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Abstract: We study the equilibrium and near-equilibrium properties of a holographic

five-dimensional model consisting of Einstein gravity coupled to a scalar field with a non-

trivial potential. The dual four-dimensional gauge theory is not conformal and, at zero

temperature, exhibits a renormalisation group flow between two different fixed points. We

quantify the deviations from conformality both in terms of thermodynamic observables and

in terms of the bulk viscosity of the theory. The ratio of bulk over shear viscosity violates

Buchel’s bound. We study relaxation of small-amplitude, homogeneous perturbations by

computing the quasi-normal modes of the system at zero spatial momentum. In this

approximation we identify two different relaxation channels. At high temperatures, the

different pressures first become approximately equal to one another, and subsequently this

average pressure evolves towards the equilibrium value dictated by the equation of state.

At low temperatures, the average pressure first evolves towards the equilibrium pressure,

and only later the different pressures become approximately equal to one another.

Keywords: Gauge-gravity correspondence, Holography and quark-gluon plasmas, Quark-

Gluon Plasma
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1 Introduction

The understanding of the out-of-equilibrium dynamics of matter is an important challenge

ubiquitous at all energy scales. A particularly interesting case is the understanding of these

dynamics in strongly coupled systems. Examples include strongly correlated electrons, cold

atoms and the small drops of Quark-Gluon Plasma (QGP) formed in relativistic colliders

such as RHIC or the LHC. The latter case motivates the study of the relaxation process in

strongly coupled non-abelian field theories. The gauge/string duality provides a fascinating

tool to address this problem in a wide range of theories.

The duality has already provided insights into the dynamics of strongly coupled, de-

confined, non-abelian matter of relevance for the heavy ions programme (see e.g. [1] and

references therein). The study of the off-equilibrium dynamics of Conformal Field Theories

(CFT), most notably N = 4 super Yang-Mills (SYM) theory, has shown that hydrodynam-

ics is a much better approximation to the evolution of this type of matter than ever thought

before. Indeed, examples based on flow motions imposed by symmetries [2, 3] or by explicit

simulations of the collision dynamics [4–7] have shown that hydrodynamics provides a good

approximation to the complete evolution of the system at time and distance scales as small

as a fraction of the (local) inverse temperature of the system. This occurs even in situations

in which gradient corrections to the hydrodynamic stress tensor are large, extending the

applicability beyond a simple gradient expansion (see also [8]). This observation has led

to the coining of the term “hydrodynamisation” to refer to the process by which a system

comes to be well described by hydrodynamics, in order to differentiate this process from

(local) thermalisation. This observation, first made in holographic computations, has now

been noted in Boltzmann equation-based analysis of out-of-equilibrium dynamics, when

the strength of the coupling in the collision kernel is extrapolated to large values [9]. The

success of hydrodynamics to capture the evolution of out-of-equilibrium matter may be at

the origin of the strong collective behaviour observed in very small systems, such as Au-Au

collisions at RHIC [10–12], Pb-Pb [13–16], p-Pb [17–19] and p-p [20] collisions at the LHC.

The holographic analysis of collisions of small systems [21, 22] supports this viewpoint.

– 1 –



J
H
E
P
1
0
(
2
0
1
6
)
1
5
5

In a CFT the vanishing of the trace of the stress tensor implies that the equation of

state, namely

p̄ =
1

3
e , (1.1)

where

p̄ =
1

3
(px + py + pz) (1.2)

is the average pressure, is fixed by symmetry. As a consequence, the equation of state

is always obeyed both in and out of equilibrium. We emphasize that the equation of

state fixes only the average pressure in terms of the energy density, but not the individual

pressures. For this reason the relaxation towards equilibrium in a CFT typically involves

“isotropization”, namely the process by which the different pressures become approximately

equal to one another.

The applicability of the gauge/string duality is not restricted to CFTs. By now infinite

families of non-conformal examples are known. One of the main new features in these

theories as compared to their conformal cousins is that new channels exist for the relaxation

of the out-of-equilibrium matter. In particular, in non-conformal theories the equation of

state is not fixed by symmetry. As a consequence, out of equilibrium the energy density

and the average pressure may fluctuate independently. Therefore, the relaxation towards

equilibrium in these theories involves the evolution of the energy density and the average

pressure towards asymptotic values related to one another by the equation of state (EoS).

When this happens we will say that the system has “EoSized” and we will refer to this

process as “EoSization”.

Another important motivation for studying non-conformal theories is the connection

with hot Quantum Chromodynamics (QCD) and heavy ion collisions. As is well known,

QCD is a non-conformal theory even in the limit of vanishing quark masses. State-of-the-

art determinations of the QCD equation of state via lattice QCD [23, 24] show that, in

equilibrium, the trace of the stress tensor normalised by the enthalpy attains values of order

one close to the QCD transition. At high temperature this ratio quickly approaches zero,

indicating that QCD behaves as an almost-conformal theory in this regime. However, the

experimental exploration of the QCD phase diagram via high-energy heavy ion collisions

can only reach temperatures a few times larger than the critical temperature. Even though

most central, top-energy LHC collisions lead to initial temperatures well into the quasi-

conformal regime, the subsequent evolution and cooling of the QGP after production spans

all temperature regimes, including those in which non-conformal effects are maximal. In

fact, recent attempts for high-precision extraction of the shear viscosity of the QGP have

highlighted the need to include the bulk viscosity of the plasma, which is a purely non-

conformal effect [25]. Furthermore, off-central collisions both at the LHC and RHIC, as well

as lower-energy collisions as those explored at the RHIC energy scan, produce a QGP with

a smaller initial temperature. Similarly the apparent success of hydrodynamics in smaller

systems such as p-Pb [26] and p-p [27, 28] collisions indicate the need to study the properties

of deconfined but cooler QCD plasma, where non-conformal effects become significant

– 2 –
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(see [29] and references therein for a recent review on the hydrodynamic modelling of

heavy ion collisions).

In order to study non-conformal theories in a holographic setup we will consider a

five-dimensional bottom-up model that nevertheless shares many qualitative features with

top-down string models. Specifically, our model is dual to a four-dimensional gauge theory

that, at zero temperature, flows from an ultraviolet (UV) fixed point to an infrared (IR)

fixed point. This renormalisation group (RG) flow is dual on the gravity side to a domain-

wall geometry that interpolates between two AdS spaces. The reason why we require

that the flow approaches a fixed point in the UV is that this is the situation in which

the holographic duality is best understood. The reason for the IR fixed point is that

this guarantees that the zero-temperature solution is smooth in the deep IR. The flow is

triggered by a source Λ for a relevant, dimension-three operator in the UV. We will see

that this simple model exhibits a rich phenomenology. In particular, we will study the

relaxation of small-amplitude, homogeneous perturbations by computing the spectrum of

quasi-normal modes (QNM) with zero spatial momentum. We will see that the dominant

channel for relaxation in this approximation depends on the value of the ratio T/Λ, with

T the temperature of the system. At small T/Λ the system first EoSizes and subsequently

isotropises. In contrast, at large T/Λ the order in which these two processes take place is

reversed. Although our calculation is done at zero spatial momentum we will argue that,

actually, the ordering above is still valid for long-wave-length fluctuations with k � T .

Previous analyses addressing the near-equilibrium properties of strongly coupled non-

abelian plasmas include [30–38]. In particular, the last reference in this list appeared while

this paper was being typeset and has some overlap with our observations concerning the

different relaxation channels.

This paper is organised as follows. In section 2 we introduce the holographic model

and discuss its vacuum properties. In section 3 we study black brane solutions and extract

from them the equation of state and the viscosities of the model. In section 4 we study

the relaxation of small excitations of the system by computing the QNM spectrum of the

black branes at different temperatures and zero spatial momentum. Finally, in section 5

we discuss our main findings and place them in the context of the hydrodynamisation of

non-abelian plasmas.

2 A non-conformal holographic model

The holographic model that we will consider consists of five-dimensional Einstein gravity

coupled to a scalar field with a non-trivial potential:

S =
2

κ2
5

∫
d5x
√
−g
[

1

4
R− 1

2
(∇φ)2 − V (φ)

]
, (2.1)

where κ5 is the five-dimensional Newton constant. For specific forms of V (φ), this action

may be viewed as a consistent truncation of five-dimensional N = 8 supergravity. In this

paper we will consider a bottom-up model by choosing a potential that is particularly

simple and yet shares some of the qualitative properties of these top-down potentials. In
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particular, we will choose V (φ) to be negative and to possess a maximum at φ = 0 and a

minimum at φ = φM > 0. Each of these extrema yields an AdS solution of the equations of

motion with constant φ and radius L2 = −3/V . In the gauge theory each of these solutions

is dual to a fixed point of the RG with a number of degrees of freedom N2 proportional

to L3/κ2
5.1

We will be interested in domain-wall solutions interpolating between these two AdS

solutions. In the gauge theory, these are dual to RG flows from the UV fixed point at φ = 0

to the IR fixed point at φ = φM . The problem of finding those solutions is significantly

simplified if the potential can be written globally in terms of a superpotential, W , as

V (φ) = −4

3
W (φ)2 +

1

2
W ′ (φ)2 . (2.2)

In this case, vacuum solutions to the Einstein equations can be easily found. Parametrizing

the metric as

ds2 = e2A(r)
(
−dt2 + dx2

)
+ dr2 , (2.3)

the solution of the back-reacted gravitational problem is reduced to the first-order equa-

tions [39]

dA

dr
= −2

3
W ,

dφ

dr
=
dW

dφ
. (2.4)

We will choose a simple superpotential characterised by a single parameter, φM ,

LW (φ) = −3

2
− φ2

2
+

φ4

4φ2
M

, (2.5)

which together with eq. (2.2) yields the potential

L2V = −3− 3

2
φ2 − 1

3
φ4 +

(
1

3φ2
M

+
1

2φ4
M

)
φ6 − 1

12φ4
M

φ8 . (2.6)

Note that both the superpotential and the potential have a maximum at φ = 0 and a

minimum at φ = φM . This choice leads to three important properties of the associated

vacuum solution. First, the resulting geometry is asymptotically AdS5 in the UV with

radius L, since V (0) = −3/L2. Second, the second derivative of the potential at φ = 0

implies that, in this asymptotic region, the scalar field has mass m2 = −3/L2. Following

the standard quantisation analysis, this means that, in the UV, this field is dual to an

operator in the gauge theory, O, with dimension ∆UV = 3. Third, the solution near

φ = φM is again AdS5 with a different radius

LIR =

√
− 3

V (φM )
=

1

1 + 1
6φ

2
M

L . (2.7)

1In the case of N = 4 SYM the precise relation would be L3/κ2
5 = N2/4π2.
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In this region the effective mass of the scalar field differs from its UV value and it is given by

m2
IR =

12

L2

(
1 +

1

9
φ2
M

)
=

12

L2
IR

(
1 + 1

9φ
2
M

)(
1 + 1

6φ
2
M

)2 . (2.8)

As a consequence, the operator O at the IR fixed point has dimension

∆IR = 2 + 2

√
1 +

m2
IRL

2
IR

4
= 6

(
1 +

φ2
M

9

)(
1 +

φ2
M

6

)−1

. (2.9)

To summarize, the vacuum solution describes a RG flow from an UV to an IR fixed point

with a smaller number of degrees of freedom, as indicated by the fact that LIR < L. We

see that changing φM has two main effects. First, as φM increases the difference in degrees

of freedom between the UV and the IR fixed points increases. Second, the dimension

of the scalar operator at the IR fixed point decreases with increasing φM , reaching the

marginal dimension ∆IR = 4 at φM →∞. However, in this limiting case the IR fixed point

disappears and the background solution becomes singular, as is evident from the fact that

the effective AdS radius goes to zero as φM →∞.

Our simple choice of the superpotential allows us to determine analytically the vacuum

solution for arbitrary φM . Solving eq. (2.4), we obtain

e2A =
Λ2L2

φ2

(
1− φ2

φ2
M

)φ2M
6

+1

e−
φ2

6 , (2.10)

φ(r) =
ΛLe−r/L√

1 + Λ2L2

φ2M
e−2r/L

, (2.11)

where Λ is an arbitrary constant that controls the magnitude of the non-normalizable

mode of the scalar field. As we will see, in the dual gauge theory side, Λ is identified with

the source of the dimension-3 operator O. The presence of this source breaks conformal

invariance explicitly.

Noticing that the small field behaviour of the superpotential eq. (2.5) is identical to

that of the GPPZ flow [40], we can readily determine the vacuum expectation values (VEV)

of the stress tensor and the scalar operator. We begin by expanding the metric and the

scalar field in powers of u = Le−r/L in the u → 0 limit. Following [39], we write the

5-dimensional metric in the form

ds2 =
L2

u2

(
du2 + gµν dx

µdxν
)
, (2.12)

and we write the power expansion coefficients of the metric and the scalar field as

gµν = ηµν + g(2)
µν u

2 + g(4)
µν u

4 + . . . , (2.13)

φ = Λu
(
1 + φ2u

2 + . . .
)
. (2.14)

The expectation values of the field theory operators are then given by

〈Tµν〉 =
2L3

κ2
5

[
g(4)
µν +

(
Λ2 φ2 −

Λ4

18
+

Λ4

4φ2
M

)
ηµν

]
, (2.15)

〈O〉 = −2L3

κ2
5

(
2Λφ2 +

Λ3

φ2
M

)
. (2.16)

– 5 –
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To arrive at these expressions we have chosen the superpotential as a counterterm to

regularise the on-shell action, which is possible because in our model the superpotential

corresponds to a deformation of the gauge theory as opposed to a VEV [41]. We emphasize

that these expressions are valid even if the metric gµν does not posses the full Poincaré

symmetry but only rotational and translational invariance along the gauge theory direc-

tions, as will be the case for the black brane geometries that we will study in the next

section. As expected, eqs. (2.15) and (2.16) imply the Ward identity for the trace of the

stress tensor 〈
Tµµ
〉

= −Λ 〈O〉 . (2.17)

Eqs. (2.10) and (2.11) determine the VEVs in the vacuum of the theory. Let us define

the energy density ε and the pressure p as the diagonal components of the expectation

value of the stress tensor, 〈Tµν〉 = Diagonal {ε, p, p, p}. The near boundary behaviour of

φ, eq. (2.11), leads to

φ2 = − Λ2

2φ2
M

, (2.18)

which implies that in the vacuum

〈O〉 = 0, 〈Tµν〉 = 0 . (2.19)

Note that the explicit breaking of scale invariance means that the trace of the stress tensor

is non-zero as an operator. However, the VEV of this operator vanishes in the vacuum state,

as implied by trace Ward identity (2.17) together with the fact that 〈O〉 = 0 in the vacuum

for our choice of renormalisation scheme. It should be emphasized that even though the

trace Ward identity (2.17) is scheme-independent, the individual vacuum expectation values

of the trace of the stress tensor and of the scalar operator do depend on the renormalisation

scheme. In the model we study here the only scheme ambiguity corresponds to a term of

the form Λ4 ηµν in the expectation value of the stress tensor, accompanied by a term of

the form Λ3 in the expectation value of O, with the relative coefficient such that (2.17) is

preserved.

To estimate at which scale non-conformal effects become important, let us perform

a change of variables in the holographic direction, which explicitly exploits the relation

between the dynamics in the bulk with the physics at different scales in the field theory.

Denoting the coordinate by z, we write the metric as

ds2 =
Leff(z)2

z2

(
−dt2 + dx2 + dz2

)
, (2.20)

with Leff a non-trivial function of z such that Leff(0) = L and Leff(∞) = LIR. In this set of

coordinates, at least in the two asymptotic conformal regions, the coordinate z is related

to the energy scale, Q, in the gauge theory through z ∼ 1/Q. The relation between z and

u is given by

z(u) =

∫ u

0
du
L

u
e−A , (2.21)

– 6 –
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Figure 1. Leff/L as a function for z for different values of φM . In all panels, the dashed line

shows the asymptotic infrared value of the effective AdS radius LIR. Note the different scales of

the horizontal axes in the different panels.

and the function Leff is given by

Leff(z) = z eA . (2.22)

In figure 1 we show the ratio Leff/L as a function of z for several different values of the

parameter φM controlling the physics of the model. We see that the system behaves ap-

proximately conformally up to scales of order z ∼ Λ. At this scale, the metric starts to

deviate significantly from that of AdS5, and Leff decreases as a function of z. Sufficiently

deep in the IR, Leff approaches LIR and the system behaves again as approximately confor-

mal. However, the scale at which this transition occurs depends significantly on the model

parameter φM ; as φM increases, the function Leff approaches its asymptotic value more

slowly. This different rates at which the IR fixed point is approached have consequences

for the finite-temperature behaviour of the dual gauge theory, as we will see in the next

section.

3 Thermodynamics and transport

We will now explore the thermal physics of the gauge theory dual to the gravitational model

described in the previous section.2 To do so, we will search for black brane solutions of the

2Previous studies of the thermodynamics of Einstein+scalar gravity include [42–44].
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action (2.1). We will follow the method of the master function, introduced in ref. [45], to

which we refer the reader for details.3 Since for the background solution (2.11) the scalar

field is a monotonic function of u, we may use the scalar field as a coordinate and express

the metric as

ds2 = e2A
(
−h(φ)dτ2 + dx2

)
− 2eA+BLdτdφ , (3.1)

with h(φ) vanishing at φ = φH , the value of the scalar field at the horizon, i.e. h(φH) = 0.

The region outside the horizon corresponds to 0 < φ < φH . For later convenience, we have

expressed the metric in Eddington-Finkelstein form. With this ansatz, Einstein’s equations

take the form

A′′(φ)−A′(φ)B′(φ) +
2

3
= 0 ,

4A′(φ)h′(φ)−B′(φ)h′(φ) + h′′(φ) = 0 , (3.2)

3

2
A′(φ)h′(φ) + h(φ)

(
6A′(φ)2 − 1

)
+ 2e2B(φ)L2V (φ) = 0 ,

4A′(φ)−B′(φ)− e2B(φ)L2V ′(φ)

h(φ)
+
h′(φ)

h(φ)
= 0 .

A solution to these equations may be found in terms of a master function G(φ) defined as

G(φ) =
d

dφ
A(φ) . (3.3)

Manipulating the set of equations (3.2), a non-linear equation for G was found in [45]:

G′(φ)

G(φ) + 4V (φ)
3V ′(φ)

=
d

dφ
log

 1

3G(φ)
− 2G(φ) +

G′(φ)

2G(φ)
− G′(φ)

2
(
G(φ) + 4V (φ)

3V ′(φ)

)
 . (3.4)

Close to the boundary, φ→ 0, the solution of this equation behaves as

G(φ) =
1

∆− 4

1

φ
+ · · · , (3.5)

with ∆ the scaling dimension of the dual operator. With our choice of potential (2.6) we

have ∆ = 3. Using eq. (3.2), the different metric coefficients are given by

A(φ) = − log

(
φ

Λ

)
+

∫ φ

0
dφ̃

(
G(φ̃) +

1

φ̃

)
, (3.6)

B(φ) = log (|G(φ)|) +

∫ φ

0
dφ̃

2

3G(φ̃)
, (3.7)

h(φ) = −e
2B(φ)L2 (4V (φ) + 3G(φ)V ′(φ))

3G′(φ)
. (3.8)

3Note that our normalisations of the scalar field and of the potential differ from those in [45].
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Figure 2. Ratio of entropy density to temperature for φM = 3 (left) and φM = 10 (right) as a

function of the inverse temperature. The dashed line shows LIR/L.

In these expressions, the constants of integration are fixed by requiring that, close to the

boundary, the metric and scalar field may be expressed as in eq. (2.13) and eq. (2.14) . At

the horizon, the condition h(φH) = 0 together with the last two equations in (3.2) fix the

value of G(φH). Starting from this fixed value, a power series solution close to the horizon

may be found as

G(φ) = − 4V (φH)

3V ′(φH)
+

2

3
(φ− φH)

(
V (φH)V ′′(φH)

V ′(φH)2
− 1

)
+O

(
(φ− φH)2

)
. (3.9)

From these metric coefficients, we can extract the Hawking temperature T and the

entropy density s of the black brane:

LT =
A(φH)−B(φH)

4π
, s =

2π

κ2
5

e3A(φH) . (3.10)

The relation of the different metric coefficients with the master function leads to the fol-

lowing form for the temperature and entropy of the thermal state:

T = −Λ
L2V (φH)

3πφH
exp

{∫ φH

0
dφ

(
G(φ) +

1

φ
+

2

3G(φ)

)}
, (3.11)

s =
2π

κ2
5

Λ3

φH
3 exp

{
3

∫ φH

0
dφ

(
G(φ) +

1

φ

)}
. (3.12)

These expressions are well suited for the determination of these two quantities from the

numerical evaluation of the master equation (3.4).

In figure 2 we plot the dimensionless quantity

sR =
κ2

5

2π4L3

s

T 3
, (3.13)

as a function of the inverse temperature for two different values of φM . Since the theory

is conformal both at the UV and at the IR, the high and low temperature behaviour of

the entropy density must coincide with that of a relativistic conformal theory and scale as
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T 3. In particular, for a relativistic CFT, s/T 3 is proportional to the number of degrees

of freedom in the theory, which for an SU(N) gauge theory with matter in the adjoint

representation scales as N2. For example, for N = 4 SYM

s

T 3
=
π2

2
N2, (3.14)

but the precise coefficient depends on the specific theory. In terms of the parameters of

the dual gravity description this quantity becomes

s

T 3
=

2π4L3

κ2
5

. (3.15)

In our bottom-up setup, the above argument allows us to define the number of degrees

of freedom at the fixed points holographically in terms of the effective AdS radius. In

particular, the quantity sR should approach 1 at high temperature and (LIR/L)3 at low

temperature, which is confirmed by the plots in figure 2.

Using standard thermodynamic relations and the fact that in our renormalisation

scheme the vacuum pressure is zero we can determine the pressure and the energy density

of the thermal system through

p =

∫ T

0
dT̃ s(T̃ ) , ε+ p = Ts . (3.16)

Since the theory is not conformal, the trace of the stress tensor in the thermal ensemble

does not vanish. Using the Ward identity (2.17), the energy density, the pressure and the

scalar condensate at non-zero temperature are related through

ε− 3p = Λ 〈O〉T . (3.17)

The thermal expectation value 〈O〉T may be determined from the normalisable mode of

the scalar field in the thermal background via eq. (2.14). Since at T = 0 the scalar VEV

vanishes (see eq. (2.19)) this relation implies that ε = 3p, as expected from the fact that

the IR theory is conformal. At T > 0, however, 〈O〉T 6= 0, as shown in figure 3, and

the expectation value of the trace of the stress tensor does not vanish. Note that, unlike

at low temperatures, at which 〈O〉T depends on φM , at high temperatures 〈O〉T becomes

independent of φM . This is easy to understand from the gravitational computation. At high

temperatures the value of the scalar field at the horizon is small and, therefore, the physics

is sensitive only to the small-field behaviour of the scalar potential, which is independent

of φM . In this limit, the plots in figure 3 show that the VEV scales as 〈O〉T ∼ ΛT 2.

Despite the fact that the trace of the stress tensor at high temperature does not vanish,

the theory does behave as a conformal theory. From the gauge theory viewpoint this may

be understood from the relative magnitude of the trace of the stress tensor compared to

the energy density or the pressure: while at large T the latter quantities scale as T 4, the

trace only grows as T 2. In figure 4 we show the temperature dependence of the ratio of

the stress tensor to the enthalpy,

I =
ε− 3p

ε+ p
, (3.18)
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Figure 3. Temperature dependence of the VEV of the scalar operator 〈O〉T for several values of

φM . 〈O〉R = κ2
5 〈O〉T /L3.
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ϕM=100
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0.3

0.4

0.5

πT/Λ

I

Figure 4. Ratio of the trace of the stress tensor to the enthalpy, I, as a function of T for different

values of φM .

which in the thermal-QCD literature is sometimes referred to as the interaction measure.

As anticipated, both at low and high temperatures this ratio vanishes, indicating that the

theory becomes effectively conformal in these limits. At intermediate temperatures, the

value of I is non-zero and depends on φM . As inferred from the behaviour of the entropy,

the larger φM the larger the deviations from conformality in the thermodynamic properties

of the theory. Because of this behaviour we may use I as a measure of the non-conformality

of the theory.

Another way to quantify the non-conformal behaviour of the thermodynamics of the

dual theory is the value of the speed of sound. Using thermodynamic identities, the square
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Figure 5. Inverse speed of sound square as a function of T for different values of φM .

of the speed of sound may be determined from the inverse of the logarithmic derivative of

the entropy,

1

c2
s

=
d log s

d log T
. (3.19)

In figure 5 we show the temperature behaviour of the deviation of cs from its conformal

value, cs = 1/
√

3, for different values of φM . The qualitative behaviour of this quantity is

very similar to that of I. Both at high and low temperatures, the speed of sound approaches

its conformal value. At intermediate temperatures we have c2
s < 1/3 and the deviation from

the conformal value grows with φM .

The non-conformal behaviour already observed in the equation of state of the system

is also reflected in the transport properties of the dual gauge theory plasma. Since this

is isotropic, at leading order in gradients transport phenomena are controlled by only two

coefficients, the shear viscosity η and the bulk viscosity ζ. Because of the universality of

the shear viscosity to entropy ratio [46] in all theories with a two-derivative gravity dual,

we have that this ratio in our model takes the same value as in the conformal N = 4 theory,

i.e. η/s = 1/4π. In contrast, the bulk viscosity, which would vanish identically in a CFT,

is non-zero in our model. Following4 [47] we determine the bulk viscosity by studying the

dependence of the entropy on the value of the scalar field at the horizon,5

ζ

η
= 4

(
d log s

dφH

)−2

. (3.20)

The temperature dependence of this ratio is shown in figure 6 for different values of φM .

The behaviour of this ratio is very similar to that of the interaction measure and the speed

4Note that our normalisation of the scalar field differs from that in [47].
5We have cross-checked the result of this computation with a two-point function computation as in [48].

See also [49] for a general analysis of the bulk viscosity for Dp-brane solutions.
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Figure 6. Ratio of bulk to shear viscosity as a function of temperature for different values of φM .

of sound: both at low and high temperatures the ratio of the two viscosities vanishes, while

at intermediate temperatures T ∼ Λ it attains φM -dependent values that grow with φM .

As in the case of ε − 3p and the interaction measure, the fact that the ratio of viscosities

vanishes at high temperatures does not imply that the bulk viscosity itself vanishes. In

fact, we have checked numerically that at high temperatures the bulk viscosity scales as

ζ ∼ Λ2T . Nevertheless, the fact that the ratio of viscosities approaches zero shows that

transport is effectively conformal, since the contribution to the hydrodynamic stress tensor

of the bulk tensor is suppressed with respect to the shear one.6

It is interesting to note that the ratio of viscosities at low temperatures violates Buchel’s

bound

ζ

η
≥ 2

(
1

3
− c2

s

)
, (3.21)

as illustrated in figure 7. Violations of this bound have been previously encountered in

other models such as [45, 48, 50].

4 Quasi-normal modes and relaxation

We now turn to the description of the off-equilibrium dynamics of our holographic model.

We study the reaction of the system to small perturbations which drive it away from local

equilibrium. On the gravity side this problem translates into the study of the relaxation

of the black brane solutions constructed above when the different background fields are

perturbed. As is well known, this relaxation process is controlled by an infinite set of

6Here we are implicitly assuming that the magnitude of the shear tensor is not parametrically suppressed

with respect to the bulk one. Should the flow of the system be prepared such that the shear tensor identically

vanishes, then transport would be dominated by the bulk tensor.
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Figure 7. Violation of Buchel’s bound at low temperatures.

discrete, damped modes known as QNMs. In this section we will determine the QNM

frequencies of the system as a function of the temperature.

Since in our holographic model the scalar field backreacts on the geometry, metric fluc-

tuations couple to fluctuations of the scalar field and they must all be considered simultane-

ously. Denoting by G(T) the black brane metric in Eddington-Finkelstein coordinates (3.1),

we will study fluctuations of the form

G(T)
MN → G(T)

MN + hMN , φ→ φ+ ϕ . (4.1)

The dynamics of hMN and ϕ is governed by the linearised Einstein and scalar field equations

on the background spacetime G(T)
MN . We will use the value of the unperturbed scalar

field φ as a coordinate in the holographic direction.

As is well known (see e.g. [51]) not all fluctuations are physical, since reparametrisation

invariance leads to a gauge symmetry in the linearised equations of motion. In the presence

of a scalar field, the linearised equations of motion are invariant under the transformation

hMN → hMN +∇MχN +∇MχN , ϕ→ ϕ+ χM∇Mφ , (4.2)

with χM a spacetime-dependent vector field and ∇M the covariant derivative in the back-

ground metric G(T)
MN . Because of this symmetry, not all fluctuations are physical and

the relaxation dynamics of the black brane is encoded in the spectrum of gauge invariant

combinations of fields.7

In this paper we will study the relaxation of homogeneous disturbances of the plasma.

In other words, we will allow for time but not for space dependence of the perturbations.

We will consider both isotropic and anisotropic perturbations and we will denote by z

the direction of anisotropy. On the gravity side, these perturbations will depend on time

and on the holographic radial coordinate. Under these conditions, there are only two

7See [52] for a detailed classification of these fluctuations in the context of non-conformal theories.
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independent sets of gauge invariant excitations of the plasma, which may be parametrized

by the following combination of fields8

Zaniso = e−2A (hzz − haa) , (4.3)

Zbulk = ϕ− e−2A(φ)

2A′(φ)
haa , (4.4)

where haa = (hxx+hyy)/2. The first fluctuation, Zaniso, controls anisotropic perturbations

that leave unaffected the expectation value of the scalar operator, the average pressure

and the trace of the stress tensor. The non-conformal mode Zbulk controls fluctuations

that change the three pressures in an isotropic way and at the same time modify the

expectation value of the scalar operator and the trace of the stress tensor. At non-zero

spatial momentum these excitations would be coupled to one another and they would

include the hydrodynamic modes. Our restriction to the space-independent sector implies

that the energy density of the plasma is unchanged by the fluctuations (4.3)–(4.4), since

in a homogeneous plasma conservation of the stress tensor reduces to ∂tε = 0.

Manipulating the linearised Einstein and Klein-Gordon equations and after a Fourier

transform in time, the dynamics of the Zaniso and Zbulk modes are given by the equations

−iωLbulkZbulk = RbulkZbulk , (4.5)

−iωLanisoZaniso = RanisoZaniso , (4.6)

where Lbulk, Lbulk, Raniso, Raniso are linear operators in the holographic direction given by

Laniso = Lbulk =
LeB−A

h(φ)

(
3A′ + 2

d

dφ

)
, (4.7)

Raniso =
L2e2BV ′

h

d

dφ
+

d2

dφ2
, (4.8)

Rbulk = Raniso +

[
8h
(

6 (A′)2 − 1
)
− 3A′

(
L2e2B (3A′V ′′ + 8V ′)− 4h′

)]
9h (A′)2 , (4.9)

with A, B and h the numerically computed functions which determine the background,

given by (3.6)–(3.8). The equation for the anisotropic fluctuation, Zaniso, is that of a

massless probe scalar field, while the equation for the bulk fluctuations Zbulk includes an

explicit dependence on the potential. The discrete set of normalizable, in-falling solutions

of this system of equations are the QNMs. The fact that the equations are linear in

the frequency is a consequence of the Eddington-Finkelstein form of the thermal metric

eq. (3.1). Following [33] we use this to determine the QNMs and their associated frequencies

by spectral methods, which allow us to reduce the problem of finding the complex-valued

spectrum of excitations to an eigenvalue problem. This method is particularly suited for

8Anisotropic fluctuations induced by Z0 = hxy are also possible and independent of the two modes listed

in (4.3)–(4.4). However, we will not consider these fluctuations here because at zero spatial momentum the

dynamics of Z0 is identical to that of Zaniso.

– 15 –



J
H
E
P
1
0
(
2
0
1
6
)
1
5
5

background metrics which are only known numerically. We have also double-checked the

results for some representative frequencies with a shooting method.

The QNM frequencies depend on the temperature of the plasma. As the temperature

changes, each of these complex frequencies follows some trajectory in the complex plane.

In figure 8 we show these trajectories for the four lowest QNMs of the anisotropic perturba-

tions Zaniso for different values of φM . Each of the points on a given trajectory corresponds

to a different value of the temperature. Note that in all panels these trajectories begin and

end at the same value, indicated by the crosses, “+”. The reason for this is that the Zaniso

fluctuations correspond in the gauge theory to fluctuations exclusively of the stress tensor

(i.e. with no contribution of the scalar operator). Since the stress tensor is conserved, its

dimension is exactly 4 both at the UV and at the IR fixed points regardless of the value

of φM . In a CFT, this information of an operator alone would determine the spectrum of

the dual QNMs. Since our theory approaches a CFT in the UV and in the IR, the QNMs

associated to the pure-stress-tensor fluctuations Zaniso approach the same limiting confor-

mal values at high and low temperatures. In contrast, at intermediate temperatures all the

QNM frequencies possess a smaller imaginary part than their conformal counterparts. The

magnitude of this deviation depends on the non-conformality of the theory. For φM = 1,

when the non-conformal parameter I, eq. (3.18), is small at all temperatures, the complex

plane trajectories of all modes remain close to the conformal value. As φM increases the

excursion of all modes in the complex plane deviates more from the conformal values. Note,

however, that these paths seem to saturate at very high value of the parameter φM . In

particular, even though the change in the number of IR degrees of freedom differs by more

than 3 orders of magnitude, the excursion in the complex plane of the simulations with

φM = 10 and φM = 100 are very similar. This is in accordance with the small change in

non-conformality observed in figure 4.

In figure 9 we show the complex-plane trajectories of the four lowest QNMs of the

bulk mode Zbulk as a function of temperature for different values of φM . In all panels, the

blue “+” crosses show the QNMs of a probe scalar field in an AdS black brane background

dual to a CFT scalar operator of dimension 3 [53]. Similarly, the red “�” squares show

the QNMs of a probe scalar field in an AdS black brane background dual to an operator of

dimension ∆IR given by eq. (2.9). Since this dimension depends on φM , the position of the

red “�” squares changes from panel to panel. Based on our discussion of the Zaniso QNMs

above, one may expect that in the case of Zbulk the trajectories begin at the blue crosses

at high temperature and end at the red crosses at low temperature. However, as we can

see from figure 9, the trajectories in this case possess a more interesting structure.

In the upper left panel of figure 9 we show the trajectories for the φM = 1 potential.

For this value, the effective IR mass of the scalar is such that the first two QNMs of the

ultraviolet probe scalar are closer to the real axis than the first QNM of the infrared probe

scalar. This ordering determines the trajectories of the QNMs as a function of temperature.

As shown in the plot, starting from the IR, the lowest QNM flows towards the closest UV

mode in the complex plane, which in this case is the second UV mode. All IR modes follow

similar trajectories in such a way that (at least as far as our numerics can resolve) the n-th
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Figure 8. Complex plane trajectories of the four lowest QNMs of the Zaniso-channel for different

values of φM . The “+” crosses mark the position of the QNM of thermal AdS5 in this channel. We

only show the QNMs with positive real part of the frequency.

IR mode flows to the (n+1)-th ultraviolet mode.9 As a consequence, there are no available

IR modes to which the lowest UV mode can flow into. Therefore, this mode decouples at

low temperature, flowing deep into the complex imaginary plane.

For the other values of φM displayed in figure 9, the positions of the IR and the UV

modes alternate in the complex plane, but this does not mean that the flow induced by

the temperature is a direct map between these two sets of modes. Even though for the

remaining three panels the lowest QNM flows between the lowest modes of the IR and UV

theories, in all panels there is always a mode that decouples from the spectrum, although

that mode is different for each of the displayed values of φM . The origin of this decoupling is

that, after a certain mode, the n-th IR mode flows to the (n+1)-th UV mode, interrupting

the trajectory of the n-th UV mode. When this happens, we observe a phenomenon similar

to level anti-crossing in quantum mechanics. We have checked that for φM = 1000 (not

shown) the complex-plane trajectories are almost identical to the φM = 100 trajectories

displayed in the bottom-right panel of figure 9. This suggests that the observed structure

saturates at large φM and is captured by the φM = 100 plot.

In figure 10 we show the temperature dependence of the imaginary (left) and real

(right) parts of the first four quasi-normal frequencies for different values of φM . Each plot

9We have tested this behaviour for the first 8 QNMs.
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Figure 9. Complex-plane trajectories of the four lowest QNMs of the Zbulk-channel for different

values of φM . The “+” crosses (“�” squares) mark the position of the QNM of a probe scalar in

an AdS black brane background dual to an operator of dimension ∆ = 3 (∆ = ∆IR). We only show

the QNMs with positive real part of the frequency.

shows the QNM of the anisotropic (blue) and bulk (red) channels. As already discussed,

both of these two sets of modes flow from their values in the UV fixed point to their values

in the IR fixed point. As shown in the plots, the effective conformal behaviour of the

QNMs at high temperature stops when the temperature becomes of order the source Λ.

At higher temperatures, the temperature dependence of both the real and imaginary part

of the modes is non-trivial, and it reflects the intricate trajectories in the complex plane

displayed in figure 9 and figure 8. These plots also show explicitly how the disappearance

of one bulk QNM occurs at low temperature. The fact that this disappearance seems to

be linear in all plots in figure 10 clarifies the temperature dependence of this mode. The

observed constant slope implies that this quasi-normal frequency becomes temperature-

independent at low temperature (we have explicitly checked this) and therefore it decouples

from the IR theory.

As a final remark, we note that the numerical results displayed in figure 10 allow

us to compare the magnitude of the different modes at the same temperature. As we

will discuss in more detail in the next section, the imaginary part of the quasi-normal

frequencies is related to the relaxation back to equilibrium of small plasma perturbations.

It is interesting to note that the ordering of the imaginary parts of the anisotropic and

bulk modes changes with temperature: while at high temperatures the imaginary part of
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Figure 10. Temperature dependence of the real part (right) and the imaginary part (left) of

the four lowest QNMs of the Zbulk-channel (red, closed symbols) and Zaniso-channel (open, blue

symbols).
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Figure 11. Dependence of the imaginary part of the lowest quasi-normal anisotropic (left) and

bulk (right) modes on the speed of sound for different potentials. δ = 1/3− c2s.

the lowest bulk mode is smaller than that of the anisotropic mode, at low temperatures

this order is reversed. This crossing of the imaginary parts of the lowest modes is present

for all values of φM . Nevertheless, at φM = 1 this effect is much more prominent, since for

this φM the disappearing QNM is the lowest bulk mode at high temperature. In the next

section we will discuss the consequences of this behaviour.

5 Discussion

The behaviour of the QNM with smallest imaginary part, dubbed the lowest QNM, is par-

ticularly relevant for understanding the off-equilibrium dynamics of theories with a gravity

dual. At non-zero spatial momentum, the lowest QNM of metric perturbations is dual

to hydrodynamic excitations of the dual theory. However, in the zero-spatial momentum

limit we have considered, the residues of the hydrodynamic poles vanish.10 In this limit the

relaxation back to equilibrium is controlled by the QNM frequencies, with the longest-lived

excitation corresponding to the lowest QNM. We will refer to the inverses of the imaginary

parts of the frequencies of the lowest QNMs in the different channels as relaxation times.

In the non-conformal theory that we have studied, these important time scales have a very

interesting behaviour.

As shown in figure 10, the relaxation time associated to the anisotropic and bulk

channels have a non-trivial temperature dependence, as a consequence of non-conformality.

To best understand the origin of this temperature dependence, following [33, 34] in figure 11

we show the imaginary part of the lowest QNM as a function of δ = 1/3 − c2
s for the

anisotropic channel (left) and the bulk channel (right) for different values of φM . For the

anisotropic channel, most of this dependence may be understood as a consequence of the

change of the speed of sound, similarly to the holographic constructions analysed in [33, 34].

Although the inverse relaxation time is not just a common function of cs for all models,

up to small corrections a simple linear dependence of the imaginary part of the lowest

anisotropic mode on δ = 1/3− c2
s provides a good estimate for the relaxation time in this

10We thank A. Starinets for clarifying this point to us.
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channel. This simple approximate scaling does not work in the bulk channel, as shown in

the right panel of figure 11. Unlike the anisotropic channel, the relaxation time is influenced

significantly by the change in the scaling dimension of the scalar operator in the high and

low temperature phases, which enters only indirectly into thermodynamic properties such

as cs. Therefore, the relaxation of strongly coupled gauge theories is, in general, not just

controlled by thermodynamic properties, but additional microscopic dynamics of the theory

may also be important to understand this complicated process.

The different behaviour of these time scales reflects the fact that the way in which the

system relaxes depends on the way it is excited. To focus the discussion, we will restrict

ourselves to generic excitations of the stress tensor of the system. Since in a CFT the

trace of the stress tensor vanishes by symmetry, in a CFT this trace cannot be affected

by fluctuations of the bulk mode. Since in addition the bulk mode is isotropic, it follows

that the stress tensor itself in a CFT cannot be affected by the bulk mode. Because of

this decoupling, the relaxation of small excitations of the stress tensor is controlled solely

by the lowest mode of the anisotropic channel, given by the δ = 0 intercept of figure 11

(left). In a non-conformal theory, however, this decoupling does not occur. Because of

non-conformality, the fluctuations of the stress tensor and of the operator O mix. As

an example, note that small isotropic variations of the pressure of the system, which at

finite momentum are part of the sound channel, excite the bulk mode, as it can be easily

inferred from the Ward identity eq. (3.17). More generally, the variation of the stress tensor

associated to the two fluctuating channels (4.3)–(4.4) is given by

∆ε = 0, (5.1)

∆pz =
1

3
Λ4
(
Z(3)

bulk + 4Z(4)
aniso

)
, (5.2)

∆p⊥ =
1

3
Λ4
(
Z(3)

bulk − 2Z(4)
aniso

)
, (5.3)

∆ 〈O〉 = Λ3Z(3)
bulk , (5.4)

where ∆pz and ∆p⊥ are the diagonal components of the stress tensor along the direction of

the anisotropic perturbation and perpendicular to it, and Z(3)
bulk and Z(4)

aniso are the normal-

isable modes of the perturbations. These expressions show explicitly how both channels

affect the dynamics of the pressure, while only the bulk channel affects the expectation

value of the scalar operator. As a consequence, the relaxation of the stress tensor of the

system will be dominated by the mode with the smallest imaginary part of the two sets of

towers displayed in figure 10. As it can be seen in this plot, for all values of φM , relaxation

is dominated by different modes at high and low temperatures. The competition between

these two channels implies that the relaxation dynamics in our family of holographic models

follows different paths at high and low temperatures.

The contributions of the anisotropic and the bulk modes to the stress tensor codify two

different physical processes. As explained above, the anisotropic mode controls anisotropic

perturbations of the pressure that leave unaffected the energy density, the expectation

value of the scalar operator, the average pressure and the trace of the stress tensor. The
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bulk mode controls fluctuations that change the three pressures in an isotropic way and at

the same time modify the expectation value of the scalar operator and the relation between

the energy density and pressure given by the equation of state. The relaxation of a generic

small stress tensor disturbance therefore requires two distinct process: the “isotropisation”

of the system, which amounts to equating the diagonal spatial components of the stress

tensor (pressures); and the “EoSization” of the system, with which we only refer to the

process by which the trace of the stress tensor attains its equilibrium value. We have

carefully defined these two terms to avoid any possible confusion with “thermalization”,

namely the process by which a system reaches perfect thermal equilibrium.

Consider first the case in which the bulk mode dominates the relaxation process, mean-

ing that its associated lowest QNM decays faster than that associated to the anisotropic

mode. In this case the system first relaxes the trace of the stress tensor, such that the pres-

sures of the system no longer fluctuate independently, and only later equates the value of

all the pressures to one another. In other words, the system first EoSizes and subsequently

isotropizes. This is the behaviour of the holographic models at small values of φM , such as

φM = 1, 3, at low temperatures. Since in CFTs the trace of the stress tensor is fixed, this

relaxation path is very similar to that in CFTs.

In contrast, consider now the opposite case in which relaxation is dominated by the

anisotropic mode, meaning that its associated lowest QNM decays faster than that associ-

ated to the bulk mode. In this case the pressure of the system is first isotropized to a value

that is not related to the energy density through the equation of state, and only later the

subsequent dynamics of this isotropic stress tensor relaxes this value of the pressure to that

dictated by the equation of state. At high temperatures, this is the path to equilibration

followed by our models, which differs qualitatively from the conformal case.11

Finally, when the two relaxation times are comparable, as it is the case in the low

temperature regime for large values of φM = 10, 100, both of these processes occur simul-

taneously.

Our calculations are done at zero spatial momentum. At non-zero k the analysis is

more complicated because the anisotropic mode splits into the shear, the tensor and the

sound modes, and the latter mixes with the bulk mode. Nevertheless, in the coupled bulk-

sound system it is still possible to distinguish between those excitations that change the

trace of the stress tensor and those that do not. These coupled dynamics will of course

modify the EoSization and the isotropization times that we have computed. However, by

continuity this modification must be small for small k. Since the QNM frequencies are

parametrically of order T , we therefore expect that their ordering will remain the same

provided k � T .

Although the analysis of QNMs can only provide definite answers for the fate of small

perturbations off-equilibrium, the rich structure exhibited in this relaxation process has

implications for the dynamics of initial configurations that are far off-equilibrium. As we

mentioned above, the numerical analyses of collisions in N = 4 SYM yield hydrodynamisa-

tion times that are comparable to the relaxation times obtained via a QNM analysis. While

11Note that the right-hand side of (2.17) may suggest that Λ 〈O〉 must be large in order to cause a

significant violation of the equation of state, thus in possible conflict with the linear approximation. It

would be interesting to explore this in a non-linear calculation.
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the microscopic explanation of this observation is not understood, this experience has led

the authors of [32] to suggest that the hydrodynamisation of non-conformal theories is ba-

sically controlled by the temperature of hydrodynamisation, with small (non-parametric)

differences with respect to the conformal case. Following this reasoning, we may estimate

how much longer the hydrodynamisation can be in the family of theories that we have stud-

ied. Given the mixing of the bulk and anisotropic modes, this longest relaxation is given by

the absolute minimum of the (negative) imaginary part of the QNM sets which, as shown in

figure 10, is always controlled by the bulk mode. Comparing with the relaxation of confor-

mal theories τconf = 0.73/2πT , this maximal relaxation is τmax/τconf = 2.1, 2.5, 3.0, 3.15

for φM = 1, 3, 10, 100. These maxima occur at T/Λ = 0.33, 0.19, 0.16, 0.16 for each

model respectively. It would be interesting to test explicitly whether the connection with

the linearised analysis persists in full numerical simulations of shock collisions in our non-

conformal backgrounds. In particular, this would allow the study of the impact of the

different relaxation channels on the on-set of hydrodynamic behaviour.
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[8] M.P. Heller, R.A. Janik, M. Spaliński and P. Witaszczyk, Coupling hydrodynamics to

nonequilibrium degrees of freedom in strongly interacting quark-gluon plasma, Phys. Rev.

Lett. 113 (2014) 261601 [arXiv:1409.5087] [INSPIRE].

[9] A. Kurkela and Y. Zhu, Isotropization and hydrodynamization in weakly coupled heavy-ion

collisions, Phys. Rev. Lett. 115 (2015) 182301 [arXiv:1506.06647] [INSPIRE].

[10] STAR collaboration, K.H. Ackermann et al., Elliptic flow in Au+Au collisions at√
sNN = 130 GeV, Phys. Rev. Lett. 86 (2001) 402 [nucl-ex/0009011] [INSPIRE].

[11] PHENIX collaboration, S.S. Adler et al., Elliptic flow of identified hadrons in Au+Au

collisions at
√
sNN = 200 GeV, Phys. Rev. Lett. 91 (2003) 182301 [nucl-ex/0305013]

[INSPIRE].

[12] PHOBOS collaboration, B.B. Back et al., Centrality and pseudorapidity dependence of

elliptic flow for charged hadrons in Au+Au collisions at
√
sNN = 200 GeV, Phys. Rev. C 72

(2005) 051901 [nucl-ex/0407012] [INSPIRE].

[13] ATLAS collaboration, Measurement of the azimuthal anisotropy for charged particle

production in
√
sNN = 2.76 TeV lead-lead collisions with the ATLAS detector, Phys. Rev. C

86 (2012) 014907 [arXiv:1203.3087] [INSPIRE].

[14] CMS collaboration, Measurement of the elliptic anisotropy of charged particles produced in

PbPb collisions at
√
sNN = 2.76 TeV, Phys. Rev. C 87 (2013) 014902 [arXiv:1204.1409]

[INSPIRE].

[15] ALICE collaboration, Elliptic flow of charged particles in Pb-Pb collisions at 2.76 TeV,

Phys. Rev. Lett. 105 (2010) 252302 [arXiv:1011.3914] [INSPIRE].

[16] ALICE collaboration, Anisotropic flow of charged particles in Pb-Pb collisions at√
sNN = 5.02 TeV, Phys. Rev. Lett. 116 (2016) 132302 [arXiv:1602.01119] [INSPIRE].

[17] ATLAS collaboration, Measurement of long-range pseudorapidity correlations and azimuthal

harmonics in
√
sNN = 5.02 TeV proton-lead collisions with the ATLAS detector, Phys. Rev.

C 90 (2014) 044906 [arXiv:1409.1792] [INSPIRE].

[18] CMS collaboration, Evidence for Collective Multiparticle Correlations in p-Pb Collisions,

Phys. Rev. Lett. 115 (2015) 012301 [arXiv:1502.05382] [INSPIRE].

– 24 –

http://dx.doi.org/10.1103/PhysRevD.82.026006
http://dx.doi.org/10.1103/PhysRevD.82.026006
https://arxiv.org/abs/0906.4426
http://inspirehep.net/search?p=find+EPRINT+arXiv:0906.4426
http://dx.doi.org/10.1007/JHEP10(2015)070
https://arxiv.org/abs/1501.04644
http://inspirehep.net/search?p=find+EPRINT+arXiv:1501.04644
http://dx.doi.org/10.1007/JHEP07(2014)086
https://arxiv.org/abs/1309.1439
http://inspirehep.net/search?p=find+EPRINT+arXiv:1309.1439
http://dx.doi.org/10.1103/PhysRevLett.112.221602
http://dx.doi.org/10.1103/PhysRevLett.112.221602
https://arxiv.org/abs/1312.2956
http://inspirehep.net/search?p=find+EPRINT+arXiv:1312.2956
http://dx.doi.org/10.1103/PhysRevLett.111.181601
http://dx.doi.org/10.1103/PhysRevLett.111.181601
https://arxiv.org/abs/1305.4919
http://inspirehep.net/search?p=find+EPRINT+arXiv:1305.4919
http://dx.doi.org/10.1103/PhysRevLett.113.261601
http://dx.doi.org/10.1103/PhysRevLett.113.261601
https://arxiv.org/abs/1409.5087
http://inspirehep.net/search?p=find+EPRINT+arXiv:1409.5087
http://dx.doi.org/10.1103/PhysRevLett.115.182301
https://arxiv.org/abs/1506.06647
http://inspirehep.net/search?p=find+EPRINT+arXiv:1506.06647
http://dx.doi.org/10.1103/PhysRevLett.86.402
https://arxiv.org/abs/nucl-ex/0009011
http://inspirehep.net/search?p=find+EPRINT+nucl-ex/0009011
http://dx.doi.org/10.1103/PhysRevLett.91.182301
https://arxiv.org/abs/nucl-ex/0305013
http://inspirehep.net/search?p=find+EPRINT+nucl-ex/0305013
http://dx.doi.org/10.1103/PhysRevC.72.051901
http://dx.doi.org/10.1103/PhysRevC.72.051901
https://arxiv.org/abs/nucl-ex/0407012
http://inspirehep.net/search?p=find+EPRINT+nucl-ex/0407012
http://dx.doi.org/10.1103/PhysRevC.86.014907
http://dx.doi.org/10.1103/PhysRevC.86.014907
https://arxiv.org/abs/1203.3087
http://inspirehep.net/search?p=find+EPRINT+arXiv:1203.3087
http://dx.doi.org/10.1103/PhysRevC.87.014902
https://arxiv.org/abs/1204.1409
http://inspirehep.net/search?p=find+EPRINT+arXiv:1204.1409
http://dx.doi.org/10.1103/PhysRevLett.105.252302
https://arxiv.org/abs/1011.3914
http://inspirehep.net/search?p=find+EPRINT+arXiv:1011.3914
http://dx.doi.org/10.1103/PhysRevLett.116.132302
https://arxiv.org/abs/1602.01119
http://inspirehep.net/search?p=find+EPRINT+arXiv:1602.01119
http://dx.doi.org/10.1103/PhysRevC.90.044906
http://dx.doi.org/10.1103/PhysRevC.90.044906
https://arxiv.org/abs/1409.1792
http://inspirehep.net/search?p=find+EPRINT+arXiv:1409.1792
http://dx.doi.org/10.1103/PhysRevLett.115.012301
https://arxiv.org/abs/1502.05382
http://inspirehep.net/search?p=find+EPRINT+arXiv:1502.05382


J
H
E
P
1
0
(
2
0
1
6
)
1
5
5

[19] ALICE collaboration, Multiparticle azimuthal correlations in p-Pb and Pb-Pb collisions at

the CERN Large Hadron Collider, Phys. Rev. C 90 (2014) 054901 [arXiv:1406.2474]

[INSPIRE].

[20] ATLAS collaboration, Observation of Long-Range Elliptic Azimuthal Anisotropies in√
s = 13 and 2.76 TeV pp Collisions with the ATLAS Detector, Phys. Rev. Lett. 116 (2016)

172301 [arXiv:1509.04776] [INSPIRE].

[21] P.M. Chesler, How big are the smallest drops of quark-gluon plasma?, JHEP 03 (2016) 146

[arXiv:1601.01583] [INSPIRE].

[22] P.M. Chesler, Colliding shock waves and hydrodynamics in small systems, Phys. Rev. Lett.

115 (2015) 241602 [arXiv:1506.02209] [INSPIRE].
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