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1 Introduction

Compactifications of heterotic string theory have proven to provide ample realizations of

models whose spectra and particle content closely resemble the Minimal Supersymmetric

Standard Model (MSSM) or one of its extensions. In this paper, we focus on heterotic

compactifications on smooth Calabi-Yau (CY) three-folds. An early example of a quasi-

realistic model on a CY three-fold, based on a bundle with SU(4) structure group in the

observable sector [1] of heterotic M -theory [2], can be found in ref. [3]. A large class of

models can be constructed if the vector bundle is chosen to be a sum of line bundles [4–7],

since this considerably simplifies the otherwise hard task of checking supersymmetry of the

bundle. All these models rely on dividing by a freely-acting discrete symmetry and CY

three-folds with such symmetries indeed seem to be a necessary pre-requisite for realistic

heterotic model building [8]. A large class of suitable examples, which we will focus on

in the present paper, is provided by complete intersection CY manifolds (CICYs) in an

ambient space which is a product of projective spaces. These CICYs have been classified

in ref. [9] and their freely-acting discrete symmetries have been identified in ref. [10].
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Apart from constructing models with an MSSM particle spectrum, moduli stabiliza-

tion is another crucial step towards constructing realistic models. While a subset of the

geometrical (that is, Kähler, complex structure and the dilaton) moduli in heterotic CY

models can be stabilised by flux [11, 12], this does not appear to be possible for all such

moduli and, hence, non-perturbative effects such as worldsheet instantons and gaugino

condensation are required. In fact, ref. [13] presents a scenario which leads to the sta-

bilisation of all geometrical moduli in certain heterotic CY models, based on both types

of non-perturbative effects as well as flux. Be that as it may, these methods have not yet

been applied to the stabilization of the non-geometric vector bundle moduli that arise in all

realistic heterotic models. Although there is no general proof that the presence of instan-

ton superpotentials is necessary for a successful stabilisation of moduli, they undoubtedly

provide an important ingredient. Instanton superpotentials arise from strings wrapping

genus zero curves in the CY manifold. However, even if such curves are present, a rather

astonishing result of Beasley and Witten [14] suggests that the instanton superpotential

vanishes under fairly general assumptions, due to a cancellation of the contributions from

curves within the same homology class. Understanding the scope and limitations of this

result is clearly important for moduli stabilization and the construction of realistic models.

The main purpose of the present paper is to study CICY manifolds from this point of view.

The proof of Beasley and Witten [14] assumes that the CY three-fold satisfies certain

geometric properties. Specifically, it assumes that the CY manifold is defined as a hyper-

surface or complete intersection in a projective or toric ambient space and that its Kähler

class is “favorable”. Favorable means that the Kähler class of the CICY descends from a

Kähler class of the ambient space. These conditions point to a number of ways in which

the vanishing of the superpotential may be avoided:

1. The ambient space is not toric.

2. The CY manifold is not a complete intersection.

3. The CY manifold is not favorable, that is, there are Kähler classes which do not

descend from the ambient space.

All three possibilities can be realized within the context of CICY manifolds. Specifically,

of the 7890 CICY configuration matrices in the standard list of ref. [9], 2626 are favourable

while the others are not. While all CICY manifolds are defined as complete intersections

in toric ambient spaces, the same is not necessarily true for their quotients by freely-acting

discrete symmetries. We emphasise that realistic heterotic model building is based on these

quotient manifolds which should, therefore, be the focus for discussing the physical implica-

tions of instanton effects. It turns out that the list of freely-acting discrete symmetries for

CICY manifolds in ref. [10] contains toric as well as non-toric symmetries. For the latter,

the quotient of the ambient space is not toric nor does the quotient CY manifold have an

obvious realization as a complete intersection. Consequently, CICY manifolds provide an

interesting laboratory for studying instanton superpotentials.

Calculating the instanton superpotential contribution associated to a particular second

homology class of the CY manifold requires knowledge of all the isolated, holomorphic
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genus zero curves in this class. The number of such curves can be determined from the

Gromov-Witten invariants. However, finding the curves explicitly can be difficult and is

one of the technical challenges in calculating instanton superpotentials. We will show how

to find these curves for certain homology classes of CICY manifolds. Specifically, for a

CICY defined in an ambient space A = Pn1 ×· · ·×Pnm we present a simple method, based

on intersection theory, to determine genus zero curves in homology classes associated to

P1 factors in the ambient space. By computing genus zero Gromov-Witten invariants we

show, for the 7890 CICY manifolds in the standard list of ref. [9] and all ambient space P1

factors, that this method provides all genus zero curves in those homology classes. This

provides us with a large set of examples to explore heterotic instanton superpotentials.

While the list in ref. [9] contains at least one realization for each topological type of

CICY manifold, a given topological type often has many other realizations as a complete

intersection in products of projective spaces. The full set of CICY configurations is, there-

fore, much larger than the standard list of ref. [9]. We conjecture that our method extends

to this full set of CICY configurations and provides the complete set of genus zero curves

in all homology classes associated to ambient space P1 factors.

Based on the above method to compute genus zero curves, we start exploring superpo-

tentials on CICY manifolds by studying two specific examples. The first example is based

on a non-favorable CICY manifold X̃ with a non-toric freely-acting Z4 symmetry and its

quotient X = X̃/Z4. It turns out that the upstairs space X̃ has four genus zero curves in

a specific homology class, associated to an ambient space P1 factor. Upon taking the Z4

quotient this descends to a single curve in the corresponding homology class of X. Hence,

on the downstairs manifold X there is no possibility of a cancellation between various genus

zero curves and the superpotential must be non-vanishing. This example satisfies all three

conditions above under which the Beasley-Witten result may be avoided.

In order to gain a better intuition as to which of these three conditions is crucial, we

study a second example. We consider a favorable CICY X̃ and its quotient X = X̃/Z2 by a

non-toric Z2 symmetry. On X̃ we construct a vector bundle Ṽ → X̃ as a double extension

of line bundles which descends to a bundle V → X. In a certain homology class of X̃,

we find four genus zero curves which descend to two curves in the quotient manifold X.

The upstairs superpotential contribution from this homology class is expected to vanish

according to Beasley-Witten, which we verify explicitly. However, we also find that the

downstairs superpotential contribution on X vanishes due to a cancellation between the

two curves. This result, which is confirmed by various similar examples, suggests that the

crucial property required to avoid the Beasley-Witten vanishing result is non-favorability.

The paper is organized as follows: in section 2 we introduce our notation, review the

structure of non-perturbative superpotentials obtained from worldsheet instantons and the

vanishing result of Beasley and Witten. In section 3 we explain the procedure to obtain

genus zero curves as complete intersections and describe how to count these curves using

intersection theory. In section 4 we present the two aforementioned examples. Conclusions

and an outlook for future research directions follow in section 5. In appendix A we prove

that the curves obtained from our method are indeed isolated.
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2 Heterotic instanton superpotentials

Let us first introduce our notation. A general CY three-fold is denoted by Y and a stable,

holomorphic bundle on Y by U . The symbol C is used for any isolated, holomorphic genus

zero curve, with [C] its homology class. When we consider CICY manifolds, we write the

projective ambient space as A = Pn1 × · · · × Pnm , the (upstairs) CICY manifold as X̃ ⊂ A
and stable, holomorphic bundles on X̃ as Ṽ . If X̃ has a freely-acting discrete symmetry Γ

the quotient (downstairs) CY manifold is denoted by X = X̃/Γ and stable, holomorphic

bundles on X as V .

2.1 The general structure

We consider E8 × E8 heterotic string theory or heterotic M-theory on a CY three-fold

Y . As was extensively studied in a variety of papers [15–20], the effective low-energy

field theory contains a non-perturbative superpotential for moduli fields which is generated

by worldsheet/open membrane instantons. The structure of the instantons as well as

the structure of the N = 1 multiplets is slightly different in weakly and strongly coupled

heterotic string theories but the superpotential has the same general form. For concreteness

we will discuss the weakly coupled case where the superpotential is generated by strings

wrapping holomorphic isolated genus zero curves C in Y . The superpotential is then

determined by the classical Euclidean worldsheet action evaluated on the instanton solution

and by the one-loop determinants of the fluctuations around this solution. The general form

of the superpotential induced by a string wrapping C is [18]

W (C) = exp

[
−A(C)

2πα′
+ i

∫
C
B

]
Pfaff(∂̄UC(−1))

[det′(∂̄OC
)]2[det(∂̄OC(−1))]2

. (2.1)

The expression in the exponent is the classical Euclidean action evaluated on C. In the

first term A(C) is the area of the curve given by

A(C) =

∫
C
ωY , (2.2)

where ωY is the Kähler form on Y . In the second term B is the heterotic string B-field

which in this expression can be taken to be a closed 2-form, dB = 0. Let ωI be a basis of

(1, 1) forms on Y , where I = 1, . . . , h1,1(Y ), so that we can expand

ωY =

h1,1∑
I=1

tIωI , B =

h1,1∑
I=1

φIωI . (2.3)

Defining the complexified Kähler moduli T I = φI+i tI

2πα′ , the exponential factor in eq. (2.1)

becomes

eiαI(C)T I
, αI(C) =

∫
C
ωI . (2.4)

The second factor in eq. (2.1) is the one-loop contribution which depends on the stable holo-

morphic vector bundle U on Y . The Pfaffian, Pfaff(∂̄UC(−1)), in the numerator is related to
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the Dirac operator on the curve C, twisted by the vector bundle UC(−1) = U |C ⊗OC(−1).

It originates from integrating over the right-moving world-sheet fermions and is, in gen-

eral, a homogeneous polynomial in the moduli of the vectors bundle U and the complex

structure moduli of Y . Explicit examples for the computation of Pfaffians can be found

in refs. [21–23]. Finally, det′(∂̄OC
) and det(∂̄OC(−1)) come from integrating over bosonic

fluctuations. Since they are not important for the vanishing of the Pfaffians, we will not

discuss them further; see ref. [18] for details.

In general, a given homology class of Y contains more than one holomorphic isolated

genus zero curve. The number of these curves is referred to as the (genus zero) Gromov-

Witten invariant. All such curves in the same homology class have the same area, the

same classical action and, hence, the same exponential factor in eq. (2.1). However, the

one-loop determinants are generally different. To find the superpotential contribution,

W ([C]), associated to the class [C] we have to sum over all holomorphic, genus zero curves

Cj in this class. This leads to

W ([C]) = exp

[
−A(C)

2πα′
+ i

∫
C
B

] n[C]∑
j=1

Pfaff(∂̄UCj
(−1))

[det′(∂̄OCj
)]2[det(∂̄OCj

(−1))]2
, (2.5)

where n[C] is the (genus zero) Gromov-Witten invariant of [C]. For the complete non-

perturbative superpotential, W , we then have to sum over all homology classes; that is

W =
∑

[C]W ([C]).

2.2 The residue theorem of Beasley and Witten and its applicability

In ref. [14] (also see the earlier papers [24–27]) Beasley and Witten showed that under some

rather general assumptions the sum (2.5) vanishes. Let us briefly review their assump-

tion. Let X̃ be a complete intersection Calabi-Yau three-fold in the product of projective

spaces1 A = Pn1 × · · · × Pnm . This means X̃ is given by a set of polynomial equations

p1 = p2 = · · · = pK = 0 with
∑m

i=1 ni −K = 3. Additionally, they assume that the vector

bundle Ṽ on X̃ is obtained as a restriction of a vector bundle V on A, so that Ṽ = V|
X̃

.

It was shown by Beasley and Witten that under these assumptions the sum (2.5) vanishes

for any homology class.

As was pointed out in ref. [23], the analysis of Beasley and Witten actually relies

on the additional assumption that the Kähler form ω
X̃

of X̃ is obtained as a restriction,

ω
X̃

= ωA|X̃ , of the ambient space Kähler form ωA. If the CY manifold X̃ is favourable [28],

that is, if h1,1(A) = h1,1(X̃) so that the entire second cohomology of X̃ descends from the

ambient space, this assumption is indeed satisfied for all choices of Kähler form ω
X̃

. On

the other hand, if h1,1(A) < h1,1(X̃) there may exist curves Cj which have the same

volumes as measured by restricted ambient space Kähler forms ωA|X̃ but different volumes

as measured by Kähler forms ω
X̃

which do not restrict from the ambient space. In this

case, the statement of Beasley and Witten can still be applied [23] to Kähler forms ωA|X̃
which descend from the ambient space and it implies the vanishing of the sum in eq. (2.5).

However, since the curves Cj can have different volumes for choices of Kähler forms which

1The results of Beasley and Witten are also expected to be valid for complete intersections in toric spaces.
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do not descend from the ambient space, the exponential factors can be different and, hence,

the superpotential does not vanish.

However, there is one more ingredient which was not considered in ref. [14] and which

can prevent the cancellation of individual instanton contributions in eq. (2.5). This ingre-

dient is discrete torsion [23, 29, 30]. In general, the second integer homology group of a

CY manifold Y is of the form

H2(Y,Z) = Zk ⊕Gtor , k > 0 , (2.6)

where Zk is the free part and Gtor is a discrete group which represents the torsion part.

When Gtor is non-trivial, curves with the same area (with respect to the a Kähler form

ωY ) might be in different homology classes with respect to Gtor and, hence, be in different

topological sectors. In the presence of the torsion, the expression (2.5) is modified [23] and

becomes

W ([C]) = eiαI(C)T I

n[C]∑
j=1

Pfaff(∂̄UCj
(−1))

[det′(∂̄OCj
)]2[det∂̄OCj

(−1)]2
χ(Cj) , (2.7)

where [C] is a homology class in H2(Y,R) and the additional factor, χ(Cj), is a character of

Gtor. Curves Cj within the same torsion class come with the same factor χ(Cj). However,

curves with different torsion classes may have different factors. While the sum in eq. (2.5)

still cancels, the presence of the torsion factors means that the sum in eq. (2.7) can be

non-vanishing.

3 Instanton numbers and genus zero curves

Instanton numbers in a given homology class of a Calabi-Yau manifold, that is Gromov-

Witten invariants, can often be computed using known techniques [31, 32]. However, for

a calculation of the instanton superpotential, the P1 curves in the relevant homology class

need to be known explicitly. Finding these curves is frequently not straightforward. In this

section, we show that for certain homology classes of CICY three-folds, that is, the class

of CY manifolds we are considering in this paper, there exists a systematic and simple

procedure to find the P1 curves in certain homology classes explicitly.

3.1 Finding genus zero curves from complete intersections

We recall that a CICY three-fold is defined in an ambient space A = Pn1×· · ·×Pnm which

consists of a product of projective spaces with dimensions ni. It is given by the common

zero locus of K polynomials pa, where a = 1, . . . ,K and K =
∑m

i=1 ni − 3. The structure

of the ambient space and the multi-degrees qa = (q1a, . . . , q
m
a )T of the polynomials pa are

commonly encoded in the configuration matrix

X̃ ∼

P
n1 q11 · · · q1K

...
...

...

Pnm qm1 · · · qmK


h1,1(X̃), h2,1(X̃)

η(X̃)

. (3.1)
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The Hodge numbers of X̃ are usually attached as superscripts and the Euler number as

a subscript. The Calabi-Yau condition is equivalent to
∑K

a=1 q
i
a = ni + 1 for all rows

i = 1, . . . ,m. We also introduce the standard Kähler forms Ji on each Pni , normalised

such that
∫
Pni Ji = 1. CICY three-folds have been classified in [9] by finding a configuration

matrix for each topological type and, in this way, a total of 7890 configuration matrices

have been identified.

We would like to focus on cases where the ambient space contains at least one P1

factor (which is the case for 7762 of the 7890 configurations classified in [9]) so that the

ambient space has the form A = P1 × Ã, with Ã = Pn2 × · · · × Pnm . In this case, the

Calabi-Yau condition allows for two possible structures of the configuration matrix which

(after a possible re-ordering of the defining polynomials) can be written as

type 1: X̃1 ∼

[
P1 1 1 0 · · · 0

Ã q̃1 q̃2 q̃3 · · · q̃K

]
,

type 2: X̃2 ∼

[
P1 2 0 · · · 0

Ã q̃1 q̃2 · · · q̃K

]
.

(3.2)

Let us denote the homogeneous P1 coordinates by [x0 : x1] and the remaining coordinates

of Ã by y. For configuration matrices of type 1, the first two defining equations can be

written as

p1 = x0p̃1(y) + x1p̂1(y) , p2 = x0p̃2(y) + x1p̂2(y) , (3.3)

where p̃i and p̂i, with i = 1, 2 are homogeneous polynomials of degree q̃i in the coordinates

y of Ã. The remaining defining polynomials pi = pi(y) for i = 3, . . . ,K are independent of

the P1 coordinates. This means that the CICY X̃1 contains a curve P1 × y for each point

y ∈ Ã which satisfies

p̃1(y) = p̂1(y) = p̃2(y) = p̂2(y) = 0 , pi(y) = 0 for all i = 3, . . . ,K . (3.4)

Note that these are K+ 2 equations on Ã, a space of dimension K+ 2, so that the solution

will generically be a finite number of points. Configuration matrices of type 2 in (3.2) can

be discussed in a similar way. The first polynomial can now be written as

p1 = x20p̃1(y) + x0x1p̂1(y) + x21p̄1(y) , (3.5)

and the remaining polynomials, pi with i = 2, . . . ,K only depend on the Ã coordinates y.

Hence, we have a curve P1 × y ∈ X̃2 for each point y ∈ Ã which satisfies

p̃1(y) = p̂1(y) = p̄1(y) = 0 , pi(y) = 0 for all i = 2, . . . ,K . (3.6)

As before, these are K + 2 equations for the K + 2 coordinates of Ã so generically the

solution is a finite number of points.

To summarize, this means that we can obtain genus zero curves of the form P1× y by

finding the points P1 = {y} solving eqs. (3.4) for type 1 cases and the points P2 = {y}
solving (3.6) for type 2 cases. Note that, for a given choice of defining equations, this

– 7 –
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can be carried out explicitly. It may not be immediately obvious that these curves are

isolated, but we have explicitly proven this in appendix A. For a favorable CICY X̃, all

curves obtained in this way are in the homology class dual to J1. In the non-favorable

case, the homology classes of all curves have a component dual to J1 but they may differ

by classes not obtained from the ambient space. (In particular, their volume is the same

when measured by a Kähler form which descends from the ambient space.)

From eqs. (3.4) and (3.6) the point sets P1 and P2 can also be described by the

configuration matrices

type 1: P1 ∼
[
Ã q̃1 q̃1 q̃2 q̃2 q̃3 · · · q̃K

]
,

type 2: P2 ∼
[
Ã q̃1 q̃1 q̃1 q̃2 · · · q̃K

]
.

(3.7)

The number of points in P1 and P2 can then be obtained by a standard intersection

calculation based on these configuration matrices, that is, by carrying out the integrals

|P1| =
∫
Ã

(q̃1 · J)2 ∧ (q̃2 · J)2
K∧
a=3

q̃a · J , (3.8)

|P2| =
∫
Ã

(q̃1 · J)3
K∧
a=2

q̃a · J , (3.9)

where J = (J2, . . . , Jm) are the standard Kähler forms on Ã.

3.2 Examples for calculating the Gromov-Witten invariants upstairs

Let us carry out this analysis for two simple examples. Both examples are favorable so

that all the curves we obtain lie in the same homology class in X̃.

Example of type 1. We start with the CICY manifold (CICY 7858 in ref. [9]) in the

ambient space A = P1 × P4 defined by

X̃1 ∼

[
P1 1 1

P4 3 2

]2,66
−128

. (3.10)

Clearly, this is a type 1 example and by comparing eqs. (3.2) and (3.7) we see that the

point set P1 is described by the complete intersection

P1 ∼
[
P4 3 3 2 2

]
. (3.11)

With J2 the standard Kähler form of P4, we find for the number of points

|P1| =
∫
P4

(3J2)
2 ∧ (2J2)

2 = 36 . (3.12)

Hence, we find 36 explicit curves P1 × y in the second homology class dual to J1. A

calculation of the Gromov-Witten invariant of this class, using the methods of ref. [32],2

also leads to 36. This shows that we have, in fact, found all the (genus zero) curves in this

class via the method described above.
2A Mathematica implementation of their procedure is attached to their tex file on the arxiv.

– 8 –



J
H
E
P
1
0
(
2
0
1
7
)
0
3
2

Example of type 2. For a type 2 example, consider the well-known tetra-quadric (CICY

7862 in ref. [9]) in the ambient space A = P1 × P1 × P1 × P1; a favorable CICY defined

by the configuration matrix

X̃2 ∼


P1 2

P1 2

P1 2

P1 2


4,68

−128

. (3.13)

Comparing eqs. (3.2) and (3.7), the point set P2 corresponds to the configuration

P2 ∼

P1 2 2 2

P1 2 2 2

P1 2 2 2

 , (3.14)

and the number of points is given by

|P2| =
∫
(P1)3

(2J2 + 2J3 + 2J4)
3 = 48 . (3.15)

This is the case since Ji ∧ Jj ∧ Jk = 2 for i, j, k mutually distinct and is zero otherwise.

Therefore, the integral evaluates to 3 · 23 · 2 = 48. Hence, we have found 48 curves P1 × y

in the second homology class of X̃ dual to J1. Clearly, by symmetry, the other three P1

factors in the ambient space will lead to the same number of curves. A calculation of

the Gromov-Witten invariant in those classes gives 48. Hence, yet again, the method has

produced all (genus zero) curves.

We have performed the above intersection calculation for all 7890 CICY manifolds in

the list of ref. [9] and all P1 factors in their ambient spaces. The resulting numbers of

P1 curves in each homology class has been compared with the Gromov-Witten invariants

obtained using [32], and a perfect match has been found in all cases. Hence, at least for

the 7890 CICY manifolds in the standard list, all holomorphic isolated genus zero curves in

homology classes associated to ambient space P1 factors can be computed explicitly. We

expect that this remains true for all CICY three-fold configurations, including configuration

matrices not contained in the standard list of ref. [9] but equivalent to one of its entries.

However, currently, we do not have a general proof.

Given these explicit results for curves in certain homology classes of CICY manifolds,

we have a large number of interesting and easily accessible examples for which to discuss the

computation of heterotic instanton superpotentials. As it is, these Calabi-Yau manifolds

are defined in ambient spaces which are products of projective spaces. Since they are

known to not have discrete torsion, we conclude that for all favourable models the results of

ref. [14] apply and all P1 curves in a given homology class must sum to zero. Consequently,

the instanton superpotential vanishes for these models. The situation might be different

for non-favorable cases where the curves could lie in distinct classes with respect to the

non-favorable part of H2(X̃,Z).
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(d) Case (iv)

Figure 1. Schematic depiction of the different types of free quotient actions (i) to (iv). Blue

dots represent the P1 direction associated to the genus zero curves. The first two columns of each

diagram indicate the action of the symmetry. The last column represents the resulting configuration

in the quotient manifold.

3.3 Freely acting symmetries and quotients

As explained in the introduction, we are not primarily interested in CICY manifolds X̃

themselves but, rather, in their quotients X = X̃/Γ by freely-acting symmetries Γ. Such

freely-acting symmetries of CICY manifolds have been classified in ref. [10]. If X̃ has a

symmetry Γ, the genus zero curves identified above fall into orbits under the action of this

symmetry. Upon taking the quotient, each orbit descends to a curve in X̃/Γ. The action

of Γ can be understood as a combination of the following four simple actions:

(i) It acts on the homogeneous coordinates (by permuting them and/or multiplying

them with phases) of the ambient space P1 factor associated to the genus zero curves

figure 1(a)).

(ii) It acts on the homogeneous coordinates (by permuting them and/or multiplying them

with phases) of the other ambient space factors Pni , where i > 1 (figure 1(b)).

(iii) It acts by permuting entire Pni factors, where i > 1, that is, excluding the P1 factor

associated to the genus zero curves (figure 1(c)).

(iv) It acts by permuting entire Pni factors, including the P1 factor associated to the

genus zero curves (figure 1(d)).

These basic actions are illustrated in figure 1.

In case (i) only the parametrization of the genus zero curves is changed, but their count-

ing is not affected at all. Indeed, eqs. (3.3) and (3.5) which count the number of genus zero

curves are independent of the homogeneous P1 coordinates and are, hence, invariant under

a symmetry acting in the P1 directions only. In case (ii) formerly independent solutions y

to the equations (3.3) or (3.5) become identified under the action of the symmetry. This

reduces the number of genus zero curves by the length of the orbit of the symmetry. Similar
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conclusions apply in case (iii). Finally, in case (iv) the orbits of the symmetry consist of

genus zero curves associated to different P1 ambient space factors. It turns out that the

length of the orbits always equals the order, |Γ|, of the discrete symmetry.

The cases (iii) and (iv), which permute entire ambient space factors always correspond

to non-toric actions of Γ. Cases (i) and (ii) can be toric or non-toric, depending on whether

or not the action on the ambient space homogeneous coordinates can be diagonalized.

If the genus zero curves associated to a certain P1 factor form a single orbit under the

symmetry Γ, the quotient manifold only has a single curve in this homology class. In this

case, there is only one contribution to the instanton superpotential from this downstairs

homology class and a cancellation is impossible. We will present an explicit example in the

next section which shows that this situation can indeed arise.

4 Superpotential calculations

In this section, we would like to present two explicit examples of superpotential calculations

on CICY manifolds and their quotients. The first example involves a CICY manifold with

freely-acting Z4 symmetry and four genus zero curves in a certain homology class which

form a single orbit under the symmetry. Upon taking the quotient this results in a single

genus zero curve and, hence, a non-vanishing superpotential contribution. The second

example is for a CICY manifold with freely-acting Z2 symmetry, four genus zero curves

in a certain upstairs class falling into two orbits and, hence, two resulting curves in the

quotient. For a rank three bundle constructed by a double extension from line bundles, we

show that the contributions from these two curves to the downstairs superpotential cancel.

4.1 Example 1: a quotient CY without Beasley-Witten cancellation

The example in question is for the compactification of the E8 × E8 (or SO(32)) heterotic

string on a CICY manifold in the ambient space A = (P1)3 × (P2)2 and specified by the

configuration matrix

X̃ ∼


P1 1 1 0 0

P1 0 0 0 2

P1 0 0 2 0

P2 1 0 0 2

P2 0 1 2 0



19,19

0

x0, x1
y0, y1
z0, z1
u0, u1, u2
v0, v1, v2

. (4.1)

This is CICY 30 in ref. [9] and it is one of the possible realizations of the Schoen manifold.

The notation for the homogeneous coordinates of each projective factor is indicated on the

right-hand side of (4.1).

For suitable choices of the defining polynomials, this CICY has a freely-acting

Γ = Z4 symmetry. Its generator γ acts linearly on the homogeneous coordi-

nates ((x0, x1), (y0, y1), (z0, z1), (u0, u1, u2), (v0, v1, v2))
T of the ambient space via the
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block matrix

R(γ) =


iσ 0 0 0 0

0 0 σ 0 0

0 12 0 0 0

0 0 0 0 s

0 0 0 13 0

 , σ = diag(1,−1) , s = diag(1,−1,−1) . (4.2)

This action is a combination of the action types (i) to (iii). Simultaneously, it acts on the

defining equations (p1. . . . , p4)
T via the matrix

ρ(γ) =


0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

 . (4.3)

The resulting quotient X = X̃/Γ has Hodge numbers h1,1(X) = h2,1(X) = 6, see ref. [33].

Let us now work out the number of holomorphic isolated genus zero curves associated

to the first P1 factor in the configuration matrix (4.1). Clearly, this is a type 1 case and,

from eq. (3.7), the complete intersection describing the points P1 is given by

P1 ∼


P1 0 0 0 0 0 2

P1 0 0 0 0 2 0

P2 1 1 0 0 0 2

P2 0 0 1 1 2 0

 . (4.4)

For the number of points we find

|P1| =
∫
(P1)2×(P2)2

J2
4 ∧ J2

5 ∧ (2J3 + 2J5) ∧ (2J2 + 2J4) = 4 . (4.5)

A similar calculation for the second and third P1 factor in (4.1) leads to zero intersection

points. As stated before, all these numbers match the Gromov-Witten invariants of the

relevant homology classes.

We would like to focus on the four curves associated to the first P1 factor. We de-

note these curves by Cj = P1 × yj , where j = 0, . . . , 3 and yj are their locations in

Ã = (P1)2 × (P2)2. One can ask the question whether or not the contribution to the su-

perpotential from these curves vanishes. Since this example is non-favorable (note that

5=h1,1(A) < h1,1(X̃) = 19), it is difficult to answer this question. Though these four

curves have the same area with respect to a Kähler form obtained as restrictions from the

ambient space, they might be in different homology classes in X̃. However, whether or

not these four curves are in the same or in different homology classes in X̃ is not relevant

for our purposes. In this paper, we are searching for other ways of ensuring that their

contribution is non-vanishing. In fact, our primary interest is with the quotient X.

What is the situation for the quotient Calabi-Yau manifold X = X̃/Γ, where Γ is

the aforementioned freely-acting Z4 symmetry? The most general defining polynomials
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Figure 2. This figure illustrates the identification of curves within the curve class corresponding

to the first P1 ambient space factor. Upon modding out Γ = Z4, the four different curves in this

curve class are identified, leaving a curve class with Gromov-Witten invariant 1 on X.

consistent with this symmetry are given by

p1 = x0 (ic4u1 + ic3u2) + x1 (−ic2u1 − ic1u2)
p2 = x0 (c4v1 + c3v2) + x1 (c2v1 + c1v2)

p3 = c14v
2
0z

2
0 + c13v

2
1z

2
0 + c11v

2
2z

2
0 + c12v1v2z

2
0 + c10v0v1z1z0+

c9v0v2z1z0 + c8v
2
0z

2
1 + c7v

2
1z

2
1 + c5v

2
2z

2
1 + c6v1v2z

2
1

p4 = c14u
2
0y

2
0 + c13u

2
1y

2
0 + c11u

2
2y

2
0 + c12u1u2y

2
0 + c10u0u1y1y0+

c9u0u2y1y0 + c8u
2
0y

2
1 + c7u

2
1y

2
1 + c5u

2
2y

2
1 + c6u1u2y

2
1 ,

(4.6)

where c1, . . . , c14 are arbitrary complex numbers which parametrize the choice of complex

structure. Applying the general recipe (3.4) to these polynomials, we can find the four

points yj by solving

(ic4u1 + ic3u2) = (−ic2u1 − ic1u2) = (c4v1 + c3v2) = (c2v1 + c1v2) = 0 (4.7)

along with p3 = p4 = 0. Explicitly, we find that

y0 = (w2,0,−iw2,1, w2,0,−iw2,1, 1, 0, 0, 1, 0, 0)T ,

y1 = (w2,0, iw2,1, w2,0,−iw2,1, 1, 0, 0, 1, 0, 0)T ,

y2 = (w2,0, iw2,1, w2,0, iw2,1, 1, 0, 0, 1, 0, 0)T ,

y3 = (w2,0,−iw2,1, w2,0, iw2,1, 1, 0, 0, 1, 0, 0)T ,

(4.8)

where w2,0 =
√
c8 and w2,1 =

√
c14. It is easy to verify, using the generator from eq. (4.2),

that yj = R(γ)jy0 and, hence, that the four curves Cj form one orbit under the action of

the Z4 symmetry. As a result, these four curves are identified upon forming the quotient

X = X̃/Γ. Hence, the corresponding downstairs homology class only contains a single

holomorphic isolated genus zero curve C, cf. figure 2. Therefore, as long as a vector bundle

V on X is chosen in such a way that Pfaff(∂̄VC(−1)) is not identically zero, we a have a

non-vanishing superpotential in this theory.

For concreteness, we now present such a bundle. We start with an equivariant bundle

Ṽ on X̃ which then descends to a bundle V on X. For simplicity, Ṽ is chosen to be the

sum of line bundles

Ṽ = O
X̃

(0, 2, 2,−1,−1)⊕O
X̃

(0,−2,−2, 1, 1) . (4.9)

It can be checked that this line bundle sum is equivariant under Γ (note that each line

bundle is clearly invariant) and that it satisfies the Bianchi Identities upon inclusion of NS5

branes. It is easy to check that it also allows for a solution to the slope zero conditions, if
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only the five favourable directions are taken into account. From a physical point of view,

this might be problematic since a Kähler form J induced from the ambient space might be

on the boundary of the full Kähler cone. However, using the fact that the Schoen manifold

can be written as a blowup of a T 6/(Z2 × Z2) orbifold [34], we can use the techniques of

refs. [35, 36] to match the CICY description to the resolved orbifold description. In the

latter, we have an explicit realization of all 19 divisor classes. Using this map, we can check

that the Hermitian Yang-Mills equations have a solution inside the full Kähler cone of the

Schoen manifold. In summary, the line bundle sum Ṽ does indeed provide a consistent

choice and it descends to a line bundle sum V on the quotient manifold X.

Recall that the genus zero curves under consideration are associated to the first P1 fac-

tor. Since the corresponding first entries in the line bundle sum (4.9) are zero, it follows that

VC(−1) = V |C ⊗OP1(−1) = OP1(−1)⊕2 . (4.10)

Since OP1(−1) does not have sections, the resulting Pfaffian Pfaff(∂̄VC(−1)) is not identically

zero. Note that, in this case, the non-vanishing of the superpotential does not rely on subtle

geometric features such as torsion in H2(X,Z).

How does this example avoid the no-go theorem of ref. [14]? First note that the down-

stairs ambient space A/Z4 is singular (but the singularities do not, generically, intersect

the Calabi-Yau manifold X). Furthermore, the Z4 symmetry does not act in a toric way on

A, as the generator (4.2) shows. Hence, the downstairs ambient space (after blowing up the

singularities) is neither a product of projective spaces nor does it have a toric description.

Further, while the upstairs space X̃ is a CICY manifold the same is not the case for the

quotient CY X. Finally, neither X̃ nor X are favourable. However, all these assumptions

enter in the proof of the vanishing statement in ref. [14].

To develop a better intuition for which of these assumptions are crucial for the van-

ishing of the superpotential, we study a second example which also involves a quotient of

a CICY manifold by a non-toric symmetry, but with both X̃ and X favorable manifolds.

4.2 Example 2: a quotient CY with Beasley-Witten cancellation

The analysis of this example will follow the ideas of ref. [23]. It is based on the CICY

manifold 6804 with configuration matrix

X̃ ∼


P1 1 1 0 0

P1 0 0 2 0

P1 0 0 0 2

P2 1 0 1 1

P2 0 1 1 1



5,37

−64

x0, x1
y0, y1
z0, z1
u0, u1, u2
v0, v1, v2

. (4.11)

The ambient space Kähler forms (as well as their restrictions to the CY) are denoted by

Ji, where i = 1, . . . , 5 and the second Chern class of the tangent bundle, relative to a basis

dual to Ji, is given by

c2,i(TX̃) = (24, 24, 24, 36, 36) . (4.12)
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The non-vanishing triple intersection numbers κijk =
∫
X̃
Ji∧Jj ∧Jk are explicitly given by

κ1,2,3 = κ1,2,4 = κ1,2,5 = κ1,3,4 = κ1,3,5 = 2 , κ1,4,5 = κ2,4,5 = κ3,4,5 = 4 ,

κ2,3,4 = κ2,3,5 = 3 , κ2,2,4 = κ2,2,5 = κ3,4,4 = κ3,5,5 = 2 , κ4,4,5 = κ4,5,5 = 2 . (4.13)

This manifold has a freely-acting Γ = Z2 symmetry with generator γ. Its action on the

homogeneous ambient space coordinates is given by

R(γ) =



−1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

0 0 −1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 −1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0



. (4.14)

This amounts to the same toric action on all three ambient space P1 factors and a simul-

taneous swap of the two P2 factors. Altogether, the action of this symmetry is evidently

non-toric.

The genus zero Gromov-Witten invariants in this case are

n(1,0,0,0,0) = 4 , n(0,1,0,0,0) = 12 , n(0,0,1,0,0) = 12 , n(0,0,0,1,0) = 32 , n(0,0,0,0,1) = 32 .

(4.15)

For the purposes of this discussion, we will focus on the first P1 ambient space factor with

four genus zero curves.

For the vector bundle Ṽ , we would like to consider a bundle with non-Abelian structure

group so that the Pfaffian is a non-trivial function of the bundle moduli. Given that we

are not computing the overall factor of the one-loop contribution in eq. (2.5), such a non-

trivial bundle moduli dependence is essential in order to check for the cancellation between

contributions. Specifically, we define the rank three bundle Ṽ as a double extension

0 −→ L1 −→ W̃ −→ L2 −→ 0 ,

0 −→ W̃ −→ Ṽ −→ L3 −→ 0 ,
(4.16)

where W̃ is a rank two auxiliary bundle and the line bundles Li are defined as restrictions,

Li = Li|X̃ of ambient space line bundles Li. Furthermore, these line bundle are chosen to

satisfy L1 ⊗ L2 ⊗ L3 = O
X̃

to ensure that Ṽ defines an SU(3) rather than a U(3) bundle.

Explicitly, they are chosen as

L1 = O
X̃

(−2, 1, 1, 0, 0) , L2 = O
X̃

(0, 1,−2, 0, 0) , L3 = O
X̃

(2,−2, 1, 0, 0) . (4.17)
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Since we want to mod out a freely acting symmetry Γ = Z2 later, we first check that the

bundle is equivariant with respect to this symmetry. This is ensured since all line bundles

Li, i = 1, 2, 3 are equivariant (and provided that we choose suitable extension classes).

Note that Γ will act by swapping the two P2 coordinates, which is why we have chosen the

first Chern class in those directions to be the same.

Does this choice of line bundles lead to a non-trivial moduli space of extension bundles?

To answer this question, we have to compute H1(X̃, W̃⊗L∗3); that is, the space of extension

bundles Ṽ . To do this, we twist the first short exact sequence in (4.16) by L∗3 and consider

the associated induced long exact sequence in cohomology,

0 −→ H0(X̃, L1 ⊗ L∗3) −→ H0(X̃, W̃ ⊗ L∗3) −→ H0(X̃, L2 ⊗ L∗3)
−→ H1(X̃, L1 ⊗ L∗3) −→ H1(X̃, W̃ ⊗ L∗3) −→ H1(X̃, L2 ⊗ L∗3)
−→ H2(X̃, L1 ⊗ L∗3) −→ . . .

. (4.18)

We are interested in the underlined term in this sequence. Given the cohomologies

h•(X̃, L1 ⊗ L∗3) = (0, 12, 10, 0) , h•(X̃, L2 ⊗ L∗3) = (0, 0, 32, 0) , (4.19)

computed using the methods described in refs. [37–41], we conclude that

h1(X̃, W̃ ⊗ L∗3) = 12 . (4.20)

Hence, the extension space of bundles Ṽ is indeed non-trivial and 12-dimensional. For later

purposes, it is also useful to note, using the Koszul sequence, that

H1(X̃, W̃⊗L∗3) ∼= H1(X̃, L1⊗L∗3) ∼= H1(A,L1⊗L∗3) = H1(A,OA(−4, 3, 0, 0, 0)) . (4.21)

The last expression provides us with an explicit way of writing down an arbitrary extension

class in terms of ambient space coordinates. After Serre dualizing in the direction of the

first P1 factor, such an arbitrary extension class can be written as a polynomials with

multi-degree (2, 3, 0, 0, 0); that is, as

v = x20f1(y) + x0x1f2(y) + x21f3(y) , (4.22)

with cubics fi(y) in the coordinates of the second P1 factor. These cubics can be written

explicitly as

f1(y) = a0y
3
0 + a1y

2
0y1 + a2y0y

2
1 + a3y

3
1 ,

f2(y) = b0y
3
0 + b1y

2
0y1 + b2y0y

2
1 + b3y

3
1 ,

f3(y) = c0y
3
0 + c1y

2
0y1 + c2y0y

2
1 + c3y

3
1 ,

(4.23)

where ak, bk, ck, with k = 0, . . . , 3, are coefficients. Note that the total number of these

coefficients is 12, in accordance with eq. (4.20).

Next, we check that the SU(3) bundle Ṽ can satisfy the Bianchi identities with NS5

branes; that is, c2(TX̃)− c2(Ṽ ) = [M̃ ] for some effective curve class [M̃ ]. From

c2(Ṽ ) =
1

2

3∑
i=1

c1(Li)
2 (4.24)
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and the intersection numbers (4.13), we find that

c2,i(Ṽ ) = (6, 0, 12, 21, 21) (4.25)

relative to the basis dual to Ji. Comparison with the second Chern class (4.12) of the

tangent bundle shows that the Bianchi identity can indeed be satisfied by wrapping five

branes on a curve M̃ with class [M̃ ]i = (18, 24, 12, 15, 15).

To show that the bundle Ṽ is poly-stable, we begin at the split locus of the extensions

where Ṽ ∼= L1 ⊕ L2 ⊕ L3. It is easy to verify, using the intersection numbers (4.13), that

the slopes µ(Li) =
∫
X̃
J ∧ J ∧ c1(Li) of the three line bundles vanish simultaneously at a

locus in Kähler moduli space. Hence, on this locus, Ṽ is poly-stable. In order to show

that Ṽ is poly-stable away from the split locus, we have to show that all rank one and

two sub-sheaves S̃ injecting into Ṽ have a slope µ(S̃) satisfying µ(S̃) < µ(Ṽ ) = 0. This

is rather tedious but can indeed be checked explicitly. Alternatively, we note that the

cohomologies (4.19) imply the existence of sufficiently general matter field terms in the

low-energy D-terms, so that supersymmetric, D-flat directions away from the split locus

clearly exist.

With this we can finally work out the Pfaffian. As explained in refs. [21, 22, 42], the

Pfaffian on a holomorphic isolated genus zero curve C vanishes if and only if h0(C, Ṽ |C ⊗
OC(−1)) 6= 0. While the dimension of this cohomology is zero generically, it can jump

on a special locus in bundle moduli space. The Pfaffian for a curve Cj = P × yj with

homology class [C] is proportional to the equation describing this special locus; typically

a determinant of a certain matrix. For the case at hand, this matrix is given by [23]

dj = det

[(
f1(yj) f2(yj)

f2(yj) f3(yj)

)]
, (4.26)

where the polynomials fi have been defined in eq. (4.23). Recall that we are focusing on

the four genus zero curves associated to the first P1 ambient space factor and that the

points yi are their locations in the remaining ambient space factors Ã = (P1)2 × (P2)2.

These points can be explicitly determined following the procedure described in section 3.

Anticipating the Γ = Z2 to be chosen later on, we will do this for the most general set of

Z2 invariant defining equations for X̃. This leads to the four points

y0 = (w2,0, 1, w3,0, 1, w4,0, w4,1, 1, w4,0, w4,1, 1)T ,

y1 = (w2,0, 1,−w3,0, 1, w4,0, w4,1, 1, w4,0, w4,1, 1)T ,

y2 = (−w2,0, 1, w3,0, 1, w4,0, w4,1, 1, w4,0, w4,1, 1)T ,

y3 = (−w2,0, 1,−w3,0, 1, w4,0, w4,1, 1, w4,0, w4,1, 1)T , (4.27)

where the wa,b are known, but complicated, functions of the complex structure moduli

appearing in the defining equations.

The Beasley-Witten vanishing theorem now tells us that all four contributions in (4.26),

with the above points yi inserted, sum to zero. As remarked previously, the present method

does not compute the relative factors between the summands. So all one can do is to check
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Figure 3. Schematic description of the action Γ on the 4 curves in the curve class of the first P1.

whether the four polynomials dj are linearly dependent, that is, whether there are kj ∈ C,

independent of the bundle moduli ak, bk, ck, such that

3∑
j=0

kjdj = 0 . (4.28)

After explicitly substituting in the four values for yj given in (4.27), we find

d0 = (a0w
3
2,0+a1w

2
2,0+a2w2,0+a3)(c0w

3
2,0+c1w

2
2,0+c2w2,0+c3)−(b0w

3
2,0+b1w

2
2,0+b2w2,0+b3)2 ,

d1 = (a0w
3
2,0+a1w

2
2,0+a2w2,0+a3)(c0w

3
2,0+c1w

2
2,0+c2w2,0+c3)−(b0w

3
2,0+b1w

2
2,0+b2w2,0+b3)2 ,

d2 = (a0w
3
2,0−a1w2

2,0+a2w2,0−a3)(c0w
3
2,0−c1w2

2,0+c2w2,0−c3)−(b0w
3
2,0−b1w2

2,0+b2w2,0−b3)2 ,

d3 = (a0w
3
2,0−a1w2

2,0+a2w2,0−a3)(c0w
3
2,0−c1w2

2,0+c2w2,0−c3)−(b0w
3
2,0−b1w2

2,0+b2w2,0−b3)2 .

(4.29)

Since these are polynomials in the 26 independent monomials {akcl} ∪ {bkbl}, we can

formulate the vanishing condition (4.28) in terms of a linear system, B k = 0, where

k = (k0, k1, k2, k3)
T and B is a 26 × 4 matrix. It turns out that the rank of B is two and

that the linear system and, hence, eq. (4.28) does indeed have a non-trivial solution. Note

that this is only the case if the correct locations (4.27) are inserted. For a generic choice

of four points, the matrix B has full rank. This confirms the expected vanishing of the

superpotential upstairs.

Let us check what happens after we mod out the freely-acting symmetry Γ = Z2 with

generator (4.14). Note that this symmetry acts by a combination of the types (i) to (iii).

The schematic action of Γ on the four curves in the curve class associated to the first P1

is given in figure 3. The four curves group into two orbits of two curves each, resulting in

two curves on the quotient manifold X = X̃/Γ. More specifically, it is easy to see from the

generator (4.14) that the four points (4.27) are mapped as

y0 ←→ y3 , y1 ←→ y2 . (4.30)

As mentioned before, the vector bundle Ṽ has an equivariant structure with respect

to Γ and, hence, descends to a bundle V on X. Upon modding out Γ we have to restrict

the extension space (4.22) accordingly, which demands that

f1(y) = a1y
2
0y1 + a3y

3
1 ,

f2(y) = b0y
3
0 + b2y0y

2
1 ,

f3(y) = c1y
2
0y1 + c3y

3
1 .

(4.31)

Using these special expressions, the Pfaffians become

d0 = d1 = d2 = d3 = (a3 + a1w
2
2,0)(c3 + c1w

2
2,0)− (b2w2,0 + b0w

3
2,0)

2 . (4.32)
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The Pfaffians in each Z2 orbit should be proportional and, hence, the equalities d0 = d3
and d1 = d2 are not surprising. However, the fact that all four Pfaffians are equal allows

for, and strongly hints at, a cancellation of the two downstairs contributions.

Finally, we have found the same behavior for a number of other quotients of favorable

CICY manifolds with SU(3) extension bundles.

5 Conclusions and outlook

We have described and illustrated a method to construct all holomorphic, isolated, genus

zero curves in homology classes associated to ambient space P1 factors for complete in-

tersection CY manifolds (CICY manifolds). The relevant genus zero curves can be found

explicitly by a complete intersection in the ambient space. Using the traditional way of

calculating the Gromov-Witten invariants via mirror symmetry, we have checked for all

7890 CICY manifolds in the standard list of ref. [9] that our method, where applicable,

indeed reproduces all genus zero curves within a given curve class. Based on this result, we

conjecture that our method works for all CICY manifolds. The advantage of this approach

is that it provides the curves explicitly and thereby facilitates the calculation of instanton

superpotentials, both for CICY manifolds and for their quotients by discrete symmetries.

As a first application, we have identified one CICY manifold whose quotient by a

freely-acting Z4 symmetry has only a single curve in a certain homology class. Since

the superpotential contribution of this curve class is non-zero, and since there are no

other curves in the same curve class that could give rise to a cancellation along the lines

of Beasley-Witten, this shows that the instanton superpotential contribution from this

homology class must be non-vanishing. For this example, the free Z4 action is non-toric,

the quotient CY is not a CICY manifold, and neither the upstairs nor the downstairs

CY are favorable. All three of these conditions were assumed in the original proof of the

vanishing theorem of Beasley and Witten.

In order to identify which of these conditions is crucial to avoid the vanishing result

by Beasley and Witten, we studied a second example. In this case, the underlying CICY

is favorable, but the freely-acting Z2 symmetry under consideration is non-toric and the

quotient CY is not a CICY manifold. It turns out that the quotient CY has two curves

in a certain homology class whose contributions to the superpotential cancel each other.

We have confirmed this behavior for a number of similar examples. This suggests that

the crucial property to avoid the Beasley-Witten vanishing result is the non-favorability of

the CY manifold. Further, it hints at an extension of the vanishing result to quotients of

favorable CICY manifolds (and complete intersections in toric spaces).

For future work, there are several avenues that are worthwhile exploring. First, it would

be very interesting to extend the proof of Beasley-Witten to quotient manifolds of the type

represented by our second example. It is expected that, for this class of CY manifolds,

techniques similar to those used in ref. [14] will eventually also lead to a vanishing theorem

from a contour integral over a compact moduli space.

Worldsheet instanton contributions to the superpotential may be crucial for moduli

stabilization and, if this is the case, it is important to avoid a cancellation à la Beasley
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and Witten. Given our results, this motivates searching for CICYs that are not favorable

in any realization and that allow for a freely-acting symmetry.

It would be interesting to find an algebraic reason for the Beasley-Witten vanishing

theorem. Using the methods introduced in this paper allows one to write the curves as

solutions to a system of polynomial equations and the Pfaffians as another set of polyno-

mials. In algebraic terms, the vanishing theorem means that the vanishing locus of the

Pfaffians (which can be considered as a variety parametrized by complex structure and

bundle moduli) always intersects the zero-dimensional variety associated to the locations

of the genus zero curves.

Finally, it is important to study the consequences of the Beasley-Witten result in the

context of other approaches to string compactification. Using, for example, heterotic/F-

Theory duality it would be interesting to study its implications for instanton superpoten-

tials in F-theory or type IIB string theory.
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A Proof that the P1 curves are isolated

We will prove that the P1 curves we obtain with our prescription are indeed isolated by

generalizing the method of ref. [23]. To do this, we need to show that the normal bundle

NC of the genus zero curve C within the CICY three-fold X̃ is

NC = OP1(−1)⊕2 . (A.1)

Given the inclusions C ⊂ X̃ ⊂ A, the normal bundle NC can be calculated from the two

exact sequences

0 −→ TX̃
h(2)−−→ TA|

X̃

h(1)−−→ NX̃ −→ 0 , (A.2)

0 −→ TC −−→ TX̃|C −−→ NC −→ 0 , (A.3)

once the other bundles in those sequences are known. We know that TC = OC(2) for a P1

curve and we can obtain TX̃ from the first short exact sequence by studying TA|
X̃

, NX̃,

and the maps h(1) and h(2). Given that, by convention, the curve C is associated to the
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first projective factor of the ambient we have TA|X = OC(2)⊕
⊕m

i=2 TP
ni (where we have

used again that TC = OC(2)). Furthermore, the map h(1) is given in terms of derivatives

of the defining equation with respect to the affine coordinates of the Pni . Since there are

(K + 3) such coordinates and K equations that define the CICY, h(1) can be represented

by a K × (K + 3) matrix. Similarly, since TX̃ is three-dimensional for a CY threefold,

the map h(2) is given in terms of a (K + 3)× 3 matrix. Exactness of the sequence implies

h(1) ◦ h(2) = 0.

Since we are ultimately interested in the bundle TX̃|C , we can restrict the first short

exact sequence (A.2) to C. This leads to

0 −→ TX̃|C
h(2)|C−−−−→ OC(2)⊕

K+3⊕
i=2

OC
h(1)|C−−−−→ NX̃|C −→ 0 . (A.4)

The last term NX̃|C can be simply read off from the configuration matrices (3.2):

type 1: NX̃|C = OC(1)⊕OC(1)⊕
K⊕
i=3

OC , type 2: NX̃|C = OC(2)⊕
K⊕
i=2

OC .

(A.5)

For the maps h(1)|C we get for the two types

type 1: h(1)|C =


0 l1,2 . . . l1,K+3

0 l2,2 . . . l2,K+3

0 κ3,2 . . . κ3,K+3
...

...
. . .

...

0 κK,2 . . . κK,K+3

, type 2: h(1)|C =


0 q1,2 . . . q1,K+3

0 κ2,2 . . . κ2,K+3
...

...
. . .

...

0 κK,2 . . . κK,K+3

 . (A.6)

Note that in both cases the first column (h(1)|C)a,1 = ∂pa/∂x̂|C vanishes, where x̂ is the

affine coordinate of [x0 : x1] in a given patch. For those pa that do not depend on the

coordinates [x0 : x1] this is true trivially, while for those equations that do depend on

[x0 : x1] this is true since they vanish by construction when restricted to C. By the same

token, the type 1 matrix contains linear3 polynomials l1,α(x0, x1,y) and l2,α(x0, x1,y),

α = 2, . . . ,K + 3 in the first two rows and constant polynomials κa,α(y) in the remaining

K − 2 rows. Similarly, for type 2, we get quadratic polynomials q1,α(x0, x1,y) in the first

row and constant polynomials κa,α(y) in the remaining K − 1 rows.

In order to find TX̃|C we next study the (K + 3) × 3 matrix h(2)|C = (h)α,d,

α = 1, . . . ,K + 3, d = 1, 2, 3. From h(1) ◦ h(2) = 0 we get 3K equations. Note that

since the first column of h(1)|C is zero the first row h
(2)
1,d is not fixed and we will deal with

these entries separately. We first focus on the other entries h
(2)
α,d, α = 2, . . . ,K + 3. In

general these are polynomials in x0 and x1. In order to determine their rank we study how

many coefficients we need in order to satisfy h(1)|C ◦h(2)|C = 0 for non-trivial h(2)|C . Since

the discussion of the two types proceeds in a slightly different way we include separate

discussions.

3After restricting to C by substituting for † the solution to the equations (3.4) or (3.6).
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Type 1 curves. Let us start with type 1. In the simplest case the polynomials h
(2)
α,d,

α = 2, . . . ,K + 3, d = 1, 2, 3 are just constants. There are 3(K + 2) = 3K + 6 of them. In

the first 3 · 2 equations we need to choose the h
(2)
α,d such that the corresponding sums of the

linear polynomials vanish identically, i.e. the coefficient in front of the x0 and x1 terms have

to be zero. For the remaining 3K − 6 equations we need to ensure that the corresponding

κa,α sum to zero. Together we thus get 3 · 2 · 2 + 3K − 6 = 3K + 6 conditions on the

3K + 6 coefficients, which has a unique solution. However, since the system of equations

is homogeneous this unique solution means that h(2)|C is trivial, which is impossible since

TA|
X̃

is non-trivial.

Hence we need the h
(2)
α,d to be at least linear polynomials. In that case there are

2·3(K+2) = 6K+12 coefficients. For the first 6 equations to vanish identically we need the

coefficients in front of x20, x0x1 and x21 to vanish. For the remaining 3K−6 equations we need

the coefficients in front of x0 and x1 to vanish. Together this gives 3·2·3+2(3K−6) = 6K+6

conditions on the 6K + 12 coefficients, which has non-trivial solutions.

Type 2 curves. In order to study the curves of type 2 we proceed in a similar fashion.

Again the simplest case would be to choose constant h
(2)
α,d, α = 2, . . . ,K + 3, d = 1, 2, 3.

There are again 3K + 6 of them. In the first 3 equations we need to choose the h
(2)
1,d such

that the quadratic polynomials vanish identically, which amounts to 3 constraints for each

d from the coefficients of x20, x0x1 and x21. In the remaining 3K − 3 equations we need to

arrange for the κ’s to sum to zero, such that we get a total of 3 · 3 + 3K − 3 = 3K + 6

conditions on the 3K + 6 coefficients. Thus there will again only be the trivial solution in

this case, which is ruled out.

Next, we try linear polynomials for the h
(2)
α,d, α = 2, . . . ,K + 3. There are 6K + 12

coefficients. Imposing the first three equations to vanish gives rise to 4 constraints per

equation from the coefficients of the x30, x
2
0x1, x0x

2
1, x

3
1 terms. In the other 3K−3 equations

we need to arrange the coefficients of the x0 and x1 term to cancel, leading to a total of

4 · 3 + 2(3K − 3) = 6K + 6 constraints on the 6K + 12 coefficients, which allows for a

non-trivial solution. Note that the counting in the end is the same as for type 1, albeit for

different reasons.

Having established that all h
(2)
α,d, α = 2, . . . ,K + 3 are linear for both types let us now

come back to the polynomials h
(2)
1,d in the first row. In order to fix them we look at the pre-

image and the image of h(2)|C . Since TX̃ is three-dimensional and since every bundle on P1

can be written as a sum of line bundles we can write TX̃|C = OC(m1)⊕OC(m2)⊕OC(m3).

Furthermore, from inspecting the first Chern class of the short exact sequence (A.2) we

find that m1 + m2 + m3 = 0. Since the action of h
(2)
α,d increases the mi by one, and since

we only have one non-trivial element, OC(2), in the image, the only possibility is m1 = 2,

m2 = m3 = −1. In this case h
(2)
1,1 = 1, h

(2)
1,d = h

(2)
α,1 = 0 for d = 2, 3, α = 2, . . . ,K + 3. Thus

TX̃|C = OC(2)⊕OC(−1)⊕OC(−1).

In conclusion, the sequence (A.3) becomes

0 −→ OC(2) −→ OC(2)⊕OC(−1)⊕OC(−1) −→ NC −→ 0 . (A.7)

The only possibility is that the sequence splits and that NC = OC(−1)⊕2. Hence, the

curve C is isolated.
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