at (T/µ)1 a local

minimum and maximum appear in σ/s as a function of LT , at (T/µ)2 < (T/µ)1 the local maximum

becomes a global maximum, but a local minimum remains, and σ/s < 1 for all LT , and then at

(T/µ)3 < (T/µ)2 the global maximum rises above one, and the transition occurs to σ/s → 1+

as LT →∞.

maximum, but a local minimum persists at σ/s < 1, and then σ/s → 1− as LT → ∞.

Third and finally, at T/µ ≈ 0.098, a transition occurs from σ/s → 1− to σ/s → 1+ as

LT →∞, and the local minimum disappears. Figures 9 (c) and (d) show the logarithmic

derivative L ∂
∂L

σ
s , which clearly has no zero for T/µ > 0.107, indicating σ/s is monotonic

in LT , then develops two zeroes for 0.107 > T/µ > 0.102, indicating a local minimum and

maximum in σ/s, and then develops a single zero for T/µ < 0.098, indicating a global

maximum in σ/s.

We find qualitatively similar behavior for the strip in all d < dcrit: at some (T/µ)1

a local minimum and maximum appear, but σ/s remains below one for all LT , at some

(T/µ)2 < (T/µ)1 a global maximum emerges, but still σ/s→ 1− for LT →∞, and finally

at some (T/µ)3 < (T/µ)2 the transition occurs to σ/s → 1+ as LT → ∞. Our numerical

estimates for (T/µ)1, (T/µ)2, and (T/µ)3 for d = 3, 4, 5, 6 < dcrit appear in table 3.

In contrast,we find no evidence of such a multi-stage transition for the sphere in AdS-

RN with d < dcrit. For example, figure 10 shows σ/s versus LT for the sphere in AdS-RN

with d = 4 < dcrit. When T/µ � 1 we find σ/s rises monotonically as LT increases,
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Figure 9. (a) The ED, σ, in units of entropy density s, versus LT for the strip in AdS-RN with

d = 4, showing the formation of a global maximum as T/µ decreases from T/µ = 0.5 down to 0.005.

(b) Close-up of (a), showing the formation of a local minimum and maximum before the formation of

the global maximum, as T/µ decreases from T/µ = 0.108 down to 0.096. (c) Logarithmic derivative

L ∂
∂L of (a). (d) Close-up of (c) showing the logarithmic derivative for T/µ = 0.108, which has no

zero, indicating σ/s is monotonic in LT , then T/µ = 0.104, which has two zeroes, indicating a

local minimum and maximum in σ/s, and finally T/µ = 0.098, which has a single zero, indicating

a global maximum in σ/s.

and eventually σ/s → 1− as LT → ∞, consistent with our results from section 4. As

T/µ decreases we find a transition in which a global maximum appears and σ/s → 1+

as LT → ∞, shown in figure 10 (a). Figure 10 (b) shows a close-up for T/µ near the

transition, which shows no sign of a local minimum and maximum forming before the

global minimum forms. Crucially, however, we cannot rule out a multi-stage transition like

the strip’s, but on scales of LT and T/µ smaller than our numerical precision, i.e. between

T/µ steps smaller than those in figure 10 (b).

In all cases above, the transition between σ/s→ 1± as LT →∞ indicates area theorem

violation. Indeed, figure 11 shows the dimensionless coefficient C(zH) as a function of T/µ

for d = 3, 4, 5, 6, 7. For all d > dcrit ≈ 6.7, at all T/µ we find C(zH) > 0, indicating ∆α < 0

and hence the area theorem is violated. For all d < dcrit, at high T/µ we find C(zH) < 0,
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Figure 10. (a) The ED, σ, in units of entropy density s, versus LT for the sphere in AdS-RN

with d = 4, showing the formation of a global maximum as T/µ decreases from T/µ = 0.5 down to

0.005. (b) Close-up of (a) for T/µ = 0.1 down to 0.095, including the critical value T/µ ≈ 0.097

where the maximum forms.
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Figure 11. The dimensionless coefficient C(zH) from eq. (2.23) versus T/µ for AdS-RN, for

d = 3, 4, 5, 6, 7, 8. For d > dcrit ≈ 6.7, C(zH) > 0 for all T/µ, indicating area theorem violation. For

d < dcrit, as T/µ decreases C(zH) changes sign from negative to positive at the (T/µ)3 in table 3,

indicating area theorem violation for T/µ < (T/µ)3.

indicating ∆α > 0 and the area theorem is obeyed, but as T/µ decreases C(zH) eventually

passes through zero, so that at low T/µ we find C(zH) > 0, indicating ∆α > 0 and the

area theorem is violated. In each case, the critical T/µ where C(zH) = 0 is precisely the

(T/µ)3 for the strip in table 3, as expected.

Ultimately, when T/µ = 0, where the bulk metric is extremal AdS-RN and the near-

horizon geometry is AdS2×Rd−1, for all d we find C(zH) > 0, so that for both the strip and

sphere σ/s→ 1+ as Lµ→∞ and the area theorem is violated. Figure 12 shows σ/s versus

Lµ in AdS-RN with d = 3, 4, 5, 6, 7, 8 and T/µ = 0, for the strip ((a) and (b)) and the sphere

((c) and (d)). In all cases σ/s indeed has a global maximum and σ/s→ 1+ as Lµ→∞.
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Figure 12. (a) The ED, σ, in units of entropy density s, versus Lµ for the strip in AdS-RN with

d = 3, 4, 5, 6, 7, 8 and T/µ = 0. In all cases σ/s has a single global maximum and σ/s → 1+ as

Lµ → ∞. (b) Close-up of (a) for d = 3, showing the maximum. (c) The same as (a), but for the

sphere. (d) Close-up of (c) for d = 3, showing the maximum.

In summary, in AdS-RN for either d > dcrit at any T/µ, or for any d and sufficiently

small T/µ, we find a global maximum in σ/s, and in particular σ/s → 1+ as LT → ∞,

indicating area theorem violation. In other words, as we dial a parameter towards a limiting

value in which an IR fixed point appears with different scaling from the UV CFT (d→∞
or T/µ→ 0), we find area theorem violation, as we saw in AdS-SCH and as we will see in

some, but not all, of the following examples.

6 AdS-to-hyperscaling-violating domain walls

In this section we consider the bulk action

Sbulk =
1

16πG

∫
dd+1x

√
−detgMN

(
R−2(∂Φ)2−V (Φ)−Z(Φ)

4
FPQF

PQ− Z̃(Φ)

4
F̃RSF̃

RS

)
,

where Φ is a real scalar field with potential V (Φ), FMN and F̃MN are two U(1) field

strengths for two U(1) gauge fields AM and ÃN , respectively, and Z(Φ) and Z̃(Φ) are two
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real functions of Φ. The scalar field Φ is dual to a scalar operator O while AM and ÃM
are dual to two conserved U(1) currents. We will consider the solutions of ref. [43], with

metric of the form

ds2 =
R2

z2

(
−a(z)b(z)dt2 + d~x2 +

a(z)

b(z)
dz2

)
, (6.1)

with real functions a(z) and b(z), which is of the form in eq. (2.1) with f(z) = a(z)b(z)

and g(z) = b(z)/a(z). If b(zH) = 0 then a horizon exists at z = zH , with 〈Ttt〉, T , s given

by eqs. (2.3) and (2.4). The solutions of ref. [43] also include non-zero Φ(z), Fzt(z), and

F̃zt(z), with all other components of FMN and F̃MN vanishing.

A central result of ref. [43] is that if we split b(z) as

b(z) = b0(z) + η2 b2(z), (6.2)

where b0(z) and b2(z) are T -independent but the real parameter η may depend on T , and

furthermore we extract a factor of η from one of the U(1) gauge fields, say ÃM , then we

can simplify the equations of motion by separating terms by powers of η. Ultimately, we

can obtain an entire family of solutions completely specified by a single parameter, T/µ,

with µ the chemical potential for the U(1) current dual to AM , with corresponding charge

density Q ≡ −δSbulk/δFzt. In fact, as shown in ref. [43], for b(z) of the form in eq. (6.2) we

can solve all the equations of motion by freely choosing two functions in the solution which

then determine all other functions and the corresponding V (Φ), Z(Φ), and Z̃(Φ), leaving

only a choice of boundary conditions. Following ref. [43], we choose b2(z) and Fzt(z), and

obtain a(z) by solving, from the equations of motion,

∂

∂ẑ

(
a b2

ẑ2(d−1)

)
= ĉ

a

ẑd−1
, (6.3)

with constant ĉ, and then obtain b0(z) by solving, from the equations of motion,

∂

∂ẑ

(
∂
∂ẑ (a b0)

aẑd−1

)
= −2F̂zt, (6.4)

where ẑ and F̂zt are defined by the re-scalings

z = Q−
1
d−1R

d−2
d−1 (8πG)

1
1−d ẑ, Fzt = Q

1
d−1R

1
d−1 (8πG)

1
d−1 F̂zt. (6.5)

In what follows, we solve eqs. (6.3) and (6.4) numerically. We focus on the three solu-

tions of ref. [43] that at T = 0 have no horizon, and describe domain walls from an asymp-

totic AdSd+1 as z → 0 to an HV geometry as z →∞. Specifically, as z → 0 we require

a(z) = 1 +O(zd−1), b0(z) = 1 +O(zd−1), (6.6)

and at leading order b2(z) ∝ −zd. If we choose

ĉ = d− 2 +
(d− 1)(ζ − 1)− θ

d− 1− θ
, (6.7)
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then when z →∞ we find the following scalings

a(z) ∼ z−((d−1)(ζ−1)−θ)/(d−θ−1), b0(z) ∼ z−((d−1)(ζ−1)+θ)/(d−θ−1), b2(z) ∼ −zd.
(6.8)

As a result, under a Lifshitz re-scaling, t → λζt, ~x → λ~x, z → λz, the z → ∞ metric re-

scales as ds→ λθ/(d−1)ds, indicating HV [44, 66]. Roughly speaking, with HV the thermo-

dynamics is that of a theory with dynamical exponent ζ in d−θ dimensions. When ζ →∞
with−θ/ζ fixed, the z →∞metric becomes conformal to AdS2×Rd−1, with no horizon [51].

Specifying b2(z) and Fzt(z) and then solving eqs. (6.3) and (6.4) with the boundary

conditions described above determines the metric completely, which is sufficient to compute

σ. However, to interpret the results in the dual field theory we should also solve for F̃zt(z)

and Φ(z). For a detailed discussion of their equations of motion and boundary conditions,

see ref. [43]. In what follows we only need two facts about their solutions. First, as z → 0

we require Φ(z) ∝ zd−2 at leading order. As a result, ∆− = d − 2, hence via eq. (3.8),

σ ∝ L2∆−+1−d = Ld−3 at small L, indicating FLEE violation when d 6= 4. Second, F̃tz(z)

and Φ(z)’s solutions are generically non-trivial, indicating that the dual theory has non-

zero chemical potential and charge density for the second U(1), and also 〈O〉 6= 0 and

possibly a non-zero source for O. However, in the approach of ref. [43] described above, all

of these quantities are outputs determined by the single input, η, or equivalently T/µ.

We first consider the solution of ref. [43] with d = 3 and

b2 = −ẑ3 9ẑ2 + 20ẑ + 80

9ẑ2 + 20ẑ + 40
, F̂zt = − (1 + 0.891 ẑ)−4 , (6.9)

which at T = 0 describes a domain wall from AdS4 to a HV geometry with ζ = 2 and

θ = −2. Asymptotically Φ(z) ∝ z at leading order as z → 0, so O has a non-zero source

and the FLEE may be violated. Indeed, as argued above using eq. (3.8), σ ∝ L0 at small L.

Figures 13 (a) and (b) show σ/s versus LT for the strip in this solution with various

T/µ. For all T/µ we find σ/s ∝ −L0 at LT = 0, as expected. Surprisingly, figures 13

(a) and (b) also reveal that as we lower T/µ, when T/µ ≈ 0.130 a local maximum and

minimum appear at intermediate LT , and grow in height as T/µ continues decreasing.

Also surprisingly, figures 13 (a) and (b) show that σ/s → 1− as LT → ∞ for all T/µ,

indicating the area theorem is obeyed. Indeed, figure 13 (c) shows C(zH) < 0 for all T/µ.

These features persist to T/µ = 0. In this solution, s = 0 when T/µ = 0, so figure 13 (d)

shows σ in units of µ2R2/G versus Lµ for the strip at T/µ = 0. When Lµ = 0 we find

σ/(µ2R2/G) = −0.016, and then as Lµ increases the local maximum and minimum still

appear, and finally σ/(µ2R2/G)→ 0− as Lµ→∞, indicating the area theorem is obeyed.

In fact, this is our only example of an IR fixed-point with non-relativistic scaling where

the area theorem is obeyed, which provides an important lesson: non-relativistic scaling

allows, but does not require, area theorem violation.

We next consider the solution of ref. [43] with d = 4 and

b2 = −ẑ4 ẑ
2 + 12

ẑ2 + 6
, F̂zt = −ẑ

(
1 + 0.852 ẑ2

)−3
, (6.10)

which at T = 0 describes a domain wall from AdS5 to a HV geometry with ζ → ∞
and −θ/ζ = 3. Asymptotically Φ(z) ∝ z2 at leading order as z → 0, saturating the
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Figure 13. Plots of our results using the solution given by eq. (6.9) (d = 3, ζ = 2, θ = −2). (a)

The ED, σ, in units of entropy density s, for the strip, for T/µ = 0.5 down to 0.1. A local maximum

and minimum appear when T/µ . 0.130. (b) Close-up of (a), but showing the local maximum and

minimum’s growth from T/µ = 0.075 down to 0.05. (c) The dimensionless coefficient C(zH) from

eq. (2.23) versus T/µ. As T/µ → ∞, C(zH) approaches the value for AdS-SCH with d = 3 (the

horizontal line). Clearly C(zH) < 0 for all T/µ, indicating the area theorem is obeyed. (d) The

ED, σ, in units of µ2R2/G, versus Lµ, for the strip at T/µ = 0. The local maximum and minimum

remain, and the area theorem is still obeyed.

Breitenlohner-Freedman bound, but the absence of a z2 log z term indicates that O’s source

vanishes, and hence the FLEE is obeyed. Indeed, as argued above using eq. (3.8), σ ∝ L

at small L.

Figures 14 (a) and (b) show σ/s versus LT for the strip in this solution with var-

ious T/µ. For all T/µ we find σ/s ∝ L at small LT , as expected, and in particular

limLT→0 σ/s = 0. At sufficiently high T/µ, as LT increases σ/s increases monotonically,

and σ/s → 1− as LT → ∞, indicating the area theorem is obeyed. However, as we de-

crease T/µ we find a transition very similar to that of AdS-RN with d < dcrit, discussed

in section 5. Specifically, at some (T/µ)1 a local minimum and maximum appear, but σ/s

remains below one for all LT , then at some (T/µ)2 < (T/µ)1 the local maximum rises

above one to become a global maximum, while the local minimum remains and σ/s→ 1−
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Figure 14. Plots of our results using the solution given by eq. (6.10) (d = 4, ζ = ∞, θ = −3ζ).

(a) The ED, σ, in units of entropy density s, for the strip, for T/µ = 0.5 down to 0.2. (b) Close-up

of (a), showing the formation of a local maximum and minimum before the formation of the global

maximum as T/µ decreases from 0.350 down to 0.275. (c) The dimensionless coefficient C(zH) from

eq. (2.23) versus T/µ. As T/µ → ∞, C(zH) approaches the value for AdS-SCH with d = 4 (the

horizontal line). As T/µ decreases, C(zH) changes sign from negative to positive at the (T/µ)3 from

table 4, indicating area theorem violation when T/µ < (T/µ)3. (d) The ED, σ, in units of µ2R2/G,

versus Lµ, at T/µ = 0. The global maximum and area theorem violation remain, although a “phase

transition” occurs at Lµ ≈ 2.37 between extremal surfaces in the bulk (from the blue solid to the

black dashed).

for LT → ∞, and finally at some (T/µ)3 < (T/µ)2 the local minimum disappears and

the transition occurs to σ/s → 1+ as LT → ∞. Our numerical estimates for (T/µ)1,

(T/µ)2, and (T/µ)3 appear in table 4. Correspondingly, figure 14 (c) shows C(zH) versus

T/µ, where C(zH) < 0 for T/µ > (T/µ)3, indicating the area theorem is obeyed, while

C(zH) > 0 for T/µ < (T/µ)3, indicating area theorem violation.

As mentioned above, for a solution such as this, with ζ →∞, when T/µ = 0 the z →∞
geometry is conformal to AdS2×Rd−2, with no horizon. In particular, s = 0 when T/µ = 0,

so figure 14 (d) shows σ in units of µ2R2/G versus Lµ at T/µ = 0. As Lµ increases, we find

a transition at Lµ ≈ 2.37, from a connected to disconnected minimal surface, similar to the

transition in figure 4, and the transitions in various geometries conformal to AdS2 × Rd−2
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d ζ θ (T/µ)1 (T/µ)2 (T/µ)3

4 ∞ −3ζ 0.336 0.319 0.289

3 3 1 0.0629 0.0516 0.0334

Table 4. For the strip in the solution of eq. (6.10) (d = 4, ζ = ∞, θ = −3ζ) or eq. (6.11) (d = 3,

ζ = 3, θ = 1), as (T/µ) decreases, at (T/µ)1 a local minimum and maximum appear in σ/s as

a function of LT , at (T/µ)2 < (T/µ)1 the local maximum becomes a global maximum, but the

local minimum remains and still σ/s → 1− as LT → ∞, and then at (T/µ)3 < (T/µ)2 the local

minimum disappears, and the transition occurs to σ/s→ 1+ as LT →∞.

in refs. [67, 68]. Otherwise, however, the overall behavior is the natural extrapolation from

T/µ > 0, with σ ∝ L at small Lµ, then as Lµ increases a global maximum appears, and

finally σ → 0+ as Lµ→∞, indicating area theorem violation.

Finally we consider the solution of ref. [43] with d = 3 and

b2 = −ẑ3 ẑ
2 + 12ẑ + 288

ẑ2 + 12ẑ + 72
, F̂zt = − (1 + 0.891 ẑ)−4 , (6.11)

which at T = 0 describes a domain wall from AdS4 to a HV geometry with ζ = 3 and

θ = 1. Asymptotically Φ(z) ∝ z at leading order as z → 0, so O has a non-zero source and

the FLEE may be violated. Indeed, as argued above using eq. (3.8), σ ∝ L0 at small L.

Aside from the small-L behavior, our results for this solution are very similar to those

of the previous solution, and those of AdS-RN with d < dcrit: as we lower T/µ, we find a

multi-stage transition to area theorem violation. Figure 15 (a) and (b) show σ/s versus

LT for the strip in this solution with various T/µ. For all T/µ we find σ/s ∝ −L0 at small

LT , as expected. For sufficiently high T/µ, as LT increases σ/s increases monotonically

and eventually σ/s→ 1− as LT →∞, indicating the area theorem is obeyed. However, as

in the solution of eq. (6.11) and AdS-RN with d < dcrit, as we lower T/µ a local minimum

and maximum appear at some (T/µ)1, then the maximum rises above σ/s = 1 but still

σ/s→ 1− as LT →∞ at some (T/µ)2, and ultimately the local minimum disappears and

σ/s→ 1+ as LT →∞ at some (T/µ)3, indicating area theorem violation. Our numerical

estimates for (T/µ)1, (T/µ)2, and (T/µ)3 appear in table 4. Correspondingly, figure 15 (c)

shows C(zH) versus T/µ, where C(zH) < 0 for T/µ > (T/µ)3, indicating the area theorem

is obeyed, while C(zH) > 0 for T/µ < (T/µ)3, indicating area theorem violation.

As in the solutions above, when T/µ = 0 this solution has s = 0, so figure 15 (d)

shows σ in units of µ2R2/G versus Lµ for the strip at T/µ = 0. When Lµ = 0 we find

σ/(µ2R2/G) = −0.006, and then as Lµ increases the global maximum remains, and σ → 0+

as Lµ→∞, indicating that the area theorem violation remains.

However, this solution has a key difference from the others at T/µ = 0. The solution in

eq. (6.11) produces a HV geometry with d = 3 and θ = 1, hence θ = d− 2, which produces

logarithmic area law violation, possibly signaling a “hidden” (i.e. not gauge-invariant)

Fermi surface [44, 45]. To see the origin of the logarithm, we use g(z) = b(z)/a(z) and the

scalings of a(z) and b(z) at T/µ = 0 and z → ∞ in eq. (6.8), leading to g(z) ∼ z2(2−d).

Plugging that into the definition of C(z∗) in eq. (2.18), we find at large u = z/z∗ an integral
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Figure 15. Plots of our results using the solution given by eq. (6.11) (d = 3, ζ = 3, θ = 1). (a)

The ED, σ, in units of entropy density s, for the strip, for T/µ = 0.2 down to 0.02. (b) Close-up

of (a), showing the formation of a local maximum and minimum before the formation of the global

maximum as T/µ decreases from 0.07 down to 0.02. (c) The dimensionless coefficient C(zH) from

eq. (2.23) versus T/µ. As T/µ → ∞, C(zH) approaches the value for AdS-SCH with d = 3 (the

horizontal line). As T/µ decreases, C(zH) changes sign from negative to positive at the (T/µ)3

from table 4, indicating area theorem violation when T/µ < (T/µ)3. (d) The ED, σ, in units of

µ2R2/G, versus Lµ, at T/µ = 0. The global maximum and area theorem violation remain, albeit

with the logarithmic area law violation in eq. (6.12).

∫ 1
0 du/u, producing a logarithm. More precisely, at large L we find

σ ≈ 0.17
µ4R2

G

log (µL)

L
+O(1/L), (6.12)

so the leading term is log(µL)
L not 1

L , which is the definition of logarithmic area law violation.

In summary, AdS-to-HV domain walls exhibit various behaviors, depending on the

values of d, ζ, and θ. In particular, in our first example, with d = 3, ζ = 2, and θ = −2,

the area theorem was obeyed for all T/µ. The lesson: non-relativistic scaling in the IR

allows, but does not require, area theorem violation. Moreover, our second example, with

d = 4, ζ → ∞, and θ = −3ζ, has a z → ∞ metric conformal to AdS2 × Rd−1, hence

the dual field theory describes a semi-local quantum liquid, but with s = 0 at T/µ = 0,
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unlike extremal AdS-RN [42, 48, 51]. However, like extremal AdS-RN, the area theorem

is violated, raising the question of whether the same is true for all semi-local quantum

liquids. More generally, as mentioned in section 1, a natural question is for what values

of d, ζ, and θ area theorem violation occurs. We leave a completely general (holographic)

analysis to future research.

7 AdS with broken translational invariance

In this section we consider the bulk action of ref. [46],

Sbulk =
1

16πG

∫
dd+1x

√
− det gMN

(
R+

d(d− 1)

R2
− 1

4
FMNF

MN − 8πG

d−1∑
I=1

(∂ψI)2

)
,

(7.1)

where FMN = ∂MAN − ∂NAM is the field strength of a U(1) gauge field AM , dual to

a conserved U(1) current, and the ψI are a set of massless scalar “axion” fields, dual to

exactly marginal scalar operators OI . We focus on the solutions of ref. [46] with

At = µ

(
1− zd−2

zd−2
H

)
, ψI =

1√
16πG

d−1∑
k=1

γIk xk, (7.2)

with all other components of AM vanishing, and where xk are the d− 1 components of the

spatial vector ~x, while the γIk are dimensionful constants obeying

d−1∑
I=1

γIj γ
I
k ≡ γ2 δjk, (7.3)

where γ is a constant. In the solutions of ref. [46], the metric takes the form in eq. (2.1) with

f(z) = g(z) = 1− 1

2(d− 2)
γ2z2 −mzd +

(d− 2)

2(d− 1)
µ2z2

H

(
z

zH

)2(d−1)

, (7.4)

with a horizon at z = zH . These solutions are dual to CFTs with non-zero 〈Ttt〉, T , and

s, given by eqs. (2.3) and (2.4), and also non-zero chemical potential µ. In particular,

T =
d

4πR2

1

zH

(
1−

[
γ2

2d
− (d− 2)2µ2

2d(d− 1)

]
z2
H

)
. (7.5)

The solution also includes non-zero sources for the OI , but with 〈OI〉 = 0. The sources are

∝ xk, thus breaking the CFT’s translational symmetry. Momentum can therefore dissipate,

so the DC conductivity is finite even with non-zero U(1) charge density [46]. As in AdS-RN,

when T = 0 the near-horizon geometry is AdS2 × Rd−1, with AdS2 radius RAdS2 given by

R2
AdS2

=
1

d(d− 1)

(d− 1)γ2 + (d− 2)2µ2

γ2 + (d− 2)2µ2
R2. (7.6)

The AdS2 appears even when µ = 0, in which case RAdS2 = R/(γ
√
d).
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The two dimensionless ratios γ/T and µ/T determine the solution completely. When

γ/T = 0 with µ/T fixed, the solution reduces to AdS-RN, and we recover the results of

section 5. When γ/T 6= 0, because we introduce sources for the OI we find some features

similar to the RG flows of section 3. In particular, the term ∝ γ2z2 in g(z) in eq. (7.4)

produces UV divergences that are cancelled by the subtraction S−SCFT [24, 33] only when

d = 3, to which we restrict in the rest of this section. Moreover, because g(z) does not have

the asymptotics in eq. (2.2), the FLEE does not apply. Nevertheless, by straightforwardly

modifying the methods of section 2, for strip of width L small compared to all other length

scales we find

σ =
R2

4G

(
Γ
(

1
4

)2
24 Γ

(
3
4

)2 γ2 +
Γ
(

1
4

)2
32 Γ

(
3
4

)2 mL+ . . .

)
, (7.7)

where . . . are terms with higher powers of L than those shown. In other words, for the

strip in these solutions, σ at small L is linear in L, but with non-zero, positive intercept

∝ γ2. An intercept ∝ γ2 also appears in d > 3 [69].

In the two-parameter solution space, we focus on two one-parameter subspaces: ex-

tremal solutions, T/µ = 0 with µ/γ fixed, and uncharged solutions, µ/T = 0 with T/γ fixed.

Figure 16 (a) shows σ/s versus Lγ for the strip in the extremal case for various µ/γ. For

sufficiently large µ/γ, the effects of γ are small, so σ/s resembles that of extremal AdS-RN

with d = 3: as Lγ increases, σ/s rises linearly from zero, reaches a global maximum, and

then σ/s→ 1+ as Lγ →∞, indicating area theorem violation. However, as µ/γ decreases,

the effects of γ grow prominent, especially at small Lγ. Specifically, as µ/γ decreases the

intercept, limLγ→0 σ/s, increases, and moreover the slope at small Lγ changes sign from

positive to negative. To see why, we use ∂σ/∂L ∝ m from eq. (7.7). Solving eq. (7.5) (with

T = 0) for zH , plugging the result into g(zH) = 0 in eq. (7.4), and solving for m gives

∂σ

∂L
∝ m =

(µ2 − γ2)
√
µ2 + 2γ2

6
√

3
, (7.8)

which clearly changes from positive to negative as µ/γ decreases. Meanwhile, for all µ/γ

area theorem violation occurs: σ/s→ 1+ as Lγ →∞. That is unsurprising since the near-

horizon geometry is AdS2×Rd−1, which we know from extremal AdS-RN exhibits area theo-

rem violation, and changing µ/γ just changes RAdS2 in eq. (7.6). As confirmation, figure 16

(b) shows C(zH) versus µ/γ for extremal solutions, where indeed C(zH) > 0 for all µ/γ.

Figure 17 (a) shows σ/s versus LT for the strip in the uncharged case for various T/γ.

For sufficiently large T/γ, the effects of γ are small, so σ/s resembles that of AdS-SCH

with d = 3: as LT increases, σ/s increases monotonically until σ/s→ 1− as LT →∞, and

the area theorem is obeyed. However, as T/γ decreases, the effects of γ grow prominent. In

particular, as T/γ decreases the intercept, limLT→0 σ/s, increases, and the slope at small

LT changes sign from positive to negative. To see why, we again use ∂σ/∂L ∝ m from

eq. (7.7), and solve eqs. (7.5) and (7.4) for m, obtaining

∂σ

∂L
∝ m =

2γ4
(

8π2T 2 + γ2 − 2πT
√

16π2T 2 + 6γ2
)

(
4πT −

√
16π2T 2 + 6γ2

)3 . (7.9)
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Figure 16. (a) The ED, σ, in units of entropy density s, versus Lγ for the strip in the solution

of eq. (7.4) with T/µ = 0, showing the intercept increase and the slope change sign at small Lγ as

µ/γ decreases from 10 to 0. (b) The dimensionless coefficient C(zH) from eq. (2.23) versus µ/γ.

As µ/γ → ∞, C(zH) approaches the value for extremal AdS-RN with d = 3 (the horizontal line).

Clearly C(zH) > 0 for all µ/γ, indicating area theorem violation.
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Figure 17. (a) The ED, σ, in units of entropy density s, versus LT for the strip in the solution

of eq. (7.4) with µ/T = 0, showing the intercept increase and the slope change sign at small LT as

T/γ decreases from 1 to 0.01. A transition to area theorem violation also occurs at T/γ ≈ 0.034 (b)

The dimensionless coefficient C(zH) from eq. (2.23) versus T/γ. As T/γ → ∞, C(zH) approaches

the value for AdS-SCH with d = 3 (the horizontal line). As T/γ decreases, C(zH) becomes positive

at T/γ ≈ 0.034, indicating area theorem violation.

As T/γ decreases, the ∂σ/∂L in eq. (7.9) changes sign from positive to negative at

T/γ = 1/(2π
√

2). Meanwhile at large LT , as T/γ decreases a transition to area theo-

rem violation occurs at T/γ ≈ 0.034. Again, that is unsurprising, since at T/γ = 0 the

near-horizon geometry is AdS2×Rd−1. As confirmation, figure 17 (b) shows C(zH) versus

T/γ for uncharged solutions, where indeed C(zH) < 0 for T/γ > 0.034 and C(zH) > 0 for

T/γ < 0.034, indicating area theorem violation.
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In summary, in the parameter space we explored for the solutions of ref. [46], σ/s’s

large-L behavior is similar to that of AdS-RN, namely, as we approach the extremal limit,

area theorem violation occurs. Crucially, the extremal solutions of ref. [46] have a near-

horizon AdS2 × Rd−1, and hence are dual to semi-local quantum liquid states [42, 48],

similar to extremal AdS-RN and the ζ → ∞ solution of section 6, again suggesting that

semi-local quantum liquids always violate the area theorem. However, the solutions of

ref. [46] describe non-zero sources for the OI , which violate the FLEE, so σ’s small-L

behavior is radically different from that of AdS-RN. Specifically, as T/γ or µ/γ decrease,

i.e. as γ increases, the value of σ at L = 0 increases, and ∂σ/∂L changes sign from positive

to negative. In these cases, σ as a function of L does not have a maximum, in stark

contrast to extremal AdS-RN. As a result, although in these semi-local quantum liquids

space should still divide into patches of size `, as described in section 1.3, we cannot define `

from a maximum in σ. We leave an exploration of the full parameter space of the solutions

of ref. [46] to future research.

8 AdS soliton

In this section we consider the same bulk action as in section 4, namely a (d+1)-dimensional

Einstein-Hilbert action with negative cosmological constant, and study the AdS soliton

solution [25, 47, 70, 71], obtained from AdS-SCH by double Wick-rotation, with metric

ds2 =
R2

z2

(
−dt2 + d~x2 + g(z)dχ2 +

dz2

g(z)

)
, (8.1)

where g(z) = 1 − zd/zd0 , the coordinate χ is compact, χ ∼ χ + 4πz0/d, and ~x represents

(d−2) non-compact spatial directions. The AdS soliton has a “hard wall” at z = z0, where

g(z0) = 0, indicating that compactifying a spatial direction in the dual CFT, with anti-

periodic boundary conditions for fermions, produces a mass gap and confinement [25, 70].

The AdS soliton has T = 0, s = 0, and

〈Ttt〉 = − 1

16πG

Rd−1

zd0
, (8.2)

that is, the CFT has a negative Casimir energy.

The metric in eq. (8.1) is not of the form in eq. (2.1), so the results of section 2 do not

apply, however, the minimal area calculations generalize straightforwardly [70, 72]. Our

entangling region is a strip of width L with planar boundaries along a non-compact direc-

tion, so that in particular the entangling surface wraps around χ. As shown in ref. [70], for

any L, multiple extremal surfaces exist. In particular, for any L, “disconnected” extremal

surfaces exist that drop straight from the asymptotic AdSd+1 boundary to the hard wall,

with area

Astrip
discon. = Rd−1Vol(Rd−3)

8πz0

d(d− 2)

(
1

εd−2
− 1

zd−2
0

)
. (8.3)
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Figure 18. (a) Strip width L versus turn-around point z∗, both in units of z0, for connected

extremal surfaces in the AdS soliton with d = 4. Two branches of connected extremal surfaces exist,

with z∗/z0 < 0.89 (blue solid) and z∗/z0 > 0.89 (red dashed). (b) The differences in area, ∆A, nor-

malized by Vol (R)R3/z0, between the two connected extremal surfaces (blue solid and red dashed)

and the disconnected extremal surfaces (black dot-dashed), and the minimal surface with the same

L in compactified AdS5, versus L/z0. A “first-order phase transition” occurs at L/z0 ≈ 0.615 [72]

from a connected (blue solid) to a disconnected (black dot-dashed) extremal surface.

For sufficiently small L, connected extremal surfaces also exist. These “hang down” into

the bulk to a turn-around point z∗, as in figure 2 (a), where the analogue of eq. (2.6) is

L = 2z∗

∫ 1

0
du

√
g(z∗)

g(z∗u)

ud−1√
g(z∗u)− g(z∗)u2(d−1)

, (8.4)

where u = z/z∗ as in section 2, and the analogue of eq. (2.17) is

Astrip
con. =Rd−1Vol(Rd−3)

8πz0

d

[
1

d−2

(
1

εd−2
− 1

zd−2
∗

)

+
1

zd−2
∗

∫ 1

0
du

1

ud−1

(√
g(z∗u)

g(z∗u)−g(z∗)u2(d−1)
−1

)]
. (8.5)

In fact, two connected extremal surfaces exist. Figure 18 (a) shows that L in eq. (8.4) is

multi-valued in z∗, such that two different connected surfaces with different z∗ can have

the same L. The maximal L for which two connected solutions exists depends on d. For

example, for d = 4 two solutions exist when L . 0.7 z0, as shown in figure 18 (a).

The EE is given by the extremal surface with minimal area [20, 21]. As L increases

a “first order phase transition” occurs between extremal surfaces as the area functional’s

global minimum, from the connected surface with smaller z∗ to the disconnected surface.

For example, figure 18 (b) shows the transition for d = 4, which occurs at L ≈ 0.615 z0 [72].

The AdS soliton is asymptotically locally AdSd+1, but has a compact spatial direction,

which changes the EE’s UV divergences compared to AdSd+1. Indeed, our entangling

surfaces wrap the compact direction χ, so that the divergent area law term, ∝ 1/εd−2,
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will include a factor of χ’s length, 4πz0/d. The AdSd+1 result in eq. (2.8b) has no z0

dependence, hence the subtraction S − SCFT will not cancel the UV divergence. For a

detailed discussion of S’s divergences in the AdS soliton, and regularization schemes, see

ref. [72]. For simplicity, we will just compare the AdS soliton to AdSd+1 with a compact

direction of length 4πz0/d, and periodic boundary conditions for fermions, which we call

“compactified AdSd+1.” The compactified AdSd+1 metric is locally identical to AdSd+1,

but produces divergences in extremal surfaces identical to those in the AdS soliton. For

the AdS soliton, we thus define the area differences in figure 18 (b) and the ED, σ, by

subtracting the result for compactified AdSd+1.

A key caveat, however, is that compactified AdSd+1 has a conical singularity at the

Poincaré horizon [73]. The singularity could affect σ’s behavior as L→∞, the regime where

the corresponding extremal surface hangs deeper and deeper into the bulk, approaching

the Poincaré horizon. However, we have compared our subtraction to renormalization via

covariant counterterms [12–14], and found no difference at large L. Indeed, the countert-

erms ultimately subtract only the area term ∝ 1/εd−2, and so differ from the compactified

AdSd+1 subtraction only by the area law term ∝ 1/Ld−2, which primarily affects the small-

L behavior. Our subtraction is therefore sufficient to obtain σ’s large-L behavior, and in

particular to determine whether the area theorem is violated.

Applying our subtraction to eq. (8.5) for Astrip
con. thus gives σ for L below the transition,

σ =
Rd−1

4G

√g(z∗)

zd−1
∗

+
Ĉ(z∗)

zd−2
∗

2

L
+

2d−2π
d−1
2

d− 2

Γ
(

d
2(d−1)

)
Γ
(

1
2(d−1)

)
d−1

2

Ld−1

 , (8.6)

where Ĉ(z∗) is defined in analogy with C(z∗) in eq. (2.18),

Ĉ(z∗) = − 1

d− 2
+

∫ 1

0

du

ud−1

(√
1− g(z∗)

g(z∗u)
u2(d−1) − 1

)
. (8.7)

Applying our subtraction to eq. (8.3) for Astrip
discon. gives σ for L above the transition,

σ =
Rd−1

4G

2d−1π
d−1
2

d− 2

Γ
(

d
2(d−1)

)
Γ
(

1
2(d−1)

)
d−1

1

Ld−1
− 2

d− 2

1

zd−2
0

1

L

 . (8.8)

Figure 19 shows σ, normalized by R3/(Gz3
0), versus L/z0 for the AdS soliton with d = 4. We

checked explicitly that σ’s qualitative behavior is the same as that in figure 19 up to d = 40.

Compactifying a spatial direction is not merely a change of state, so we do not expect

the FLEE to apply. Nevertheless, a small-L/z0 expansion of eq. (8.6) similar to that in

section 2 gives at leading order σ = 2〈Ttt〉T−1
ent , with Tent for the strip in eq. (2.13). In

other words, we find precisely twice the result expected from the FLEE. Given 〈Ttt〉 < 0

from eq. (8.2), σ ∝ −L at leading order at small L/z0, as shown in figure 19.

As L/z0 increases, the ED decreases until the transition from connected to disconnected

minimal surface in the bulk at L/z0 = 0.615, where a kink (discontinuous first derivative)
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Figure 19. The ED, σ, normalized by R3/(Gz3
0), versus L/z0 for the AdS soliton with d = 4.

appears, due to the transition from connected to disconnected minimal surface. As L/z0

increases further, the ED decreases to a global minimum at

L = 2(d− 1)
1
d−2 π

d−1
2(d−2)

Γ
(

d
2(d−1)

)
Γ
(

1
2(d−1)

)


d−1
d−2

z0, (8.9)

and then increases until eventually σ → 0− as L/z0 → ∞. Indeed, in eq. (8.8) the area

term ∝ −1/L obviously dominates over the term ∝ 1/Ld−1 at large L/z0, hence σ → 0−

as L/z0 →∞ for all d. In other words, ∆α > 0 for all d, consistent with the area theorem.

In summary, the AdS soliton is our only example with a mass gap, i.e. no massless IR

degrees of freedom. The AdS soliton is not Lorentz-invariant, and hence the proofs of the

area theorem in refs. [21, 31–33] do not apply. Nevertheless, the AdS soliton has ∆α > 0,

consistent with the idea that the area term’s coefficient counts degrees of freedom: with

zero IR degrees of freedom, ∆α should be positive. The question of whether ∆α > 0 in all

(holographic) systems with a mass gap we leave for future research.
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