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Abstract: For some theories where the degrees of freedom are tensors of rank 3 or higher,

there exist solvable large N limits dominated by the melonic diagrams. Simple examples

are provided by models containing one rank 3 tensor in the tri-fundamental representation

of the O(N)3 symmetry group. When the quartic interaction is assumed to have a special

tetrahedral index structure, the coupling constant g must be scaled as N−3/2 in the melonic

large N limit. In this paper we consider the combinatorics of a large N theory of one fully

symmetric and traceless rank-3 tensor with the tetrahedral quartic interaction; this model

has a single O(N) symmetry group. We explicitly calculate all the vacuum diagrams up to

order g8, as well as some diagrams of higher order, and find that in the large N limit where

g2N3 is held fixed only the melonic diagrams survive. While some non-melonic diagrams

are enhanced in the O(N) symmetric theory compared to the O(N)3 one, we have not

found any diagrams where this enhancement is strong enough to make them comparable

with the melonic ones. Motivated by these results, we conjecture that the model of a real

rank-3 symmetric traceless tensor possesses a smooth large N limit where g2N3 is held fixed

and all the contributing diagrams are melonic. A feature of the symmetric traceless tensor

models is that some vacuum diagrams containing odd numbers of vertices are suppressed

only by N−1/2 relative to the melonic graphs.
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1 Introduction and summary

Large N tensor models were introduced in the early 1990s [1–3] in an attempt to extend

the correspondence of large N matrix models and two-dimensional quantum gravity to

dimensions higher than two. These early papers contained many new insights, including

the importance of the particular quartic interaction vertex for rank-3 tensors, where every

pair of fields have only one index in common:

V4 =
3g

2
φabcφadeφfbeφfdc . (1.1)

Integral over the tensor with a quadratic term and this quartic interaction is not well-

defined non-perturbatively because V4 is not bounded from below. However, it may be

formally expanded in powers of g; then it generates dynamical gluing of tetrahedra and

was viewed as a step towards understanding 3-dimensional quantum gravity.

The models considered originally involved tensors with indices transforming under a

single symmetry group, SU(N) or O(N), but the large N limit appeared to be difficult

to analyse in such models. Years later it was understood that, if the theory has multiple

symmetry groups, and the 3-tensors are in tri-fundamental representations, then there is

an exactly solvable large N limit where g2N3 is held fixed [4–11]. Dominant in this limit

are the so-called melonic Feynman diagrams (see figure 1), which are obtained by iterating

the insertion of a two-loop sunset graph into each propagator (this class of diagrams was

also studied in the early papers [12, 13]). The melonic diagrams constitute a small subset

of the total number of diagrams (it is considerably smaller than the planar diagrams that

dominate in the ’t Hooft large N limit [14], which is used in the matrix models [15]), and

this accounts for the exact solvability of the theories. Recently there has been a renewed

interest in the theories with tensor degrees of freedom due to their connection [16, 17] with

the SYK-like models of fermions with disordered couplings [18–25].
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Figure 1. All the melonic vacuum diagrams up to order g6.

A class of theories where such a melonic large N limit has been proven to exist have

O(N)3 symmetry with a real 3-tensor in the tri-fundamental representation [11, 17]. In

other words, the 3 indices of a tensor are distinguishable, and each one is acted on by a

different O(N) group:

ϕabc →Maa′
1 M bb′

2 M cc′
3 ϕa

′b′c′ , (1.2)

M1 ∈ O(N)1, M2 ∈ O(N)2, M3 ∈ O(N)3 . (1.3)

For such theories one can draw the stranded graphs using the triple-line notation (we may

draw each propagator as containing strands of three different colors), and it is possible

to prove the melon dominance. In particular, all odd orders of perturbation theory are

suppressed in the large N limit [11, 17]. A useful step in the proof is to imagine erasing all

the loops of a given color, i.e. corresponding to one of the O(N) groups, and then counting

the remaining loops in the double-line graphs using their topology.

Such a method is not available, however, for a theory where there is only one O(N)

symmetry group, and the real tensor is in its 3-index irreducible representation (for exam-

ple, the fully symmetric traceless one or the antisymmetric one).1 In [17] we carried out

some perturbative checks of the melonic large N limit in such tensor models with interac-

tion (1.1).2 In this paper we report on a complete study of the combinatorial factors of the

vacuum diagrams in the theory of a real symmetric traceless tensor up to order g8, as well as

some partial results at higher orders. For generating and drawing all diagrams we used the

Mathematica program developed in [28]. We compare with corresponding explicit results

for the theory with O(N)3 symmetry where the real tensor has distinguishable indices. We

find that the melonic diagrams are dominant in both models. While individual non-melonic

diagrams are sometimes enhanced in the O(N) model compared to the O(N)3 model, these

enhancements fall short of making them comparable with the melonic diagrams.

For the vacuum diagrams with even numbers of vertices, the melonic diagrams scale

as g2nN3n+3, and we have checked up to n = 4 that all other diagrams are suppressed at

least by a factor of 1/N (we have also checked that this holds for some selected diagrams of

order higher than g8). These corrections are present in both the O(N)3 and O(N) models,

and there are more contributing diagrams in the latter case. The vacuum diagrams with

odd numbers of vertices behave differently in the two models. The maximum scaling of a

graph with 2n+ 1 vertices in the O(N)3 model is g2n+1N3n+3, which implies a suppression

1Another interesting model is that of D Hermitian matrices with U(N) × O(D) symmetry. Although

the standard technique of erasing all the loops of a given color is not applicable to this model, it was argued

to be dominated by the melonic diagrams in the limit where N and D become large [26].
2The counting of O(N) singlet operators in free theories of this type was carried out in [27].
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Figure 2. Leading melonic propagator corrections in the O(N)3 and O(N) theories.

by N−3/2 compared to the melonic graphs. In the O(N) model the maximum scaling is

g2n+1N3n+4, which implies a suppression by only N−1/2 compared to the melonic graphs.

Thus, the effective coupling parameter in the O(N) model is of order N−1/2, while in the

O(N)3 model it is of order 1/N . This should have interesting implications for the structure

of the large N limit.

Based on our explicit calculations of combinatorial factors, we conjecture that the

model of a 3-index symmetric traceless tensor possesses a smooth large N limit where g2N3

is held fixed and all the contributing diagrams are melonic. As discussed in section 5, this

limit is closely related to the one in the O(N)3 model.

2 Large N scaling in O(N) and O(N)3 tensor models

In this section we calculate some combinatorial factors for different diagrams in O(N)3 and

O(N) symmetric theories. For the O(N)3 theory we normalize the interaction vertex as

g̃

4
ϕa1b1c1ϕa1b2c2ϕa2b1c2ϕa2b2c1 , (2.1)

and take the propagator as

〈ϕabcϕa′b′c′〉0 = δaa
′
δbb
′
δcc
′
. (2.2)

The stranded graph for the leading two-loop correction to the propagator is shown in

figure 2. Since there are three index loops (one of each color), this graph is of order g̃2N3,

and this is the quantity that should be held fixed in the large N limit.3 More precisely,

the two-point function including this graph is

〈ϕabcϕa′b′c′〉 = δaa
′
δbb
′
δcc
′
(1 + g̃2N3 + . . . ) . (2.3)

In the O(N) model, where the tensor is fully symmetric and traceless, the propagator is

〈φabcφa′b′c′〉0 =
1

6

(
δaa
′
δbb
′
δcc
′
+ δab

′
δbc
′
δca
′
+ δac

′
δba
′
δcb
′
+ δab

′
δba
′
δcc
′
+ δac

′
δbb
′
δca
′

+ δaa
′
δbc
′
δcb
′ − 2

N + 2

(
δabδca

′
δb
′c′ + δabδcb

′
δa
′c′ + δabδcc

′
δa
′b′ + δacδba

′
δb
′c′

+ δacδbb
′
δa
′c′ + δacδbc

′
δa
′b′ + δbcδaa

′
δb
′c′ + δbcδab

′
δa
′c′ + δbcδac

′
δa
′b′
))

.

(2.4)

3The correction to two-point function coming from contracting two fields from the same vertex, i.e. the

snail diagram, is of order gN . Since this is suppressed in the large N limit where g ∼ N−3/2, we will ignore

the snail diagrams throughout the paper. Had we not imposed the tracelessness condition on the tensor,

there would be diagrams containing multiple snail insertions which would violate the melonic limit (we are

grateful to F. Ferrari and R. Gurau for pointing this out).
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The structure of the melonic two-loop propagator correction in the O(N) model is similar

to that in the O(N)3 model (see the stranded diagrams in figure 2).4 We again find three

additional index loops which contribute the factor ∼ N3. Thus, for the O(N) model a

plausible large N limit is with g2N3 held fixed. More precisely, we find that the leading

melonic propagator correction in the O(N) theory is

〈φabcφa′b′c′〉 = 〈φabcφa′b′c′〉0(1 + g2N3 + . . . ) . (2.5)

Note that we have normalized the coupling constant in the O(N) theory as in (1.1), which

differs by a factor 6 from the normalization in the O(N)3 theory. The advantage of this

normalization is that the coefficient in (2.5) is the same as in (2.3).

To compute the combinatorial factor of each graph in the O(N)3 theory we represent

the tetrahedral vertex as

ϕabcϕadeϕfbeϕfdc = δaa
′
δbb
′
δcc
′
δdd
′
δff

′
δee
′
ϕabcϕa

′deϕfb
′e′ϕf

′d′c′ . (2.6)

Then for a given graph, contracting fields using the propagator (2.2) and the 4! symmetric

configurations of the vertex (2.6) one obtains a sum of products of the Kronecker delta

symbols. Contracting the delta symbols one finds a polynomial in N . For the O(N)

theory the procedure is similar. We may continue to use the vertex (2.6) because the O(N)

propagator (2.4) implements symmetrization of the tensor indices. For example, an explicit

evaluation of the melonic vacuum diagram with 2 vertices gives

g̃2

8
(N6 + 3N4 + 2N3) (2.7)

in the O(N)3 model and

1

48
g2

(N − 2)(N − 1)N(N + 4)
(
N5 + 17N4 + 98N3 + 112N2 − 576N − 768

)
(N + 2)3

(2.8)

in the O(N) model.

The fact that each propagator in the O(N)3 model is made of three strands of different

colors make it obvious that two different strands of a propagator cannot belong to the same

loop. In the O(N) model two different strands of a propagator may not belong to the same

loop due to the condition that the tensor is traceless. Cutting a propagator of a vacuum

graph therefore decreases the number of index loops by 3 and gives a graph contributing to

the two-point function. This shows that each graph contributing to the two-point functions

scales as the corresponding vacuum graph times N−3.

We would like to prove that the melonic graphs dominate in the large N limit of O(N)

theory where g2N3 is held fixed. While we don’t know how to do this in general, we have

shown that this is the case for all the vacuum diagrams up to order g8, and some selected

graphs of higher orders. We exhibit their pictures and the leading scaling with N in the

4In figure 2 no two distinct index loops wrap the same cycle of the unstranded φ4 diagram. This is a

general property of the theory with the tetrahedron vertex (1.1).
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figures.5 For each diagram the upper integer, shown in black, gives the leading power of

N we find in the O(N) model; the lower integer, shown in blue, gives the leading power

we find in the O(N)3 model. If a label B appears below, this means that the diagram

is bi-partite, i.e. it appears in the theory where there are two types of vertices, and each

propagator connects different vertices.

In our list of vacuum diagrams we omit the so-called cut vertex diagrams, i.e. the ones

that become disconnected if a vertex and the 4 propagators leading to it are erased. They

may also be viewed as (dressed) snail diagrams, i.e. the ones coming from the “figure eight”

graph with the bare propagators replaced by the fully dressed ones. All such diagrams may

be constructed out of a pair of vacuum diagrams by cutting a propagator in each, and then

gluing them together using the tetrahedron vertex. Let us show that this always produces a

graph which is suppressed compared to the melonic ones. Suppose the two original graphs

are of order gm1Nn1 and gm2Nn2 , respectively. When we cut a propagator in each of the

two graphs, we lose a total of 6 index loops (for the symmetric tensor this is true only if the

tracelessness is imposed). After gluing the two cut graphs into one with the tetrahedron

vertex we can recover 4 index loops, but not more. For example, in the O(N)3 theory we

can make two additional green loops, but only one red and one blue loop (or an analogous

stranded graph with colors permuted). In the theory of a symmetric traceless tensor we can

also recover at most 4 index loops. So, the highest possible scaling of the combined graph

is Nn1+n2−2gm1+m2+1. Even if the two original graphs are melonic, i.e. ni = 3 + 3mi/2,

the combined cut vertex graph scales as N3(gN3/2)m1+m2(gN). It is suppressed by N−1/2

in the melonic limit.6

The first difference in large N scaling between the O(N) and O(N)3 models appears

in the diagram of order g3, whose stranded versions are exhibited in figure 3. The diagram

in the O(N)3 theory has 6 loops and scales as g3N6; in the melonic limit this is ∼ N−3/2.
The diagram in the O(N) theory has 7 loops and scales as g3N7; in the melonic limit this is

∼ N−1/2. These expectations are confirmed by the exact evaluation of the cubic diagram:

1

2
g̃3
(
N6 + 3N5 + 3N4 + 2N3

)
(2.9)

in the O(N)3 model, and

1

24
g3

(N − 2)(N − 1)N(N + 4)

(N + 2)5

(
N8 + 29N7 + 286N6 + 796N5 − 3120N4

− 15232N3 + 12640N2 + 78208N + 58368
)

(2.10)

in the O(N) model. Thus, even though this diagram is enhanced by N in the O(N) theory,

it is still suppressed in the melonic large N limit.

5For each diagram not containing snail insertions, the dominant term at large N is not affected by the

9 terms ∼ 1/(N + 2) which make the propagator (2.4) traceless. Keeping only the six leading terms in the

propagator makes the computer calculation much less time and memory intensive.
6If the two cut graphs are glued with the pillow vertex gpϕ

a1b1c1ϕa1b1c2ϕa2b2c2ϕa2b2c1 , then we re-

cover 5 index loops. Gluing two melonic graphs in this way gives the cut vertex graph scaling as

N3(gN3/2)m1+m2(gpN
2). If gp ∼ N−2, then this graph contributes at leading order in the large N

limit [9, 11].
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O(N)3 O(N)

Figure 3. Order g3 stranded diagrams for O(N)3 and O(N) theories. The diagram in the O(N)3

theory has 6 loops and scales as g3N6; the diagram in the O(N) theory has 7 loops and scales

as g3N7.

#1
9
9
B

#2
8
8
B

#3
8
7

Figure 4. All vacuum diagrams of order g4. The upper integer, shown in black, gives the leading

power of N in the model of a symmetric traceless rank-3 tensor of O(N); the lower integer, shown

in blue, gives the leading power in the model of a tri-fundamental of O(N)3. The letter B labels

the bi-partite diagrams.

#1

10

9

#2

10

9

#3

9

9

#4

9

8

#5

9

8

Figure 5. All vacuum diagrams of order g5.

At order g5 there are 5 distinct diagrams, which are shown in figure 5. Only the first

two are suppressed just by N−1/2: diagram #1 is a melon insertion into the unique graph of

order g3, while diagram #2 (the pentagram inscribed in a circle) is a new strcuture which

appears at order g5. Interestingly, at order g7 there is no such new structure appearing,

so that the only diagrams suppressed by N−1/2 involve melonic insertions into the lower

order diagrams.

Let us note that some g8 graphs in the O(N) theory are enhanced by N2 compared

to the O(N)3 case. In some cases, this may be traced by to the fact that a diagram with

an odd number of vertices, such as the g3 diagram depicted in figure 3, may be enhanced

by N . Cutting a propagator in such a graph and then gluing two of them gives diagram

#8 of order g6 in figure 6; it is indeed enhanced by N2 compared to what is seen in the

O(N)3 theory. However, this diagram is still suppressed by N relative to the melonic ones.

Indeed, in the large N limit where g ∼ N−3/2 the g3 diagram is suppressed by N−1/2 in

the O(N) model and by N−3/2 in the O(N)3 model. This translates into suppression of

diagram #8 in figure 6 by N−1 and N−3, respectively.
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#14
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9

#16
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9
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9

Figure 6. All vacuum diagrams of order g6.

2.1 Antisymmetric tensor model

Another commonly used rank-3 representation of O(N) is the fully anti-symmetric one.

To modify our explicit calculations to the antisymmetric tensor model, we only have to

change the index structure of the propagator to

〈φabcφa′b′c′〉0 =
1

6

(
δaa
′
δbb
′
δcc
′
+ δab

′
δbc
′
δca
′
+ δac

′
δba
′
δcb
′

− δab′δba′δcc′ − δac′δbb′δca′ − δaa′δbc′δcb′
)
, (2.11)

while the vertex may still be taken to be of the tetrahedral form (2.6). We have carried

out extensive perturbative calculations for this model too, and we find that each individual

graph scales with N no faster than in the symmetric traceless model.7 This provides

evidence that the antisymmetric tensor model also has a melonic large N limit.

3 Bounds on the scaling

In the models of rank-3 tensor each propagator contains 3 strands. The strands are con-

nected into closed loops, and the power of N for each graph is the total number of loops

n. If nL is the number of loops of length L, then

n =
∑
L=2

nL , (3.1)

where we have excluded loops of length 1 which can only originate from snail diagrams.

Since there are 12 stranded segments emanating from each quartic vertex, and each segment

connects two vertices, the sum rule on the total number of stranded segments in a graph

with m vertices is: ∑
L=2

LnL = 6m . (3.2)

The structure of the “tetrahedral” quartic vertex (1.1), where every pair of tensors has only

one index in common, implies that no closed loop in the Feynman graph can be covered by

7For example, while all graphs of order g2, g4 and g6 have the same leading powers of N as in the

symmetric traceless model, graph #3 of order g5 grows ∼ N8 in the antisymmetric model compared to

∼ N9 in the symmetric traceless model.

– 7 –



J
H
E
P
1
0
(
2
0
1
7
)
0
3
7

#1

13

12

#2

13

12

#3

13

12

#4

13

12

#5

13

12

#6

12

12

#7

12

12

#8

12

12

#9

12

12

#10

12

11

#11

12

11

#12

12

11

#13

12

11

#14

12

11

#15

12

11

#16

12

11

#17

12

11

#18

12

11

#19

12

11

#20

12

11

#21

12

10

#22

12

10

#23

12

10

#24

12

10

#25

11

11

#26

11

11

#27

11

11

#28

11

11

#29

11

11

#30

11

11

#31

11

10

#32

11

10

#33

11

10

#34

11

10

#35

11

10

#36

11

10

#37

11

10

#38

11

10

#39

11

10

#40

11

10

#41

11

10

#42

11

9

Figure 7. All vacuum diagrams of order g7.

two different stranded loops (this would not be the case if the vertex had a pillow structure

rather than tetrahedron). This puts an important constraint on the structure of possible

stranded graphs.

For each melonic graph n = 3 + 3m/2. If the theory has a good melonic large N limit,

then all other graphs scale with n < 3 + 3m/2. For the theory with O(N)3 symmetry

each strand has a distinct color, and it is possible to perform the counting by erasing

one of the colors and relying on the topology of the double-line graphs. However, such

a method is not available for the O(N) theory where the strands are not distinguishable.

This implies that there may be more possibilities for connecting the strands in the O(N)

case, so nO(N) ≥ nO(N)3 . The explicit evaluation demonstrates that, for some graphs

nO(N)−nO(N)3 is positive. The maximum value of this quantity tends to increase with the

order of perturbation theory: for graphs of order g8 it is 2, while for graph #2 of order g12

it is 4 (see figure 11).

The sum rule (3.2) means that the maximization of n favors graphs with short index

loops. As figure 2 shows, each melon insertion into a propagator adds three index loops

of length 2, which is hard to beat.8 On the other hand, if a Feynman graph contains few

faces with perimeter less than 4, then (3.2) leads to a stringent upper bounds on its scaling.

For example, if a graph has no faces with perimeter less than 4, then (3.2) implies that

n ≤ 3m/2, which means that the graph is suppressed at least by N−3 corresponding to the

melonic graphs. This inequality is saturated only if nL = 0 for L > 4, i.e. when all index

8Our explict results are consistent with the fact that a melon insertion in a graph always increases n by 3.
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Figure 8. (Part 1 of 2) All vacuum diagrams of order g8.
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Figure 8. (Part 2 of 2) All vacuum diagrams of order g8.

loops have length 4. We notice that the octagram diagram ({8/3} in the Schläfli notation

for polygons), which is number #147 in figure 8, has no faces with perimeter shorter than

4. Our explicit calculation shows that the bound n ≤ 12 is saturated for this graph; this

means that each stranded loop has lengh 4.

More generally, if a Feynman graph has n2 distinct faces of perimeter 2 and n3 distinct

faces of perimeter 3, we find the bound∑
L=4

nL ≤
6m− 2n2 − 3n3

4
, (3.3)

which implies

n ≤ n2
2

+
n3
4

+
3m

2
, (3.4)

and the equality may hold only if the r.h.s. is an integer. A graph may survive in the

melonic large N limit only if n2
2 + n3

4 is ≥ 3. This is not the case for many non-melonic

graphs.

The bound (3.4) is often quite informative. For example, for the pentagram graph,

which is diagram #2 in figure 5, we find n2 = 0, n3 = 10, so that n ≤ 10. The explicit

calculation shows that this bound is saturated. As a result, the pentagram graph is sup-

pressed only by N−1/2 in the melonic limit. Moving on to the graphs of order g8, for graph
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Figure 9. Polygon diagrams {9/3} and {9/4} inscribed in a circle. The numbers refer to the power

of N in the O(N) model.

#176 we find by inspection that n2 = 0, n3 = 4 so that the bound (3.4) is n ≤ 13. The

direct calculation gives n = 12, one unit below the bound. For graph #32 we find by

inspection that n2 = 0, n3 = 8 so that the bound (3.4) is n ≤ 14, and the direct calculation

gives n = 14. For graph #122 in figure 8 we find by inspection that n2 = 0, n3 = 8 so that

the bound (3.4) is n ≤ 14, and the direct calculation gives n = 13; and so on.

The bound (3.4) is particularly easy to apply to the bipartite graphs, which have

n3 = 0. For example, for graph #6 of order g8, which is bipartite, n2 = 4 and the bound

is n ≤ 14. The direct calculation gives n = 14, so that the bound is saturated. Similarly,

for graph #117 of order g8, n2 = 2 and the bound is n ≤ 13; the direct calculation shows

that the bound is saturated.

While the bound (3.4) is useful in many cases, it does not provide a proof of the melonic

scaling. For example, for graph #125 in figure 8, n2 = 8, n3 = 0, so that the bound (3.4)

is n ≤ 16. The actual result n = 12 is far from saturating this bound. This is a typical

situation for the bubble graphs, of which #125 is an example. For example, for a bubble

graph with m vertices, n2 = m, so that the bound reads n ≤ 4m. However, the actual

scaling is found to be n = m+ 4, which is far less than the bound at large m.

4 Beyond the eighth order

A complete study at any order beyond g8 requires calculating the combinatorics of a pro-

hibitive number of graphs, and we have not carried out this task completely. We have,

however, used a combination of direct calculations and the bounds (3.4) to make some

checks of higher order diagrams.

At order g9 one of the most symmetric star shapes is {9/3} (in the Schläfli notation)

inscribed in a circle. This diagram, shown on the left in figure 9, consists of three mutually

rotated equilateral triangles, and one may wonder if its contriubtion is relatively enhanced

similarly to that of the pentagram. However, since n2 = 0 and n3 = 3, we find the bound

n ≤ 14. So, without any direct calculation we see that the diagram is suppressed at least

by N−5/2 compared to the melonic ones.

For the {9/4} inscribed in a circle we have n2 = 0 and n3 = 9, so that the bound (3.4)

gives n ≤ 15. This means that the diagram is suppressed at least by N−3/2 compared to

the melonic ones.

We have also studied the class of polygons {m/2} (in the Schläfli notation) inscribed

in a circle. For m = 5 this is the pentagram, for m = 7 it is graph #42 in figure 7, and

for m = 9, 11, 13, 15 the graphs are shown in figure 10. With the exception of m = 7 we
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Figure 10. A family of polygon diagrams {m/2} inscribed in a circle for m = 9, 11, 13, 15. The

numbers refer to the power of N in the O(N) model.
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Figure 11. Some non-melonic g12 diagrams. They are all suppressed compared to the melonic

ones which scale as N21.

find the result n = m + 5, which shows a linear growth of the scaling with the number of

vertices, similarly to the bubble graphs (for m = 7 we instead find a smaller value n = 11).

We have also checked a few graphs at order g12; see figure 11. None of these non-

melonic graphs scale as fast as the melonic graphs, which are ∼ g12N21. Some graphs, like

#8,#9,#10, did not need to be calculated explicitly because the upper bound (3.4) shows

they are not competitive with the melonic ones. For graph #2 we observe an enhancement

by N4 compared to the O(N)3 theory, but the graph is still suppressed by N−2 compared

to the melonic ones.

5 Melonic graphs

Let us define normalized interaction terms in the O(N)3 and O(N) cases

VO(N)3 =
1

4
g̃ϕabcϕadeϕfbeϕfdc, VO(N) =

3

2
gφabcφadeφfbeφfdc , (5.1)

where the rank 3 tensor field ϕabc has distinguishable indices, while φabc is a symmetric

traceless tensor. For the O(N)3 theory the sum over connected melonic vacuum graphs in

the large N limits is

FO(N)3 = N3

( ∞∑
n=1

a2nλ̃
2n

)
, (5.2)

where λ̃2 = g̃2N3. The specific coefficients a2n depend on the dimensionality and the field

content of the theory. For example, for a scalar theory in d = 0,

a2 =
1

8
, a4 =

1

4
, a6 =

11

12
, a8 =

35

8
, . . . , a2n =

1

8n(4n+ 1)

(
4n+ 1

n

)
. (5.3)
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These coefficients can be obtained by solving Schwinger-Dyson equation for the two-point

function in the d = 0 dimension [8]

Gmelons(λ) = 1 + λ2Gmelons(λ)4 . (5.4)

Then free energy F is obtained from Gmelons through the relation Gmelons = 1+4λ∂λF/N
3.

Now, if we assume that in the large N limit melonic graphs dominate also in the O(N)

model, then we expect to find the same expression in terms of the coupling λ2 = g2N3, up

to an overall factor:

FO(N) =
N3

6

( ∞∑
n=1

a2nλ
2n

)
. (5.5)

The reason for the factor 1/6 is that the number of degrees of freedom in the symmetric

traceless rank 3 tensor is N(N +4)(N −1)/6 = N3/6+O(N2). We explicitly checked (5.5)

up to order λ8. So, the melonic limits in the O(N) and O(N)3 models are simply related.
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