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1 Introduction

One way of finding chiral sets of fermions that are anomaly-free under product gauge groups

is to decompose anomaly-free multiplets of larger groups. For example, by decomposing

the 10 + 5 of SU(5) under its SU(3)× SU(2)×U(1) subgroup, one finds the anomaly-free

set that comprises the fermions of the Standard Model. And by decomposing the 16 of

SO(10) under its SU(5)×U(1) subgroup, one finds the anomaly-free set 101 + 5
−3

+ 15.

It was shown in [1] that interesting sets of fermions that are anomaly-free under groups

of the form SU(M) × SU(N) × U(1) can be found by decomposing multiplets of the su-

pergroup SU(M |N) [2]. The idea is based on the fact that the Casimirs of SU(M |N) only

depend on (M − N). Thus the third-order Casimirs for the groups SU(M + P |P ) are

the same for any P , and thus the same as for SU(M). If one considers, therefore, an irre-

ducible fermion representation that is anomaly-free (i.e. has vanishing third-order Casimir)

under SU(M), the corresponding Young tableaux representation of SU(M+P |P ) will yield

anomaly-free sets when decomposed under the bosonic subgroup SU(M+P )×SU(P )×U(1).

To take a simple example, consider the totally antisymmetric rank-four tensor multiplet

of SU(4). This is a singlet, and thus trivially anomaly free. Consequently, the representa-

tion with the same Young tableau yields anomaly-free sets of fermions when decomposed

under the SU(4 + P )× SU(P )×U(1) subgroup of SU(4 + P |P ). This decomposition gives

the multiplets

([4], (0))P + ([3], (1))−(P+1) + ([2], (2))(P+2) + ([1], (3))−(P+3) + ([0], (4))P+4, (1.1)

where [m] and (m) stand for the rank-m tensor multiplets that are totally antisymmetric

and totally symmetric in the indices, respectively, and the overbar stands for the conjugate

multiplets. The superscripts are the U(1) charges. If we take P = 1, this gives the anomaly-

free set of SU(5)×U(1) multiplets 5
1

+10−2 +103 +5
−4

+15. If we take P = 2, this gives

the anomaly-free set of SU(6) × SU(2)× U(1) multiplets (15,1)2 + (20,2)−3 + (15,3)4 +

(6,4)−5 + (1,5)5.

– 1 –



J
H
E
P
1
0
(
2
0
1
7
)
1
2
8

The anomaly-free sets constructed in [1] are interesting from the point of view of gauged

family symmetry. In a theory having the gauge group SU(M) × SU(N) × U(1), the first

factor could contain the Standard Model group if M ≥ 5, while SU(N) could be a family

group if it has three-dimensional representations, whether irreducible or reducible.

An anomaly-free set of fermions that contains exactly three families of the Standard

Model can be obtained by looking at the rank-3 tensors of SU(3 + P |P ). This gives the

anomaly free-set of SU(3 + P )× SU(P )×U(1) fermion multiplets

([3], (0))−P + ([2], (1))(P+1) + ([1], (2))−(P+2) + ([0], (3))P+3, (1.2)

An interesting case, which gives a family group SU(3), is obtained by setting P = 3

in eq. (1.2), in which case the group is SU(6) × SU(3) × U(1) and the multiplets are

(20,1)−3 + (15−3,3)4 + (6,6)−5 + (1,10)6. This contains in addition to the Standard

Model fermions many fermions that are vector-like under the Standard Model group. Under

SU(5), it contains in addition to the three families of 10 + 5, three sets of 5 + 5, one of

10 + 10, and sixteen singlets.

A more economical case is obtained by setting P = 2 in eq. (1.2). Then one has the

following group and fermion multiplets:

SU(5)× SU(2)×U(1) : (10,1)−2 + (10,2)3 + (5,3)−4 + (1,4)5. (1.3)

The only fermions this contains besides those of the Standard Model (SM) are four SM-

singlets, which can play the role of the right-handed neutrinos. This is the simplest and

most economical case based on the constructions of [1]. We shall therefore study it in detail.

As will be seen, models can be constructed for this case in which the family SU(2) gives

non-trivial forms for the fermion mass matrices, fits the lepton sector well, and predicts

the Dirac CP phase of the neutrinos.

2 The minimal SU(5) × SU(2) × U(1) model

All the fermion multiplets given in eq. (1.3) can be given non-zero masses by just four

Higgs multiplets (which will be distinguished from fermion multiplets by a subscript H):

(5,1)4H , (5,2)−1H , (5,3)−6H , (1,3)−10H . (2.1)

These Higgs multiplets have the following Yukawa couplings to the fermions:

u masses from 10 10 5H terms : a (10,1)−2(10,1)−2 (5,1)4H
+b (10,1)−2(10,2)3 (5,2)−1H
+c (10,2)3(10,2)3 (5,3)−6H ,

d, `− masses from 10 5 5H terms : e (10,1)−2(5,3)−4
[
(5,3)−6H

]∗
+f (10,2)3(5,3)−4

[
(5,2)−1H

]∗
ν Dirac masses from 5 1 5H terms : g (5,3)−4(1,4)5 (5,2)−1H

νc masses from 1 1 1H terms : h (1,4)5(1,4)5 (1,3)−10H .

(2.2)
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Note that an SU(2)-singlet mass for the right-handed neutrinos, i.e. (1,4)51,4)5(1,1)−10H ,

is forbidden by Fermi statistics, since the symmetric product of two 4-plets of SU(2) does

not contain a singlet. (Note that from the fact that the Higgs multiplets in eq. (2.1) can

couple to the fermions as in eq. (2.2) it is evident that they also can arise from decomposing

multiplets of the supergroup SU(5|2).)

As we shall see in detail, the forms of mass matrices of the quarks and leptons that

arise from the Yukawa terms in eq. (2.2) are determined by the SU(2) family symmetry,

and the Clebsch coefficients of SU(2).

Let us denote the vacuum expectation values (VEVs) of the Higgs multiplets shown

in eq. (2.1) as follows

〈(5,1)4H〉 = S,

〈(5,2)−1H 〉 = (d↓, d↑),

〈(5,3)−6H 〉 = (v1, v2, v3),

〈(1,3)−10〉 = (t1, t2, t3).

(2.3)

Here we have expressed the VEVs of the SU(2) triplets in a “Cartesian basis”. But we

can also denote them in a “spherical basis”, with v± ≡ (v1 ± iv2)/
√

2, v0 ≡ v3, and

t± ≡ (t1± it2)/
√

2, t0 ≡ t3. The VEV (t1, t2, t3) is a complex vector. If we assume that its

real and imaginary parts are aligned, then we can choose the basis in SU(2) space so that

(t1, t2, t3) = (0, 0, t). Such alignment happens if a certain quartic self-coupling of (1,3)−10H

has the right sign. The most general renormalizable potential for this field is of the form

V (~t) = −µ2(~t∗ ·~t)+λ(~t∗ ·~t)2+λ′(~t ·~t)(~t∗ ·~t∗)+λ′′(~t∗×~t)2. If we write ~t = ~a+i~b, where ~a and
~b are real vectors, then V = −µ2(a2+b2)+(λ+λ′)(a2+b2)2−4(λ′+λ′′)a2b2 sin2 θab. There

are two cases: case I with λ′ + λ′′ < 0, and Case II with λ′ + λ′′ > 0. In Case I, the angle

θab between ~a and ~b vanishes. Then ~t = â(a+ ib), where the phase of a+ ib can be gauged

away. Choosing â to point in the 3 direction, and defining t ≡
√
a2 + b2, one ends up with

the form (t1, t2, t3) = (0, 0, t). In Case II, θab = π/2, so ~a and ~b are perpendicular to each

other, and one can choose the basis in SU(2) space so that (t1, t2, t3) = (0, it′, t). Moreover,

in this case the term with sin2 θab becomes −|λ′ + λ′′|a2b2, meaning that a and b become

of equal magnitude, and one has (t1, t2, t3) = (0, it, t). These two cases give different mass

matrices for the right-handed neutrinos and will both be examined below.

In eq. (2.1) we have written several 5-plets of SU(5). These contain altogether six

electroweak doublets of scalars. All of them would “naturally” be expected to have su-

perheavy masses. In a non-SUSY SU(5) model, one fine-tuning is done to make the

mass-squared matrix of the six electroweak doublets have one small (i.e. electroweak-scale)

eigenvalue. The linear combination of electroweak doublets corresponding to this eigen-

value is the Standard Model Higgs doublet; the five orthogonal linear combinations are

superheavy. If the Standard Model Higgs doublet is a linear combination of the six dou-

blets in (5,1)4H , (5,2)−1H , (5,3)−6H with all six of the coefficients being non-zero, then

all six of the VEVs denoted S, d↑, d↓, v1, v2, and v3 in eq. (2.3) will be non-zero. That
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this can be achieved will be shown in detail in section 5. In SUSY SU(5) models, the

situation is similar. There one considers the 6 × 6 mass matrix of the electroweak doublet

Higgsinos and arranges, either by fine-tuning or by technically natural mechanism (such as

the missing partner mechanism), that one of its eigenvalues is of electorweak scale.

We will define the complex numbers

x ≡ d↓/d↑, z1 ≡ v1/v3, z2 ≡ v2/v3. (2.4)

Let us similarly denote the fermion multiplet (5,3)−4 by (51,52,53) or (5−,50,5+)

and the fermion multiplet (10,2)3 by (10↓,10↑). The (10,1)−2 we will denote simply by

10, without any subscript. Then the 3 × 3 mass matrix of the up quarks mass can be

written

(10↓,10↑,10)u

 cv+ cv0/
√

2 bd↑/2

cv0/
√

2 cv− −bd↓/2
bd↑/2 −bd↓/2 aS


 10↓

10↑
10


uc

, (2.5)

so that the up quark mass matrix can be written in the form

Mu = µu

 δ(z1 + iz2) δ ε

δ δ(z1 − iz2) −εx
ε −εx 1

 , (2.6)

where µu = aS, ε =
bd↑
2aS , δ = cv0√

2aS
.

Since the VEVs that give the fermions mass do not break SU(4)c, one obtains the

unrealistic “minimal SU(5)” relation [7] between the down quark and charged lepton mass

matrices: Md = MT
` . These come from the term

(10↓,10↑,10)d (or `c)

 fd∗↑/
√

3 ifd∗↑/
√

3 fd∗↓/
√

3

−fd∗↓/
√

3 ifd∗↓/
√

3 fd∗↑/
√

3

ev∗1 ev∗2 ev∗3


 51

52
53


dc (or `)

, (2.7)

This gives

Md = µd

 η iη ηx∗

−ηx∗ iηx∗ η

z∗1 z∗2 1

 , M` = µd

 η −ηx∗ z∗1
iη iηx∗ z∗2
ηx∗ η 1

 , (2.8)

where µd = ev∗0. η =
fd∗↑√
3ev∗0

, and we have used the complex parameters x, z1, and z2

parameters in eq. (2.4).

The neutrino mass matrix arises through a Type I see-saw mechanism [3–6]. There

are three left-handed neutrinos in the (5,3)−4 and four left-handed anti-neutrinos in the

(1,4)5. The Dirac neutrino mass matrix comes from

(
5+,50,5−

)
ν


0 0 −

√
1
3gd↓ gd↑

0
√

2
3gd↓ −

√
2
3d↑ 0

−gd↓
√

1
3gd↑ 0 0




13/2
11/2
1−1/2
1−3/2


νc

, (2.9)
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where the form is entirely determined by SU(2) Clebsch coefficients. The 4 × 4 Majo-

rana mass matrix of the νc is also determined by Clebsch coefficients. In Case I, where

(t−, t0, t+) = (0, t, 0), one then finds

(
13/2,11/2,1−1/2,1−3/2

)
νc


0 0 0 3√

20
ht

0 0 − 1√
20
ht 0

0 − 1√
20
ht 0 0

3√
20
ht 0 0 0




13/2
11/2
1−1/2
1−3/2


νc

, (2.10)

From the see-saw formula Mν = −MDiracM
−1
R MT

Dirac, one finds

[
−2
√

5
g2d2↑
3ht

]
(ν+, ν0, ν−)

 0
√

2x2 0√
2x2 4x

√
2

0
√

2 0


 ν+
ν0
ν−

 . (2.11)

Writing this in the Cartesian basis (ν1, ν2, ν3), and defining µν = −2
√
5g2d2↑
3ht , one has

µν (ν1, ν2, ν3)

 0 0 x2 + 1

0 0 i
(
x2 − 1

)
x2 + 1 i

(
x2 − 1

)
1


 ν1
ν2
ν3

 . (2.12)

This is not, however, the most general form of the neutrino mass matrix, be-

cause another operator can contribute to it, namely the effective dim-5 operator

(5,3)−4(5,3)−4(5,1)4H(5,1)4H . In the Cartesian basis, this just gives the identity matrix.

Defining the ratio of the coefficient of this term to µν by the complex number y, we have

Mν = µν


y 0 x2 + 1

0 y i
(
x2 − 1

)
x2 + 1 i

(
x2 − 1

)
4x+ y

 . (2.13)

Note that the complex parameter y actually makes a difference for the neutrino mixing

angles and mass splittings, despite appearing as the coefficient of the identity matrix. This

is so, because Mν is complex and symmetric and thus diagonalized by UνMνU
T
ν rather

than by UνMνU
†
ν .

For Case II, where (t1, t2, t3) = (0, it, t), one has (t−, t0, t+) = (−t/
√

2, t,+t/
√

2), This

gives the following mass matrix for the right-handed neutrinos:

(
13/2,11/2,1−1/2,1−3/2

)
νc


0 0 −

√
3√
20
ht 3√

20
ht

0 1√
5
ht − 1√

20
ht

√
3√
20
ht

−
√
3√
20
ht − 1√

20
ht − 1√

5
ht 0

3√
20
ht

√
3√
20
ht 0 0




13/2
11/2
1−1/2
1−3/2


νc

, (2.14)
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After straightforward algebra, this gives the following mass matrix for the three light

neutrinos in a Cartesian basis:

Mν =
1

2
µν


y −i

(
x2 + 1

)
x2 + 1

−i
(
x2 + 1

)
y − 4x i

(
1− 2x− x2

)
x2 + 1 i

(
1− 2x− x2

)
y + 2

(
x2 − 1

)

 , (2.15)

which is to be compared to eq. (2.13).

The model described above, while not fully realistic because of the “minimal SU(5)

relation Md = MT
` [7], can account for many of the qualitative features of the quark and

lepton masses and mixing angles. The fact that the overall scales of the up quark masses,

down quark and charged lepton masses, and neutrino masses are very different can be

explained by the fact that they are determined by the three independent parameers µu,

µd, and µ` (see eqs. (2.6), (2.8), (2.13), and (2.15)), which are in turn determined by the

VEVs of different types of Higgs multiplets. Moreover, several features of the inter-family

mass ratios can also be accounted for.

The most striking feature of the observed inter-family fermion mass ratios is that

they are hierarchical. That can partly be explained in this model by the fact that the

three families are distinguished from each other by how they transform under the SU(2)

family symmetry. For instance, because of SU(2), three different types of Higgs multiplet

contribute to the up quark masses, as one sees from eq. (2.2). If one assumes a hierarchy

among the VEVs (or Yukawa coefficients, or both) of those three Higgs multiplets, one can

have δ � ε� 1, which gives mu � mc � mt, as is apparent from eq. (2.6). Two types of

Higgs multiplets contribute to the down quark (and charged lepton) masses, as shown in

eq. (2.2). If one assumes a hierarchy in their VEVs (or Yukawa couplings, or both), one

can have η � 1. This would explain why the third family of down quarks and charged

leptons is heavier than the first two families, as eq. (2.8) shows. However, it would not

explain the lightness of the first family compared to the second for the down quarks and

charged leptons. As one can see from eq. (2.8), that would require a certain relationship

(which will be given later) to hold among the parameters x, z1 and z2.

Each of the parameters x, z1 and z2 is defined as a ratio of VEVs of different com-

ponents of an SU(2) Higgs multiplet. One would therefore naturally expect that these

(complex) parameters would have magnitudes of O(1). Thus, the relationship among them

that would make me/mµ � 1 and md/ms � 1 would involve a fine-tuning of order 10−2.

The hierarchies δ � ε � 1 and η � 1 would also partially explain the smallness of

the CKM angles. An examination of eqs. (2.6) and (2.8) shows that Vcb and Vub come out

to be of order η, while the Cabibbo mixing Vus comes out to be O(1) if x, z1 and z2 are

arbitrary parameters of O(1). The “fine-tuning? required to fit the Cabibbo angle is mild,

but a tuning of order 10−1 is required to explain the smallness of |Vub|. This tuning takes

the form of a relation among x, z1 and z2 that must be approximately satisfied.

If the parameters x, z1 and z2 have magnitudes of O(1), as one would naturally expect,

then the forms of the lepton mass matrices given in eq. (2.8) and eqs. (2.13) and (2.15) show

– 6 –
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that the PMNS angles should typically be of O(1) as well, and that the ratio of neutrino

masses should not be small. Thus, this model can account in a natural way for most of

the qualitative features of the quark and lepton mass ratios and mixing angles. The two

exceptions are the smallness of me/mµ (and md/ms) and the smallness of |Vub|, each of

which requires a somewhat tuned condition to hold among the complex parameters x, z1,

and z2.

The minimal model described above is very simple, and, as we shall see, the SU(2)

family symmetry yields non-trivial predictions for the lepton sector, in particular for the

Dirac CP phase of the neutrinos. As noted, however, this minimal model’s predictions for

the quark sector are not realistic, because the model gives the “minimal SU(5)” relation

Md = MT
` at the GUT scale. This defect can be repaired if some of the quarks and leptons

obtain mass from effective higher-dimension Yukawa terms that contain the adjoint Higgs

of SU(5) (or whatever Higgs breaks SU(5) down to the Standard Model group). This can

be done in such a way that the quark sector is made realistic without changing the minimal

model’s predictions for the lepton sector. We shall therefore defer to section 4 a discussion

of how this can be done, and first derive the lepton-sector predictions of the minimal model

in section 3.

3 Predictions of neutrino properties

Let us now see whether the simple model we have presented can fit the lepton sector, i.e.

the masses of the charged leptons and neutrinos, and the PMNS angles.

As noted before, the fact that me � mµ requires a tuning of parameters. As can be

seen from an inspection of eq. (2.8), for |z1|, |z2| and |x| of O(1), and |η| small, the three

eigenvalues of M` are of order |µd|, |ηµd|, and |ηµd|. To have me ∼ 10−2mµ requires that

| detM`| ∼ 10−2|η2µ3d|. This yields the condition that∣∣∣∣1− x2 − 1

2x
z1 − i

x2 + 1

2x
z2

∣∣∣∣ ∼ 10−2. (3.1)

It will make no significant difference, and will simply calculations, if in fitting the neutrino

properties we simply set this small quantity to zero. In that case, solving a quadratic

equation allows one to solve for x in terms of z1 and z2:

x ∼=
1±

√
1 + z 2

1 + z 2
2

z1 + iz2
. (3.2)

Suppose the mass matrices M` and Mν are diagonalized by the following unitary trans-

formations: U`M`V
†
` = Mdiagonal

` and UνMνU
T
ν = Mdiagonal

ν . Then, with our conventions,

the PMNS matrix is given by UPMNS = U∗` U
T
ν . If we ignore effects that are subleading by

order |η|2, the unitary matrix U` depends only on the complex parameters z1, z2, and x,

as can be seen by inspection of the form of M` given in eq. (2.8). (The matrix V` depends

on η in leading order, but does not contribute to UPMNS .) In fact it is easy to write an

– 7 –
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explicit form of U`:

U` =

 cos θ`12 − sin θ`12 0

(sin θ`12)
∗ (cos θ`12)

∗ 0

0 0 1




z∗2
N12

− z∗1
N12

0
z1

NN12

z2
NN12

−N12
N

z1
N

z2
N

1
N

 , (3.3)

where N12 ≡
√
|z1|2 + |z2|2, N ≡

√
1 +N2

12 =
√

1 + |z1|2 + |z2|2, and

sin θ`12
cos θ`12

≡
i
(
z∗21 + z∗22

)√
1 + |z1|2 + |z2|2

|z1 − iz2|2 + (|z1|2 + |z2|2)
(
−1±

√
1 + z∗21 + z∗22

) , (3.4)

where we have used eq. (3.2) to eliminate the parameter x and write U` entirely in terms

of z1 and z2.

The diagonalization of Mν , given in eq. (2.13) for Case I and eq. (2.15) for Case II,

must be done numerically. This requires searching over three complex parameters of O(1),

namely z1, z2, and y. For each choice of these parameters, one can compute the PMNS

angles and the ratio of neutrino mass splittings ∆m2
12/∆m

2
23. (The overall scale of the

neutrino masses is set by the parameter µν .) One might think that one should be able to

fit these four experimental numbers with the three complex model parameters z1, z2, and

y. A good fit is not guaranteed to exist, however, as the equations are nonlinear.

For Case I, we have done a numerical search of parameter space and found that there

are values of the parameters that give excellent fits to the three PMNS angles, but none of

them also gives a small enough value for the ratio of mass splittings ∆m2
12/∆m

2
23.

For Case II, we have two found satisfactory solutions for the leptons, one corresponding

the minus sign in eq. (3.2), and the other corresponding to the plus sign. We will call these

Solutions 1 and 2, respectively. These two solutions give a good fit all three neutrino mixing

angles and the ratio of neutrino mass splittings ∆m2
12/∆m

2
23, but give different predictions

for the Dirac CP phase of the neutrinos δCP .

In table 1, we present the fits to the neutrino mixing angles and the predictions of

δCP for the two solutions. These were found in the following way. We searched over the

three complex parameters z1, z2, y and kept only those points which yielded values for

the three PMNS angles and for the ratio of neutrino mass splittings that were each within

one-sigma of the experimental value. The error bars in the second and third columns of

table 1 represent the standard deviation of the values obtained in this way. One notes that

the prediction for the Dirac CP phase of the neutrinos δCP is fairly sharp for each of the

two solutions. The fourth column in table 1 gives the 1σ best fit values from the 2014

particle data group [8], and the fifth column gives the best fit values from the 2016 particle

data group [9]. In table 2, we give the values of the complex model parameters z1, z2 and

y for the two solutions.

This model illustrates the predictive potential of models with non-abelian family

groups. The SU(2) family symmetry strongly constrains the forms of the mass matri-

ces. The patterns arising from the SU(2) family symmetry allow the model to account

for many qualitative features of the quark and lepton spectrum, as well as yielding very

precise predictions for the Dirac CP phase of the neutrinos. We now show that the model
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Quantity Solution 1 Solution 2 1σ best fit5 best fit6

sin2 θ12 0.321± 0.004 0.307± 0.011 0.308± 0.017 0.297

sin2 θ23 0.467± 0.0026 0.457± 0.0065 0.437+0.033
−0.023 0.437

sin2 θ13 0.0231± 0.001 0.0234± 0.0015 0.0234+0.002
−0.0019 0.0214

δCP (rad) 0.829± 0.0035 −0.617± 0.0047

δCP /π 0.264± 0.0011 −0.196± 0.0015

Table 1. The values of the PMNS parameters for the two solutions of Case II.

Quantity Solution 1 Solution 2

Re(z1) 1.51± 0.004 −0.098± 0.006

Im(z1) −0.064± 0.009 −1.19± 0.0035

Re(z2) 0.13± 0.008 −0.056± 0.0028

Im(z2) 0.78± 0.016 0.755± 0.018

Re(y) 0.488± 0.018 0.473± 0.033

Im(y) 0.268± 0.004 −0.391± 0.0057

Table 2. The values of the complex parameters z1, z2, and y for the two solutions for Case II.

can be modified to allow a realistic quark sector, without affecting the predictions for the

lepton sector.

4 Making the quark sector realistic

The quark sector of the minimal model described in previous sections is unrealistic in two

ways. First, the down quark masses come out wrong, because of the relation Md = MT
` .

Second, there are not enough free parameters to ensure that the CKM mixing parameters

are fit.

There are two standard ways to avoid the unrealistic prediction Md = MT
` in SU(5)

GUT models. One is to introduce 45-plets of Higgs fields in addition to the 5-plets so that

there are Yukawa couplings of the form 10 · 5 · 45H in addition to the 10 · 5 · 5H . Because

the VEV of the 45H couples differently to the quarks and leptons, this would break the

d− ` degeneracy. In our case, this would mean introducing at least (45, 2)−1H and (45, 3)−6H
multiplets. This would create a problem, however, in that to maintain the same form of

M` as in the minimal model (and thus the predictions for neutrino properties obtained

in section 3) there would have to be near alignment in SU(2) family space of the VEVs

of (45, 2)−1H with (5, 2)−1H and (45, 3)−6H with (5, 3)−6H . While it may be possible to have

a Higgs sector and Higgs potential that ensures such alignment, it appears to be quite

difficult to achieve.

The second way to avoid the bad relation Md = MT
` is to have some of the quark and

lepton masses come from higher-dimension effective Yukawa terms that contain the SU(5)
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adjoint Higgs field (or whatever Higgs field breaks SU(5) down to the Standard Model

group at the GUT scale). As we shall see, this altogether avoids the alignment problem

mentioned in the previous paragraph if the adjoint is a singlet under the family SU(2),

as then its insertion into the Yukawa terms does not affect the family structure of those

terms. Using the adjoint Higgs to break the relation Md = MT
` has the advantage that

it does not require introducing any additional Higgs fields beyond those required in the

minimal model. On the other hand, there need to be new fermion fields at the GUT scale

that when integrated out yield the desired higher-dimension effective Yukawa terms. As

we shall see, however, these new fermions can be vector-like pairs consisting of fermions

in some of the same representations shown in eq. (1.3) together with their conjugates. So

this is quite economical.

We shall now discuss one way to build a realistic extension of the minimal model

described in the previous sections using higher-dimension effective Yukawa terms. Let us

suppose there is a Z2 symmetry under which the Higgs multiplets (5, 2)−1H , (5, 3)−6H . and

the SU(5) adjoint Higgs field (24, 1)0H are odd and (5, 1)4H and (1, 3)−10H are even. The new

vector-like fermion multiplets will all be odd under the Z2, while the fermion multiplets

that are in the minimal model are even. With these Z2 assignments, several of the Yukawa

terms in eq. (2.2) are forbidden, but can be made Z2-invariant by insertion of the adjoint

Higgs field, which converts them to dimension-5 operators. The allowed Yukawa terms (up

to dimension 5) are then the following:

u masses : a (10,1)−2(10,1)−2 (5,1)4H
+b (10,1)−2(10,2)3 (5,2)−1H (24,1)0H/MGUT

+c (10,2)3(10,2)3 (5,3)−6H (24,1)0H/MGUT,

d, `− masses : e (10,1)−2(5,3)−4 [(5,3)−6H ]∗(24,1)0H/MGUT

+f (10,2)3(5,3)−4 [(5,2)−1H ]∗(24,1)0H/MGUT,

ν Dirac masses : g (5,3)−4(1,4)5 (5,2)−1H (24,1)0H/MGUT

νc masses : h (1,4)5(1,4)5 (1,3)−10H .

(4.1)

It should be noted that the terms in eq. (4.1) with coefficients denoted b, c, e, and f are

each in reality two terms, since the indices in the SU(5) products of Higgs fields can

be contracted in two distinct ways, corresponding to 5 × 24 = 5 + 45. So, b, c, e,

and f really each represent two Yukawa coefficients, but we have not written this out

explicitly in eq. (4.1). Note that the top quark mass still comes from a dimension-4

term, namely (10,1)−2(10,1)−2 (5,1)4H , so that it receives no suppression by a factor

of 〈(24,1)0H〉/MGUT.

The terms with coefficients denoted e in eq. (4.1) contribute to the third row of Md

and the third column of M` in eq. (2.8), which are now no longer equal as in the minimal

model, but are multiplied by different factors due to the VEV of (24,1)0H , which gives

different contributions to quarks and leptons. We assumed that these are the largest row
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of Md and column of M`, and therefore give the masses of the b quark and τ lepton. Thus

the degeneracy of mb and mτ at the GUT scale is lifted.

Similarly the terms with coefficients denoted f in eq. (4.1) cause the first and second

rows of Md in eq. (2.8) to be multiplied by a different factor than the first and second

columns of M`. As a result the degeneracy of ms and mµ at the GUT scale is lifted.

However, as the first and second families get multiplied by the same factors, the terms in

eq. (4.1) still give the bad prediction that me/mµ = md/ms at the GUT scale. We will

return to this issue shortly.

While the effective Yukawa terms involving (24,1)0H have made Md 6= MT
` , the form

of M` given in eq. (1.3) is not changed. The group-theoretic factors introduced by the VEV

of the adjoint Higgs field (which, of course, points in the weak hypercharge direction) can

be absorbed by redefinitions of µd and η in eq. (1.3) (with different redefinitions for Md

and M`, so different µd and η parameters appear in the two matrices). It is obvious that

the form of the neutrino mass matrices are also not changed from what they were in the

minimal model. Thus the fitting of the lepton sector done in section 3 and the predictions

for neutrino properties obtained there are also left unaffected.

Let us now return to the problem of the bad relation me/mµ = md/ms. Because me

and md are so small compared to their counterparts in the other families, they can be

significantly affected by higher-order corrections to M` and Md. There are, in fact, certain

dimension-6 effective Yukawa terms that can violate this bad relation. They involve the

VEV of Higgs fields that transform as (1,2)5H and are odd under Z2. As we will see in

section 5, such Higgs fields must exist even in the minimal model in order to get realistic

breaking of the family SU(2). The SU(5)×SU(2)×U(1) representation of these fields is not

chosen arbitrarily. It is one of the small representations that arise by decomposing multi-

plets of SU(5|2), as is evident from the fact that (1,2)5H is in the products (5,1)4((5,2)−1)∗

and (5,2)−1((5,3)−6)∗. The existence of these fields allows effective Yukawa terms of the

form (10,2)3(5,3)−4[(5,1)4H ]∗(1,2)5H(24,1)0/M2
GUT. This term arises by integrating out

fermions at the GUT scale, though it can also arise from Planck-scale effects. Because

these operators are of dimension 6, it is not unreasonable to suppose that they contribute

to Md and M` at order 10−3mb ∼ 10−3mτ , while the dimension-5 operators in eq. (4.1)

that produce the second and third generation masses in Md and M` give contributions

of order 10−2mb to mb. Because the dimension-6 operators slightly change the forms in

eq. (2.3) and give different contributions to quarks and leptons, they break the relation

me/mµ = md/ms. The contributions to Md of order 10−3mb coming from these operators

will also have a significant effect on the real and imaginary parts of Vub, since experimen-

tally |Vub| ∼ 3 × 10−3. They can also have a significant affect on the parameter Vus. A

contribution to the 12 element of Md of order 10−3mb ∼ 0.05ms would typically give a

contribution to Vus of order 0.05. (It should be noted that there are also other dimension-6

operators, besides the one given above, that break the relation me/mµ = md/ms.)

Let us now turn to the question of fitting the CKM matrix. The parameters that can

be used to fit this must come from Mu and Md. First let us consider the parameters in

Md. In the minimal model, the parameters in Md are the same as those in M` and must be

used to fit the lepton sector masses and mixing angles, so that none of them are available
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to fit the CKM matrix. In the extension of the minimal model, however, there are new

parameters in Md, as we just saw, coming from the dimension-6 operators. These are of

order 10−3mb and should significantly affect both Vub and Vus. This gives in effect four

real adjustable parameters for fitting the CKM matrix.

Turning to Mu, it contains in the minimal model six complex parameters: x, z1, z2,

µu, ε, and δ. The first three of these were fixed by fitting the lepton sector. The phase

of µu is irrelevant, and three real parameters are needed to fit the masses of u, c, and t.

That leaves two real adjustable parameters in Mu in the minimal model that are available

to fit the CKM matrix. In the extended model, however, an additional complex parameter

appears in Mu. The reason for this is that the form of Mu is changed when we go to the

extended model. As noted before, the term b (10,1)−2(10,2)3 (5,2)−1H (24,1)0H/MGUT in

eq. (4.1) actually contains two terms, in which the SU(5) indices are contracted differently.

The SU(5) tensor product of the Higgs fields is 5H × 24H = 5 + 45 + 70. The SU(5)

tensor product of the fermion fields is 10 × 10 = 5S + 45A + 50S . That means there

are effectively two Yukawa terms, where the Higgs are contracted into 5 and 45. Because

of Fermi statistics, the former couples symmetrically in fermion flavor, whereas the latter

couples anti-symmetrically. That means that these terms give (for both Md and M`)

M13 6= M31 and M23 6= M32. However, M13/M31 = M23/M32. The result is that there is a

new complex parameter in Mu in the extended model, namely ζ ≡ M13/M31 = M23/M32.

(It should be noted that no such new parameter appears in the 12 block of Mu. If we

look at the terms denoted c (10,2)3(10,2)3 (5,3)−6H (24,1)0H/MGUT in eq. (4.1), one sees

that the flavor anti-symmetric part of (10,2) × (10,2) is a singlet of SU(2), whereas the

product of Higgs fields must be a triplet.)

Altogether then, we have four real parameters coming from Mu and four from Md that

are available to fit the CKM matrix, which is more than sufficient.

We now turn to the question of where the higher-dimension operators in eq. (4.1) come

from. They can come from integrating out superheavy vectorlike fermion fields that we

denote as follows (the subscript V standing for vector-like):

(10,1)−2V + (10,1)2V , (10,2)3V + (10,2)−3V , (5,3)−4V + (5,3)4V . (4.2)

These are all assumed to be odd under Z2, while the fermion multiplets that appear in

the minimal model are all assumed to be even. These vectorlike fermions have the ex-

plicit mass terms M1(10,1)−2V (10,1)2V + M2(10,2)3V (10,2)−3V + M3(5,3)−4V (5,3)4V . They

also have the following couplings to the Z2-even fermions: y1(10,1)−2(10,1)2V (24,1)0H +

y2(10,2)3(10,2)−3V (24,1)0H + y3(5,3)−4(5,3)4V (24,1)0H , and

b′(10,1)−2(10,2)3V (5,2)−1H + b′′(10,1)−2V (10,2)3(5,2)−1H

+e′(10,1)−2(5,3)−4V
[
(5,3)−6H

]∗
+ e′′(10,1)−2V (5,3)−4

[
(5,3)−6H

]∗
+f ′(10,2)3(5,3)−4V

[
(5,2)−1H

]∗
+ f ′′(10,2)3V (5,3)−4

[
(5,2)−1H

]∗
,

(4.3)

which just parallel the forms in eq. (4.1), but without the adjoint Higgs (which is not

needed as each term here contains a Z2-odd fermion multiplet).
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Consider the two terms y1(10,1)−2(10,1)2V (24,1)0H and e′′(10,1)−2V (5,3)−4[(5,3)−6H ]∗.

It is evident that integrating out the pair (10,1)2V +(10,1)−2V gives the effective dimension-

5 term (e′′y1/M1)(10,1)−2(5,3)−4 [(5,3)−6H ]∗(24,1)0H , which is one of the terms in

eq. (4.1). Another contribution to this dimension-5 operator comes from the terms

e′(10,1)−2(5,3)−4V [(5,3)−6H ]∗ and y3(5,3)−4(5,3)4V (24,1)0H by integrating out the pair

(5,3)−4V + (5,3)4V .

It is obvious that all the other dimension-5 terms in eq. (4.1) arise in the same way.

The dimension-6 operators can arise either by integrating out vectorlike fermions or from

Planck-scale effects.

5 The Higgs sector

There are two issues that must be considered with respect to the Higgs sector: the breaking

of the family group SU(2) at a large scale (which we take to be of order the GUT scale),

and the electroweak breaking. We will consider them in turn.

One Higgs field that breaks the family group at the large scale is the (1,3)−10H in

eq. (2.3). It turns out, however, that to get a realistic model there must be additional

Higgs fields that transform as (1,2)5 and are odd under Z2. It turns out that there need to

be two of these in order to break the family SU(2) in a realistic way, so we will denote them

by (1,2)5HK , K = 1, 2. We will sometimes use the notation (1,3)−10 = ~t = (t1, t2, t3) and

(1,2)5HK = sK = (s↑, s↓)K , K = 1, 2. In minimizing the Higgs potential for these fields,

which will get GUT-scale VEVs, we can ignore the electroweak-breaking Higgs fields. Thus,

we may consider the potential V (~t, sK) = Vt(~t)+Vs(sK)+Vts(~t, sK), where the most general

renormalizable form is

Vt
(
~t
)

= −µ2
(
~t∗ · ~t

)
+ λ

(
~t∗ · ~t

)2
+ λ′

(
~t · ~t

) (
~t∗ · ~t∗

)
+ λ′′

(
~t∗ × ~t

)2
,

Vs(sK) = −µ2KL
(
s†K · sL

)
+ λKLMN

(
s†K · sL

)(
s†M · sN

)
,

Vst
(
~t, sK

)
=
[
MKL

(
sTKiσ

2σasL
)
ta + h.c.

]
+ iλKLε

abc
(
s†Kσ

asL

)
tb∗tc.

(5.1)

We already examined the minimization of Vt(~t) in section 2. For (λ′+λ′′) > 0, it was found

that the VEV could be brought to the form ~t = t√
2
(0, i, 1) by a suitable choice of axes in

SU(2) space. We will now assume that the VEVs of sK are sufficiently small that the terms

in Vst do not significantly affect the form of the VEV of ~t. For example, if the quartic cou-

plings in V are of order one, and sK ∼ t/30, then the VEVs of sK would only affect the VEV

of ~t at the 10−3 level. (Also, the dimension-6 operator (1,4)5(1,4)5[(1,2)5H(1,2)5H ]∗/MGUT

would only affect the form of the right-handed neutrino mass matrix by order 10−3.) These

effects would be too small to be significant in the fits of lepton properties in section 3.

The directions of the VEVs of sK are determined by Vs + Vst. It is straightforward

to show that non-trivial values of (s↑, s↓)K can be obtained by choosing the coefficients in

Vs + Vst appropriately. This is only the case because there are at least two s multiplets.

If there were only one, the most general form of Vs + Vst would lead to (s↑, s↓) being

proportional to either (1, 1) or (1,−1). (The reason for this is simple. The VEV ~t ∝ (0, i, 1)
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picks out the 1 direction as special, and (s↑, s↓) would end up being forced to be an

eigenspinor of σ1.) This in turn would end up forcing the VEVs of the electroweak-breaking

Higgs fields to have unrealistic special forms.

Now we consider the electroweak symmetry breaking. Of the six electroweak dou-

blets in (5,1)4H , (5,2)−1H , and (5,3)−6H , one linear combination has mass of electroweak

scale, while the others have GUT-scale masses. In non-SUSY models, this must be

achieved through fine-tuning of the 6×6 mass-squared matrix of these doublets to have one

electroweak-scale eigenvalue (which can be done by fine-tuning its determinant). In SUSY

models, it can be achieved either by fine-tuning or by a “technically natural” mechanism,

such as the missing partner mechanism (though that is usually non-trivial in a realistic

SUSY GUT model). We shall consider only the non-SUSY case, as the analysis is simpler.

To find which linear combination of Higgs doublets is the Standard Model Higgs dou-

blet, i.e. the one whose mass is not of GUT scale, it is only necessary to look at the

O(M2
GUT) contributions to the 6 × 6 mass-squared matrix of the electroweak scalar dou-

blets. That is, we need only look at terms which are quadratic in the Higgs 5-plets and

ignore the terms quartic in them. The most general set of terms in the Higgs potential

that are invariant under SU(5) × SU(2) × U(1) × Z2 and quadratic in the 5-plets (up the

relevant dimension) is

V2 = µ 2
1

∣∣(5,1)4H
∣∣2 + µ 2

2

∣∣(5,2)−1H
∣∣2 + µ 2

3

∣∣(5,3)−6H
∣∣2

+ ρ
∣∣∣[(1,3)−10H

]∗ · (5,3)−6H

∣∣∣2 + ρ
∣∣(1,3)−10H · (5,3)−6H

∣∣2
+ iρ′KL

[[
(1,2)5HK

]∗
(1,2)5HL

]
·
[
(5,3)−6H

]∗ × (5,3)−6H

+ σKL

[
(1,2)5HK

[
(5,2)−1H

]∗] [[
(1,2)5HL

]∗
(5,2)−1H

]
+ σKL

[
(1,2)5HK(5,2)−1H

]∗ [
(1,2)5HL(5,2)−1H

]
+ iσ′

[[
(5,2)−1H

]∗
(5,2)−1H

]
·
[
(1,3)−10H

]∗ × (1,3)−10H

+
[
τK12
[
(5,1)4H

]∗
(5,2)−1H (1,2)5HK + h.c.

]
+
[
τ ′K12

[
(5,1)4H

]∗
(5,2)−1H

[
(1,2)5HK

]∗ [
(1,3)−10H

]∗
+ h.c.

]
+
[
τK23
[
(5,2)−1H

]∗
(1,2)5HK(5,3)−6H (24,1)0H + h.c.

]
+
[
τ13
[
(5,1)4H

]∗
(5,3)−6H

[
(1,3)−10H

]∗
(24,1)0H + h.c.

]
+
[
τ
′KL
13

[
(5,1)4H

]∗
(5,3)−6H (1,2)5HK(1,2)5HL(24,1)0H/MGUT + h.c.

]

(5.2)

In eqs. (5.2), µ21, µ
2
2, and µ23 include both explicit mass-squared parameters and products

of VEV that are invariant under SU(5)×SU(2)×U(1)×Z2. Let us denote the electroweak

Higgs doublets in (5,1)4H , (5,2)−1H , and (5,3)−6H by φ, Φ = (φ↑, φ↓), ~φ = (φ1, φ2, φ3),

respectively, and the SU(5) adjoint Higgs VEV by Ω. Then we may write the terms in
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eq. (5.2) by

V2 = µ1|φ|2 + µ 2
2 |Φ|2 + µ 2

3 |~φ|2 + ρ|~t∗ · ~φ|2 + ρ|~t · ~φ|2 + iρ′KL

[
s†K~σsL

]
· ~φ∗ × ~φ

+ σKL [sKΦ∗] [s∗LΦ] + σKL [sKΦ]∗ [sLΦ] + iσ′ [Φ∗~σΦ] · ~t∗ × ~t

+
[
τK12 φ

∗(ΦsK) + τ ′K12 φ∗ (Φ~σs∗K) · ~t∗ + τK23(Φ†~σsK) · ~φΩ + h.c.
]

+
[
τ13 φ

∗
(
~φ · ~t∗

)
Ω + τ

′KL
13 φ∗~φ · (sK~σsL) Ω/MGUT + h.c.

]
(5.3)

One can write the above terms as a 6 × 6 mass-squared matrix

(φφ↑φ↓φ1φ2φ3)
∗



µ21 µ2+ + δ2 µ2− − δ2 ∆2
1 ∆2

2 + i∆2 ∆2
3 + ∆2

µ2∗+ + δ2∗ µ22 + µ2++ µ′2± + µ2+− µ2+1 µ2+2 µ2+3

µ2∗− − δ2∗ µ′2∗± + µ2∗+− µ22 + µ2−− µ2−1 µ2−2 µ2−3
∆2

1 µ2∗+1 µ2∗−1 µ23 µ212 µ213
∆2∗

2 − i∆2∗ µ2∗+2 µ2∗−2 µ221 µ23 + µ2 iµ′2 + µ223
∆2∗

3 + ∆2∗ µ2∗+3 µ2∗−3 µ231 −iµ′2 + µ232 µ23 + µ2





φ

φ↑
φ↓
φ1
φ2
φ3


,

(5.4)

where

µ2 ≡ 1

2
(ρ+ ρ) t2, µ′2 ≡ 1

2
(ρ− ρ) t2,

µ2ab ≡ iρ′KL
(
s†Kσ

csL

)
εabc,

µ2++ ≡ σKL
(
s↑Ks

∗
↑L
)

+ σKL
(
s∗↓Ks↓L

)
, µ2−− ≡ σKL

(
s↓Ks

∗
↓L
)

+ σKL
(
s∗↑Ks↑L

)
,

µ2+− ≡ (σKL + σLK) s↑Ks
∗
↓L, µ2± ≡ σ′t2,

µ2+ ≡ −τK12s↓K , µ2− ≡ +τK12s↑K ,

δ2 ≡ 1√
2
τ ′K12 t (s↑ + s↓)

∗
K ,

µ2+a ≡ τK23 (σasK)↑Ω, µ2−a ≡ τK23 (σasK)↓Ω,

∆2 ≡ 1

2
√

2
τ13tΩ, ∆2

a ≡ τ
′KL
13 (s↑, s↓)K iσ

2σa

(
s↑

s↓

)
L

.

(5.5)

It is important that the eigenvector of the matrix in eq. (5.4) which has the electroweak-

scale eigenvalue (i.e. the Standard Model Higgs doublet) be a linear combination of all six

of the doublets, otherwise at least one of the six VEVs S ≡ 〈φ〉, (d↑, d↓) ≡ 〈(φ↑, φ↓)〉, and

(v1, v2, v3) ≡ 〈(φ1, φ2, φ3)〉 would vanish, which would not allow the realistic fits obtained

in section 3, as these involved all six of these VEVs being non-zero. For general values of

the parameters in eq. (5.5), this condition is obviously satisfied.

6 Conclusions

By decomposition of multiplets of the supergroups SU(M |N), anomaly-free sets of fermion

multiplets of the bosonic groups SU(M) × SU(N) × U(1) can be found, as was shown

– 15 –
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in [1]. Models based on such groups and multiplets can give both grand unification of the

Standard Model gauge interactions and gauged non-abelian family groups.

In this paper we have explored one potential of such models, namely that the family

symmetry could constrain the form of the quark and lepton mass matrices in such a way as

to explain the main qualitative features of the quark and lepton properties. We studied the

smallest such model that contains three families, which has the group SU(5)×SU(2)×U(1).

In particular, we studied the minimal form of this model, and showed it can account in a

simple way for many of the qualitative features of the spectrum of quark and lepton masses

and mixing angles, as well as making definite predictions for the lepton sector, specifically

the Dirac CP phase of the neutrinos. This predictiveness arises because very definite and

non-trivial forms are obtained for the fermion mass matrices (including that of the right-

handed neutrinos), determined in large part by the Clebsch coefficients of the SU(2) family

group. We showed that the minimal form of the model can be modified to make it realistic

for the quark sector without affecting the neutrino predictions.

In addition to their implications for quark and lepton masses and mixing angles, such

models in general would have a rich phenomenology if a subgroup of the family gauge

groups were broken near the electroweak scale. This phenomenology would include (a)

extra Z ′ bosons, whose couplings to the quarks and leptons would be quite distinctive;

(b) flavor-changing non-abelian gauge interactions, which would give rare flavor-violating

decays of leptons, whose branching ratios would be constrained by family symmetry; and (c)

extra vector-like quarks and leptons. Clearly, there are many possibilities that remain to be

explored. Moreover, in such models, one would expect the flavor structure to be sufficiently

constrained by the family symmetry to give predictions for proton-decay branching ratios.
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