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1 Introduction

One-loop corrections in holography provide a new window into the nature of quantum

gravity. In AdS3 the one-loop determinant of the graviton very elegantly establishes the

anticipated results of Brown & Henneaux [1]: finite (non-zero) energy excitations with

Dirichlet boundary conditions fall into representations of the two dimensional conformal

group. This result was first argued in [2, 3], and shown directly in [4] via heat kernel meth-

ods. Since then, this subject in AdS3 has been explored further, where the emphasis has

been on either the inclusion of additional fields [5, 6] or modifications of the gravitational

theory [7–10].

Our aim is to expand this discussion of one-loop determinants in AdS3 gravity beyond

the standard Dirichlet boundary conditions. In particular, we will focus on a set of chiral

boundary conditions for the graviton: different components will satisfy either Dirichlet or

Neumann boundary conditions such that the boundary theory has a fixed chirality. Our

motivation to carry out this computation is twofold. First, from a technical point of view

we would like to present a concrete implementation of the evaluation of determinants with

non-Dirichlet boundary conditions. Second, there is mounting evidence of interesting holo-

graphic interpretations of chiral boundary conditions for the metric in three dimensions; our

one-loop corrections will provide a non-trivial holographic insight into these novel setups.

We evaluate the one-loop contribution to the Euclidean path integral expanded as

Zgrav =

∫
Dg e−

1
~S[g]

=
∑
g?

exp

(
−1

~
S(0)[g?] + S(1)[g?] + ~S(2)[g?] + · · ·

)
. (1.1)

Here g should be viewed as a collection of fields including both metric and matter fields,

and S[g] is the corresponding Euclidean action for these fields. g? corresponds to a classical

saddle point around which we carry out a perturbative expansion in ~. S(0) corresponds to a

tree level contribution, S(1) is the one-loop contribution and so forth. We will focus on S(1)

exclusively. This contribution is controlled by suitable determinants of Laplacian operators

(including any Fadeev-Popov determinants arising from gauge fixing); schematically we

would write

Z(1) ≡ eS(1)[g?] = det
(
∇2
g? +m2

)±
, (1.2)

where the ± refers to whether the determinant appears in the numerator (for fermions)

or denominator (for bosons). As we mentioned above, there is an extensive literature on

evaluating these determinants with Dirichlet boundary conditions, with one of the most

canonical methods being the heat kernel.1 The heat kernel technique can be extended to

include Neumann boundary conditions, as recently done in [11, 12] for higher dimensional

AdSd. The problem we face here is a mixture of both Dirichlet and Neumann, and while

there might be a systematic way to adjust the heat kernel method to this setup, we will

take a different route.
1Heat kernels very naturally have built-in Dirichlet boundary conditions: a basis of normalizable eigen-

functions is used to describe a complete set of modes.
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The different route we will pursue is to tweak the quasinormal mode method proposed

by Denef-Hartnoll-Sachdev (DHS) [13]. As we will review in section 2, the original proposal

of DHS is based on analyticity: this leads to a concise expression for the functional deter-

minant in a thermal geometry in terms of a product over quasinormal frequencies. The

appearance of quasinormal frequencies in the product is directly tied to requiring Dirichlet

boundary conditions for each component of the field in question. This feature allows us

to tweak the DHS method to our agenda: by imposing instead Neumann boundary con-

ditions on certain components of the graviton we will modify the spectrum of frequencies

that enter in the functional determinant. This procedure will give us the control to treat

each component of the metric individually as we implement the boundary conditions we

are interested in.

There are two types of chiral boundary conditions we will study: CSS [14, 15], and

sl(2,R) Kac-Moody boundary conditions [16, 17]. Both of these boundary conditions

are characterised by allowing one piece of the boundary metric to fluctuate, while other

components are fixed. In a nutshell the main features of these setups are:

CSS. These boundary conditions for AdS3 are chosen such that the global symmetries

inside the resulting asymptotic symmetry group become SL(2,R)L × U(1)R instead

of SL(2,R)L×SL(2,R)R. This smaller group of symmetries is motivated by the near

horizon symmetries of extremal black holes. Implementating this condition leads to

parity-violating boundary conditions, and as a result the sl(2,R)L× sl(2,R)R isome-

tries of AdS3 are only enhanced to a left-moving Virasoro-U(1)-Kac-Moody algebra,

with central charge c and level k. A field theory with such a geometrical Virasoro-Kac-

Moody structure is known as a Warped Conformal Field Theory (WCFT) [18, 19].

sl(2,R) KM. This is a generalization of CSS that allows for more structure in the leading

metric components while still being parity-violating. As a result the sl(2,R)L ×
sl(2,R)R isometries of AdS3 are enhanced to a left-moving Virasoro plus an sl(2,R)

Kac-Moody algebra at level k = c/6. Unlike in CSS, one can improve the stress tensor

such that we have zero central charge, and the Brown-York stress tensor vanishes.

Thus this setup in AdS3 is dual to a two dimensional quantum gravity in lightcone

gauge, as elegantly argued in [17], and not a conformal theory.

Since these boundary conditions are chiral (left-moving) in nature, to highlight their fea-

tures we will need to implement the DHS method for stationary (not static) thermal back-

grounds, i.e. for the Euclidean continuation of the rotating BTZ black hole.2 As we evaluate

the determinants in section 3 and interpret them in section 4, the addition of rotation will

make evident that our derivations are unambiguously compatible with the dual description.

One of the most unexpected features in our derivations is the role of the ghost deter-

minant contained in the graviton one-loop effective action. The role of the ghost fields is to

remove states with zero energy from the path integral, i.e. to remove gauge redundancies.

For Dirichlet boundary conditions one can see this explicitly after implementing the DHS

2The existing literature on using the DHS method is limited to static thermal backgrounds. The addition

of angular momentum is not dramatic, but worth showing explicitly.
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prescription, and it is also in complete agreement with the heat kernel method. However,

for the chiral boundary conditions we will use, the treatment of ghosts is more subtle:

there are a priori two different conditions one can impose on eigenfunctions of the ghost,

which dramatically change the resulting determinant for the graviton and its holographic

interpretation. We will discuss these differences from the gravitational perspective (see

section 3.3), and show how they affect the holographic interpretation in section 4.2.2.

Our emphasis throughout will be on meromophic properties (the pole structure) of the

one-loop determinant in AdS3. There is in addition an entire function (a function that is

holomorphic and has neither poles nor zeros) which we will not evaluate. Its purpose is

to account for zero modes and contribute to the renormalization of various couplings. We

will highlight in the main text when and where we are neglecting this piece and explore its

role further in the discussion section.

The outline of this paper is as follows. In section 2 we revisit the DHS method with

Dirichlet boundary conditions for rotating BTZ, explicitly implementing the method on a

stationary background. In section 3 we consider chiral boundary conditions for the gravi-

ton, and evaluate the one-loop determinant on stationary backgrounds. The holographic

interpretation of these determinants is discussed in section 4. We close with a brief dis-

cussion in section 5. Appendix A contains our conventions for the BTZ background, in

appendix B we give a detailed study of the spin-2 fluctuations, and in appendix C we

describe the ghost spectrum.

2 Quasinormal mode method: rotation

In this section we show how to implement the DHS prescription in spacetimes which are

rotating, i.e. they are stationary but not necessarily static. We begin with a generic discus-

sion and then provide concrete examples for one-loop determinants of massive and massless

fields on the rotating BTZ black hole background.

The main proposition of DHS [13] is a formula for functional determinants in a thermal

geometry, written as a product over quasinormal frequencies. Their arguments rely on the

assumption of meromorphicity of the determinant in the mass parameter. For example,

consider the one-loop determinant on a thermal background, such as a Euclidean AdS black

hole.3 For a complex scalar field we have

Z(1)(∆) =

∫
Dϕexp

(
−
∫
dd+1x

√
g ϕ∗(−∇2+m2)ϕ

)
=det

(
−∇2+m2

)−1
, ∆(∆− d) = m2.

(2.1)

If Z(1)(∆) analytically continued to the complex ∆ plane is a meromorphic function, then

it can be characterized by the locations and degeneracies of its poles and zeros, as well as

its behavior at infinity. For a scalar, Z(1) ∝ det−1, so there are no zeros. Poles occur when

det = 0, which happens whenever ∆ is tuned such that a zero mode of ϕ exists.

3For sake of simplicity we will limit the discussion to black hole backgrounds in AdS. The method of

DHS applies more generally and the discussion in this section should be valid for those cases. We are also

setting the AdS radius to one throughout.
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In Euclidean space, zero modes4 are solutions of the Klein-Gordon equation which are

smooth, obey the given asymptotic boundary conditions, and are single-valued in the Eu-

clidean time direction. We denote these solutions by ϕ?,n where n labels the mode number

in the Euclidean time direction, and ? labels all other quantum numbers characterizing

the solution. A given ϕ?,n will solve the Klein-Gordon equation only when ∆ is tuned to

a particular value dependent on these quantum numbers; we call this value ∆?,n. Thus

from the Euclidean perspective, poles in Z(1) occur at all ∆ = ∆?,n; if multiple sets of

quantum numbers give Klein-Gordon solutions with the same value of ∆?,n then the pole

is accordingly of higher multiplicity.

The key insight of DHS is to relate the Euclidean zero modes ϕ?,n to Lorentzian

quasinormal modes via Wick rotation. The Euclidean thermal spacetime Wick-rotates to

a black hole spacetime. From this Lorentzian perspective, (anti)quasinormal modes are

solutions to the Klein-Gordon equation satisfying (out)ingoing boundary conditions at the

black hole horizon, as well as normalizable asymptotic boundary conditions. These modes

can be characterized by their (anti)quasinormal frequencies ω?(∆), where ? represents the

spatial quantum numbers. Importantly these frequencies depend on ∆, and we find

ω?(∆?,n) = ωn = 2πinT, (2.2)

when we tune ∆ = ∆?,n. At these specific values, each Lorentzian quasinormal mode ϕ?,ω
Wick-rotates into the Euclidean zero mode ϕ?,n, with n ≥ 0. The second equality here

holds only for static black holes, where the thermal frequency ωn relates directly to the

Euclidean mode number n. In this case, the condition of smoothness near the vanishing

of the thermal cycle in the Euclidean space Wick-rotates to the ingoing condition at the

horizon of the Lorentzian space.

For n < 0, the Euclidean modes instead match onto outgoing quasinormal modes (or

antiquasinormal modes). For the “constant” modes with n = 0, one can work with either

in or outgoing quasinormal modes.

Consequently, if we know all of the quasinormal and antiquasinormal frequencies as a

function of ∆, we know the poles in Z(1)(∆) will be located where ∆ is tuned such that

ω?(∆) = ωn. We can now write the determinant for the complex scalar as

Z(1)(∆) = ePol(∆)
∏
n,?

(ωn − ω?(∆))−1 . (2.3)

Here the product is over all quantum numbers that control the (anti)quasinormal fre-

quencies, denoted succinctly by “?.” We have also included an entire function (that is, a

function that is holomorphic and has neither poles nor zeros), via ePol(∆) where Pol(∆) is a

polynomial with only positive powers in ∆. We can determine this polynomial separately.5

In this section we want to implement (2.3) for stationary backgrounds, and in particular

rotating black holes. The minor tweak we need to implement is to revisit the Euclidean

4Note that these Euclidean zero modes generically occur at non-physical values of ∆; in other words

they do not correspond to actual zero modes in the evaluation of the one-loop determinant.
5In [13] Pol(∆) is determined by matching the ∆→∞ behavior. We will not focus on this contribution

in the following, but we will comment on it in our discussion.
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regularity condition, which affects the thermal frequencies ωn; the second equality in (2.2)

will change. For a suitable radial coordinate R and Euclidean time coordinate TE , the

metric near the horizon will take the form

ds2 ≈ dR2 +R2dT 2
E + ds2

⊥ , TE ∼ TE + 2π , (2.4)

in a similar fashion as for the static solution. However, for a rotating background at tem-

perature T and angular velocity Ω, the Wick rotation to Lorentzian signature is generically

of the form TE = 2πT (it + Ωφ), where φ is the axis of rotation of the black hole. This

implies that regularity of the fields at R = 0 will impose a condition on quantum num-

bers conjugate to both ∂t and ∂φ. In the following we will work out explicit examples to

illustrate this modification.

2.1 Example: real scalar field on BTZ black hole

As a warmup, in this subsection we evaluate the one-loop determinant for a massive real

scalar field on the rotating BTZ black hole with Dirichlet boundary conditions. This

should be contrasted with the static case done in [13]; see [4, 5] for a derivation using heat

kernel methods.

To start, we impose Dirichlet asymptotic boundary conditions on scalar field solutions

ϕ(r, t, φ) ∼ r−∆e−iωt+ikφ (2.5)

for large values of r. Here we have written the Fourier mode with frequency ω and wave

number k, as appropriate for the coordinate system (A.1).6 In addition, periodicity in the

φ coordinate restricts the wave number k to take values over all of the integers.

Now, let us consider the behavior of the Lorentzian solution for the scalar field near

the horizon, r ∼ r+:

ϕ(r, t, φ) ∼ (r − r+)±i
kT
2 e−iωt+ikφ , kT =

ω r+ − k r−
r2

+ − r2
−

. (2.6)

The dependence on kT is set by the equations of motion, where kT is defined as the

frequency conjugate to the coordinate7 T as specified in (B.7). For general values of ω and

k, solutions satisfying the boundary conditions at r →∞ will have both of the (r−r+)±i
kT
2

behaviors near the horizon. Solutions which satisfy only one of the behaviors in (2.6) occur

only at specific quantized values of the frequency ω; depending on the sign of kT in (2.6)

these are the quasinormal and antiquasinormal frequencies.

Wick-rotating to TE = iT and changing to the regular Euclidean coordinates (A.7)

near ξ = 0, the solutions in (2.6) become

ϕ(ξ, TE ,Φ) ∼ ξ±ikT e−kTTEe−ikΦΦ . (2.7)

6All relevant details about the background metric are listed in appendix A.
7This is not to be confused with the temperature T mentioned previously. We hope that context will be

enough to distinguish between the two meanings.
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Regularity of these solutions requires that kT = in, where n is any integer. Additionally if

n ≥ 0, we must have only the ξ−ikT behavior; if n ≤ 0 we instead have ξ+ikT .8 Choosing

only one of these signs in the Lorentzian solution (2.6) amounts to choosing either ingoing

(for n ≥ 0) or outgoing (for n ≤ 0) conditions at the horizon; thus, the solutions we are

interested in should be either quasinormal or antiquasinormal modes.

In addition, the requirement to have kT = in forces the (anti)quasinormal frequency

ω to take the specific value ωn:

− ikT = n ⇒ ωn
2π

= 2i
TLTR
TL + TR

n+
TR − TL
TL + TR

k

2π
, (2.8)

where

TL =
1

2π
(r+ − r−) , TR =

1

2π
(r+ + r−) . (2.9)

Next, the quasinormal frequencies of a real scalar field on the background of a rotating

BTZ black hole are [20–22]

ingoing outgoing

ω? = −k − 2πiTR(2p+ ∆)

ω? = k − 2πiTL(2p+ ∆)

ω? = −k + 2πiTR(2p+ ∆)

ω? = k + 2πiTL(2p+ ∆)

The range of k is all integers, and p is a nonnegative integer. Implementing (2.3), the

one-loop determinant of a scalar field on the background of rotating BTZ becomes(
ePol(∆)

Z(1)

)2

=
∏

n>0,p≥0,k

(ωn + k + 2πiTR(2p+ ∆)) (ωn − k + 2πiTL(2p+ ∆))

∏
n<0,p≥0,k

(ωn + k − 2πiTR(2p+ ∆)) (ωn − k − 2πiTL(2p+ ∆))

∏
p≥0,k

(ω0 + k + 2πiTR(2p+ ∆)) (ω0 − k + 2πiTL(2p+ ∆)) , (2.10)

where ωn is given by (2.8). Note that we want the determinant for a real scalar, hence the

square on the left hand side of (2.10). The first line in (2.10) corresponds to the ingoing

modes hitting thermal frequencies with n > 0, the second line are the outgoing modes and

thermal frequencies with n < 0, and the last line corresponds to the zero modes with n = 0.

8For n = 0 we may choose to treat it as either ±, that is either antiquasinormal or quasinormal; the

important condition for quasinormal modeness here is that we do not allow the log behavior that would

arise for general ω, k. Note that as for non-rotating (static) case, the quasinormal mode spectrum here

satisfies
∏

(ω0 − ω?,in) =
∏√

(ω0 − ω?,in)(ω0 − ω?,out), so we can indeed choose to treat n = 0 modes

together with either the quasinormal or antiquasinormal frequencies. We will treat n = 0 with whichever

case is most convenient in the following (usually with the quasinormal modes). We will also refer to both

quasinormal and antiquasinormal modes with just the word quasinormal, specifying instead either the sign

of n or the ingoing/outgoing nature of the mode in question.
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After plugging in ωn and a bit of algebra, we have(
ePol(∆)

Z(1)

)2

=
∏

n>0,p≥0,k

((
p+

∆

2
+ n

TL
TL + TR

)2

+

(
k

2π(TL + TR)

)2
)

∏
n>0,p≥0,k

((
p+

∆

2
+ n

TR
TL + TR

)2

+

(
k

2π(TL + TR)

)2
)

∏
p≥0,k

((
p+

∆

2

)2

+

(
k

2π(TL + TR)

)2
)
. (2.11)

Next, we regulate the product over k by using the formula∏
k>0

(
1 +

x2

k2

)
=

sinhπx

πx
=
eπx

πx
(1− e−2πx) , (2.12)

which, up to a redefinition of Pol(∆), turns (2.11) into9

ePol(∆)

Z(1)
=

∏
n>0,p≥0

(
1− qn+pq̄p(qq̄)∆/2

)
∏

n>0,p≥0

(
1− q̄n+pqp(qq̄)∆/2

)∏
p≥0

(
1− (qq̄)p+∆/2

)
, (2.13)

where we defined10

q ≡ e−2π(2πTL) , q̄ ≡ e−2π(2πTR) . (2.14)

Rewriting (2.13), the answer for the one-loop determinant of a real scalar is

Z(1) = ePol(∆)
∞∏

`,`′=0

1

(1− q`+∆/2q̄`′+∆/2)
, (2.15)

in complete agreement with [4, 5], and with [13] for the static solution. Note that despite ap-

pearances, (2.15) is equal to (2.13). One heuristic way to see this is as follows: the first prod-

uct in (2.13) corresponds to ` > `′, the second product is ` < `′ and the last product is ` = `′.

To fully specify the one-loop determinant one should also determine the ePol(∆) factor

in (2.15). This term corresponds to a local renormalization of the classical action and can

be computed independently in a suitable large-∆ limit, for example by using heat kernel

techniques as described in [13]. This result can then be matched to the large-∆ limit of

expressions such as (2.15) to determine Pol(∆). In this paper we are specifically interested

in the properties of the infinite products that occur in the one-loop determinant, such as

that in (2.15). The location of the poles that occur in these products are independent of

Pol(∆) and so we will often drop the ePol(∆) factor completely. In the remainder of this

paper, expressions for one-loop determinants should be understood to correspond to the

determinant modulo these local renormalization terms. We will only comment on Pol(∆)

in cases where determining it may be subtle.

9The k = 0 terms in (2.11) conveniently cancel the various terms that appear due to the denominator

of (2.12) which are not entire functions of ∆.
10In terms of the complex structure τ , we would have q = e2πiτ and q̄ = e−2πiτ̄ , where τ = 2πiTL and

τ̄ = −2πiTR. Note that in Euclidean signature (TL)∗ = TR since r− is purely imaginary.
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2.2 Example: spin-2 fields on BTZ black hole

As a second example we would like to illustrate how to evaluate the one-loop determinant

for spin-2 fields, both massive and massless. References [6, 23] discuss this evaluation via

the quasinormal mode method for the static case, and we follow closely their analysis of the

Fronsdal equations. We add the evaluation of the determinants for rotating backgrounds,

and an improved discussion on how to identify the set of frequencies ω? that control the

poles of Z(∆).

Following [6], a massive spin-2 excitation hµν in AdS3 satisfies the first order equation

εµ
αβ∇αhβν = −m2 hµν , (2.16)

where the sign of m2 controls the helicity of the field. Using the equations for both helicities,

it follows that such a field satisfies the more familiar Fronsdal equations:

∇µhµν = 0 ,

hµµ = 0 ,

∇2hµν = (m2
2 − 3)hµν . (2.17)

For m2 = ±1, these are the equations of motion for linearized graviton fluctuations. The

physical graviton has two degrees of freedom corresponding to positive and negative states,

one for each sign of m2. Setting m2 = ±1 we identify δgµν = hµν , where δgµν is restricted

to be a transverse and traceless metric fluctuation.

The determinant we will evaluate is

Z
(1)
s=2(∆2) =

(
detSTT(−∇2 +m2

2 − 3)
)−1/2

, ∆2 ≡ |m2|+ 1 . (2.18)

We emphasise that ∇2 in (2.18) is acting on a symmetric, traceless and transverse tensor.

In this section we evaluate the determinant for standard (Dirichlet) boundary conditions:

the leading divergence11 of the zero modes at the boundary is required to vanish, which

is the usual condition for quasinormal modes in AdS. We provide a detailed derivation of

the spin-2 quasinormal modes, as well as the mapping to regular Euclidean solutions, in

appendix B. Here, we only quote the results for the quasinormal mode spectra; for spin-2

these are in table 1.

Note that we are parameterizing the quasinormal frequencies in terms of the quantum

numbers (kL, kR) as defined in (B.7), which are conjugate to the coordinates (xL, xR)

in (A.11). In the following we will also use (kT , kΦ) whose conjugate variables are (T,Φ)

in (A.5).

Next, we need to match the quasinormal frequencies to the thermal frequencies, i.e.

ωn = ω?. Additionally, some of the quasinormal modes with low p and n Wick-rotate to

11The leading divergence here refers to the leading behavior at physical values of ∆. Schematically, this

means we allow r∆ behavior but not rd−∆. Since we are formally studying the determinant throughout

the ∆ complex plane, this condition differs slightly from normalizability. Instead it is the natural analytic

continuation of normalizability. We will not encounter this subtlety here as we are in odd dimensional AdS;

consequently we will use “normalizable” to refer to the analytic continuation. For more details, see [24, 25].
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ingoing outgoing

m2 > 0
2ikR = 2p+ ∆2 + 2

2ikL = 2p+ ∆2 − 2

2ikR = −(2p+ ∆2 + 2)

2ikL = −(2p+ ∆2 − 2)

m2 < 0
2ikR = 2p+ ∆2 − 2

2ikL = 2p+ ∆2 + 2

2ikR = −(2p+ ∆2 − 2)

2ikL = −(2p+ ∆2 + 2)

Table 1. Spin-2 quasinormal mode spectrum ω? after imposing standard Dirichlet boundary con-

ditions. When ∆2 = 2 these correspond to the symmetric, transverse, traceless graviton spectrum.

Each condition on kR or kL labels a distinct eigenmode and the range of p is over all non-negative

integers.

m2 > 0 m2 < 0

2p+ ∆2 + |n+ 2|+ ikΦ(n, k) = 0

2p+ ∆2 + |n− 2| − ikΦ(n, k) = 0

2p+ ∆2 + |n− 2|+ ikΦ(n, k) = 0

2p+ ∆2 + |n+ 2| − ikΦ(n, k) = 0

Table 2. Conditions satisfied by Euclidean solutions with standard quasinormal boundary condi-

tions. Each solution satisfies one of the conditions listed. Here kΦ(n, k) is given in equation (2.19).

In this table, p runs over all non-negative integers, whereas n and k run over all integers.

Euclidean modes that diverge at the tip of the Euclidean cigar, so they should be excluded.

The relations defining the good Euclidean solutions are enumerated in appendix B.3, and

are reproduced in table 2.

As in the previous example, n is defined by the regularity condition at the Euclidean

origin, which fixes −ikT = n. Each set of conditions corresponds to a union of the Wick-

rotation of a set of ingoing and outgoing states. Ingoing modes correspond to n > 0 and

outgoing modes to n < 0, with n = 0 being the zero mode. The frequency kΦ is restricted

by the periodicity of the field in the thermal and spatial directions, which is controlled by

integers n and k respectively. The relation is

kΦ(n, k) =
TR − TL
TR + TL

in− 1

TR + TL

k

π
. (2.19)

We can construct the determinant directly from this information. Consider first the

m2 > 0 states: the conditions from the top row in table 2 can be written as

2p+ ∆2 + |n+ 2| − TR − TL
TR + TL

n− 1

TR + TL

ik

π
= 0 . (2.20)

Relabelling n = ñ− 2 and treating each sign separately, we have

2p+ ∆2 + 2
TR − TL
TR + TR

+
2TL

TR + TR
ñ− 1

TR + TL

ik

π
= 0, ñ > 0 ,

2p+ ∆2 + 2
TR − TL
TR + TR

− 2TR
TR + TR

ñ− 1

TR + TL

ik

π
= 0, ñ < 0 ,

2p+ ∆2 + 2
TR − TL
TR + TR

− 1

TR + TL

ik

π
= 0, ñ = 0 . (2.21)
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Performing similar steps for the m2 > 0 states on the bottom row in table 2, using instead

n = ñ+ 2, we find

2p+ ∆2 + 2
TR − TL
TR + TR

+
2TR

TR + TR
ñ+

1

TR + TL

ik

π
= 0, ñ > 0 ,

2p+ ∆2 + 2
TR − TL
TR + TR

− 2TL
TR + TR

ñ+
1

TR + TL

ik

π
= 0, ñ < 0 ,

2p+ ∆2 + 2
TR − TL
TR + TR

+
1

TR + TL

ik

π
= 0, ñ = 0 . (2.22)

We can compare these conditions with those imposed on the zeros of the expres-

sion (2.11). If one makes the replacement

∆→ ∆2 + 2
TR − TL
TR + TL

, (2.23)

in (2.11), and also replaces the n in (2.11) with n = |ñ|, one precisely reproduces the

conditions in (2.21) and (2.22) from the zeros in (2.11). Therefore, we can determine the

result for the spin-2 determinant from the real scalar case (2.15) by making the replace-

ment (2.23), which gives

Z
(1)
m2>0 =

(
detSTT(−∇2 +m2

2 − 3)m2>0

)−1/2

=
∞∏

`,`′=0

1

(1− q`+hq̄`′+h+2)
, (2.24)

where h is the weight of the spin-2 field, given by

∆2 = 2h+ 2 . (2.25)

It is now straightforward to also read off the contribution from the m2 < 0 states.

Since the only difference from the m2 > 0 case is on the sign of kΦ, the m2 < 0 result will

be the same but with the opposite shift

∆→ ∆2 − 2
TR − TL
TR + TL

, (2.26)

which leads to

Z
(1)
m2<0 =

∞∏
`,`′=0

1

(1− q`+h+2q̄`′+h)
. (2.27)

Putting it all together we arrive at the entire one-loop massive spin-2 determinant

Z
(1)
s=2 = Z

(1)
m2>0 Z

(1)
m2<0

=

∞∏
`,`′=0

1

(1− q`+h+2q̄`′+h)(1− q`+hq̄`′+h+2)
. (2.28)

This agrees with the results in [4, 5], which were derived using heat kernel methods, and

with [6] when the rotation is turned off. We will postpone the holographic interpretation

of these determinants to section 4.
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ingoing outgoing

m1 > 0
2ikR = 2p+ ∆1 + 1

2ikL = 2p+ ∆1 − 1

2ikR = −(2p+ ∆1 + 1)

2ikL = −(2p+ ∆1 − 1)

m1 < 0
2ikR = 2p+ ∆1 − 1

2ikL = 2p+ ∆1 + 1

2ikR = −(2p+ ∆1 − 1)

2ikL = −(2p+ ∆1 + 1)

Table 3. Spin-1 quasinormal mode spectrum after imposing standard Dirichlet boundary condi-

tions. When ∆1 = 3 these correspond to the spectrum of transverse ghost modes which appear in

the graviton one-loop determinant (2.30). Each condition on kR or kL labels a distinct eigenmode

and the range of p is over all non-negative integers.

2.2.1 Graviton determinant

In this section we are interested in the standard Dirichlet boundary conditions for the

graviton, which corresponds to allowing only fluctuations which fall off at least as fast as

δgµν ∼ O(r0) , (2.29)

near the AdS boundary. Since there are extra gauge redundancies in the massless case, we

need to include as well the well-known ghost determinant. Hence, the graviton one-loop

determinant is [26–28]

Z(1)
grav =

(
detT(−∇2 + 2/L2)

detSTT(−∇2 − 2/L2)

)1/2

, (2.30)

where the denominator is the determinant for symmetric, tranverse and traceless rank-2

tensors and the numerator is the determinant for transerve vector fields. These determi-

nants correspond to fields with physical mass values m2
2 = 1 for the graviton and m2

1 = 4

for the ghost; the corresponding conformal dimensions are

∆2 = 2 , ∆1 = 3 . (2.31)

Let us first evaluate the numerator in (2.30) for spin-1 fields with arbitrary ∆1 and

standard boundary conditions. The quasinormal mode spectrum of a vector field in AdS3

is derived in appendix C; the resulting frequencies are listed in table 3.

We can derive the spin-1 contribution to the determinant similarly to the spin-2

case (2.28). The general result for the determinant of a massive spin-1 field is

Z
(1)
s=1 = Z

(1)
m1>0 Z

(1)
m1<0

=
∞∏

`,`′=0

1

(1− q`+h+1q̄`′+h)(1− q`+hq̄`′+h+1)
. (2.32)

For a spin-1 field ∆1 = 2h+ 1 and the contribution in (2.30) corresponds to h = 1.

It is now straightforward to put together the complete graviton determinant in (2.30).

The contribution of the spin-2 tensor determinant is given by setting h = 0 in (2.28), giving

Z
(1)
s=2,m2=±1 =

∞∏
`,`′=0

1

(1− q`+2q̄`′)(1− q`q̄`′+2)
. (2.33)
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Inserting this value and taking the ratio in (2.30), we find

Z(1)
grav =

∞∏
`=0

1

(1− q`+2)(1− q̄`+2)
. (2.34)

This expression agrees with the results [2, 4].

There is a simple way to derive this final result without going through the process of

constructing each determinant in (2.30) explicitly. In particular, consider the quasinormal

mode spectra in tables 1 and 3. Evaluating the conditions in these tables at ∆2 = 2 and

∆1 = 3, we see that almost every spin-2 mode has a corresponding spin-1 ghost mode

which satisfies the same condition. These modes will cancel when taking the ratio in the

graviton determinant (2.30). The only contributions which do not cancel are the spin-2

states at p = 0 which satisfy

2ikL = 0 for m2 > 0 ,

2ikR = 0 for m2 < 0 . (2.35)

As described in appendix B.3, one has to be careful with the Euclidean rotation of these

states. In particular, as described in appendix B.3, in order to ensure that these Euclidean

solutions are regular at the origin, the thermal quantum number n should run only over

a restricted set of values. Taking these restrictions into account and performing the sum

we can directly recover (2.34). This analysis demonstrates that the physical states that

contribute to the graviton determinant come from either purely left-moving or purely right-

moving states. This also explains the factorization in (2.34), as the condition 2ikL = 0

yields the q̄-dependent product in (2.34) while the condition 2ikR = 0 yields the remaining

q-dependent part.

3 Quasinormal mode method: chiral boundary conditions

We now move on to a further generalization of the DHS prescription, which will be the

main focus of this article. The boundary conditions satisfied by quasinormal modes in

the asymptotically AdS region correspond to Dirichlet boundary conditions. These are

natural as they require fields to fall off in a prescribed way near the boundary such that

small on-shell perturbations have a finite energy [29]. However, certain types of fields in

asymptotically AdS space-times allow for more general boundary conditions. For exam-

ple, scalar fields with mass close enough to the Breitenlohner-Freedman bound can be

quantized with Dirichlet or Neumann boundary conditions and still yield finite energy ex-

citations [29, 30].12 Similarly, massless gauge fields, gravitons and higher spin fields can

be quantized with Dirichlet or Neumann boundary conditions [11, 31–34]. Below we will

consider particular boundary conditions on the bulk metric which are a mixture of Dirichlet

and Neumann boundary conditions.

12In [13], DHS do discuss Neumann conditions for these low-mass scalars, but only in the low-temperature

limit. Additionally their discussion is possible because when considering scalars in a non-rotating back-

ground, quasinormal modes simply map to Neumann-condition modes under ∆̃ = d−∆; as we discuss the

mapping will be more complicated when fields with spin or backgrounds with rotation are considered.
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The goal of this section is to use a simple modification of the DHS argument to con-

struct the one-loop determinant for the three dimensional graviton for cases where certain

components of the metric satisfy Neumann boundary conditions while others satisfy Dirich-

let. As discussed in the previous section, the assumption that the one-loop determinant is

meromorphic as a function of ∆ implies that poles of the one-loop determinant occur when-

ever a quasinormal mode satisfies equation (2.2). Our application of this method instead

requires that we enforce Neumann boundary conditions for certain metric components. Our

crucial working assumption is that these new boundary conditions will similarly quantize

the frequency of ingoing (and outgoing) solutions such that poles of the determinant will

now occur whenever the regularity condition

ω̃?(∆?,n) = ωn = 2πinT (3.1)

holds.13 Here ω̃?(∆?,n) refers to the quantized frequencies associated to ingoing (and out-

going) solutions which satisfy the prescribed Dirichlet-Neumann boundary conditions for

each component at infinity. These will in general be different from the standard quasinor-

mal frequencies. That the second equality in (3.1) is unmodified relative to (2.2) follows

simply because the near-horizon analysis is independent of the asymptotic boundary con-

ditions. In what follows we will refer to the frequencies ω̃?(∆?,n) simply as quasinormal

and also drop the tilde. In addition, we will utilize the more general prescription discussed

in section 2.1 appropriate to stationary but not necessarily static spacetimes.

We begin by reviewing the details of the various boundary conditions for the metric

that we will consider; then we move to a direct calculation of the one-loop determinant of

the graviton (including its ghost contributions) following the philosophy discussed above.

3.1 Chiral boundary conditions in AdS3

We consider boundary conditions on metric fluctuations in asymptotically AdS3 spacetimes

which correspond to imposing Dirichlet or Neumann conditions on different components.

In three dimensions it is natural to formulate a type of chiral boundary condition in which

the left-moving components of the boundary metric are allowed to fluctuate (Neumann),

whereas the right-moving components are held fixed (Dirichlet). Such chiral boundary

conditions were initially proposed by Compere, Song and Strominger (CSS) in [14]; see

also [15]. By additionally restricting the boundary metric to have purely left-moving coor-

dinate dependence, CSS demonstrated that these boundary conditions modify the asymp-

totic symmetry algebra from a product of left and right-moving Virasoro algebras to a

purely left-moving Virasoro plus U(1) Kac-Moody algebra. Following [14], the authors

in [16] realized that the left-moving coordinate dependence of the boundary metric in CSS

could be relaxed. The resulting boundary conditions enhance the asymptotic symmetry

algebra of CSS to an sl(2,R) Kac-Moody; as such we will refer to these simply as “sl(2,R)

KM” boundary conditions.

13For simplicity, in (3.1) we reference the regularity condition for static backgrounds; for the non-static

case one should use the more general condition discussed in section 2, which for rotating BTZ is given

in (2.8).
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For both boundary conditions, the starting point is pure AdS3 gravity; the action is

given by

I3D =
1

16πG3

∫
d3x

√
−g(3)

(
R(3) + 2

)
, (3.2)

where the AdS radius is set to one. We consider a class of backgrounds which have the

following asymptotic behavior:

ds2
3D =

dr2

r2
− r2(dt+dt− + h(t+, t−)(dt+)2)

+ 4G3m
(
dt− + f(t+, t−)dt+

)2
+ 4G3L(t+, t−)(dt+)2 +O(r−2) . (3.3)

Here t± = t±φ with φ ∼ φ+ 2π and m is a fixed constant. The Einstein equations impose

some restrictions on the functions h(t+, t−), f(t+, t−), and L(t+, t−); the remaining freedom

on these functions is controlled by boundary conditions, which we will elaborate on below.

In this notation, the BTZ black hole with mass M and angular momentum J corresponds to

L(t+, t−) = L0 , h(t+, t−) = f(t+, t−) = 0 , M = m + L0 , J = m− L0 , (3.4)

where L0 is constant and m > 0. Global AdS also falls into the restrictions in (3.4) upon

setting m = L0 = −1/G3.

3.1.1 CSS boundary conditions

The chiral boundary conditions of CSS [14] require that the boundary metric component

g++ depend only on the left-moving coordinate t+, such that

h(t+, t−) = h(t+) . (3.5)

On-shell this condition implies similar restrictions on the other metric functions:

f(t+, t−) = f(t+) and L(t+, t−) = L(t+). Furthermore, the equations of motion also imply

f(t+) = h(t+) ≡ −∂+P (t+) . (3.6)

The resulting metric has the asymptotic form

ds2
3D =

dr2

r2
− r2(dt+dt− − ∂+P (t+)(dt+)2)

+ 4G3m
(
dt− − ∂+P (t+)dt+

)2
+ 4G3L(t+)(dt+)2 +O(r−2) . (3.7)

The r-dependence of the allowed fluctuations of the metric under diffeomorphisms

becomes

δg++ = O(r2) , δg+− = O(1) , δg−− = O(r−2) ,

δgr± = O(r−3) , δgrr = O(r−4) . (3.8)

In other words, the allowed diffeomorphisms leave m and the leading term of g+− fixed,

whereas the functions P (t+) and L(t+) are allowed to fluctuate. Note that if we do not

allow fluctuations of ∂+P (t+), this analysis boils down to the holomorphic sector of the

Brown-Henneaux boundary conditions.
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3.1.2 sl(2,R) KM boundary conditions

A consistent extension of the CSS boundary conditions is to loosen the constraint

h(t+, t−) = h(t+), while still holding m fixed [16]. In particular, by relaxing the falloff

of gr+ in (3.8) such that

δgr+ = O(r−1) , (3.9)

instead of O(r−3), one finds that the Einstein equation constrains the t− dependence of

the function h(t+, t−) such that

∂−
(
∂2
− − 16G3m

)
h(t+, t−) = 0 , (3.10)

which is solved by

h(t+, t−) = h(t+) + g(t+)eiNt
−

+ ḡ(t+)e−iNt
−
, (3.11)

where h(t+), g(t+), and ḡ(t+) are arbitrary functions of t+ and

N2 ≡ −16G3m . (3.12)

The remaining functions in the metric are constrained by the form of h(t+, t−). In partic-

ular, f(t+, t−) is now determined in terms of h(t+), g(t+), and ḡ(t+). L(t+, t−) is similarly

specified up to a function independent of t−, such that

L(t+, t−) = L(t+) + L̄(t+, t−) , (3.13)

where L(t+) is an arbitrary periodic function of t+ and L̄(t+, t−) is determined by h(t+),

g(t+), and ḡ(t+). We refer the reader to [16] for the full details. The important piece

of information for us is that the radial falloff of the allowed diffeomorphisms for these

boundary conditions are

δg++ = O(r2) , δg+− = O(1) , δg−− = O(r−2) ,

δgr+ = O(r−1) , δgr− = O(r−3) , δgrr = O(r−4) . (3.14)

In the rest of this section we will use the DHS method to compute the one-loop de-

terminant for both the CSS and sl(2,R) KM boundary conditions. We will in particular

focus on imposing the radial falloff conditions in (3.8) and (3.14) and will then analyze the

consistency with the chirality conditions on h(t+, t−) given in (3.5) and (3.11).

3.2 Modified spin-2 determinant

In order to implement the DHS procedure for the boundary conditions discussed in

section 3.1, we will first understand how the Neumann boundary conditions for δg++

translate to boundary conditions on a massive spin-2 field and compute the corresponding

determinant. For the massless case, we will also add a detailed discussion of the ghosts

for both CSS and sl(2,R) KM boundary conditions, highlighting subtleties that appear

relative to the standard scenario in section 2.2.1.
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3.2.1 Massive spin-2 with chiral boundary conditions

Our starting point is to specify how the chiral boundary conditions in (3.8) and (3.14) trans-

late to the boundary behavior of a massive spin-2 field hµν (as detailed in equations (B.25)

and (B.29) of appendix B). In the following we will focus mainly on the tensor components

along the boundary directions, and later on check that the remaining boundary conditions

on the radial components are satisfied. Note that in the following, the relevant extension

to massive states of the mixed graviton boundary condition depends on the sign of the

polarization, i.e. whether m2 is positive or not.

Near the boundary, a massive spin-2 field has the expansion

h++ ' A++r
m2+1 (1 + · · · ) + C++r

−m2−3 (1 + · · · ) , (3.15)

h−− ' C−−rm2−3 (1 + · · · ) +A−−r
−m2+1 (1 + · · · ) , (3.16)

where for conciseness we are only considering the relevant components to understand

the chiral boundary conditions. It is worth mentioning that, according to the standard

AdS/CFT dictionary, for m2 = 1, A++ acts as the source for the right-moving stress ten-

sor T−−, whereas for m2 = −1, A−− is the source for T++. However, the coefficients Cij
do not act as the corresponding vacuum expectation values. Instead, for m2 = 1, A−− is

the vev for the right-moving stress tensor 〈T−−〉 and vice versa for m2 = −1.

Given a boundary condition on a single component, the others are fixed by the first-

order equations (2.16), so we only need to specify the behavior of a single component. For

Brown-Henneaux, which are fully Dirichlet boundary conditions, we simply require that

the source terms vanish, i.e.

Dirichlet B.C. : A++ = 0 for m2 > 0 , and A−− = 0 for m2 < 0 . (3.17)

To implement chiral boundary conditions we require that metric perturbations, δgµν = hµν
with |m2| = 1, have right-moving components that fall off faster than a constant with

δg−− ∼ o(r0) , (3.18)

while allowing for δg++ to grow near the boundary. Comparing to the behavior in (3.15),

the natural extension of these boundary conditions away from the massless value corre-

sponds to

Chiral B.C. : A−− = 0 for m2 > 0 , and A−− = 0 for m2 < 0 . (3.19)

For m2 < 0, this is the same boundary condition as in the standard Dirichlet situation.

However, for m2 > 0, we are imposing Neumann boundary conditions, as we are holding

〈T−−〉 fixed and allowing the source to fluctuate.

The quasinormal modes14 associated with these boundary conditions are derived in ap-

pendix B.2.2. The end result for the quasinormal spectrum with chiral boundary conditions

is given in table 4.

14Perhaps these should not be referred to as “normal” anymore as the mode functions are not square-

normalizable at the boundary for ∆2 > 2. However, while acknowledging this abuse of terminology, we will

still refer to these as quasinormal modes.

– 16 –



J
H
E
P
1
0
(
2
0
1
7
)
0
7
0

ingoing outgoing

m2 > 0
2ikR = 2p−∆2

2ikL = 2p−∆2 + 4

2ikR = −(2p−∆2)

2ikL = −(2p−∆2 + 4)

m2 < 0
2ikR = 2p+ ∆2 − 2

2ikL = 2p+ ∆2 + 2

2ikR = −(2p+ ∆2 − 2)

2ikL = −(2p+ ∆2 + 2)

Table 4. Spin-2 quasinormal mode spectrum after imposing chiral boundary conditions. When

∆2 = 2 these correspond to the symmetric, transverse, traceless graviton spectrum. Each condition

on kR or kL labels a distinct eigenmode and the range of p is over all non-negative integers.

m2 > 0 m2 < 0

2p+ 2−∆2 + |n− 2|+ ikΦ(n, k) = 0

2p+ 2−∆2 + |n+ 2| − ikΦ(n, k) = 0

2p+ ∆2 + |n− 2|+ ikΦ(n, k) = 0

2p+ ∆2 + |n+ 2| − ikΦ(n, k) = 0

Table 5. Conditions satisfied by Euclidean solutions with chiral boundary conditions. Each solution

satisfies one of the conditions listed. Here kΦ(n, k) is given in equation (2.19). In this table, p runs

over all non-negative integers, whereas n and k run over all integers.

Here we have again organized the modes into “ingoing” and “outgoing” based on their

behavior at the horizon. Notice that since the m2 < 0 states still satisfy Dirichlet boundary

conditions, the quasinormal modes in this sector are precisely the same as they were in the

previous section. It is also interesting to note that the conditions on the new m2 > 0 states

in table 4 are the same conditions as those on the m2 < 0 states upon sending ∆2 → 2−∆2.

This suggests that both sets of states have the same chirality and we will see this feature

in the final result for the one-loop determinant. Finally, the swapping of ∆2 with 2 −∆2

for m2 > 0 naturally follows from the alternative (Neumann) quantization of these states.

Enumerating the Euclidean solutions in this case is very similar to the situation with

Dirichlet boundary conditions. We summarize the conditions on the Euclidean spectrum

in table 5.

We can now compute the contribution to the one-loop determinant from all of the

m2 > 0 states in table 5. This gives

Z
(2)
m2>0,Neumann =

∞∏
`,`′=0

1

(1− q`+h′+2q̄`′+h′)
, (3.20)

where h′ = −∆2/2. Putting this together with the Dirichlet result for m2 < 0, we have

Z
(1)
s=2,chiral(∆2) =

∞∏
`,`′=0

1

(1− q`+h′+2q̄`′+h′)(1− q`+h+2q̄`′+h)
. (3.21)

Before moving on, we would like to comment on the ePol(∆2) factor that we have

dropped in the expression for the one-loop determinant above. In this case, the deter-

mination of this factor is potentially subtle. In particular, consider the ∆2 → ∞ limit

of (3.21). For the second factor, which arises from the m2 < 0 Dirichlet contribution,
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ingoing outgoing

−2ikR + ∆1 − 1 = 0 2ikR + ∆1 − 1 = 0

−2ikR − (∆1 − 1) = 0 2ikR − (∆1 − 1) = 0

−2ikR = 0 2ikR = 0

Table 6. Additional spin-1 ghost states that are consistent with the Neumann conditions on g++,

but are not contained in the Brown-Henneaux states. The first two lines correspond to new m1 > 0

states, whereas the kR = 0 states arise both in the m1 > 0 and m1 < 0 sectors.

taking ∆2 →∞ is straightforward. However, in the first (Neumann) factor it appears that

one should instead take ∆2 → −∞ in order for the limit to commute with the product

over (`, `′). Perhaps this could be expected to be the case since the alternative quanti-

zation is naturally phrased in terms of ∆− = 2 − ∆2, and taking ∆− → ∞ corresponds

to ∆2 → −∞. A proper understanding of heat kernel techniques for the chiral boundary

conditions considered here would likely address this issue. Since this does not affect the

pole structure of the one-loop determinant, we leave such an analysis for future work.

3.3 The graviton one-loop determinant

We now construct the graviton one-loop determinant for CSS and sl(2,R) KM boundary

conditions from the results for the massive spin-2 determinants. As in (2.30), we need to

evaluate

Z(1)
grav =

(
detT(−∇2 + 2/L2)

detSTT(−∇2 − 2/L2)

)1/2

. (3.22)

The denominator is straightforward to obtain from the massive case: we just set ∆2 = 2

in (3.21). The numerator, which is the contribution from the ghost fields, is more delicate:

results vary depending on whether we impose the boundary conditions on the vector field

itself or on the metric perturbation they induce as we will show in the following.

3.3.1 The ghost contribution

It turns out that we have already determined most of the ghost contribution to (2.30). In

particular, as detailed in appendix C, for the ghost fields the standard Dirichlet boundary

conditions are already consistent with the new chiral boundary conditions. This means that

the states in table 3 will contribute just as they had in the case with Dirichlet boundary

conditions. There are, however, several additional sets of quasinormal modes which satisfy

chiral boundary conditions, but not Dirichlet. These are given in table 6. As we will discuss,

whether or not we include these extra modes will play an important role in what follows.

As explained in appendix C, when considering the spin-1 states at the value of the

ghost mass, corresponding to ∆1 = 3, there are special states that appear in the second

and third rows of table 6 that are actual zero modes of the ghost Laplacian, which locally

satisfy the Killing equation.15 In particular, these occur for |kE | = 1 in the Euclidean

15Here “actual zero modes” refers to modes with zero eigenvalue in the determinant when ∆ is tuned to

its physical value. Their contribution to the path integral yields a prefactor which scales with the number

of such zero modes, which we are neglecting.
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solutions for the m1 = 2 states in the second row as well as the m1 = −2 states in the third

row of table 6. Since these are zero modes of the ghost Laplacian they will only appear

in Pol(∆1) but not in the poles of Z(1). Taking into account all of the ghost states that

induce a pole, we find

Z
(1)
s=1,chiral =

∞∏
`,`′=0

1

(1− q`+2q̄`′+1)(1− q`+1q̄`′+2)

×
∞∏
`=0

1

(1− q`+1q̄)(1− q`+1)(1− q`+1q̄−1)(1− q`+2)
, (3.23)

where the first product corresponds to the contribution which is also included in the Brown-

Henneaux analysis and the second product is from the new states in table 6.

Before proceeding, there is an important point to make regarding which ghost modes

we allow to contribute to the physical graviton determinant. The ghost is a vector field Vµ
that induces the gauge transformation

δgµν = ∇µVν +∇νVµ . (3.24)

When one imposes Dirichlet boundary conditions on Vµ, one finds that all the induced

metric fluctuations by such Vµ falloff faster than the Brown-Henneaux boundary condi-

tions (2.29). However, allowing for Neumann boundary conditions for Vµ introduces the

possibility that the ghost eigenfunctions will generate metric variations which are of the

same order as the allowed falloffs in (3.8) and (3.14): these are the states the second line

of (3.23), which correspond to the modes in table 6. Whether or not we choose to keep

these modes depends on how we implement boundary conditions:

1. We could impose that Vµ cannot induce a metric fluctuation (3.24) as leading as those

allowed by the asymptotic symmetry group;

2. Or we could impose Neumann boundary conditions on Vµ, and hence allow for large

induced metric fluctuations compatible with the asymptotic symmetry group.

In what follows we will be agnostic about these ghost contributions and present the determi-

nant for both situations. We will elaborate on the meaning of the subsequent results when

we discuss the holographic interpretation of the various boundary conditions in section 4.

3.3.2 sl(2,R) KM determinant

In order to distinguish between the sl(2,R) KM boundary conditions and the CSS boundary

conditions, we need to consider the boundary falloff of the δgr+ components. For the

sl(2,R) KM boundary conditions in (3.14), the boundary condition on δgr+ coincides with

the generic behavior of a solution with Neumann conditions on δg++ and so all of the spin-2

states enumerated above contribute to the sl(2,R) KM determinant. Next, for the ghost

fields, if we require that (3.24) is subleading relative to (3.14), only the first line of (3.23)
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contributes. Combining these two contributions in (3.22), we find the following result for

the graviton determinant

Z
(1)′

sl(2,R) =
∞∏

`,`′=0

(1− q`+2q̄`
′+1)

(1− q`+2q̄`′)

(1− q`+1q̄`
′+2)

(1− q`+1q̄`′−1)

=
∞∏
`=0

1

(1− q`+1q̄)(1− q`+1)(1− q`+1q̄−1)(1− q`+2)
. (3.25)

Here we have written the determinant with a prime to emphasize that we have not included

any of the ghost contributions which induce metric fluctuations of the same order as those

allowed by (3.14).

Now, let us consider what happens when we include the ghost degrees of freedom that

grow near the boundary. To do this we must simply keep all of the terms in (3.23). This

will precisely cancel the expression in (3.25) and we arrive at the final result

Z
(1)
sl(2,R) = 1. (3.26)

We will comment on the interpretation of this result and the expression in (3.25) in

section 4.

3.3.3 CSS determinant

We will now move on to construct the determinant for CSS boundary conditions (3.8).

Relative to the sl(2,R) KM case, we have the more stringent restriction

δg+r ∼ O(r−3) . (3.27)

In appendix B.4, we find that the condition in (3.27), along with the other CSS conditions

in (3.8), are generically only satisfied if we impose simultaneously that the leading term

in hLL and hRR vanish. In addition, there is a special state with kR = 0 for which only

the leading term in hRR must vanish in order satisfy all of the CSS conditions. In other

words, for m2 > 0 spin-2 states,16 the spectrum is given by the intersection of states in

table 4 with those in table 1 together with the kR = 0 state. When ∆2 = 2, we find that

the resulting states are

2ikR = 2p+ 4 , with p = −2, 0, 1, 2, 3, . . . , (3.28)

and

ikL = p , with p = 1, 2, 3, . . . . (3.29)

The restricted set of states in (3.28), compared to those in table 4, means we should remove

from (3.25) a factor of
∞∏
`=0

1

(1− q`+1q̄)(1− q`+1q̄−1)
. (3.30)

That these states are removed could have been anticipated as they correspond to fluctua-

tions of the boundary metric function h(t+, t−) that violate the chirality condition in (3.5).

16Recall that the m2 < 0 states are insensitive to the current discussion as they are required to satisfy

Dirichlet boundary conditions.
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The condition (3.29) is as stated in table 4 for ∆2 = 2, so no further modification of the

spin-2 contribution to (3.25) is required. It is interesting to note that the kL = 0 states

are not contained in the CSS spectrum: these states give the 1/(1− q̄`+2) in the standard

Brown-Henneaux result (2.34) and it is nice to see that the Neumann conditions naturally

exclude these.

Finally, we need to consider the ghost contribution to the determinant. In this case,

the result is simple. None of the new states in the first two lines of table 6 generate

metric variations that satisfy (3.27). Furthermore, the kR = 0 states generate metric

variations which falloff precisely as fast as the allowed metric boundary conditions. Since we

would like to define the modes which saturate the boundary falloffs in (3.8) as the physical

boundary gravitons, we should in addition exclude the kR = 0 states from the determinant.

This means that none of the terms in the second product in (3.23) contribute: the ghost

determinant for CSS is just given by the first line. The net sum of these restrictions yields

Z
(1)′

CSS =
∞∏
l=0

1

(1− q`+1)(1− q`+2)
(3.31)

as the final result for the CSS determinant.

As in the Dirichlet case, there is a simple way of deriving the result in (3.31) without

first going through the full computation of spin-1 and spin-2 determinants separately. In

a similar fashion to the discussion around (2.35) for the Brown-Henneaux states, when

∆2 = 2 and ∆1 = 3 almost all of the quasinormal mode conditions on the CSS spin-2

states are matched with conditions on ghost states with the exception of the two states

2ikR = 0 for m2> 0,

2ikR = 0 for m2< 0. (3.32)

Comparing to the conditions in (2.35), which yielded one sum over left-movers and another

over right-movers, here we instead have two sums over left-movers only. This is why the

final result only depends on q.

Notice also that there is a difference in the exponent of q in the two factors in (3.31).

The origin of this can be seen by noticing that the condition in (3.32) for m2 > 0 corre-

sponds to the state at the p = 1 level in table 4, as opposed to the p = 0 level as is the

case for the other states in (2.35) and (3.32). As detailed in appendix B, regular Euclidean

solutions at the p = 0 and p = 1 levels allow for only a restricted set of thermal frequencies.

For p = 0, the excluded thermal frequencies lead to the shift of `→ `+ 2 in the exponents

of q and q̄ in the graviton partition functions. For p = 1, the exponent is only shifted to

`+ 1, giving the additional (1 − q)−1 relative to the other cases.

Finally, as in the sl(2,R) KM case, one can in principle include the ghost states which

induce metric variations that have radial falloffs on par with the boundary gravitons. In

this case this amounts to including the kR = 0 modes in table 6. Doing so, we again find

that the one-loop determinant trivializes

Z
(1)
CSS = 1. (3.33)

We will elaborate on the meaning of the one-loop determinants computed here in the next

section.
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4 Holographic interpretation

We will now gather all the determinants we have evaluated in previous sections and discuss

their holographic interpretation. Our aim is to highlight how to write the determinants as

traces over unitary representations of the dual theory. This excludes the interpretation of

the entire function ePol(∆); the emphasis is only on the interpretation of the pole structure

of Z(1)(∆).

4.1 Standard boundary conditions

This subsection will serve mostly as review, since the interpretation was already discussed

in [2, 4]. The punchline in this case is that for standard (Dirichlet) boundary conditions we

can interpret each determinant as the character of the two dimensional conformal group.

This is in perfect agreement with the statement that these boundary conditions are precisely

those behind AdS3/CFT2. The discussion here should be contrasted with the results in

the following subsections.

Real scalars. In section 2.1 we found that the one-loop determinant of a real scalar field is

logZ(1)(∆) = log det(−∇2 +m2)−1/2 = log
∏
`,`′=0

1

1− q∆/2+`q̄∆/2+`′
. (4.1)

As in [4], it is useful to digest a bit this answer and view it as a trace, i.e. we want

to interpret (4.1) as

Tr qL0 q̄L̄0 . (4.2)

where L0 and L̄0 are each elements of an sl(2) algebra, which we parametrize as

[Li, Lj ] = (i− j)Li+j , i, j = −1, 0, 1; (4.3)

and similarly for L̄i. Rewriting (4.1) as∏
`,`′=0

1

1− q∆/2+`q̄∆/2+`′
=
∏
``′

∞∑
n=0

qn(∆/2+`)q̄n(∆/2+`′) (4.4)

makes the holographic interpretation of (4.1) quite straight forward. The scalar field

of mass m2 = ∆(∆− 2) corresponds to a primary in a CFT2 with conformal dimen-

sions (∆/2,∆/2). We denote a single particular state associated to the scalar field

as |h, h〉, with ∆ = 2h; multi-particle states correspond to multiple insertions of the

operator at the origin. The state |h, h〉 is annihilated by L1 and L̄1 and a descendent

of conformal weight (`+ h, `′ + h) is given by

L`−1L̄
`′
−1|h, h〉 , `, `′ ≥ 0 . (4.5)

The interpretation of the partition in (4.4) is now clear: the contribution for fixed

(`, `′) corresponds to the trace of multi-particle configurations of a given descendent

state of |h, h〉. Note that the states of the scalar operator are organized as a char-

acter of sl(2) × sl(2); the full Virasoro algebra will only be evident for the graviton

determinant.
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Massive vectors & tensors. The result for a massive vector field in AdS3 was derived

in (2.32)

Z
(1)
s=1 =

∞∏
`,`′=0

1

(1− q`+h+1q̄`′+h)(1− q`+hq̄`′+h+1)
, (4.6)

and for a massive spin-2 field we found in (2.28)

Z
(1)
s=2 =

∞∏
`,`′=0

1

(1− q`+h+2q̄`′+h)(1− q`+hq̄`′+h+2)
. (4.7)

The conformal dimension is ∆s = 2h+ s, and a massless field has h = 0.

The trace interpretation of (4.6) and (4.7) works very similarly to the scalar case. The

only difference is that the vector and tensor have two polarization states: (h, h + s)

and (h+s, h). Additionally, for each polarization state we have a tower of descendants

of sl(2)× sl(2) and the multi-particle state configurations.

Graviton. We now turn to the determinant of the graviton with standard (Dirichlet)

boundary conditions; the answer in (2.34) reads

Z(1)
grav =

∞∏
`=2

1

(1− q`)(1− q̄`)
. (4.8)

Here the interpretation deviates slightly from our previous examples. Interestingly,

because it is dual to the CFT stress tensor, the graviton captures the full structure of

the Virasoro group, in contrast to the global sl(2)× sl(2) as seen above. If we denote

the vacuum state as |0〉, the one-loop determinant (4.8) is counting descendants

L−n1 · · ·L−niL̄−n′1 · · · L̄−n′j |0〉 , ni, n
′
j > 1 , (4.9)

where

[Ln, Lm] = (n−m)Lm+n +
c

12
(n3 − n)δm+n , (4.10)

and similarly for L̄n. Note that the vacuum state is annihilated by L−1 and L̄−1 and

hence the product in (4.8) is from ` = 2. This is completely compatible with the

results of Brown-Henneaux [1]: with Dirichlet boundary conditions, the spectrum of

gravitational solutions is organized with respect to two copies of the Virasoro algebra

with central charge c = 3`AdS/2G3.

The determinant was evaluated in the BTZ background, however we are interpreting

the resulting product formula as a vacuum character, which we would attribute to

thermal AdS. The reason is simple: the Euclidean solutions, BTZ and thermal AdS,

are indistinguishable since both are a quotient of Euclidean AdS3 [35–37]. It is only

the Lorentzian continuation that makes them physically distinct: the Wick rotation to

Lorentzian signature identifies if either a timelike or spatial cycle is contractible ver-

sus non-contractible in the Euclidean torus. This Wick rotation in addition changes
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the role of τ in the geometry; if for BTZ we have complex structure τ then ther-

mal AdS corresponds to −1/τ . In the language of the dual CFT2 this is expected

from modular invariance: the states at high temperature (BTZ) are related to low

temperature excitations (thermal AdS).

4.2 Chiral boundary conditions

In the following we will give an interpretation of the graviton one-loop determinants which

involved chiral boundary conditions. There are two types of falloff that we considered

in section 3. As we will see below their interpretation is dramatically different and will

depend on how we choose to implement the ghost determinant with Neumann boundary

conditions.

4.2.1 CSS boundary conditions

The analysis of the asymptotic symmetry group with boundary conditions (3.8) suggests

that its dual description should be in terms of a warped conformal theory (WCFT). These

theories all have the following symmetry features: given a coordinate system (x+, x−), a

WCFT is classically invariant under the transformations

x+ → x+ + g(x−) , x− → f(x−) , (4.11)

where f and g are arbitrary functions. The algebra of charges associated to these trans-

formations is

[Ln, Lm] = (n−m)Ln+m +
c

12
n(n2 − 1)δn+m ,

[Ln, Pm] = −mPm+n ,

[Pn, Pm] = k
n

2
δn+m , (4.12)

which is a Virasoro-Kac-Moody algebra with central charge c and level k. Here Pn generate

diffeomorphisms along x+ in (4.11) [18, 19]: this is what distinguishes a WCFT from other

realisations of the Virasoro-Kac-Moody algebra. It is important to stress that this is a chiral

algebra (there is no L̄n sector), and this chirality will be crucial as we interpret our results.

To start, let us review a few facts about unitary representations of (4.12); the discussion

here is based on results in [19, 38]. A primary state is defined as a state |p, h〉 that is an

eigenstate of the zero modes

P0|p, h〉 = p|p, h〉 , L0|p, h〉 = h|p, h〉 , (4.13)

and is annihilated by (Ln, Pn) with n > 0. Descendants are created by acting with L−n
and P−n (n > 0). The trace that counts the descendants of a single primary reads

Tr
(
qL0 q̄P0

)
= qhq̄pφ(q)−1χh(q) . (4.14)

The descendants created by acting with P−n’s on |h, p〉 are accounted by the Euler phi

function

φ(q) =
∞∏
n=1

(1− qn) , (4.15)
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while the descendants arising from the action of L−n’s are counted by an ordinary Virasoro

character, χh(q), with central charge c. We note that a descendant state does not shift the

eigenvalue of P0 and hence the character in (4.14) is holomorphic in q (up to the overall

dependence of q̄p). Finally, the global part of (4.12) is simply sl(2) × u(1): characters of

this algebra will be just labelled by the sl(2) piece.

With this background, we can now proceed to interpret the determinants we evaluated

in section 3.3. For the graviton we found in (3.31) the following

Z
(1)
grav,CSS =

∞∏
`′=1

1

(1− q`′)

∞∏
l=2

1

(1− q`)
. (4.16)

This is in perfect agreement with (4.14) when the primary state is the vacuum state: the

first product is counting the P−n descendants, and the second product is the Virasoro

character for c > 1 with the L−1 state removed.17 It is remarkable that the final result is

holomorphic as expected from (4.14). We stress that in a WCFT, suitable warped modular

transformations also relate thermal AdS and BTZ [19, 39]. This relationship explains why

we obtain a vacuum character when evaluating the determinant on BTZ.

As for Dirichlet boundary conditions, it is also interesting to interpret the determi-

nant of massive fields. For instance, the massless spin-2 determinant with CSS boundary

conditions is given by

Z
(1)
s=2,CSS(∆2) =

∞∏
`,`′=0

1

(1− q`+h′+2q̄`′+h′)(1− q`+h+2q̄`′+h)
. (4.17)

Note that this determinant does not fit with the global part in (4.12): the q̄ dependence

cannot be accounted for by the Virasoro-Kac Moody algebra. The graviton respects the

symmetries expected from ASG analysis, but matter in this theory is not organized by the

same principle. It is possible to obtain a result compatible with sl(2)×u(1) representations,

but this requires fixing the quantum number associated to P0 in the quasinormal mode

spectrum. We find this requirement strange; for the graviton in (4.16) we did not have to

implement such a constraint.

It is worthwhile to compare our result with prior literature. The original deriva-

tions [14, 15] do not obtain (4.12); they obtain a non-canonical form of the algebra where

the commutator of Ln and Pn is shifted and the level depends on the vev of P0 (which is

m in (3.7)). However, [39] argue that there is a non-local transformation that brings the

algebra to the form (4.12), where k is independent of state, and modular invariance in the

WCFT is restored (since P0 can now vary). Our derivations are compatible with (4.12)

and modular invariance, hence we are indirectly justifying the non-local transformation

advocated in [39].

Finally, we should discuss the interpretation of the result in (3.33), where we have

included the ghost states that are growing near the boundary. The natural interpretation

of this result is in terms of a two-dimensional theory of induced gravity, where the additional

17Here we are just focusing on the pole structure of the one-loop contribution; the classical piece of the

action and ePol(∆) will capture the qhq̄P piece of the trace.
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ghost states represent the gauge redundancies in the boundary theory. However, one should

not think of this as gauging the symmetries of a unitary WCFT, but instead simply in terms

of 2d quantum gravity in a chiral light-cone gauge [40]. This is in seeming conflict with the

WCFT interpretation of the CSS boundary conditions that we have just discussed since in

order to gauge the Virasoro U(1) KM symmetry the level k must be negative. The ability

to treat the asymptotic symmetries as either global or gauge symmetries appears to be

related to the fact that in gravity one finds the non-canonical form of the WCFT algebra

with the WCFT description only emerging once one allows for the non-local transformations

described in [39]. It would be worthwhile to understand this point more completely. As

we will discuss in the next section, the interpretation in terms of induced gravity will be

much more transparent in the theory with sl(2,R) KM boundary conditions.

4.2.2 sl(2,R) KM boundary conditions

The sl(2,R) KM boundary conditions are distinguished from those of CSS by relaxing the

chirality condition on the boundary metric in (3.5). The asymptotic symmetry analysis for

these boundary conditions was performed in [16], where the asymptotic symmetry algebra

was shown to be a semidirect sum of a Virasoro and an sl(2,R) KM current algebra. The

generators satisfy the following commutation relations

[Ln, Lm] = (n−m)Ln+m +
c

12
n(n2 − 1)δn+m ,

[Ln, J
a
m] = −mJam+n ,

[Jan , J
b
m] = fabcJ

c
m+n − k

m

2
ηabδn+m , (4.18)

where fabc are the structure constants of sl(2,R) and η00 = −1, η+− = 2, while the

other components of the metric ηab vanish. Finally, the level k of the current algebra is

determined by the central charge and is given by

k =
c

6
=

1

4G3
. (4.19)

Generically, k and c do not have to be related: it is a feature of the gravitational setup

that relates them. And in particular, this feature that in AdS3 the level and the central

charge are related in this way will play an important role in the following discussion.

As we did for the other examples, it is instructive to discuss unitary representations

of the algebra. A primary of (4.18) is defined as a state |m,h; j〉 that is an eigenstate of

the zero modes

J0
0 |m,h; j〉 = m|m,h; j〉 , L0|m,h; j〉 = h|m,h; j〉 , (4.20)

in addition to the quadratic Casimir of sl(2,R)

ηabJ
a
0 J

b
0 |m,h; j〉 = −j(j − 1)|m,h; j〉, (4.21)

and is also annihilated by Ln and Jan with n > 0. Descendent states are now created by

acting with L−n and Ja−n (n > 0). In addition, discrete representations of sl(2,R) typically
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fall into two classes; these are D(+)
j , which is defined by demanding J−0 |m,h; j〉 = 0, and

D(−)
j which has J+

0 |m,h; j〉 = 0.18 See [41, 42] for a more detailed discussion of these

representations.

One would expect to find that the graviton one-loop determinant for the sl(2,R) KM

boundary conditions arranges itself into a product of a Virasoro and sl(2,R) KM character.

The descendent contributions to an sl(2,R) KM character take the form

χ
(+)
sl(2)(q, q̄) =

1

1− q̄

∞∏
n=1

1

(1− qnq̄)(1− qn)(1− qnq̄−1)
, (4.22)

for a representation of the type D(+)
j . Comparing this to (3.25), we indeed find the appro-

priate structure, modulo the first factor in (4.22) which corresponds to the J+
0 descendent

contribution. We recall that the product in (3.25) corresponds to the graviton determi-

nant where the ghost spectrum is treated with Dirchlet boundary conditions (i.e. the ghost

fluctuations are strictly subleading relative to the spin-2 modes).

There is, however, a problem with the above analysis, which can be seen most easily

by considering the sign in front of the sl(2,R) level k in the [J0
n, J

0
m] commutator. Since

k = c/6 is positive, representations of the current algebra (4.18) necessarily contain negative

norm states. This is however not a problem: there is a natural interpretation as to why

k must appear precisely as in (4.18). The boundary theory dual to sl(2,R) KM boundary

conditions is a theory of induced gravity [17]. In particular, this theory is described by a

two-dimensional induced gravity in light-cone gauge as originally formulated in [43, 44].

As discussed in [17], the appropriate boundary stress tensor includes the twisted Sug-

awara term, which amounts to a shift of the form

T̂++(t+) = T++(t+) + ∂+J
0(t+). (4.23)

This introduces the following shift in the Virasoro generators19

L̂n = Ln − inJ0
n −

c

24
δn,0. (4.24)

In terms of L̂n one can check that the Virasoro algebra becomes

[L̂n, L̂m] = (n−m)L̂n+m, (4.25)

where the shift by J0
n has lead to a cancellation between the bare central charge in (4.18)

and a central term induced by the sl(2,R) level k = c/6. Note that it was crucial that the

sign in front of k in (4.18) is as written, otherwise the induced central charge would not

have canceled the bare central term.

18Note that, because of the non-compact nature of sl(2,R), the representations D(±)
j contain an infinite

set of states generated by the zero modes of J+
0 or J−0 . Since, in thermal AdS3, the J±0 correspond to global

elements of the symmetry algebra these sl(2,R) descendents will not be seen in the gravity analysis for the

graviton determinant.
19We have also included a zero mode shift of − c

24
which can be thought of as arising from mapping the

Virasoro generators Ln on the plane to those on the cylinder L̂n.
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Since the twisted generators satisfy a Virasoro algebra with vanishing central charge,

we can gauge the diffeomorphisms on the boundary. Now, we can see that the extra ghost

states were necessary in order to arrive at the result in (3.26). These extra ghost states

correspond precisely to the boundary diffeomorphisms, which remove all of the Virasoro

sl(2,R) KM descendent contributions, as expected when the dual 2d theory is a theory

of gravity.

5 Discussion

In this work we have computed the pole structure of the graviton one-loop determinant in

three dimensional AdS gravity with the aim of quantifying how chiral boundary conditions

affect the determinant. In the following we discuss some important features of our results

and some possible future directions.

Extensions of the DHS method

We extended in three directions the quasinormal mode method first developed in [13].

The first extension is the treatment of stationary, as opposed to static, spacetimes,

which is required in order to distinguish between holomorphic and anti-holomorphic con-

tributions to the graviton determinant. In the static case, poles in the one-loop determinant

arise when the quasinormal mode frequencies are tuned to be proportional to the Euclidean

thermal mode number. Our primary result here is (2.8), which shows that in the rotational

case the quasinormal mode frequencies must instead be tuned to a particular combination

of the Euclidean thermal mode number and the angular frequency. Although this partic-

ular expression is specific to the BTZ black holes we study, we expect that the derivation

procedure will be similar for other stationary spacetimes in any number of dimensions.

Our second extension concerns an improved treatment of fields with spin in the quasi-

normal mode method. Although fields with spin have been studied previously in e.g. [6, 25],

in appendices B.3 and C.2 we provide a comprehensive discussion of the adjusted integer

ranges required in those prior works. We show that for fields with spin, not every quasinor-

mal mode Wick-rotates to a normalizable Euclidean mode. For quasinormal modes with

quantum number at or below the field’s spin, the thermal mode number may have a re-

stricted range in order to achieve normalizability at the tip of the Euclidean cigar and thus

a pole in the one-loop determinant. And although we have studied a particular example,

we expect that this subtlety will generalize to any scenario where DHS is applicable.

The most obvious extension required in our work is to apply the quasinormal mode

method to the case of chiral boundary conditions. These impose Neumann boundary

conditions on the left-moving graviton components, while the right-moving components

remain Dirichlet, as detailed in section 3.1. We applied the DHS procedure to this situation,

and found reasonable results. For massive spin fields determining the modes that contribute

to the determinant requires some work but is straightforward; this is done in section 3.2 for

the spin-2 field, and generalizations should follow naturally. The more interesting feature

appears for massless fields and their ghost contribution which we discuss below.
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Holography going wild at the boundary

We focused on two types of chiral boundary conditions, distinguished by a particular func-

tional constraint on the boundary metric. Allowing the left-moving components of the

boundary metric to vary as an arbitrary function of the boundary coordinates, one finds

the asymptotic symmetry algebra contains an sl(2,R) current algebra [16]. As argued

in [17] the holographic dual of these boundary conditions corresponds to two-dimensional

gravity in a chiral light-cone gauge as in [43, 44]. Our results for the graviton determi-

nant in (3.26) confirm these expectations by demonstrating that the Virasoro and sl(2,R)

descendants are removed from the spectrum.

The second type of boundary conditions we considered are the more stringent ones of

CSS [14]. These conditions require the fluctuating boundary metric to depend only on the

left-moving coordinate t+; they produce a Virasoro U(1) Kac-Moody asymptotic symmetry

algebra. As proposed in [14] the holographic interpretation in this case is in terms of a

warped conformal field theory and as described in section 4.2.1 our result in (4.16) for the

graviton determinant reinforces this idea.

There are two interesting directions to explore here. One direction is to complement

our analysis with the recent work in [45, 46]. There a deformation of the action can be

interpreted as a modification of the boundary conditions in AdS, which also provides an

interesting holographic interpretation. Another direction is to explore the behaviour of one-

loop determinants for other boundary conditions in AdS3 such as those discussed recently

in [47, 48] and references within.

Ghosts are scary

For massless fields, such as the graviton, gauge invariance requires the introduction of ghost

fields in the path integral. The Neumann nature of the chiral boundary conditions brings

a subtlety to the ghost determinant as detailed in section 3.3, which we summarize here.

What are the appropriate boundary conditions for the vector ghost? We can either

allow ghosts whose metric variations are on par with the allowed graviton modes, or instead

require them to be purely subleading. This crucial distinction arises because allowing

Neumann conditions for the ghost eigenfunctions opens up the possibility of including

ghost states that actually gauge away the physical boundary gravitons.

The choice of ghost boundary conditions for the sl(2,R) KM case is rather natural.

Unitarity of the boundary theory requires the inclusion of ghost states which grow at the

boundary in order to cancel negative norm descendent states arising from the non-compact

sl(2,R) current algebra. For CSS, the choice of ghost boundary conditions is more subtle.

An interpretation in terms of a WCFT requires that we do not allow for ghost modes

which grow at the boundary, as in our result in (4.16). However, within our framework, it

is apparently just as valid to include some of the Neumann ghost states which, as in the

sl(2,R) case, remove the descendent states from the spectrum as we found in (3.33). A full

understanding of the holographic interpretation of this case is still lacking, although the

chiral Liouville gravity of [40] will likely play a role.
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All of these cases illustrate the importance in defining the physical states corresponding

to the boundary gravitons and identifying the appropriate conditions on the ghost eigen-

functions. For this purpose, it would be very useful to develop a gauge invariant procedure

for constructing the one-loop determinant which does not require the introduction of ghost

modes, but we leave this for future work.

The entire function Pol(∆)

We have chosen to study only the pole structure of the one-loop determinant and thus have

ignored the ePol(∆) factor in (2.15). The purpose of the polynomial factor is to account for

zero modes and renormalization effects, including the multiplicative anomaly [49]. This

choice to focus on the pole structure of the one-loop determinant alone does mean we

cannot compute, e.g., the Casimir energy as noted in footnote 17.

The choice of chiral boundary conditions complicates the calculation of the function

ePol(∆). In the case of Dirichlet conditions, this factor can be found by comparing the large

∆ behavior of the pole structure to, e.g., the large ∆ behavior required by the heat kernel

curvature expansion as in [13]. In the case of pure Neumann conditions, a similar result

could be found by instead studying the ∆ → −∞ limit; however, in the chiral conditions

we consider, we have both Dirichlet and Neumann modes, so neither limit is easy to study.

It might be possible to divide the infinite product into definite helicity sectors similar to

the approach taken in [50] which factored the determinant into fixed momentum sectors,

but we leave any such consideration to future work.
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A BTZ black hole in various coordinates

In this appendix we compile several useful coordinate systems to describe the BTZ black

hole; all equations have the AdS radius set to one. We begin with the more traditional

Boyer-Lindquist type coordinates

ds2

`2
=

r2

(r2 − r2
+)(r2 − r2

−)
dr2 −

(r2 − r2
+)(r2 − r2

−)

r2
dt2 + r2

(
dφ− r+r−

r2
dt
)2

, (A.1)
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where as usual we have φ ∼ φ+ 2π. The inner and outer horizons are related to the mass

and angular momentum via

r2
+ + r2

− = M , r2
+r

2
− =

J2

4
. (A.2)

In Fefferman-Graham coordinates the BTZ takes the form

ds2 = dρ2−e2ρdt+dt− +
(r++r−)2

4

(
dt+
)2

+
(r+−r−)2

4

(
dt−
)2 − (r2

+ − r2
−
)2

16`4
e−2ρdt+dt−,

(A.3)

where we have defined

t± = t± φ , r2 = r2
+ cosh2(ρ− ρ0)− r2

− sinh2(ρ− ρ0) , e2ρ0 =
r2

+ − r2
−

4
. (A.4)

When performing the Euclidean continuation, it is most natural to make the following

coordinate transformation:

tanh2 ξ =
r2 − r2

+

r2 − r2
−
, T = r+t− r−φ , Φ = r+φ− r−t . (A.5)

In these coordinates, the metric is

ds2 = dξ2 − sinh2 ξdT 2 + cosh2 ξdΦ2 . (A.6)

We refer to these as regular coordinates because in terms of the Euclidean time coordinate,

T = −iTE , the metric becomes simply

ds2 = dξ2 + sinh2 ξdT 2
E + cosh2 ξdΦ2 , (A.7)

and regularity at ξ = 0 naturally fixes the periodicity of TE to be

TE ∼ TE + 2π . (A.8)

Note that the Euclidean continuation in the coordinates (A.1) implies that r− is purely

imaginary and t = −itE . We will also find it occasionally useful to further transform the

radial coordinate by

z = tanh2 ξ , (A.9)

in which case the metric is

ds2 =
1

4z(1− z)2
dz2 − z

1− z
dT 2 +

1

1− z
dΦ2 . (A.10)

Finally, when analyzing the massive spin-1 and spin-2 equations it is further useful to

define dimensionless left-moving and right-moving coordinates

xL ≡ T + Φ = (r+ − r−)t+ , (A.11)

xR ≡ T − Φ = (r+ + r−)t− , (A.12)

in terms of which the various tensor components in the equations become diagonal. In

these coordinates the metric is given by

ds2 = dξ2 − 1

2
cosh 2ξ dxLdxR +

1

4
(dx2

L + dx2
R) . (A.13)
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B Linearized graviton equations and quasinormal modes

In this appendix we will derive the massive spin-2 quasinormal spectrum for Dirichlet

boundary conditions, which was originally done in [6], and for chiral boundary conditions.

We will also elaborate on the restrictions imposed on the Euclidean solutions, which affects

the modes contributing to the determinants and are non-trivial for spin-s fields (but trivial

for scalar fields).

B.1 Massive spin-2 equations

As in equations (2.16) and (2.17), a massive spin-2 excitation hµν in AdS3 satisfies the first

order equation20

εµ
αβ∇αhβν = −mhµν , (B.1)

which is equivalent to

∇µhµν = 0 , hµµ = 0 , ∇2hµν = (m2 − 3)hµν , (B.2)

where we have set the AdS radius to one. To avoid cluttering, in this appendix we are

dropping the subscript in m (in the main text it is denoted as m2).

Using the tracelessness condition

hξξ =
1

sinh2 ξ
hTT −

1

cosh2 ξ
hΦΦ , (B.3)

and the first order equations of motion, one can solve algebraically for the components

hξξ, hξT , hξΦ, and thus express the equations of motion solely in terms of the components

of hµν along the boundary directions. It is at times useful to express the remaining spin-2

tensor components in the (xL, xR) basis, whereas at other times it is convenient to express

them in the (T,Φ) basis. We will use both often, and the relation between them readshTThTΦ

hΦΦ

 =

1 2 1

1 0 −1

1 −2 1


hLLhLR
hRR

 . (B.4)

We Fourier expand the spin-2 field as

hµν(z, T,Φ) = e−i(kLxL+kRxR)Rµν(z) . (B.5)

Just as we use either the (xL, xR) or (T,Φ) basis for the spin-2 components above, we will

find it useful below to express the momentum with respect to the several different choices

of coordinates. The relation between the various definitions follows from

e−i(ωt−kφ) = e−i(kLxL+kRxR) = e−i(kTT+kΦΦ) , (B.6)

20Our notation differs from that used in [6]. In comparison to the coordinates used there, we have

(x1, x2)there = (xL, xR)here, and (x+, x−)there = (T,Φ)here.
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which implies the relations

ω − k = 4πTLkL , ω + k = 4πTRkR , (B.7)

kT = kL + kR , kΦ = kL − kR . (B.8)

In addition, because φ parameterizes a circle, regularity of the solutions implies k ∈ Z.

In the (xL, xR) basis, the equations of motion for the radial wave functions become

diagonal. In particular, one has [6]

z(1− z)
d2RLL
dz2

+ (1− z)
dRLL
dz

+

[
k2
T

4z
−
k2

Φ

4
− (m+ 2)2 − 1

4(1− z)

]
RLL = 0 , (B.9)

z(1− z)
d2RLR
dz2

+ (1− z)
dRLR
dz

+

[
k2
T

4z
−
k2

Φ

4
− m2 − 1

4(1− z)

]
RLR = 0 , (B.10)

z(1− z)
d2RRR
dz2

+ (1− z)
dRRR
dz

+

[
k2
T

4z
−
k2

Φ

4
− (m− 2)2 − 1

4(1− z)

]
RRR = 0 . (B.11)

The solutions to these equations are given by

Rij(z) = z−
i
2
kTRin

ij (z) + z
i
2
kTRout

ij (z) (B.12)

= (1− z)βij
[
ein
ijz
− i

2
kTF

(
ain
ij , b

in
ij , c

in; z
)

+ eout
ij z

i
2
kTF

(
aout
ij , b

out
ij , c

out; z
)]
, (B.13)

where we have written the solutions such that the functions Rin
ij (z) and Rout

ij (z) become

unity at the horizon z = 0. The sign of the exponent of z indicates that the “in” and “out”

superscripts naturally refer to ingoing and outgoing solutions. ein
ij and eout

ij are polarization

constants and the other constant parameters are given by

βLL =
m+ 3

2
, βLR =

m+ 1

2
, βRR =

m− 1

2
, (B.14)

ain
ij = −ikR + βij , binij = −ikL + βij , cin = 1− i(kL + kR) , (B.15)

aout
ij = ikL + βij , bout

ij = ikR + βij , cout = 1 + i(kL + kR) . (B.16)

For ingoing solutions (with eout
ij = 0), the polarization constants are constrained by the

first-order equations to satisfy

(m+ 1 + 2ikR)ein
LL = −(m+ 1− 2ikL)ein

LR , (B.17)

(m− 1 + 2ikR)ein
LR = −(m− 1− 2ikL)ein

RR , (B.18)

whereas for the outgoing solutions (with ein
ij = 0) one has

(m+ 1− 2ikR)eout
LL = −(m+ 1 + 2ikL)eout

LR , (B.19)

(m− 1− 2ikR)eout
LR = −(m− 1 + 2ikL)eout

RR . (B.20)

Note that the ingoing (radial) wave-function is simply related to the corresponding outgoing

one by sending (kL, kR)→ −(kR, kL).
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B.2 Determining the spectra

From now on we focus on the ingoing solutions. Writing them out explicitly, we have

RLL(z) = ein
LL(1− z)

m+3
2 z−

i
2
kTF

(
ain
LL, b

in
LL, c

in; z
)
, (B.21)

RLR(z) = ein
LR(1− z)

m+1
2 z−

i
2
kTF

(
ain
LR, b

in
LR, c

in; z
)
, (B.22)

RRR(z) = ein
LR(1− z)

m−1
2 z−

i
2
kTF

(
ain
RR, b

in
RR, c

in; z
)
. (B.23)

In order to relate the ingoing wave-function to an expansion at the boundary we use the

connection identity

F (a, b; c; z) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

F (a, b; a+ b− c+ 1; 1− z)

+ (1− z)c−a−b
Γ(c)Γ(a+b−c)

Γ(a)Γ(b)
F (c− a, c− b; c− a− b+ 1; 1− z) . (B.24)

Near the boundary, z → 1 and r−2 ∼ 1 − z → 0. Using the connection formula (B.24) to

expand the solutions (B.21) for large r, assuming m > 0 we find the following behavior:

RLL ' ein
LLr

m+1 Γ(cin)Γ(m+ 2)

Γ(ain
LL)Γ(binLL)

(1 + · · · ) +O
(
r−m−3

)
, (B.25)

RLR ' ein
LRr

m−1 Γ(cin)Γ(m)

Γ(ain
LR)Γ(binLR)

(1 + · · · ) +O
(
r−m−1

)
, (B.26)

RRR ' ein
RRr

−m+1 Γ(cin)Γ(2−m)

Γ(cin − ain
RR)Γ(cin − binRR)

(1 + · · · ) +O
(
rm−3

)
. (B.27)

Notice that the expansion of RRR appears different in structure from the other components.

This is because we have assumed that21

1 ≤ |m| < 2 , (B.28)

which contains the value m = 1, corresponding to the graviton. For positive values of m

with |m| > 2, the two series in the expansion of RRR swap dominance. When m is negative,

a similar statement applies. In particular, for m < 0, the relevant expansion is

RLL = ein
LLr

m+1 Γ(cin)Γ(m+ 2)

Γ(ain
LL)Γ(binLL)

(1 + · · · ) +O(r−m−3) , (B.29)

RLR = ein
LR r

−m−1 Γ(cin)Γ(−m)

Γ(cin − ain
LR)Γ(cin − binLR)

(1 + · · · ) +O(rm−1) , (B.30)

RRR = ein
RR r

−m+1 Γ(cin)Γ(2−m)

Γ(cin − ain
RR)Γ(cin − binRR)

(1 + · · · ) +O(rm−3) , (B.31)

in which case we see that the two series in the expansion of RLL swap dominance for

m < −2.

21The condition |m| ≥ 1 corresponds to the unitarity bound ∆ ≥ 2 for spin-2 operators in the dual CFT.
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B.2.1 Quasinormal boundary conditions

Assuming the condition

1 ≤ |m| < 2 , (B.32)

the standard quasinormal boundary conditions correspond to enforcing that the leading

divergence in the boundary expansions in (B.25) or (B.29) vanish; this ensures that the

perturbation is normalizable as r →∞. For m > 0 (m < 0), this corresponds to demanding

the leading term in RLL (RRR) vanish.

For m > 0 we find the ingoing quasinormal spectrum to be

2ikR = 2p+ ∆ + 2

2ikL = 2p+ ∆− 2

}
for all integers p ≥ 0 , (B.33)

where we have defined ∆ = |m| + 1. We will refer to p as the radial quantum number.

Almost all of these modes arise by ensuring the Γ-functions in the denominator of (B.25)

acquire poles which set the leading term in RLL to zero. This vanishing occurs when

either ain
LL or binLL becomes equal to zero or a negative integer. However, there are two

special solutions, corresponding to p = 0, 1 in the kL series. These solutions instead have

parameters set such that the polarization tensor component ein
LL in (B.17) vanishes. There

are two possibilities, corresponding to setting p = 0 and p = 1 in the second line of (B.33).

For m < 0, there is a similar story which imposes conditions on the leading behavior

of RRR in (B.31). We find the modes

2ikR = 2p+ ∆− 2

2ikL = 2p+ ∆ + 2

}
for all integers p ≥ 0 . (B.34)

The outgoing solutions can also be handled similarly. In the end we arrive at the quasi-

normal mode spectrum displayed in table 1.

B.2.2 Chiral boundary conditions

We will now consider the chiral boundary conditions relevant for the analysis in section 3.

In particular, for the graviton with |m| = 1, one imposes that RRR falls off faster than

O(r0) at the boundary while allowing RLL to fluctuate at O(r2). The boundary condition

thus amounts to demanding conditions solely on RRR. These conditions have a natural

continuation for m in the range

1 ≤ |m| < 2 . (B.35)

Let us examine the behavior of the wave-functions in (B.25) and (B.29). For m < 0,

requiring the leading term in RRR to vanish is the same condition we required in the

previous subsection, so the chiral boundary conditions for m < 0 are implemented in the

same way as the standard quasinormal condition. However, for m > 0 the chiral boundary

conditions place restrictions on the asymptotic behavior of RRR instead of RLL as was

the case for the standard boundary conditions. This means that for m > 0 we require

cin
RR − ain

RR or cin
RR − binRR to be zero or a negative integer. In addition, there are again two

special conditions arising from setting ein
RR = 0 in (B.17). The entire spectrum satisfying

chiral boundary conditions is presented in table 4.
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B.3 Regularity of Euclidean solutions

The mode functions defined in (B.5) have a natural continuation to Euclidean signature. In

this section we use the coordinates (A.7), where regularity at the origin ξ = 0 is made most

manifest. At the level of the solutions to the wave equation, the Euclidean continuation is

implemented by making the replacements

T = −iTE , kT = ikE , (B.36)

and the periodicity in TE constrains the values of kE such that

kE ∈ Z . (B.37)

Setting kT = ikE in the solutions (B.12), we see that normalizability at small22 ξ naturally

identifies positive values of kE with the ingoing solutions, such that one sets

kT = ikE = in , n > 0 . (B.38)

Correspondingly, the negative values of kE are assigned to the outgoing solutions, with

kT = ikE = in , n < 0 . (B.39)

In addition, one can consider the zero modes

kT = ikE = 0 , (B.40)

as arising from either sector.

Finally, for some specific states, there is an additional restriction on the allowed values

of n. This restriction arises from demanding square-integrability of the Euclidean solutions

near ξ = 0. In particular, we demand that the Euclidean solutions h
(λ)
µν satisfy [51]∫

d3x
√
ggµνgρσh(λ)

µρ (x)h(λ′)∗
νσ (x) = δ(λ− λ′) , (B.41)

where λ is an eigenvalue and the asterisk denotes complex conjugation. In order to avoid

a non-integrable singularity at ξ = 0 in the integrand of (B.41), we must further restrict

the range of n for Euclidean solutions with certain low-lying values of the radial quantum

number p.

One can see that a potential problem exists by considering the component hξξ which,

since the inverse metric component gξξ = 1, shows up squared with only the metric determi-

nant as prefactor in (B.41). The tracelessness condition (B.3) implies that near the origin

hξξ ∼
1

ξ2
hEE

∼ eEEξ|n|−2(1 +O(ξ)) , (B.42)

22Note that small ξ corresponds to small z, where z ∼ ξ2.
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where hEE and eEE are the Euclidean rotation of hTT and eTT , which are related to the

(L,R) basis by the matrix equation (B.4). This means that, for small ξ, one has

√
ggµνgρσh(λ)

µρ (x)h(λ′)∗
νσ (x) ∼ e2

EEξ
2kE−3 . (B.43)

Therefore, for kE = 0, 1 there is a potential non-integrable singularity at ξ = 0.

The potential singularity at ξ = 0 is avoided for most values of p because eEE vanishes

for kE = 0 or kE = 1 in generic solutions.23 However, there are a finite number of states

where this is not satisfied. In particular, focusing on the m > 0 states, we find that the

Euclidean continuations of states belonging to the kL series in table 1 and to the kR series

in table 4 with mode numbers given by

(p, kE) ∈ {(0, 0), (0, 1), (0,−1), (1, 0)} , (B.44)

do not satisfy eEE = 0. These modes correspond to wave-functions that are not square-

integrable and should be discarded. We could also argue these states should be eliminated

because they correspond to the special values of p where components of the polarization

tensors eij vanish, as described following (B.33), for which eEE 6= 0.

The states with quantum numbers (B.44) should also be discarded from the Euclidean

continuation of the kR series with m < 0 in table 1 and table 4. By shifting p for the

specific case of n = −1 in this series, we can combine the m < 0, n < 0 kR series with the

m < 0, n ≥ 0 kL series; this combination results in the bottom row of the m < 0 column

in table 2, now valid for all integers n, k and p ≥ 0. By similarly shifting p to exclude

the rest of the singular solutions, we are left with the entire set of possible conditions on

allowed Euclidean solutions which are presented for standard Brown-Henneaux boundary

conditions in table 2 and for the chiral boundary conditions in table 5.

B.4 Checking the δgr+ behavior

Finally, we need to understand the consequences of the δgr+ condition in the two sets of

boundary conditions in (3.8) and (3.14). We begin by solving the first order equations (B.1),

finding24

hξL =
i

kR + kL cosh 2ξ
(cosh 2ξ∂ξhLL + ∂ξhLR − (m+ 1) sinh 2ξhLL) . (B.45)

Inserting the generic solutions (B.12) into this expression and using that near the boundary

eξ ∼ r and hξL ∼ rhr+ we find that for large r and m > 0

hr+ ∼ rm−2ein
LL

kR
Γ(ain

LL)Γ(binLL)
(1 + · · · ) +O(r−m−3) . (B.46)

23One can check this by noticing that the polarization tensors satisfy the same matrix equation as the

tensor components in (B.4), where hTT and hTΦ are related to hEE and hEΦ by analytic continuation.

Imposing the relations (B.17) or (B.19), one sees that indeed eEE vanishes where kE = 0, kE = 1 (for

ingoing) or kE = −1 (for outgoing).
24Recall from (A.11) that xL = (r+ − r−)t+.
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For m = 1, this means that the leading behavior of hr+ ∼ O(r−1), which is consistent with

the sl(2,R) Kac-Moody boundary conditions in (3.14). However, CSS boundary conditions

require hr+ ∼ O(r−3) for m = 1, and this condition is met only when either one of

ain
LL = −p , binLL = −p , ein

LL = 0 , (B.47)

is satisfied, or

kR = 0 . (B.48)

Notice that (B.47) are precisely the Brown-Henneaux conditions. This means that the

CSS boundary conditions can only be consistent if, in addition to the Neumann conditions

described in section B.2.2, either the Brown-Henneaux conditions are satisfied or kR = 0.

C Analysis of ghost contributions to the gravitational path integral

In this appendix we present a detailed analysis of the a massive spin-1 field in AdS3, and

the ghost determinant that appears in the graviton one-loop path integral.

C.1 Spin-1 equations

The massive spin-1 modes can be solved similarly to the massive spin-2 modes. In first

order form, the equation of motion is

εµ
νρ∇νVρ = −mVµ . (C.1)

Again we drop indices on m to avoid clutter (in the main text it would be m1). The

solutions of this equation satisfy the massive vector equations of motion

(∇ν∇ν −m2 + 2)Vµ = 0 ,

∇µVµ = 0 . (C.2)

The specific value of m which corresponds to the spin-2 ghost is then m2 = 4, i.e. m = ±2.

For this value of the mass, we interpret Vµ as variation of the metric:

δgµν = ∇µVν +∇νVµ . (C.3)

It will be useful to switch between the various coordinates: the vector components in

the (z, xL, xR) coordinates are related to those in the (ξ, T,Φ) coordinates by

VL =
1

2
(VT + VΦ) ,

VR =
1

2
(VT − VΦ) ,

Vz =
1

2
cosh2 ξ coth ξ Vξ . (C.4)

In components, equation (C.1) reads

−mVξ =
i

sinh ξ cosh ξ
(kTVΦ − kΦVT ) , (C.5)

−mVT = − tanh ξ(∂ξVΦ + ikΦVξ) , (C.6)

−mVΦ = − coth ξ(∂ξVT + ikTVξ) . (C.7)
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We will again look for solutions of the form

Vµ(z, T,Φ) = e−i(kLxL+kRxR)Rµ(z) . (C.8)

Equation (C.5) can be thought of as a constraint on Rξ, and the remaining equations imply

z(1− z)
d2RL
dz2

+ (1− z)
dRL
dz

+

[
k2
T

4z
−
k2

Φ

4
− (m+ 1)2 − 1

4(1− z)

]
RL = 0 , (C.9)

z(1− z)
d2RR
dz2

+ (1− z)
dRR
dz

+

[
k2
T

4z
−
k2

Φ

4
− (m− 1)2 − 1

4(1− z)

]
RR = 0 . (C.10)

These have solutions given by

RL(z) = (1−z)
m+2

2

[
ein
L z
− i

2
kTF

(
ain
L , b

in
L , c

in; z
)

+ eout
L z

i
2
kTF

(
aout
L , bout

1 , cout; z
)]
, (C.11)

RR(z) = (1−z)
m
2

[
ein
Rz
− i

2
kTF

(
ain
R , b

in
R , c

in; z
)

+ eout
R z

i
2
kTF

(
aout
R , bout

R , cout; z
)]
, (C.12)

where

βL =
m+ 2

2
, βR =

m

2
, (C.13)

ain
i = −ikR + βi , bini = −ikL + βi , cin = 1− ikT , (C.14)

aout
i = ikL + βi , bout

i = ikR + βi , cout = 1 + ikT . (C.15)

These solutions are not independent; the first-order equations imply constraints be-

tween the polarization vector components eL and eR. The relations are different for ingoing

and outgoing solutions and are given by

[2ikR +m] ein
L = [2ikL −m] ein

R , (C.16)

[2ikR −m] eout
L = [2ikL +m] eout

R . (C.17)

Again, utilizing the z ' 1 expansion of the hypergeometrics in (B.24) we find the

boundary behavior of the ingoing solutions to be

Rin
L = ein

L

[
(1− z)

1
2

(m+2) Γ(cin)Γ(−m− 1)

Γ(cin − ain
L )Γ(cin − binL )

F (ain
L , b

in
L ;m+ 2; 1− z)

+ (1− z)−
m
2

Γ(cin)Γ(m+ 1)

Γ(ain
L )Γ(binL )

F (cin − ain
L , c

in − binL ;−m; 1− z)

]
, (C.18)

Rin
R = ein

R

[
(1− z)

m
2

Γ(cin)Γ(−m+ 1)

Γ(cin − ain
R)Γ(cin − binR)

F (ain
R , b

in
R ;m; 1− z)

+ (1− z)−
1
2

(m−2) Γ(cin)Γ(m)

Γ(ain
R)Γ(binR)

F (cin − ain
R , c

in − binR ;−m+ 2; 1− z)

]
. (C.19)

Computing the induced metric perturbations in (C.3), we find that Dirichlet boundary

conditions require

ain
L = −ikR +

m+ 2

2
= −p ,

binL = −ikL +
m+ 2

2
= −p+ 1 , (C.20)
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m > 0 m < 0

2p+ ∆ + |n+ 1|+ ikΦ(n, k) = 0

2p+ ∆ + |n− 1| − ikΦ(n, k) = 0

2p+ ∆ + |n− 1|+ ikΦ(n, k) = 0

2p+ ∆ + |n+ 1| − ikΦ(n, k) = 0

Table 7. Conditions on the quantum numbers of spin-1 states with Brown-Henneaux boundary

conditions. For m > 0 this is a subset of the states which are consistent with the chiral boundary

conditions.

where p is a non-negative integer and the shift by one in the second line arises for the mode

where we demand ein
L = 0 in (C.16).

In order to hold δg−− fixed, chiral boundary conditions require one of the constraints

ain
R = −ikR +

m

2
= −p ,

binR = −ikL +
m

2
= −p , (C.21)

for all integers p ≥ 0. Note that these conditions contain the Brown-Henneaux ghost

contributions in (C.20) as a subset. In fact, the only new state in (C.21) is the p = 0

state in the ain
R tower (there is also a corresponding new outgoing state in the bout

R tower).

There is again an additional state that comes about by requiring the polarization constant

eR vanishes altogether, which completely kills the component VR. For ingoing states, this

demands

− 2ikR −m = 0 (ingoing) , (C.22)

while for outgoing we have

2ikR −m = 0 (outgoing) . (C.23)

Finally, there are two more states not included in the above analysis. In particular, when

kR = 0 , (C.24)

the induced metric variation δgRR vanishes; see equations (C.32) through (C.37). This oc-

curs for both m1 > 0 and m1 < 0 and both of these states should be included in the analysis.

The final results for the set of ghost states consistent with chiral boundary conditions

on the metric are given in table 3 and table 6.

C.2 The Euclidean solutions

All that remains now is to understand the Euclidean solutions into which the spin-1 states

Wick-rotate. The Euclidean rotation on the momentum is again given by

kT = ikE = in , (C.25)

where ingoing solutions require that n > 0 for regularity, outgoing solutions require that

n < 0, and the zero modes can again be obtained from either ingoing or outgoing conditions

with n = 0. For the Brown-Henneaux states in table 3, the process is almost identical to

the spin-2 discussion and we compile the conditions in table 7.
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We now analyze the new states given in table 6 that are consistent with the chiral

boundary conditions. First, consider the states in the first row of table 6. After the

Euclidean rotation, we can write the set of states as

kE + ikΦ + ∆− 1 = 0, kE ≥ 0 , (C.26)

−kE − ikΦ + ∆− 1 = 0, kE < 0 . (C.27)

We need to check that all of these states are regular at the origin. In particular, we require

that Vξ is smooth as ξ → 0; from (C.5) we have

Vξ = − i

sinh ξ cosh ξ
[(ikE − kΦ)VL − (ikE + kΦ)VR] . (C.28)

For |kE | > 0 regularity at the origin is guaranteed, because VL ∼ VR ∼ ξ|kE | for small ξ.

For kE = 0 we must check more carefully. Near the origin, we can expand

VL,R = eL,R +O(ξ) . (C.29)

Plugging the relations satisfied by the modes in (C.26) into the polarization constant rela-

tions, and evaluating at kE = 0, we find eL = −eR for both ingoing and outgoing modes.

Hence, near the origin and taking kE = 0, we have Vξ ∼ O(1).

The contributions from the second and third rows of table 6 are more subtle. The

Wick rotation of the modes in the second row gives:

kE + ikΦ − (∆− 1) = 0 kE ≥ 0 , (C.30)

−kE − ikΦ − (∆− 1) = 0 kE ≤ 0 . (C.31)

Only a subset of these modes correspond to admissible ghost states. To see this we need

to evaluate the induced gauge transformation of the metric from each ghost state. In

particular, the pure-gauge metric perturbations can be written in terms of a solution to

the spin-1 equations with m = ±2. The induced gauge transformations are given by

δgLL = −2ikLVL , (C.32)

δgLR = −ikLVR − ikRVL − sinh ξ cosh ξ Vξ , (C.33)

δgRR = −2ikRVR , (C.34)

δgLξ = ∂ξVL − ikLVξ − 2 coth 2ξ VL − 2 csch 2ξ VR , (C.35)

δgRξ = ∂ξVR − ikRVξ − 2 coth 2ξ VR − 2 csch 2ξ VL , (C.36)

δgξξ = −2∂ξVξ . (C.37)

The states in the second row of table 6 have eR = 0, which means that the condition

eR = −eL cannot be satisfied (except for the trivial solution eR = eL = 0) and so the

kE = 0 states are obviously not regular. Second, the |kE | = 1 contribution needs to be

analyzed carefully. The wave-functions for these states are particularly simple; for generic
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kE , we have

VL = (cosh ξ)∆−1(tanh ξ)|kE |ekExE−ikΦΦ , (C.38)

VR = 0 , (C.39)

Vξ =
1

(∆− 1) sinh ξ cosh ξ
[(kE + ikΦ)VL − (kE − ikΦ)VR]

= (cosh ξ)∆−3(tanh ξ)|kE |−1ekExE−ikΦΦ . (C.40)

Since VR = 0 for these states it is fairly straightforward to write out the induced metric

variations. From (C.32) through (C.37) we have

δgLL = (kE − ikΦ)VL , (C.41)

δgLR = 1
2(kE + ikΦ)VL − 1

∆−1(kE + ikΦ)VL , (C.42)

δgRR = 0 , (C.43)

δgLξ = ∂ξVL + 1
2(kE − ikΦ)Vξ − 2 coth 2ξ VL , (C.44)

δgRξ = 1
2(kE + ikΦ)Vξ − 2 csch 2ξ VL , (C.45)

δgξξ = 2∂ξVξ . (C.46)

Evaluating these on (C.38) and using (C.30), we find that all of the induced metric vari-

ations vanish when we set ∆ = 3 and kE = 1. Therefore, the solutions satisfying (C.30)

and (C.31) at kE = ±1 and ∆ = 3 correspond (locally) to Killing vectors of the BTZ back-

ground. These are modes with zero eigenvalue of the ghost Laplacian in (C.2) and should

be excluded from the pole contribution to the determinant. The same phenomena also

occurs for the kR = 0 states with |kE | = 1 and m1 = −2, in which case VL = 0 because the

polarization vectors eL in (C.16) vanish. One can check that these also give trivial metric

variations. The appearance of Killing vectors in the ghost determinant of massless gauge

fields in the bulk is generic when performing alternative quantization [11]. As explained

in [11], since these are zero modes, they must be treated separately and generate N−n0/2

contributions to the partition functions as opposed to poles.
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