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tudes involving massless or massive particles in an arbitrary representation of the gauge
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We also introduce the cubic vertex expansion of an amplitude, and use it to derive a

generalized-gauge-invariant constraint on the kinematic numerators of the amplitude. We

show that the amplitudes of the bi-adjoint scalar theory are invariant under the color-factor

symmetry, and use this to derive the null eigenvectors of the propagator matrix.
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A Five-gluon amplitudes 48

1 Introduction

In 2008, Bern, Carrasco, and Johansson discovered a novel set of linear relations satisfied

by tree-level color-ordered amplitudes in gauge theories [1]. They arrived at these relations

by writing the tree-level n-gluon amplitude as a sum over (2n − 5)!! diagrams assembled

from cubic vertices

An =
∑
i

ci ni
di

(1.1)

where the color factor ci associated with the diagram is composed of group theory struc-

ture constants fabc, the denominator di consists of the product of the inverse propaga-

tors associated with the diagram, and the kinematic numerator ni depends on the mo-

menta and polarizations of the gluons. All contributions from diagrams with quartic

vertices are redistributed among the cubic diagrams. By virtue of the Jacobi identity

fabefcde + facefdbe + fadefbce = 0 satisfied by the structure constants, the color factors ci
obey a set of Jacobi relations of the form

ci + cj + ck = 0 . (1.2)

Because of these linear dependences, the kinematic numerators ni are not uniquely defined,

but can undergo generalized gauge transformations ni → ni + δni which leave eq. (1.1)

unchanged [2, 3]. The authors of ref. [1] conjectured that there exists a generalized gauge

in which the kinematic numerators satisfy the same algebraic relations as the color factors;

in particular, they can be made to satisfy kinematic Jacobi relations

ni + nj + nk = 0 . (1.3)

From this assumption of color-kinematic duality, they demonstrated the existence of new

relations (subsequently known as BCJ relations) satisfied by the color-ordered amplitudes

A(1, · · · , n). These relations can be derived from the fundamental BCJ relation (and

permutations thereof) [4–6]

n∑
b=3

(
b−1∑
c=1

k2 · kc

)
A(1, 3, · · · , b− 1, 2, b, · · · , n) = 0 (1.4)

where ka are the (outgoing) momenta of the gluons. Besides color-kinematic duality, these

relations rely on the properties of the propagator matrix [7], constructed from the inverse

denominators 1/di (see section 8 for a precise definition). Specifically, as a consequence of

momentum conservation, this (n−2)!× (n−2)! matrix has rank (n−3)!, and consequently

possesses a set of (n− 3)(n− 3)! eigenvectors with eigenvalue zero.

The BCJ relations (1.4) were subsequently proven using string-theory techniques [4, 8]

and BCFW on-shell recursion [5, 9], providing evidence for the conjecture of tree-level
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color-kinematic duality. Bern et al. conjectured that color-kinematic duality also applies

to the integrands of loop-level amplitudes [1, 2]; while not proven, this conjecture has been

tested for N = 4 supersymmetric Yang-Mills theory through four loops [10–18], and for

pure Yang-Mills theory through two loops [19, 20]. Another exciting aspect of the story

is that gauge-theory kinematic numerators obeying color-kinematic duality can be used to

construct gravitational amplitudes via the double copy procedure [1–3]. A recent review

of all of these developments may be found in ref. [21].

Despite the fact that the BCJ relations for n-gluon amplitudes have been definitively

established, interest in tree-level kinematic numerators continues, not least because the

numerators that are naturally generated by Feynman rules1 generally do not obey the

relations (1.3) except in the case of four-point amplitudes [23, 24]. Many approaches have

been developed to obtain kinematic numerators that obey color-kinematic duality directly

from a Lagrangian approach [3, 25–34].

In this paper, we introduce a new set of symmetries obeyed by tree-level gauge-theory

amplitudes, associated with each external gluon in the amplitude.2 These symmetries act

on the color factors ci of the amplitude, shifting them by momentum-dependent quantities.

Since color factors do not carry any momentum dependence, this is a purely formal op-

eration; we prove, however, that the tree-level n-gluon amplitude is invariant under these

shifts by writing it in an alternative form known as the radiation vertex expansion [35].

We then show that the BCJ relations (1.4) follow as an immediate consequence of

the color-factor symmetry of the n-gluon amplitude. Although BCJ relations have been

previously established, our results reveal a more direct connection to the symmetries of the

Lagrangian formulation of gauge theory and its Feynman rules (i.e., gauge and Poincaré

invariance) and provide a basis for generalizations.

Let us describe this symmetry in a bit more detail, reserving a full description for

section 2. Given a tree-level n-gluon color factor ci, the choice of one of the external gluon

legs a divides the diagram in two at its point of attachment. Let Sa,i denote the subset of

the remaining legs on one side of this point; it does not matter which side we choose. The

shift of the color factor ci associated with gluon a must satisfy

δaci ∝
∑
c∈Sa,i

ka · kc . (1.5)

Choosing to sum over the complement of Sa,i gives the same result (up to sign) due to

momentum conservation. The constants of proportionality in eq. (1.5) are then constrained

by requiring that the shifted color factors respect all the Jacobi relations satisfied by ci for

any values of the momenta.

Consider the case where a is one of the legs involved in the Jacobi identity (see fig-

ure 1). Imagine that each of the three graphs in figure 1 is embedded in a larger tree

diagram, the same for each. Denote the color factors associated with each diagram by

c(r), where r = 1, 2, 3. For example, the color factor c(1) for the figure on the left contains

1String theory can generate numerators that respect color-kinematic duality [22].
2For bi-adjoint scalar theories, there is a symmetry for each external massless adjoint scalar in the

amplitude.
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Figure 1. Attaching a gluon to the legs of a cubic vertex. These form parts of the color factors

c(1), c(2), and c(3), respectively.

· · · fa1aabfba2b3 · · · , where the labels on fabc follow the diagram in clockwise order. Flipping

a to the other side of a leg changes the sign of the color factor due to the antisymmetry of

fabc. As a result of the Jacobi identity, the color factors obey
∑3

r=1 c(r) = 0. By eq. (1.5),

the shifts of these color factors are

δac(r) = α(r) ka ·K(r) (1.6)

where K(r) is the momentum flowing out of each leg. Requiring
∑3

r=1 δac(r) = 0 implies

that α(r) is independent of r, as a result of momentum conservation and masslessness of

the gluon. A more detailed description of the color-factor shifts is given in section 2.

The symmetry we have introduced has roots in the radiation symmetry [36] that under-

lies the general radiation zero theorem [35, 37, 38]. In theories with local gauge couplings

and spins ≤ 1, all single-photon tree amplitudes vanish if the ratios Qc/ka ·kc are all equal,3

where ka is the photon momentum, and c labels external particles with momentum kc and

charge Qc. These spin-independent zeros have spin-dependent counterparts where Qc are

replaced by numerators Jc, closely related to the kinematic numerators ni in eq. (1.1).

The underlying radiation symmetry refers to invariance under Qc → Qc + αka · kc as well

as Jc → Jc + βka · kc for arbitrary α and β. The extension to nonabelian “charges” has

also been considered and the details behind a nonabelian radiation vertex expansion dis-

cussed [35, 36]. The general color-factor symmetry introduced here, however, incorporates

crucial nonabelian constraints (Jacobi relations) on α, which lead to a complete set of BCJ

relations, and have not heretofore been developed. Nevertheless, since the color-factor sym-

metry relies on the presence of massless gauge bosons, we may regard it as a generalized

radiation symmetry.

We also introduce in this paper the cubic vertex expansion of an n-point amplitude An
with respect to one of the gluons a. Consider the set of cubic diagrams I that contribute

to the (n− 1)-point amplitude of all the particles in An except for gluon a. We show that,

for any a, the amplitude An can be written as a triple sum over the legs r of the vertices

v of the cubic diagrams I:

An =
∑
I

∑
v

1∏3
s=1 d(a,I,v,s)

3∑
r=1

c(a,I,v,r)n(a,I,v,r)

2ka ·K(a,I,v,r)
. (1.7)

Here d(a,I,v,r) is the product of inverse propagators that branch off from leg r of vertex

v of diagram I, c(a,I,v,r) is the color factor of the n-point diagram obtained by attaching

3A universal ratio is restrictive and few photon amplitudes have zeros in the physical phase space.
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gluon a to leg r of vertex v of diagram I (exactly as in figure 1), and n(a,I,v,r) is the

associated n-point kinematic numerator. The shift of c(a,I,v,r) associated with gluon a is

δa c(a,I,v,r) = α(a,I,v) ka ·K(a,I,v,r), where, as explained above, α(a,I,v) is independent of r.

Since the alternative radiation vertex expansion shows that the amplitude An is invariant

under the color-factor shift, we may conclude from the cubic vertex expansion of An that∑
I

∑
v

α(a,I,v)∏3
s=1 d(a,I,v,s)

3∑
r=1

n(a,I,v,r) = 0 . (1.8)

Note that this constraint on the kinematic numerators, less stringent than the kinematic

Jacobi relations (which state that
∑3

r=1 n(a,I,v,r) = 0 for each vertex), is nonetheless suf-

ficient to imply the BCJ relations (1.4). Moreover, unlike the kinematic Jacobi relations,

the condition (1.8) is invariant under generalized gauge transformations. A constraint of

precisely the form (1.8) was derived in refs. [39, 40] for the five-gluon amplitude using the

monodromy properties of string theory amplitudes.

We show in this paper that more general gauge-theory amplitudes, with both gluons

and massless or massive particles in an arbitrary representation of the gauge group and

with arbitrary spin ≤ 1, are also invariant under the color-factor symmetry. Consequently,

the kinematic numerators of these amplitudes obey a constraint analogous to eq. (1.8).

We further show that color-factor symmetry implies BCJ relations for the color-ordered

amplitudes of a class of n-point amplitudes involving n−2 gluons and a pair of particles in

an arbitrary representation of the gauge group and arbitrary spin, as previously conjectured

in refs. [41, 42].

BCJ relations for the primitive amplitudes of a more general class of amplitudes con-

taining gluons and an arbitrary number of pairs of differently flavored fundamentals (based

on a proper decomposition developed by Melia [43–45] and Johansson and Ochirov [42])

were conjectured by Johansson and Ochirov [42], and subsequently proven using BCFW

on-shell recursion by de la Cruz, Kniss, and Weinzierl [46]. In a sequel to this paper [47],

we prove that these BCJ relations also follow as a direct consequence of the color-factor

symmetry.

The amplitudes of the theory of massless bi-adjoint scalars with cubic interactions [48]

also exhibit invariance under color-factor symmetry, as we show using the cubic vertex ex-

pansion. In this case, the color-factor shifts are associated with each massless adjoint scalar

in the amplitude. As a consequence, we demonstrate the reduced rank of the propagator

matrix for the n-gluon gauge-theory amplitude by deriving the set of its null eigenvectors.

Finally, we generalize the cubic vertex expansion and color-factor symmetry to loop-

level amplitudes containing at least one external gluon. We exhibit an independent set of

shifts that act on the color factors of one-loop n-gluon amplitudes and which depend on

the loop momentum as well as external momenta. These one-loop amplitudes are invariant

under color-factor shifts in theories that admit a color-kinematic-dual representation of

numerators. The color-factor symmetry also implies certain relations among the integrands

of one-loop color-ordered amplitudes that were previously uncovered in refs. [49–51].

The contents of this paper are as follows. In section 2 we define the color-factor shift for

the n-gluon amplitude and derive the BCJ relations as a consequence of the invariance of

– 5 –
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the amplitude under this shift. We also introduce the cubic vertex expansion, and use it to

derive a generalized-gauge-invariant constraint on the kinematic numerators of the n-gluon

amplitude. We introduce an analogous set of shifts of the kinematic numerators, and show

that they correspond to a generalized gauge transformation. In section 3, we prove the

invariance of the four-gluon amplitude under the color-factor symmetry, and in section 4, we

extend this to the n-gluon amplitude by using the radiation vertex expansion. In section 5,

we define the color-factor shift for more general amplitudes, and derive the BCJ relations

for the class of amplitudes containing n − 2 gluons and a pair of particles in an arbitrary

representation R. In section 6, we prove the invariance of the four-point amplitude with

two gluons and a pair of massive particles of arbitrary spin ≤ 1 and representation R
under the color-factor symmetry, and in section 7, we extend this to a general n-point

amplitude containing gluons and other particles. In section 8, we prove the invariance of

the amplitudes of the bi-adjoint scalar theory under the color factor symmetry, and derive

the null eigenvectors of the propagator matrix. In section 9, we generalize the cubic vertex

expansion and color-factor symmetry to loop-level amplitudes, and derive a constraint on

the integrands of one-loop color-ordered amplitudes. Section 10 contains a discussion and

conclusions. In appendix A, we write the shifts for all the color factors of the five-gluon

amplitude, and derive the explicit constraint on the kinematic numerators that follow from

the color-factor symmetry.

2 Color-factor symmetry and its consequences

We begin this section by introducing the color-factor symmetry in the simplest context,

the tree-level four-gluon amplitude

A4 =
csns
s

+
ctnt
t

+
cunu
u

(2.1)

where

cs = fa1a2bfba3b4 , ct = fa1a4bfba2b3 , cu = fa1a3bfba4b1 (2.2)

and s, t, and u are Mandelstam variables. We define the four-point color-factor shift to

act as4

cs → cs + α s, ct → ct + α t, cu → cu + α u (2.3)

where α is arbitrary. Eq. (2.3) preserves the Jacobi relation cs + ct + cu = 0 by virtue of

momentum conservation s+ t+ u = 0.

The statement that eq. (2.1) is invariant under eq. (2.3) implies the kinematic Jacobi

relation

ns + nt + nu = 0 . (2.4)

It is well-known [23, 24] that eq. (2.4) is satisfied in the case of the four-gluon amplitude,

and we will show this explicitly in section 3. This serves as proof of the invariance of the

four-gluon amplitude under the color-factor shift.

4In the case of the four-gluon amplitude, the shifts associated with various legs are all the same.
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1

(n−1)

n

γγ γ(2) (3)

Figure 2. Diagram for the half-ladder color factor c1γ(2)···γ(n−1)n.

Recall that the kinematic numerators ni are not uniquely defined by eq. (2.1) because

a generalized gauge transformation

ns → ns + β s, nt → nt + β t, nu → nu + β u (2.5)

(with β arbitrary) leaves eq. (2.1) unchanged by virtue of the Jacobi identity cs + ct +

cu = 0. In the case of the four-gluon amplitude, however, the sum ns + nt + nu is well-

defined: it is invariant under the generalized gauge transformation (2.5) due to momentum

conservation.

The four-gluon amplitude can be written in terms of color-ordered amplitudes as

A4 = csA(1, 2, 3, 4)− cuA(1, 3, 2, 4) . (2.6)

Invariance of eq. (2.6) under the shift (2.3) immediately implies

δ A4 = sA(1, 2, 3, 4)− uA(1, 3, 2, 4) = 0 (2.7)

which is the four-gluon BCJ relation [1].

2.1 Color-factor shift for n-gluon amplitudes

Next we turn to tree-level n-gluon amplitudes with n > 4, which may be written as a sum

over diagrams composed of cubic vertices (referred to as cubic diagrams) [1]

An =
∑
i

ci ni
di

. (2.8)

Associated with each cubic diagram i is a color factor ci obtained by sewing together

structure constants fabc. Among these color factors ci we may identify the subset of half-

ladder color factors cα defined by (see figure 2)

cα ≡
∑

b1,...,bn−3

faα(1)aα(2)b1fb1aα(3)b2 · · · fbn−3aα(n−1)aα(n) , α ∈ Sn . (2.9)

The color factors ci are not independent but obey a set of Jacobi relations. Using the

procedure outlined in ref. [52], the Jacobi identity fabefcde + facefdbe + fadefbce = 0 may be

repeatedly applied to reduce each ci to a linear combination of half-ladder color factors

ci =
∑

γ∈Sn−2

Mi,1γnc1γn, c1γn ≡ c1γ(2)···γ(n−1)n (2.10)

where γ denotes a permutation of {2, · · · , n − 1}. The (n − 2)! half-ladders c1γn form

an independent set. Alternatively, Mi,1γn may be computed by rewriting ci using fabc =

– 7 –
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(b−1)

(b)
(b+1)σ

σ

n

σ

n1

(b)σ(b−1)σ a

Figure 3. Diagrams with color factors c1···σ(b−1)[aσ(b)]σ(b+1)···n and c1···σ(b−1)aσ(b)···n.

Tr([T a, T b]T c), reducing the resulting expression to a linear combination of single traces,

and then identifying the coefficient of Tr(T a1T aγ(2) · · ·T aγ(n−1)T an) (see e.g., ref. [53]).

We now define a set of momentum-dependent shifts, associated with each external

gluon a in the amplitude, that act on the color factors ci. The action of the shift δaci
associated with gluon a is constrained by two requirements: (I) that it preserve all the

Jacobi relations satisfied by ci, and (II) that it satisfy

δaci ∝
∑
c∈Sa,i

ka · kc (2.11)

where Sa,i denotes the subset of the external particles on one side5 of the point at which

a is attached to ci. In particular, if ci is a color factor in which gluon a is attached to

an external leg b, the shift is proportional to ka · kb, which is an inverse propagator in the

associated Feynman diagram. More generally, eq. (2.11) is related (see eq. (2.20)) to the

propagators in the Feynman diagram associated with ci.

Consider the subset of n-point color factors obtained from a given (n− 1)-point cubic

diagram I by attaching gluon a to it in all possible ways. One of these color factors

has gluon a attached to external leg 1 of the (n − 1)-point diagram;6 define its shift to

be αI ka · k1. One may easily verify (using the argument in the introduction) that the

conditions (I) and (II) above uniquely fix the coefficients of the shifts of all the other color

factors in this subset. The coefficients αI for different (n − 1)-point diagrams are then

constrained by Jacobi relations among their color factors.

We now demonstrate that there is an (n − 3)!-parameter family of color-factor shifts

associated with each gluon a in the n-gluon amplitude. First choose a ∈ {2, · · · , n − 1},
and consider the subset of half-ladder color factors c1aσn, where σ ∈ Sn−3 denotes a per-

mutation of {2, · · · , n − 1} \ {a}. We define the color-factor shift associated with gluon a

to act on these half ladders as

δa c1aσ(2)···σ(n−1)n = αa,σ ka · k1 (2.12)

where αa,σ are a set of (n− 3)! arbitrary, independent constants (or functions) for each a.

Let c1···σ(b−1)[aσ(b)]σ(b+1)···n denote the color factor shown in figure 3; its shift is proportional

to ka · kσ(b). This together with eq. (2.12) and the Jacobi relation

c1σ(2)···σ(b−1)[aσ(b)]σ(b+1)···σ(n−1)n = c1σ(2)···σ(b−1)aσ(b)···σ(n−1)n − c1σ(2)···σ(b)aσ(b+1)···σ(n−1)n
(2.13)

5Either side gives the same result up to sign due to momentum conservation.
6Unless a = 1.
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implies that δa acts on the independent half-ladder color factors c1γn as7

δa c1σ(2)···σ(b−1)aσ(b)···σ(n−1)n = αa,σ

(
ka · k1 +

b−1∑
c=2

ka · kσ(c)

)
, a, b ∈ {2, · · · , n− 1}, b 6= a

(2.14)

consistent with eq. (2.11). The action on the remaining color factors is given by

δa ci =
∑

γ∈Sn−2

Mi,1γn δa c1γn (2.15)

which is also consistent with eq. (2.11), as may be shown using the procedure described in

ref. [52].

The color-factor shifts associated with the gluons {2, · · · , n − 1} are not all indepen-

dent. In particular, the (n− 3)!-parameter family of shifts associated with gluon n− 1 are

linear combinations of shifts associated with a ∈ {2, · · · , n − 2} as a result of momentum

conservation.8 We may also define (n − 3)!-parameter families of shifts associated with

gluons 1 and n. These are also not independent of the others. Thus the dimension of the

(abelian) group of color-factor shifts is (n− 3)(n− 3)!.

2.2 Fundamental BCJ relations from the color-factor symmetry

By using eq. (2.10), the tree-level n-gluon amplitude (2.8) may be rewritten in the Del

Duca-Dixon-Maltoni half-ladder decomposition [52, 54]

An =
∑

γ∈Sn−2

c1γnA(1, γ(2), · · · , γ(n− 1), n) (2.16)

where the coefficients

A(1, γ(2), · · · , γ(n− 1), n) =
∑
i

Mi,1γn ni
di

(2.17)

are color-ordered amplitudes belonging to the Kleiss-Kuijf basis [55]. In the previous

subsection, we defined the action of the color-factor symmetry associated with a given

gluon a. The variation of eq. (2.16) under the shift associated with a = 2 gives

δ2 An =
∑

σ∈Sn−3

α2,σ

n∑
b=3

(
k1 · k2 +

b−1∑
c=3

k2 · kσ(c)

)
A(1, σ(3), · · · , σ(b− 1), 2, σ(b), · · · , σ(n− 1), n) .

(2.18)

In sections 3 and 4, we prove that An is invariant under this shift. Since α2,σ are arbitrary

and independent, this implies that

n∑
b=3

(
k1 · k2 +

b−1∑
c=3

k2 · kσ(c)

)
A(1, σ(3), · · · , σ(b− 1), 2, σ(b), · · · , σ(n− 1), n) = 0 (2.19)

7In the case a = 2, replace σ(2) with σ(3), and the sum over c should begin with 3. In the case a = n−1,

replace σ(n− 1) with σ(n− 2).
8We have verified this numerically through n = 9, but we know the result must be true for all n because,

as we will see in section 8, the color-factor shifts correspond to null eigenvectors of the propagator matrix.

Since the (n − 2)! × (n − 2)! propagator matrix has rank (n − 3)! [48] there are at most (n − 3)(n − 3)!

independent null eigenvectors.
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which is the fundamental BCJ relation (1.4). All other permutations of this relation can

be obtained using the invariance of the amplitude under the color-factor shifts associated

with gluons 3 through n− 1.

It is known [1] that the BCJ relations reduce the number of independent color-ordered

amplitudes from (n − 2)! to (n − 3)!. Not surprisingly, the difference between these, (n −
3)(n − 3)!, is the dimension of the group of color-factor shifts that leave the amplitude

invariant.

2.3 Cubic vertex expansion

In order to examine the implications of the color-factor symmetry for the kinematic numer-

ators ni appearing in the cubic decomposition (2.8), we introduce in this section the cubic

vertex expansion of the amplitude with respect to one of the gluons. This expansion is sim-

ilar to, but distinct from, the radiation vertex expansion [35] that will be used in sections 4

and 7 to prove the invariance of n-point gauge-theory amplitudes under color-factor shifts.

The cubic decomposition (2.8) is a sum over the (2n−5)!! cubic diagrams of an n-gluon

amplitude, but for any a ∈ {1, · · · , n} it can be viewed as a sum over the (2n− 7)!! cubic

diagrams of an (n− 1)-point function with external legs {1, · · · , n} \ {a}, to each of which

gluon a is attached in 2n−5 different ways. Let us label these (n−1)-point cubic diagrams

by I and their denominators by d(a,I).

Each (n − 1)-point cubic diagram I has n − 3 vertices, the set of which we denote

by V(a,I). For each vertex v ∈ V(a,I), we can break d(a,I) into three factors
∏3
r=1 d(a,I,v,r),

where d(a,I,v,r) is the product of propagators that branch off from leg r of the vertex. If leg

r is an external leg of the diagram, then d(a,I,v,r) = 1.

We can attach gluon a either to one of the n − 1 external legs or to one of the n − 4

internal lines of I, yielding altogether 2n− 5 of the terms in the sum (2.8). Let K be the

momentum running through one of the internal lines of I. Attaching gluon a to this line

will replace the factor K2 in d(a,I) with K2(K + ka)
2. We split the inverse denominator

into two terms using the identity

1

K2(K + ka)2
=

1

K2(2ka ·K)
+

1

(−2ka ·K)(K + ka)2
(2.20)

and we associate each of the terms on the right hand side of the equation with one of the

two vertices to which the internal line is connected. Thus, with this doubling of internal

line terms, we now have a total of (n−1)+2(n−4) = 3(n−3) terms for each I; namely, one

term for each of the legs of each of the n−3 vertices of I. We label this term by (a, I, v, r),

and write the cubic vertex expansion of the n-gluon amplitude with respect to gluon a as

An =
∑
I

∑
v∈V(a,I)

1∏3
s=1 d(a,I,v,s)

3∑
r=1

c(a,I,v,r)n(a,I,v,r)

2ka ·K(a,I,v,r)
(2.21)

where c(a,I,v,r) are the color factors c(r) in figure 1 associated with each vertex (a, I, v),

n(a,I,v,r) are the associated kinematic numerators, and K(a,I,v,r) denotes the momentum

flowing out of leg r. The c(a,I,v,r) and n(a,I,v,r) are equal to the ci and ni in eq. (2.8) up to

– 10 –



J
H
E
P
1
0
(
2
0
1
6
)
1
3
0

signs (such that c(a,I,v,r)n(a,I,v,r) = cini). An explicit example of the cubic vertex expansion

for the five-gluon amplitude is given in appendix A.

The ± freedom in the definition of c(a,I,v,r) is used to make the relative signs in the

Jacobi relation positive:
3∑
r=1

c(a,I,v,r) = 0 . (2.22)

The denominators in each triple also sum to zero

3∑
r=1

ka ·K(a,I,v,r) = 0 (2.23)

by momentum conservation ka +
∑3

r=1K(a,I,v,r) = 0 and the masslessness of the gluon

k2a = 0. A priori, however, there is no reason for the kinematic numerators n(a,I,v,r)
associated with each vertex to sum to zero. We will see in the next subsection, however, that

the color-factor symmetry of the amplitude leads to a constraint on the sum of kinematic

numerators.

2.4 Constraint on kinematic numerators from the color-factor symmetry

Having introduced the cubic vertex expansion of the n-gluon amplitude with respect to

gluon a, we now consider the effect of a color-factor shift δa on the amplitude. The shift

associated with gluon a acts on the color factors appearing in the cubic vertex expan-

sion (2.21) as

δa c(a,I,v,r) = α(a,I,v) ka ·K(a,I,v,r) (2.24)

where α(a,I,v) is a linear combination of αa,σ uniquely determined by the Jacobi relations.

These shifts respect eq. (2.22) by virtue of eq. (2.23). The variation of eq. (2.21) under

this shift gives

δa An =
1

2

∑
I

∑
v∈V(a,I)

α(a,I,v)∏3
s=1 d(a,I,v,s)

3∑
r=1

n(a,I,v,r) . (2.25)

We prove that δaAn = 0 in sections 3 and 4; hence the color-factor symmetry implies the

following constraint on the kinematic numerators

∑
I

∑
v∈V(a,I)

α(a,I,v)∏3
s=1 d(a,I,v,s)

3∑
r=1

n(a,I,v,r) = 0 . (2.26)

Now if the constants α(a,I,v) were all independent, then we could conclude from this argu-

ment that
∑3

r=1 n(a,I,v,r) = 0, i.e. that the kinematic numerators necessarily obey Jacobi

relations. This would be in conflict with the well-known fact that the kinematic numera-

tors obtained from Feynman rules in general do not satisfy color-kinematic duality;9 indeed

this is not a valid inference from eq. (2.26) because the α(a,I,v) are not independent. The

set of α(a,I,v) for all the vertices of a given diagram I are equal (up to signs) because any

9Only in the case n = 4, where there is only one term in the sum (2.26), may we conclude that

ns + nt + nu = 0.
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two adjacent vertices share a common color factor (see the example discussed in the ap-

pendix). In fact, with an appropriate choice of signs for c(a,I,v,r), the α(a,I,v) may be made

independent of v. The α(a,I) for different diagrams I are further constrained by the Jacobi

relations among the color factors of I.

While eq. (2.26) does not imply that the numerators satisfy the kinematic Jacobi

relations, it does impose a set of (generalized-gauge-invariant) conditions that the color-

kinematic violations ∆ijk = ni + nj + nk must satisfy. We wish to emphasize that, while

the kinematic Jacobi relations ni + nj + nk = 0 are not invariant under generalized gauge

transformations10 (hence the actual claim of color-kinematic duality is that there exists

a generalized gauge in which they hold true), the conditions (2.26) are invariant under

generalized gauge transformations. The argument for this is simple. A generalized gauge

transformation is a transformation ni → n′i that leaves the amplitude (2.8) unchanged.

Hence by starting with An =
∑

i(cin
′
i/di) and following the steps above (since the condition

δaAn = 0 is also gauge invariant), we obtain the same result (2.26) except with n(a,I,v,r)
replaced with n′(a,I,v,r).

To obtain a more explicit form of eq. (2.26), we would need to identify all the linear

dependences among the α(a,I,v) required by the color Jacobi relations. Previously, we

observed that the number of independent color-factor shifts was (n−3)(n−3)!, parametrized

by constants αa,σ, where a = 2, · · · , n−2 and σ ∈ Sn−3 denotes a permutation of {2, · · · , n−
1} \ {a}. If we were to write α(a,I,v) in terms of these independent constants, eq. (2.26)

would yield (n− 3)(n− 3)! independent constraints on the ∆ijk. In appendix A, we carry

out this procedure for the five-gluon amplitude.

While the BCJ relations (2.19) were originally derived as a consequence of the assump-

tion of color-kinematic duality, it was known [39, 40] from early on that they are equivalent

to a set of weaker conditions on the numerators. The conditions for five-gluon numerators

were derived in refs. [39, 40] as a consequence of the monodromy properties of string-theory

amplitudes. These conditions are equivalent to eq. (2.26), as we show in appendix A. In

this section, we have demonstrated that both eq. (2.26) and the BCJ relations (2.19) are a

consequence of the invariance of the amplitude under the color-factor symmetry.

2.5 Kinematic numerator shift symmetry

We have considered the effect on the amplitude of a shift of the color factors. One may

ask what effect an analogous shift of the kinematic numerators would have.11 We show in

this section that such a shift is simply a generalized gauge transformation.

Let us define the kinematic shift associated with leg a, where a ∈ {2, · · · , n − 1}, on

the half-ladder numerator n1γn to be

δan1σ(2)···σ(b−1)aσ(b)···σ(n−1)n = βa,σ

(
k1 · ka +

b−1∑
c=2

ka · kσ(c)

)
, a, b ∈ {2, · · · , n− 1}, b 6= a

(2.27)

10Again except in the case of four-gluon amplitudes.
11These can be considered a generalization of the shifts of J considered in refs. [36, 38].
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where σ ∈ Sn−3 denotes a permutation of {2, · · · , n−1}\{a}, and βa,σ are a set of arbitrary

constants (or functions). The action on all other numerators ni is then defined by

δa ni =
∑

γ∈Sn−2

Mi,1γn δa n1γn . (2.28)

Note that we have not assumed that the ni obey the Jacobi relations (1.3). However, the

numerator shifts defined by eq. (2.27) and (2.28) will satisfy

δa(ni + nj + nk) = 0 (2.29)

so if the ni do satisfy kinematic Jacobi relations, the shifted numerators will continue to

do so, and if they do not, then the neither will the shifted numerators.

Now consider the cubic vertex expansion of the n-gluon amplitude

An =
∑
I

∑
v∈V(a,I)

1∏3
s=1 d(a,I,v,s)

3∑
r=1

c(a,I,v,r)n(a,I,v,r)

2ka ·K(a,I,v,r)
. (2.30)

The kinematic shift with respect to gluon a acts on the numerators appearing in this

expression as

δa n(a,I,v,r) = β(a,I,v) ka ·K(a,I,v,r) (2.31)

and therefore on the amplitude itself as

δa An =
1

2

∑
I

∑
v∈V(a,I)

β(a,I,v)∏3
s=1 d(a,I,v,s)

3∑
r=1

c(a,I,v,r) . (2.32)

This vanishes courtesy of eq. (2.22); hence the n-gluon amplitude is invariant under the

shift of kinematic numerators. This is precisely the definition of a generalized gauge trans-

formation [2, 3].

3 Proof of color-factor symmetry for four-gluon amplitudes

In this section we prove that the tree-level four-gluon amplitude is invariant under the

color-factor symmetry. In doing so, we develop some results that will be necessary for our

more general proof of the invariance of the n-gluon amplitude in the next section.

The four-gluon amplitude can be constructed from a three-gluon vertex by attaching a

fourth gluon to a propagator emanating from each of the legs of the vertex or to the vertex

itself. This yields

A4 =
3∑
r=1

c(r)n(r)

(kr + k4)2
(3.1)

where

c(1) = fa1a4bfba2a3 , c(2) = fa2a4bfba3a1 , c(3) = fa3a4bfba1a2 . (3.2)
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The kinematic numerator n(r) receives contributions from the diagram in which gluon 4 is

attached to leg r as well as from the four-gluon vertex. The color-factor symmetry (asso-

ciated with gluon 4) acts on the color factors (3.2) and the four-gluon amplitude (3.1) as

δ4c(r) = α4 k4 · kr =⇒ δ4A4 =
1

2
α4

3∑
r=1

n(r) . (3.3)

Thus, by showing that
∑3

r=1 n(r) = 0, we will establish that δ4A4 = 0. This we now

proceed to do.

3.1 Attaching a gluon to a leg

The three-gluon vertex is12

− ig√
2
fa1a2a3V

µ1µ2µ3(k1, k2, k3) (3.4)

where

V µ1µ2µ3(k1, k2, k3) = ηµ1µ2(k2 − k1)µ3 + ηµ2µ3(k3 − k2)µ1 + ηµ3µ1(k1 − k3)µ2 (3.5)

and ka are outgoing momenta. In Feynman gauge, the gluon propagator is −iηµνδab/k2.
Attaching gluon 4 to leg 1 yields the expression

ig2

2

fa1a4bfba2a3
(k1 + k4)2

V µ1µ4ν(k1, k4,−k1 − k4)V µ2µ3
ν (k1 + k4, k2, k3)

=
ig2

2

c(1)

(k1 + k4)2

[
ηµ1νkµ44 − η

µ4νkµ11 − η
µ1µ4(k1 + k4)

ν (3.6)

+ 2ηµ1νkµ41 + 2 (ηµ1µ4kν4 − ηµ4νk
µ1
4 )
]
V µ2µ3
ν (k1 + k4, k2, k3) .

The contribution of this diagram to the four-gluon amplitude (3.1) is obtained by contract-

ing with
∏4
a=1 εaµa and dividing by i. The first and second terms in the square brackets

vanish using εa · ka = 0. The third term vanishes due to

(k1 + k4)
νV µ2µ3

ν (k1 + k4, k2, k3)ε2µ2ε3µ3 = 0 (3.7)

using k22 = k23 = 0. The contribution of the remaining terms of eq. (3.6) to the kinematic

numerator n(1) can be written

n(1)

∣∣∣
leg

= g2ε1µ1

[
ε4 · k1δµ1ν − iε4αk4β(Sαβ1 )µ1ν

]
V νµ2µ3(k1 + k4, k2, k3)ε2µ2ε3µ3 (3.8)

where

(Sαβr )µrν = i(ηαµrδβν − ηβµrδαν) (3.9)

are the spin-one angular momentum matrices acting on gluon r. These satisfy the Lorentz

algebra commutation relations

[Sαβr , Sγδr ] = −i
[
ηαγSβδr − ηαδSβγr − ηβγSαδr + ηβδSαγr

]
. (3.10)

12Our structure constants are normalized by fabc = Tr([T a, T b]T c) with Tr(T aT b) = δab, so that [T a, T b] =

fabcT
c. This differs from the standard textbook convention by a factor of i

√
2. We use η00 = 1 in this paper.
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3.2 Attaching a gluon to a vertex

Attaching gluon 4 directly to the three-gluon vertex, we obtain the four-gluon vertex

V µ1µ2µ3µ4
a1a2a3a4 =

ig2

2

[
fa1a4bfba2a3 (ηµ1µ2ηµ3µ4 − ηµ1µ3ηµ2µ4)

+ fa2a4bfba3a1 (ηµ2µ3ηµ1µ4 − ηµ1µ2ηµ3µ4) (3.11)

+ fa3a4bfba1a2 (ηµ1µ3ηµ2µ4 − ηµ2µ3ηµ1µ4)
]
.

Using eq. (3.5), this can be recast as

V µ1µ2µ3µ4
a1a2a3a4 = − ig

2

2

(
c(1)

∂

∂k1µ4
+ c(2)

∂

∂k2µ4
+ c(3)

∂

∂k3µ4

)
V µ1µ2µ3(k1, k2, k3) . (3.12)

The contribution of this vertex to the four-gluon amplitude is obtained by contracting with∏4
a=1 εaµa and dividing by i. This contribution is then parceled out among the three terms

in eq. (3.1); the contribution to n(1) is

n(1)

∣∣∣
vertex

= −g2k4 · k1ε4µ4
∂

∂k1µ4
V µ1µ2µ3(k1, k2, k3)ε1µ1ε2µ2ε3µ3 . (3.13)

The reader may be concerned about the use of eq. (3.12) for the following reason. The

three-gluon vertex (3.5) can be rewritten using momentum conservation
∑3

a=1 ka = 0. For

example, we can eliminate k3 from eq. (3.5), writing it as

V µ1µ2µ3(k1, k2, k3) = ηµ1µ2(k2 − k1)µ3 + ηµ2µ3(−k1 − 2k2)
µ1 + ηµ3µ1(2k1 + k2)

µ2 . (3.14)

The partial derivatives (∂/∂kaµ4)V (k1, k2, k3) obtained from eq. (3.14) differ from those

obtained from eq. (3.5), so that eq. (3.12) gives

V µ1µ2µ3µ4
a1a2a3a4 =

ig2

2

[
fa1a4bfba2a3 (ηµ1µ2ηµ3µ4 + ηµ2µ3ηµ1µ4 − 2ηµ1µ3ηµ2µ4)

+ fa2a4bfba3a1 (2ηµ2µ3ηµ1µ4 − ηµ1µ2ηµ3µ4 − ηµ1µ3ηµ2µ4)
]
. (3.15)

Nonetheless eq. (3.15) is equal to eq. (3.11) courtesy of the Jacobi relation
∑3

r=1 c(r) =

0. Eq. (3.15) simply corresponds to a different way of parceling the four-gluon vertex

among the color factors c(r), and the expressions n(r) will differ by a generalized gauge

transformation (2.5). The amplitude (3.1) of course remains unchanged.

3.3 Kinematic numerators of the four-gluon amplitude

Using the fact that the three-gluon vertex (3.5) is linear in momenta, we rewrite eq. (3.8)

using

V νµ2µ3(k1 + k4, k2, k3) =

(
1 + k4γ

∂

∂k1γ

)
V νµ2µ3(k1, k2, k3) (3.16)

– 15 –



J
H
E
P
1
0
(
2
0
1
6
)
1
3
0

and then combine eq. (3.8) and (3.13) to obtain

n(1) = n(1)

∣∣∣
leg

+ n(1)

∣∣∣
vertex

= g2ε1µ1

[
ε4 · k1δµ1ν − iε4αk4β(Sαβ1 )µ1ν − iε4αk4βL

αβ
1 δµ1ν

]
V νµ2µ3(k1, k2, k3)ε2µ2ε3µ3

+ g2ε1µ1

[
−iε4αk4β(Sαβ1 )µ1ν

](
k4γ

∂

∂k1γ

)
V νµ2µ3(k1, k2, k3)ε2µ2ε3µ3 (3.17)

where the orbital angular momentum operators are defined as

Lαβr = i

(
kαr

∂

∂krβ
− kβr

∂

∂krα

)
. (3.18)

These satisfy the Lorentz algebra commutation relations

[Lαβr , Lγδr ] = −i
[
ηαγLβδr − ηαδLβγr − ηβγLαδr + ηβδLαγr

]
. (3.19)

Similar expressions are obtained for n(2) and n(3). Finally, defining the total angular

momentum operator

(Jαβr )µrν = Lαβr δµrν + (Sαβr )µrν (3.20)

we can write all the kinematic numerators as

n(r) = g2
[
ε4 · kr − iε4αk4βJαβr − iε4αk4βk4γSαβr

∂

∂krγ

]
V (k1, k2, k3) (3.21)

where we have suppressed the polarization vectors ε1, ε2, and ε3. The subscripts on Jr and

Sr indicate on which polarization indices these operators act.

Note that under a gauge transformation ε4 → ε4 + λk4 of gluon 4, the last two terms

in eq. (3.21) vanish by virtue of the antisymmetry of Jαβr and Sαβr , and the first term gives

n(r) → n(r) + λg2k4 · kr in accord with eq. (2.5).

We observe that the operators Lαβr and Sαβr are the same as those appearing in the

Burnett-Kroll form [56] of the subleading terms of the Low soft-photon theorem [57] as

applied to gluons [58–62]. (See refs. [63–65] for recent derivations of the soft-gluon theorem

from gauge invariance.) The first two terms in eq. (3.21) correspond precisely to the leading

and subleading terms in the k4 → 0 expansion of the four-gluon amplitude; the third term

is higher order in the soft momentum. We emphasize, however, that eq. (3.21), and the

vertex expansion that we will derive in the next section, are exact, and not dependent on

taking a soft limit.

3.4 Kinematic Jacobi relation

We will now show that the sum of the four-gluon kinematic numerators (3.21) vanishes.

This result, which has been known at least since 1980 [23, 24] inspired the conjecture of

color-kinematic duality [1]. We demonstrate it in a way that will facilitate the proof of

color-factor symmetry of the n-gluon amplitude.
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Using eq. (3.21), we see that

3∑
r=1

n(r) = g2

(
3∑
r=1

ε4 · kr

)
V (k1, k2, k3)

− ig2ε4αk4β

(
3∑
r=1

Jαβr

)
V (k1, k2, k3) (3.22)

− ig2ε4αk4βk4γ
3∑
r=1

Sαβr
∂

∂krγ
V (k1, k2, k3) .

The first sum on the right-hand side of eq. (3.22) vanishes by momentum conservation∑4
r=1 kr = 0 together with ε4 ·k4 = 0. The second sum on the right hand side of eq. (3.22),

which may be written more explicitly as

(Jαβ1 )µ1νV
νµ2µ3(k1, k2, k3) + (Jαβ2 )µ2νV

µ1νµ3(k1, k2, k3) + (Jαβ3 )µ3νV
µ1µ2ν(k1, k2, k3) (3.23)

is the first-order Lorentz transformation of the three-gluon vertex. This vanishes, as may

be verified by explicit computation, because V µ1µ2µ3(k1, k2, k3) is a Lorentz tensor. Alter-

natively, we can define the spin-one angular momentum operator to act on polarization

indices [63, 64]

Sαβr = i

(
εαr

∂

∂εrβ
− εβr

∂

∂εrα

)
(3.24)

in which case(
3∑
r=1

Jαβr

)
V (k1, k2, k3) = i

3∑
r=1

(
kαr

∂

∂krβ
− kβr

∂

∂krα
+ εαr

∂

∂εrβ
− εβr

∂

∂εrα

)
V (k1, k2, k3)

(3.25)

where

V (k1, k2, k3) = ε1 · ε2 ε3 · (k2 − k1) + ε2 · ε3 ε1 · (k3 − k2) + ε3 · ε1 ε2 · (k1 − k3) . (3.26)

Eq. (3.25) vanishes because V (k1, k2, k3) is a Lorentz-invariant function of kr and εr. The

third sum in eq. (3.22) is proportional to

(Sαβ1 )µ1
ν

∂

∂k1γ
V νµ2µ3(k1, k2, k3)+(Sαβ2 )µ2

ν

∂

∂k2γ
V µ1νµ3(k1, k2, k3)+(Sαβ3 )µ3

ν

∂

∂k3γ
V µ1µ2ν(k1, k2, k3)

= 2i
(
−ηαµ1ηβµ2ηγµ3 + ηαµ1ηγµ2ηβµ3

)
+ (cyclic permutations of 123) . (3.27)

This expression is antisymmetric in β and γ. Since it multiplies k4βk4γ in eq. (3.22), the

whole expression vanishes. The cancellations that we have just exhibited were originally

used in ref. [35] to prove the radiation zero theorem.

We have shown that the sum of kinematic numerators vanishes (the kinematic Jacobi

relation), and thus have demonstrated the invariance of the four-gluon amplitude δ4A4 = 0

under the color-factor shift symmetry. We would like to emphasize that in proving the

vanishing of eq. (3.23) and (3.27) we did not use that kr were on-shell, nor did we use

εr · kr = 0 for r = 1, 2, 3. Thus we will be able to use these results in section 4 for an

off-shell three-gluon vertex V µ1µ2µ3(k1, k2, k3).
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4 Proof of color-factor symmetry for n-gluon amplitudes

We now turn to the proof that the tree-level n-gluon amplitude is invariant under a color-

factor shift associated with any of the gluons. To do so, we employ a decomposition of

the amplitude known as the radiation vertex expansion [35]. This is a recursive approach

which constructs an n-point amplitude by attaching a massless vector boson to all possible

(n− 1)-point diagrams.

Consider the set of all tree-level (n− 1)-gluon diagrams with external legs {1, · · · , n} \
{a} constructed using Feynman rules. Label these diagrams by I ′. Please note that this set

differs from the set of (n− 1)-point diagrams appearing in the cubic vertex expansion (cf.

section 2) because it includes not only cubic diagrams but also diagrams with four-gluon

vertices. (In the cubic decomposition (2.8), all diagrams containing quartic vertices are

redistributed among the cubic diagrams.)

We will construct all possible n-gluon diagrams by attaching gluon a to each (n− 1)-

gluon diagram I ′ in all possible ways. This includes: (1) attaching gluon a to an external

leg, (2) attaching gluon a to an internal line, or (3) attaching gluon a to one of the three-

gluon vertices of I ′ to make a four-gluon vertex. By rearranging terms and discarding

pieces that vanish by Ward identities, we obtain simple expressions for the contribution

to the n-gluon amplitude from each vertex of diagram I ′. We then show that each such

contribution is invariant under the color-factor shift associated with gluon a.

4.1 Attaching a gluon to an external leg

First we single out one of the external legs, b, of I ′, denoting the resulting expression as

εbµbB
µb
ab

(kb, · · · ) (4.1)

where kb and εb are the momentum and polarization vector of gluon b, and · · · denotes

momenta belonging to gluons {1, · · · , n} \ {a, b}. Attaching gluon a to external leg b and

using eq. (3.5) we obtain

− g√
2

fabaab
(ka + kb)2

V µbµaν(kb, ka,−ka − kb)Bbν(ka + kb, · · · )

= − g√
2

fabaab
(ka + kb)2

[
ηµbνkµaa − ηµaνk

µb
b − η

µbµa(ka + kb)
ν (4.2)

+ 2ηµbνkµab + 2 (ηµbµakνa − ηµaνkµba )
]
Bbν(ka + kb, · · · ) .

Contracting this with εbµbεaµa eliminates the first two terms in the square brackets. The

third term is proportional to

(ka + kb)
νBbν(ka + kb, · · · ) . (4.3)

This term does not vanish by itself as it did in the case of the four-gluon amplitude, but

when we obtain the total n-gluon amplitude by including all (n − 1)-point diagrams I ′,

the sum of such terms vanishes due to gauge invariance (Ward identity). Therefore we are
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left with the last two terms in square brackets, which yield the two terms in the following

expression

−
√

2g
fabaab

(ka + kb)2
εbµb

[
εa · kbηµbν + (εµba k

ν
a − ενakµba )

]
Bbν(ka + kb, · · · ) . (4.4)

We set this expression aside for now.

4.2 Attaching a gluon to an internal line

Next we single out one of the internal lines of I ′, which divides the diagram into two

subdiagrams B and C, and splits the external legs {1, · · · , n}\{a} into two complementary

sets Sa,B and Sa,C . The contribution of the diagram can thus be written as

Bµ
b (−K, · · · )(−iηµν)δbc

K2
Cνc (K, · · · ) (4.5)

where K =
∑

d∈Sa,B kd is the momentum running through the line, and the · · · in B and

C denote momenta belonging to Sa,B and Sa,C respectively. Attaching gluon a to the line

connecting the two subgraphs yields

ig√
2
Bbµ(−K, · · · )fbcaaV

µνµa(K,−K − ka, ka)
K2(K + ka)2

Ccν(K + ka, · · · ) . (4.6)

Writing the three-gluon vertex (3.5) as

V µνµa(K,−K−ka, ka)= −ηµνkµaa +ηµaνKµ+ηµµa(K+ka)
ν−2ηµνKµa−2 (ηµµakνa − ηµaνkµa )

(4.7)

we see that the first term vanishes when contracted with εaµa . The second and third terms

give terms proportional to

KµBbµ(−K, · · · ), (K + ka)
νCcν(K + ka, · · · ) . (4.8)

Again these terms do not vanish by themselves, but when we include all (n − 1)-gluon

diagrams I ′, Bbµ will be replaced by the sum over all diagrams containing external legs

Sa,B plus one additional off-shell line, and similarly for Ccν , and these expressions will

vanish by gauge invariance (Ward identity). We are thus left with

−
√

2igBbµ(−K, · · · )fbcaa [ηµνεa ·K + (εµakνa − ενak
µ
a )]

K2(K + ka)2
Ccν(K + ka, · · · ) . (4.9)

Now we use the identity (2.20) to rewrite this as

Bbµ(−K, · · · )−i
K2

{√
2g

fbcaa
2ka ·K

[
ηµνεa ·K + (εµak

ν
a − ενakµa )

]
Ccν(K + ka, · · · )

}
(4.10)

+

{
−
√

2g
fbcaa

2ka ·K
Bbµ(· · · ,−K)

[
ηµνεa ·K + (εµak

ν
a − ενakµa )

]} −i
(K+ka)2

Ccν(K + ka, · · · ) .

We associate each of the terms in this equation with one of the two vertices to which the

line is attached.
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4.3 Radiation vertex expansion

In the previous subsections, we showed that attaching gluon a to an (n− 1)-gluon diagram

yields one term (4.4) for each external leg and two terms (4.10) for each internal line, or in

other words, one term for each leg of each vertex of I ′. We can therefore reorganize these

terms into a sum over the legs of the vertices of each of the (n−1)-gluon diagrams I ′. This

is the radiation vertex expansion [35].

First we choose one of the three-gluon vertices v of I ′ (if it has any). Such a vertex

divides the external legs into three non-overlapping subsets S(a,I′,v,r), r = 1, 2, 3 such that⋃3
r=1 S(a,I′,v,r) = {1, · · · , n} \ {a}. The contribution of diagram I ′ to the (n − 1)-gluon

amplitude can be expressed

− ig√
2
fc1c2c3V

µ1µ2µ3(K1,K2,K3)

3∏
r=1

A
(r)
crµr(−Kr, · · · ) (4.11)

where Kr =
∑

d∈S(a,I′,v,r)
kd is the momentum flowing out of each leg of the vertex, and · · ·

in A(r) denotes momenta belonging to S(a,I′,v,r). If any of the legs is external, then A
(r)
crµr

is just δbcrεbµb .

We now attach gluon a to each of the legs of this three-gluon vertex, either to an

external leg or to an internal line. From eq. (4.4) and (4.10) this yields

ig2
3∏
r=1

A(r)
crµr

(−Kr, · · · )
(
fbc1aafbc2c3

2ka ·K1

[
ηµ1νεa ·K1+(εµ1

a k
ν
a−ενakµ1

a )
]
V µ2µ3
ν (K1+ka,K2,K3) (4.12)

+
fbc2aafbc3c1

2ka ·K2

[
ηµ2νεa ·K2 + (εµ2

a k
ν
a − ενakµ2

a )
]
V µ1 µ3

ν (K1,K2 + ka,K3)

+
fbc3aafbc1c2

2ka ·K3

[
ηµ3νεa ·K3 + (εµ3

a k
ν
a − ενakµ3

a )
]
V µ1µ2

ν(K1,K2,K3 + ka)

)
.

We can also attach gluon a directly to the three-gluon vertex itself. Using eq. (3.12), this

yields

− ig
2

2

3∏
r=1

A
(r)
crµr(−Kr, · · · )

(
fbc1aafbc2c3εaµa

∂

∂K1µa

V µ1µ2µ3(K1,K2,K3)

+ fbc2aafbc3c1εaµa
∂

∂K2µa

V µ1µ2µ3(K1,K2,K3) (4.13)

+ fbc3aafbc1c2εaµa
∂

∂K3µa

V µ1µ2µ3(K1,K2,K3)

)
.

We now use eq. (3.16) in eq. (4.12), and combine eq. (4.12) and (4.13) as we did in section 3.

Leaving the indices on V µ1µ2µ3(K1,K2,K3) implicit, we obtain the contribution of the

three-gluon vertex to the radiation vertex expansion

ig2
3∏
r=1

A(r)
cr (−Kr, · · · )

(
fbc1aafbc2c3

2ka ·K1

[
εa ·K1−iεaαkaβJαβ1 −iεaαkaβkaγS

αβ
1

∂

∂K1γ

]
V (K1,K2,K3) (4.14)

+
fbc2aafbc3c1

2ka ·K2

[
εa ·K2 − iεaαkaβJαβ2 − iεaαkaβkaγSαβ2

∂

∂K2γ

]
V (K1,K2,K3)

+
fbc3aafbc1c2

2ka ·K3

[
εa ·K3 − iεaαkaβJαβ3 − iεaαkaβkaγSαβ3

∂

∂K3γ

]
V (K1,K2,K3)

)
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where the subscripts on Jr and Sr indicate on which indices of V µ1µ2µ3(K1,K2,K3) these

operators act.

Next we choose one of the four-gluon vertices v of I ′ (if it has any). Such a vertex

divides the external legs into four non-overlapping subsets S(a,I′,v,r), r = 1, · · · , 4 such that⋃4
r=1 S(a,I′,v,r) = {1, · · · , n} \ {a}. The contribution of the diagram I ′ can be expressed as

V µ1µ2µ3µ4
c1c2c3c4

4∏
r=1

A
(r)
crµr(−Kr, · · · ) . (4.15)

We now attach gluon a to each of the legs of this four-gluon vertex. From eq. (4.4) and (4.10)

we obtain

−
√

2g
4∏
r=1

A
(r)
crµr(−Kr, · · · )

(
fbc1aa

2ka ·K1

[
ηµ1νεa ·K1 + (εµ1a k

ν
a − ενakµ1a )

]
ηνλV

λµ2µ3µ4
bc2c3c4

(4.16)

+
fbc2aa

2ka ·K2

[
ηµ2νεa ·K2 + (εµ2a k

ν
a − ενakµ2a )

]
ηνλV

µ1λµ3µ4
c1bc3c4

+
fbc3aa

2ka ·K3

[
ηµ3νεa ·K3 + (εµ3a k

ν
a − ενakµ3a )

]
ηνλV

µ1µ2λµ4
c1c2bc4

+
fbc4aa

2ka ·K4

[
ηµ4νεa ·K4 + (εµ4a k

ν
a − ενakµ4a )

]
ηνλV

µ1µ2µ3λ
c1c2c3b

)
.

One cannot attach gluon a to the four-gluon vertex itself since there are no five-gluon

vertices. Thus the contribution to the radiation vertex expansion from the four-gluon

vertex is

−
√

2g
4∏
r=1

A
(r)
crµr(−Kr, · · · )

(
fbc1aa

2ka ·K1

[
δµ1ν εa ·K1 − iεaαkaβ(Sαβ1 )µ1ν

]
V νµ2µ3µ4
bc2c3c4

+
fbc2aa

2ka ·K2

[
δµ2ν εa ·K2 − iεaαkaβ(Sαβ2 )µ2ν

]
V µ1νµ3µ4
c1bc3c4

+
fbc3aa

2ka ·K3

[
δµ3ν εa ·K3 − iεaαkaβ(Sαβ3 )µ3ν

]
V µ1µ2νµ4
c1c2bc4

+
fbc4aa

2ka ·K4

[
δµ4ν εa ·K4 − iεaαkaβ(Sαβ4 )µ4ν

]
V µ1µ2µ3ν
c1c2c3b

)
. (4.17)

To summarize this section, we have expressed an n-gluon amplitude as a sum over the

vertices of all of the (n−1)-gluon diagrams I ′, comprising a term (4.14) for each three-gluon

vertex of I ′ and a term (4.17) for each four-gluon vertex of I ′.

4.4 Invariance of the radiation vertex expansion under color-factor symmetry

Computing the variation of the radiation vertex expansion of the amplitude under a color-

factor shift is somewhat more delicate than calculating the variation of the cubic vertex

expansion of the amplitude (as we did in section 2) because each factor A
(r)
crµr in eq. (4.14)

and (4.17) can contain more than one color factor ci due to the possible presence of four-

gluon vertices.

First let us consider the contribution (4.14) of a three-gluon vertex to the radiation

vertex expansion, and for the moment let us assume that the subdiagrams corresponding
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to A
(r)
crµr contain only three-gluon vertices. Designate by c(a,I′,v,r) with r = 1, 2, 3 the color

factor associated with each line of eq. (4.14). Thus, for example, c(a,I′,v,1) is the product

of fbc1aafbc2c3 and the structure constants from all the three-gluon vertices in
∏3
r=1A

(r)
crµr .

These color factors manifestly satisfy
∑3

r=1 c(a,I′,v,r) = 0. The variation of c(a,I′,v,r) under

the color-factor shift associated with gluon a is

δa c(a,I′,v,r) = α(a,I′,v) ka ·Kr (4.18)

which preserves
∑3

r=1 c(a,I′,v,r) = 0. The variation of eq. (4.14) under the color-factor shift

is therefore proportional to[(
3∑
r=1

εa ·Kr

)
− iεaαkaβ

(
3∑
r=1

Jαβr

)
− iεaαkaβkaγ

(
3∑
r=1

Sαβr
∂

∂Krγ

)]
V (K1,K2,K3) .

(4.19)

In section 3, we demonstrated that each of the three terms in eq. (4.19) vanishes. If

the diagrams corresponding to A
(r)
crµr contain four-gluon vertices, we can use eq. (3.11) to

expand these expressions and then use the argument above to show that each separate

contribution will vanish under the color-factor shift. Therefore the contribution of the

three-gluon vertices (4.14) to the radiation vertex expansion is invariant under the color-

factor shift associated with gluon a.

Second let us consider the contribution (4.17) of a four-gluon vertex to the radiation

vertex expansion. Again we begin by assuming that the diagrams corresponding to A
(r)
crµr

contain only three-gluon vertices. We now expand the four-gluon vertices V µ1µ2µ3µ4
c1c2c3c4 in

eq. (4.17) into several terms, one of which is

−
√

2g

4∏
r=1

A
(r)
crµr(−Kr, · · · ) (4.20)

×
(
fbc1aafbc2dfdc3c4

2ka ·K1

[
δµ1ν εa ·K1 − iεaαkaβ(Sαβ1 )µ1ν

]
(ηνµ3ηµ2µ4 − ηνµ4ηµ2µ3)

+
fbc2aafc1bdfdc3c4

2ka ·K2

[
δµ2ν εa ·K2 − iεaαkaβ(Sαβ2 )µ2ν

]
(ηµ1µ3ηνµ4 − ηµ1µ4ηνµ3)

+
fbc3aafbc4dfdc1c2

2ka ·K3

[
δµ3ν εa ·K3 − iεaαkaβ(Sαβ3 )µ3ν

]
(ηµ1νηµ2µ4 − ηµ1µ4ηµ2ν)

+
fbc4aafc3bdfdc1c2

2ka ·K4

[
δµ4ν εa ·K4 − iεaαkaβ(Sαβ4 )µ4ν

]
(ηµ1µ3ηµ2ν − ηµ1νηµ2µ3)

)
.

Designate by c(a,I′,v,r) with r = 1, · · · 4 the color factor associated with each line of

eq. (4.20), including the structure constants from all the three-gluon vertices in
∏4
r=1A

(r)
crµr .

These color factors satisfy
∑4

r=1 c(a,I′,v,r) = 0 by virtue of

fbc1aafbc2dfdc3c4 + fbc2aafc1bdfdc3c4 + fbc3aafbc4dfdc1c2 + fbc4aafc3bdfdc1c2 = 0 . (4.21)

The variation of c(a,I′,v,r) under the color-factor shift associated with gluon a is

δa c(a,I′,v,r) = α(a,I′,v) ka ·Kr . (4.22)
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The variation of eq. (4.20) under the color-factor shift therefore contains two sums. The

first (
4∑
r=1

εa ·Kr

)
(ηµ1µ3ηµ2µ4 − ηµ1µ4ηµ2µ3) (4.23)

vanishes by momentum conservation, ka +
∑4

r=1Kr = 0, together with εa · ka = 0. The

second

(Sαβ1 )µ1ν (ηνµ3ηµ2µ4 − ηνµ4ηµ2µ3) + (Sαβ2 )µ2ν (ηµ1µ3ηνµ4 − ηµ1µ4ηνµ3)

+ (Sαβ3 )µ3ν (ηµ1νηµ2µ4 − ηµ1µ4ηµ2ν) + (Sαβ4 )µ4ν (ηµ1µ3ηµ2ν − ηµ1νηµ2µ3) (4.24)

is the first-order Lorentz transformation of the tensor ηµ1µ3ηµ2µ4 − ηµ1µ4ηµ2µ3 , which van-

ishes. The variation under the color-factor shift of the other two terms from the expansion

of V µ1µ2µ3µ4
c1c2c3c4 similarly vanishes. Furthermore, the same argument applies when the dia-

grams corresponding to A
(r)
crµr contain four-gluon vertices, by expanding these expressions

using eq. (3.11). Therefore the contribution of the four-gluon vertices (4.17) to the radiation

vertex expansion is invariant under the color-factor shift associated with gluon a.

In fine, we have shown that each contribution to the radiation vertex expansion is

invariant under the color-factor shift associated with gluon a, and therefore the entire

n-gluon amplitude is invariant under this shift. QED

5 Color-factor symmetry for more general amplitudes

In sections 3 and 4, we proved the color-factor symmetry of n-gluon amplitudes, from which

follow the BCJ relations for color-ordered amplitudes. Color-factor symmetry is a property

of a much larger class of tree-level gauge-theory amplitudes, namely those containing at

least one gluon together with massless or massive particles in arbitrary representations of

the gauge group with arbitrary spin ≤ 1, with the usual gauge-theory couplings. We will

establish the invariance of this larger class of gauge-theory amplitudes under a color-factor

shift in sections 6 and 7.

Consider a tree-level n-point gauge-theory amplitudeAn with gluons as well as particles

ψ and ψ̄, either massless or massive, with spin zero, one-half, or one, in an arbitrary

representation of the gauge group. For convenience, throughout the next three sections

we refer to ψ (and ψ̄) as fundamentals (and antifundamentals), but they can be in any

representation. This amplitude has the cubic decomposition

An =
∑
i

c′i n
′
i

d′i
(5.1)

where we decorate the color factors, kinematic numerators, and denominators with primes

to distinguish them from the analogous quantities for n-gluon amplitudes. The denominator

d′i now consists of the product of inverse propagators for both massless and massive parti-

cles. The color factor c′i associated with each cubic diagram is obtained by sewing together

ggg vertices fabc and ψ̄gψ vertices (T a)i j where T a denote the generators in the appropriate

representation. Contributions from Feynman diagrams with quartic vertices (either gggg
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or ψ̄ggψ in the case of a scalar or vector ψ) are parceled out among the cubic diagrams.

The number of cubic diagrams in the sum (5.1) will generally be fewer than for the n-gluon

amplitude, as some will be excluded for violating fermion number or flavor symmetry.

Just as in the case of the n-gluon amplitude, the amplitude An can be written in a

cubic vertex expansion with respect to gluon a:

An =
∑
I

∑
v

1∏3
s=1 d

′
(a,I,v,s)

3∑
r=1

c′(a,I,v,r)n
′
(a,I,v,r)

2ka ·K(a,I,v,r)
. (5.2)

The only difference between the derivation of this expression and that for the n-gluon

amplitude given in section 2 is that we must use the modified identity

1

[K2 −m2][(K + ka)2 −m2]
=

1

[K2 −m2](2ka ·K)
+

1

(−2ka ·K)[(K + ka)2 −m2]
(5.3)

when gluon a is attached to a propagator of a massive field.

As usual, the color-factor shift associated with gluon a is defined by two requirements:

(I) that it satisfy all the algebraic symmetries (e.g., Jacobi relations) obeyed by the color

factors c′i, and (II) that it satisfy

δac
′
i ∝

∑
c∈Sa,i

ka · kc (5.4)

where Sa,i denotes the subset of the external particles on one side of the point at which a

is attached to c′i. These together imply that

δa c
′
(a,I,v,r) = α(a,I,v) ka ·K(a,I,v,r) . (5.5)

Therefore the invariance of the amplitude under the color-factor shift implies the constraint

∑
I

∑
v

α(a,I,v)∏3
s=1 d

′
(a,I,v,s)

3∑
r=1

n′(a,I,v,r) = 0 (5.6)

on the sums of kinematic numerators appearing in the cubic decomposition.

As in the case of n-gluon amplitudes, color-factor symmetry can be used to derive

BCJ relations among the color-ordered amplitudes associated with An. BCJ relations for

n-point amplitudes with gluons and a single pair of massive fundamentals were conjec-

tured in ref. [41] and more generally for amplitudes containing an arbitrary number of

pairs of fundamentals in ref. [42], based on the assumption of color-kinematic duality. A

proof of these BCJ relations using BCFW on-shell recursion was given in ref. [46]. In

order to derive these relations, however, it is necessary to write the amplitude in a proper

decomposition [45], i.e., in terms of an independent set of color factors and generalized-

gauge-invariant primitive amplitudes. For general amplitudes, this is a subtle problem,

which was recently solved for the case of multiple pairs of distinct-flavor fundamentals by

Melia [43–45] and Johansson and Ochirov [42]. In a sequel to this paper [47], we review

their solution, and then derive the BCJ relations using the color-factor symmetry.
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There is one class of amplitudes, however, for which the story is practically identical

to the n-gluon case, namely, n-point amplitudes with n − 2 gluons and a single pair of

fundamentals. For that case, an independent set of (n − 2)! color factors is given by the

half-ladders

c′1γn ≡ (T aγ(2)T aγ(3) · · ·T aγ(n−1))i1 in . (5.7)

All other color factors c′i can be reduced to half ladders

c′i =
∑

γ∈Sn−2

Mi,1γnc
′
1γn (5.8)

by repeatedly applying fabc (T c)i j =
[
T a, T b

]i
j
, similar to the case of n-gluon ampli-

tudes [52]. The coefficients Mi,1γn are precisely the same as in the n-gluon case. The

n-point amplitude can then be written in a proper decomposition [66, 67]

An(ψ̄1, g2, g3, · · · , gn−1, ψn) =
∑

γ∈Sn−2

c′1γn A
′(1, γ(2), · · · , γ(n− 1), n) (5.9)

where the primitive amplitudes are given by

A′(1, γ(2), · · · , γ(n− 1), n) =
∑
i

Mi,1γn n
′
i

d′i
. (5.10)

We define an (n−3)!-parameter family of shifts associated with each gluon a ∈ {2, · · · , n−1}
via

δa c′1σ(2)···σ(b−1)aσ(b)···σ(n−1)n = αa,σ

(
ka · k1 +

b−1∑
c=2

ka · kσ(c)

)
, a, b ∈ {2, · · · , n− 1}, b 6= a

δa c
′
i =

∑
γ∈Sn−2

Mi,1γn δa c′1γn (5.11)

where γ is a permutation of {2, · · · , n − 1}, σ is a permutation of {2, · · · , n − 1} \ {a},
and αa,σ is a set of (n − 3)! arbitrary constants for each a. As in the case of the n-gluon

amplitude, the dimension of the (abelian) group of color-factor shifts is (n−3)(n−3)!. We

show in sections 6 and 7 that the amplitude An(ψ̄1, g2, g3, · · · , gn−1, ψn) is invariant under

the color-factors shifts (5.11). As a consequence, the color-ordered amplitudes defined in

eq. (5.9) obey BCJ relations that have the same form (when expressed in terms of invariants

ka · kb, where ka is the momentum of a gluon) as those for the n-gluon amplitude, namely

n∑
b=3

(
k1 · k2 +

b−1∑
c=3

k2 · kσ(c)

)
A′(1, σ(3), · · · , σ(b− 1), 2, σ(b), · · · , σ(n− 1), n) = 0 (5.12)

together with all permutations of this equation with 2 replaced by a, as conjectured in

refs. [41, 42].
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6 Proof of color-factor symmetry for the A4(ψ̄1, ψ2, g3, g4) amplitude

In this section, we prove that the tree-level four-point amplitude with two gluons and two

massive particles in an arbitrary representation of the gauge group (which for convenience

we refer to as fundamentals) with spin zero, one-half, or one is invariant under the color-

factor symmetry. We will use these results for the proof of the invariance of the more

general n-point amplitude in section 7.

The four-point amplitude A4(ψ̄1, ψ2, g3, g4) can be constructed from the ψ̄ψg vertex by

attaching a gluon to a propagator emanating from each of the external legs of the vertex,

or (in the case of a spin-zero or spin-one fundamental) to the vertex itself. This yields

A4(ψ̄1, ψ2, g3, g4) =

3∑
r=1

c′(r)n
′
(r)

2k4 · kr
(6.1)

where the color factors

c′(1) = − (T a4T a3)i1 i2 , c′(2) = (T a3T a4)i1 i2 , c′(3) = fa4a3b(T b)i1 i2 (6.2)

obey
∑3

r=1 c
′
(r) = 0 using [T a, T b] = fabcT

c. The color-factor symmetry (associated with

gluon 4) acts on the color factors (6.2) and the four-point amplitude (6.1) as

δ4c
′
(r) = α4 k4 · kr =⇒ δ4A4 =

1

2
α4

3∑
r=1

n′(r) . (6.3)

We will establish that δ4A4 = 0 by showing that
∑3

r=1 n
′
(r) = 0, a result that has long

been known [23, 24]. We will do this separately for spin zero, spin one-half, and spin one

fundamentals.

6.1 Kinematic numerators for spin-one-half fundamentals

We begin with the case of a spin-one-half fundamental, which is simpler due to the absence

of a ψ̄ψgg vertex. The ψ̄ψg vertex13 and Dirac propagator are

ig√
2

(T a3)i1 i2γ
µ3 ,

iδi j
/k −m

. (6.4)

Attaching gluon 4 to (fermion) leg 1 yields the expression

− ig
2

2

(T a4T a3)i1 i2
(k1 + k4)2 −m2

γµ4(/k1 +/k4 +m)γµ3 =
ig2

2

c′(1)

2k4 · k1

[
(−/k1 +m)γµ4 + 2kµ4

1 +
1

2
[γµ4 , /k4]

]
γµ3 .

(6.5)

The contribution of this diagram to eq. (6.1) is obtained by sandwiching eq. (6.5) between

ū(k1) and u(−k2), contracting with ε3µ3ε4µ4 , and dividing by i. The first term in the square

brackets vanishes using ū(k1)(−/k1 +m) = 0, leaving

n′(1) = g2ū(k1)
[
ε4 · k1 − iε4αk4βΣαβ

]
/ε3u(−k2) , Σαβ ≡ i

4

[
γα, γβ

]
(6.6)

13Recall that Tr(T aT b) = δab.
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where the spin-one-half angular momentum matrices Σαβ satisfy the Lorentz algebra com-

mutation relations

[Σαβ ,Σγδ] = −i
[
ηαγΣβδ − ηαδΣβγ − ηβγΣαδ + ηβδΣαγ

]
. (6.7)

Similarly, attaching gluon 4 to (fermion) leg 2 yields

− ig
2

2

(T a3T a4)i1 i2
(k2+k4)2−m2

γµ3(−/k2−/k4+m)γµ4 = − ig
2

2

c′(2)

2k4 · k2
γµ3

[
γµ4(/k2 +m)− 2kµ4

2 +
1

2
[γµ4 , /k4]

]
.

(6.8)

Using (/k2 +m)u(−k2) = 0, we obtain

n′(2) = g2ū(k1)/ε3

[
ε4 · k2 + iε4αk4βΣαβ

]
u(−k2) . (6.9)

Finally, attaching gluon 4 to (gluon) leg 3 yields

n′(3) = g2ε3µ3 ū(k1)
[
ε4 · k3δµ3ν − iε4αk4β(Sαβ3 )µ3ν

]
γνu(−k2) . (6.10)

The sum of the kinematic numerators is thus

3∑
r=1

n′(r) = g2ū(k1)/ε3u(−k2)

(
3∑
r=1

ε4 · kr

)
− ig2ε4αk4βε3µ3 ū(k1)

(
Σαβγµ3 − γµ3Σαβ + (Sαβ3 )µ3νγ

ν
)
u(−k2) . (6.11)

The first sum on the right-hand side of this equation vanishes by momentum conservation∑4
r=1 kr = 0 together with ε4 · k4 = 0. The second sum vanishes because

Σαβγµ3 − γµ3Σαβ + (Sαβ3 )µ3νγ
ν (6.12)

is the first-order Lorentz transformation of γµ (acting on both spinor indices as well as the

vector index) and hence vanishes. Thus the sum of kinematic numerators for the amplitude

A4(ψ̄1, ψ2, g3, g4) is zero for spin-one-half fundamentals.

6.2 Kinematic numerators for spin-zero fundamentals

Next we turn to the case of spin-zero fundamentals. The ψ̄ψg vertex is

ig√
2

(T a3)i1 i2V
µ3(k1, k2, k3), V µ3(k1, k2, k3) = (k1 − k2)µ3 (6.13)

where ka are outgoing momenta. The scalar propagator is iδi j/(k
2 −m2). Thus attaching

gluon 4 to (scalar) leg 1 yields the expression

− ig
2

2

(T a4T a3)i1 i2
(k1 + k4)2 −m2

V µ4(k1,−k1 − k4, k4)V µ3(k1 + k4, k2, k3)

=
ig2

2

c′(1)

2k4 · k1
[kµ44 + 2kµ41 ]V µ3(k1 + k4, k2, k3) . (6.14)
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The contribution of this diagram to eq. (6.1) is obtained by contracting with ε3µ3ε4µ4 and

dividing by i. The first term in the square brackets vanishes using ε4 · k4 = 0, leaving

n′(1)

∣∣∣
leg

= g2ε4 · k1ε3µ3V µ3(k1 + k4, k2, k3) . (6.15)

Similarly, attaching gluon 4 to (scalar) leg 2 yields

n′(2)

∣∣∣
leg

= g2ε4 · k2ε3µ3V µ3(k1, k2 + k4, k3) . (6.16)

Attaching gluon 4 to (gluon) leg 3 yields

n′(3)

∣∣∣
leg

= g2ε3µ3

[
ε4 · k3δµ3ν − iε4αk4β(Sαβ3 )µ3ν

]
V ν(k1, k2, k3 + k4) . (6.17)

Attaching gluon 4 directly to the ψ̄ψg vertex, we obtain the ψ̄ψgg vertex

ig2

2
ηµ3µ4 ({T a3 , T a4})i1 i2 (6.18)

which can be written as

− ig2

2

(
c′(1)

∂

∂k1µ4
+ c′(2)

∂

∂k2µ4
+ c′(3)

∂

∂k3µ4

)
V µ3(k1, k2, k3) . (6.19)

The rest of the story proceeds exactly as in section 3, allowing us to write the kinematic

numerators as

n′(r) = g2
[
ε4 · kr − iε4αk4βJαβr − iε4αk4βk4γSαβr

∂

∂krγ

]
V (k1, k2, k3) (6.20)

where we have suppressed the polarization vector ε3. Because two of the legs are scalars,

we have Sαβ1 = Sαβ2 = 0, whereas Sαβ3 is given by eq. (3.9).

Now consider the sum of kinematic numerators

3∑
r=1

n′(r) = g2

(
3∑
r=1

ε4 · kr

)
V (k1, k2, k3)

− ig2ε4αk4β

(
3∑
r=1

Jαβr

)
V (k1, k2, k3) (6.21)

− ig2ε4αk4βk4γSαβ3
∂

∂k3γ
V (k1, k2, k3)

where the scalar-scalar-gluon vertex is V µ3(k1, k2, k3) = (k1 − k2 + λ[k1 + k2 + k3])
µ3 with

λ arbitrary due to momentum conservation. The first sum on the right-hand side of this

equation vanishes as usual by momentum conservation. The second sum, which may be

written more explicitly as

Lαβ1 V µ3(k1, k2, k3) + Lαβ2 V µ3(k1, k2, k3) + (Jαβ3 )µ3νV
ν(k1, k2, k3) (6.22)
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is the first-order Lorentz transformation of ψ̄ψg vertex. This vanishes, as may be seen by

explicit computation, because V µ3(k1, k2, k3) is a Lorentz tensor. The third term on the

right-hand side of eq. (6.21) is

ε4αk4βk4γ(Sαβ3 )µ3ν
∂

∂k3γ
V ν(k1, k2, k3) = λ

(
k24 ε

µ3
4 − ε4 · k4 k

µ3
4

)
(6.23)

which automatically vanishes due to k24 = 0 and ε4 · k4 = 0. Again, we emphasize that in

proving the vanishing of eq. (6.22) and (6.23) we did not use that kr were on-shell, nor did

we use εr · kr = 0, for r = 1, 2, 3. Thus these results remain valid for an off-shell vertex

V µ3(k1, k2, k3).

6.3 Kinematic numerators for spin-one fundamentals

Finally we consider massive spin-one fundamentals with ψ̄gψ vertex of the form

ig√
2

(T a3)i1 i2V
µ1µ2µ3(k1, k2, k3) (6.24)

where V µ1µ2µ3(k1, k2, k3) is given by eq. (3.5). We emphasize that although we refer to

the vector particles as fundamentals, they could be in any representation, including the

adjoint, in which case (T a3)a1a2 = fa1a3a2 and eq. (6.24) is equal to eq. (3.4), except that

now the vector boson is massive. The propagator for a massive spin-one particle is

−iδi jPµν(k)

k2 −m2
, Pµν(k) = ηµν −

kµkν
m2

. (6.25)

In the case in which the vector boson gets its mass from a spontaneously-broken symme-

try, eq. (6.25) is the propagator in unitary gauge; this is most convenient for tree-level

calculations as we need not compute contributions involving Goldstone bosons.

Attaching gluon 4 to leg 1 yields the expression

ig2

2

c′(1)

(k1 + k4)2 −m2
1

V µ1µ4ν(k1, k4,−k1 − k4)Pνλ(k1 + k4)V
λµ2µ3(k1 + k4, k2, k3) . (6.26)

The contribution of this diagram to eq. (6.1) is obtained by contracting with
∏4
a=1 εaµa

and dividing by i, giving

n′(1)

∣∣∣
leg

= g2ε1µ1

[
ε4 · k1δµ1ν − iε4αk4β(Sαβ1 )µ1ν

]
V νµ2µ3(k1 + k4, k2, k3)ε2µ2ε3µ3 (6.27)

where we have used 0 = k24 = ε4 · k4 = ε1 · k1 and k21 = m2
1 but we did not use eq. (3.7),

which is not valid in this case because k22 6= k23. Analogous expressions are obtained for

n′(2) and n′(3). Attaching gluon 4 directly to the ψ̄ψg vertex, we obtain the ψ̄ψgg vertex

− ig2

2

(
c′(1)

∂

∂k1µ4
+ c′(2)

∂

∂k2µ4
+ c′(3)

∂

∂k3µ4

)
V µ1µ2µ3(k1, k2, k3) . (6.28)

Again, the rest of the story proceeds exactly as in section 3, allowing us to write the

kinematic numerators as

n′(r) = g2
[
ε4 · kr − iε4αk4βJαβr − iε4αk4βk4γSαβr

∂

∂krγ

]
V (k1, k2, k3) (6.29)
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where we have suppressed the polarization vectors εr for r = 1, 2, 3. Note that the kinematic

numerators n′(r) have exactly the same form as the kinematic numerators for the four-gluon

amplitude, even though the masses for particles 1 through 3 can be nonzero. The proof of

the vanishing of the sum of numerators proceeds exactly as in section 3.

In this section, we have explicitly shown that the sum of kinematic numerators for

four-point amplitudes A4(ψ̄1, ψ2, g3, g4) vanishes (where ψ can have spin zero, one-half, or

one) and thus have demonstrated the invariance of the four-point amplitude under the

color-factor symmetry associated with gluon 4. As the results of the last subsection have

shown, this result remains valid even when particles 1 through 3 are massive; only the

gluon associated with the color-factor symmetry need be massless. The results we have

derived will be used in the next section to prove a more general result.

7 Proof of color-factor symmetry for more general amplitudes

In this section, we use the radiation vertex expansion to demonstrate the invariance under

the color-factor symmetry of tree-level gauge-theory amplitudes containing at least one

gluon together with massless or massive particles in arbitrary representations of the gauge

group (but referred to as fundamentals for convenience) and with arbitrary spin ≤ 1.

For concreteness, we focus on the n-point amplitude An(ψ̄1, g2, g3, · · · , gn−1, ψn) with n−
2 gluons and a pair of fundamentals ψ, but it will be clear that the proof applies to

more general amplitudes. The proof is very similar to that given in section 4 for n-gluon

amplitudes, and so we only highlight the differences.

The radiation vertex expansion constructs the n-point amplitude

An(ψ̄1, g2, g3, · · · , gn−1, ψn) by attaching gluon a ∈ {2, · · · , n − 1} to all possible

(n − 1)-point diagrams I ′, with two fundamentals and n − 3 gluons, in all possible ways,

and reorganizing this as a sum over all the vertices of the (n− 1)-point diagram. We have

already shown in section 4 that the contributions of the three- and four-gluon vertices are

invariant under the color-factor symmetry, so we only need to demonstrate the same for

vertices involving two fundamentals. We do this separately for fundamentals with spin

zero, one-half, and one.

7.1 Vertices involving spin-one-half fundamentals

To derive the contribution of the ψ̄ψg vertices to the radiation vertex expansion for spin-

one-half fundamentals ψ, we examine the effect of attaching a gluon to a fermion leg, either

external or internal.

First we single out (fermion) leg 1, denoting the contribution of an (n − 1)-point

diagram I ′ to the amplitude as ū(k1)C
i1(k1, · · · ) where · · · denotes momenta belonging to

{2, · · · , n} \ {a}. Attaching gluon a to external fermion leg 1, using ū(k1)(−/k1 + m) = 0,

and contracting with εaµa , we obtain

−
√

2g
(T aa)i1 j
2ka · k1

ū(k1)
[
εa · k1 − iεaαkaβΣαβ

]
C j(k1 + ka, · · · ) . (7.1)

Next, we single out (fermion) leg n, denoting the contribution of the diagram I ′ to the

amplitude as Bin(kn, · · · )u(−kn), where · · · denotes momenta belonging to {1, · · · , n−1}\
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{a}. Attach gluon a to external fermion leg n, use (/kn +m)u(−kn) = 0, and contract with

εaµa to obtain

+
√

2gBj(kn + ka, · · · )
(T aa)j in

2ka · kn

[
ε4 · kn + iε4αk4βΣαβ

]
u(−kn) . (7.2)

Now we single out one of the internal fermion lines of I ′, which divides the diagram into two

subdiagrams Bj and C j, and splits the external legs {1, · · · , n}\{a} into two complementary

sets Sa,B and Sa,C . The contribution of the diagram I ′ can thus be written as

Bj(−K, · · · )
iδj k
/K −m

Ck(K, · · · ) (7.3)

where K =
∑

d∈Sa,B kd is the momentum running through the line, and the · · · in B and

C denote momenta belonging to Sa,B and Sa,C respectively. Attaching gluon a to the line

connecting the two subgraphs and contracting with εaµa , we have

− ig√
2
Bj(−K, · · · )

1

/K −m
(T aa)j k/εa

1

/K + /ka −m
Ck(K + ka, · · · ) . (7.4)

Now we use the identity [35]

1

/K −m
/εa

1

/K + /ka −m
=

1

/K −m

(
εa ·K + 1

4

[
/εa, /ka

])
ka ·K

−
(
εa ·K + 1

4

[
/εa, /ka

])
ka ·K

1

/K + /ka −m
(7.5)

to rewrite this as

Bj(−K, · · · )
i

/K −m

{
−
√

2g
(T aa)j k
2ka ·K

[
εa ·K − iεaαkaβΣαβ

]
Ck(K + ka, · · · )

}
(7.6)

+

{
√

2g
(T aa)j k
2ka ·K

Bj(−K, · · · )
[
εa ·K − iεaαkaβΣαβ

]} i

/K + /ka −m
Ck(K + ka, · · · ) .

Each term can be associated with one of the two vertices to which the line is attached.

We now choose one of the ψ̄ψg vertices v of I ′. Such a vertex divides the external

legs into three non-overlapping subsets S(a,I′,v,r), r = 1, 2, 3 such that
⋃3
r=1 S(a,I′,v,r) =

{1, · · · , n} \ {a}. The contribution of the diagram I ′ to the (n− 1)-point amplitude can be

expressed as

ig√
2
A

(3)
c3µ3(−K3, · · · )Bj1(−K1, · · · )γµ3(T c3)

j1
j2
C j2(−K2, · · · ) (7.7)

where Kr =
∑

d∈S(a,I′,v,r)
kd is the momentum flowing out of each leg of the vertex, and

the · · · in B, C, and A denote momenta belonging to S(a,I′,v,1), S(a,I′,v,2), and S(a,I′,v,3)

respectively. If either fermion leg is external, then Bj1 = ū(k1)δ
i1
j1

or C j2 = u(−kn)δ
j2
in

.

If the gluon leg is external, then A
(3)
c3µ3 is δbc3εbµb .
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We now attach gluon a to each of the legs of this ψ̄ψg vertex, either to an external leg

or to an internal line. Using the expressions above as well as those in section 4, we obtain

ig2A
(3)
c3µ3(−K3, · · · )Bj1(−K1, · · · )

×
(
−

(T aaT c3)
j1
j2

2ka ·K1

[
εa ·K1 − iεaαkaβΣαβ

]
γµ3 +

(T c3T aa)
j1
j2

2ka ·K2
γµ3
[
εa ·K2 + iεaαkaβΣαβ

]
+
faac3b(T b)

j1
j2

2ka ·K3

[
ηµ3νεa ·K3 − iεaαkaβ(Sαβ3 )µ3ν

]
γν

)
C j2(−K2, · · · ) (7.8)

which is the contribution of the ψ̄ψg vertex to the radiation vertex expansion.

We now wish to show that eq. (7.8) is invariant under the color-factor symmetry. As in

section 4, we first assume that the subdiagrams corresponding to A, B, and C contain no

four-gluon vertices. Designate by c(a,I′,v,r) with r = 1, 2, 3 the color factors associated with

each of the three terms in eq. (7.8), including factors of fabc and (T a)j k in the subdiagrams.

These color factors manifestly satisfy
∑3

r=1 c(a,I′,v,r) = 0, and the variation of c(a,I′,v,r)
under the color-factor shift associated with gluon a is

δa c(a,I′,v,r) = α(a,I′,v) ka ·Kr (7.9)

which preserves
∑3

r=1 c(a,I′,v,r) = 0. The variation of eq. (7.8) under eq. (7.9) is then

proportional to(
3∑
r=1

εa ·Kr

)
γµ3 − iεaαkaβ

[
Σαβγµ3 − γµ3Σαβ + (Sαβ3 )µ3νγν

]
. (7.10)

The first term vanishes by momentum conservation, and the second by the transformation

properties of γν , as we saw in section 6. If the subdiagrams A, B, and C do contain four-

gluon vertices, we can expand eq. (7.8) into individual pieces, each of which is invariant

under the color-factor symmetry. Together with the result from section 4 that the contri-

butions to the radiation vertex expansion from the three- and four-gluon vertices are also

invariant, we have thus shown that the amplitude An(ψ̄1, g2, g3, · · · , gn−1, ψn) with spin-

one-half fundamentals is invariant under the color-factor symmetry. In fact, this proof

applies to an amplitude with an arbitrary number of pairs of fundamentals, and will be

used in the sequel [47] to prove the BCJ relations [42] for that class of amplitudes.

7.2 Vertices involving spin-zero fundamentals

To derive the contribution of the ψ̄ψg and ψ̄ψgg vertices to the radiation vertex expansion

for spin-zero fundamentals ψ, we examine the effect of attaching a gluon to a scalar leg,

either external or internal.

First we single out (scalar) leg 1, denoting the contribution of an (n−1)-point diagram

I ′ to the amplitude as C i1(k1, · · · ) where · · · denotes momenta belonging to {2, · · · , n}\{a}.
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Attaching gluon a to external scalar leg 1 we obtain

− g√
2

(T aa)i1 j
(ka + k1)2 −m2

V µa(k1,−k1 − ka, ka)C j(k1 + ka, · · · )

= − g√
2

(T aa)i1 j
2ka · k1

[kµaa + 2kµa1 ]C j(k1 + ka, · · · ) . (7.11)

Contracting this with εaµa eliminates the first term in the square brackets, leaving

−
√

2g
(T aa)i1 j
2ka · k1

εa · k1C j(k1 + ka, · · · ) . (7.12)

Similarly, attaching gluon a to external scalar leg n, we obtain

+
√

2gεa · knBj(kn + ka, · · · )
(T aa)j in

2ka · kn
. (7.13)

Next we single out one of the internal scalar lines of I ′, which divides the diagram into two

subdiagrams Bj and C j, and splits the external legs into two complementary sets Sa,B and

Sa,C . The contribution of the diagram I ′ can thus be written as

Bj(−K, · · · )
iδjk

K2 −m2
Ck(K, · · · ) (7.14)

where K =
∑

d∈Sa,B kd is the momentum running through the line, and the · · · in B and

C denote momenta belonging to Sa,B and Sa,C respectively. Attaching gluon a to the line

connecting the two subgraphs yields

− ig√
2
Bj(−K, · · · )

(T aa)j kV
µa(K,−K − ka, ka)

[K2 −m2][(K + ka)2 −m2]
Ck(K + ka, · · · ) . (7.15)

Contracting with εaµa and using εa · ka = 0, we have

−
√

2igBj(−K, · · · )
(T aa)j kεa ·K

[K2 −m2][(K + ka)2 −m2]
Ck(K + ka, · · · ) . (7.16)

Now we use the identity (5.3) to rewrite this as

Bj(−K, · · · )
i

K2 −m2

{
−
√

2g
(T aa)j k
2ka ·K

εa ·K Ck(K + ka, · · · )

}

+

{
√

2gBj(−K, · · · )
(T aa)j k
2ka ·K

εa ·K

}
i

(K + ka)2 −m2
Ck(K + ka, · · · ) . (7.17)

We associate each of the terms in this equation with one of the two vertices to which the

line is attached.

Next we choose one of the scalar-scalar-gluon vertices v of I ′ (if it has any). Such

a vertex divides the external legs into three non-overlapping subsets S(a,I′,v,r), r = 1, 2, 3
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such that
⋃3
r=1 S(a,I′,v,r) = {1, · · · , n} \ {a}. The contribution of the diagram I ′ can be

expressed as

ig√
2
V µ3(K1,K2,K3)A

(3)
c3µ3(−K3, · · · )Bj1(−K1, · · · )(T c3)

j1
j2
C j2(−K2, · · · ) (7.18)

where Kr =
∑

d∈S(a,I′,v,r)
kd is the momentum flowing out of each leg of the vertex, and

the · · · in B, C, and A denote momenta belonging to S(a,I′,v,1), S(a,I′,v,2), and S(a,I′,v,3)

respectively. If either scalar leg is external, then Bj1 = δi1 j1
or C j2 = δ

j2
in

. If the gluon leg

is external, then A
(3)
c3µ3 is δbc3εbµb .

We now attach gluon a to each of the legs of this scalar-scalar-gluon vertex, either to

an external leg or to an internal line. This yields

ig2A(3)
c3µ3

(−K3, · · · )Bj1(−K1, · · · ) (7.19)

×
(
−

(T aaT c3)
j1
j2

2ka ·K1

[
εa ·K1

]
V µ3(K1 + ka,K2,K3) +

(T c3T aa)
j1
j2

2ka ·K2

[
εa ·K2

]
V µ3(K1,K2 + ka,K3)

+
faac3b(T b)

j1
j2

2ka ·K3

[
ηµ3νεa ·K3 + (εµ3

a k
ν
a − ενakµ3

a )
]
Vν(K1,K2,K3 + ka)

)
C j2(−K2, · · · ) .

We can also attach gluon a directly to the scalar-scalar-gluon vertex itself. Using eq. (6.19),

this yields

− ig
2

2
A

(3)
c3µ3(−K3, · · · )Bj1(−K1, · · · )

×
(
− (T aaT c3)

j1
j2
εaµa

∂

∂K1µa

V µ3(K1,K2,K3) + (T c3T aa)
j1
j2
εaµa

∂

∂K2µa

V µ3(K1,K2,K3)

+ faac3b(T b)
j1
j2
εaµa

∂

∂K3µa

V µ3(K1,K2,K3)

)
C j2(−K2, · · · ) . (7.20)

We now use eq. (3.16) in eq. (7.19), and combine eq. (7.19) and (7.20) as we did in section 6.

Leaving the µ3 index implicit, we obtain the contribution of the scalar-scalar-gluon vertex

to the radiation vertex expansion

ig2A(3)
c3 (−K3, · · · )Bj1(−K1, · · · )

×
(
−

(T aaT c3)
j1
j2

2ka ·K1

[
εa ·K1 − iεaαkaβLαβ1

]
V (K1,K2,K3) (7.21)

+
(T c3T aa)

j1
j2

2ka ·K2

[
εa ·K2 − iεaαkaβLαβ2

]
V (K1,K2,K3)

+
faac3b(T b)

j1
j2

2ka ·K3

[
εa ·K3 − iεaαkaβJαβ3 − iεaαkaβkaγSαβ3

∂

∂K3γ

]
V (K1,K2,K3)

)
C j2(−K2, · · · )

where J3 and S3 act on the µ3 index of V (K1,K2,K3) .

At the end of the last subsection, we discussed the color-factor symmetry acting on the

ψ̄ψg vertex contribution to the radiation vertex expansion. Under eq. (7.9), the variation

of eq. (7.21) is proportional to[(
3∑
r=1

εa ·Kr

)
− iεaαkaβ

(
3∑
r=1

Jαβr

)
− iεaαkaβkaγSαβ3

∂

∂K3γ

]
V (K1,K2,K3) . (7.22)
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In section 6, we demonstrated that each of the three terms in eq. (7.22) vanishes. Therefore

the contributions of the ψ̄ψg vertices (7.21) to the radiation vertex expansion are invariant

under the color-factor shift associated with gluon a.

Finally we choose one of the scalar-scalar-gluon-gluon vertices v of I ′ (if it has any).

Such a vertex divides the external legs into four non-overlapping subsets S(a,I′,v,r), r =

1, · · · , 4 such that
⋃4
r=1 S(a,I′,v,r) = {1, · · · , n} \ {a}. Using eq. (6.18), the contribution of

diagram I ′ can be expressed as

ig2

2
ηµ3µ4A

(3)
c3µ3(−K3, · · · )A(4)

c4µ4(−K4, · · · )Bj1(−K1, · · · ) ({T c3 , T c4})j1 j2 C
j2(−K2, · · · ) .

(7.23)

We now attach gluon a to each of the legs of this scalar-scalar-gluon-gluon vertex, either

to an external leg or to an internal line. This yields

ig3√
2
A

(3)
c3µ3(−K3, · · · )A(4)

c4µ4(−K4, · · · )Bj1(−K1, · · · )

×
(
−

(T aa{T c3 , T c4})j1 j2
2ka ·K1

[
εa ·K1

]
ηµ3µ4 +

({T c3 , T c4}T aa)
j1
j2

2ka ·K2

[
εa ·K2

]
ηµ3µ4

+
faac3b({T b, T c4})j1 j2

2ka ·K3

[
δµ3ν εa ·K3 − iεaαkaβ(Sαβ3 )µ3ν

]
ηνµ4

+
faac4b({T c3 , T b})j1 j2

2ka ·K4

[
δµ4ν εa ·K4 − iεaαkaβ(Sαβ4 )µ4ν

]
ηµ3ν

)
C j2(−K2, · · · ) . (7.24)

We now need to consider the variation under the color-factor symmetry of this contribution

to the radiation vertex expansion. Designate by c(a,I′,v,r) with r = 1, · · · 4 the color factor

associated with each of the terms in eq. (7.24), including the factors of fabc and (T a)j k in

the subdiagrams. These color factors satisfy
∑4

r=1 c(a,I′,v,r) = 0 by virtue of

− (T aa{T c3 , T c4})j1 j2 + ({T c3 , T c4}T aa)
j1
j2

+ faac3b({T b, T c4})j1 j2 + faac4b({T c3 , T b})j1 j2 = 0 .

(7.25)

The variation of c(a,I′,v,r) under the color-factor shift associated with gluon a is

δa c(a,I′,v,r) = α(a,I′,v) ka ·Kr . (7.26)

The variation of eq. (7.24) under eq. (7.26) is therefore proportional to(
4∑
r=1

εa ·Kr

)
ηµ3µ4 − iεaαkaβ

[
(Sαβ3 )µ3νη

νµ4 + (Sαβ4 )µ4νη
µ3ν
]
. (7.27)

The first term vanishes by momentum conservation, ka+
∑4

r=1Kr = 0, and εa ·ka = 0. The

second term is the first-order Lorentz transformation of the tensor ηµ3µ4 , which vanishes.

Thus each vertex involving scalars that contributes to the radiation vertex expan-

sion is invariant under the color-factor shift associated with gluon a. Together with the

result from section 4 that the contributions from the three- and four-gluon vertices to

the radiation vertex expansion are also invariant, we have shown that the full amplitude
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An(ψ̄1, g2, g3, · · · , gn−1, ψn) with spin-zero fundamentals is invariant under the color-factor

shift. In fact, any amplitude built with ψ̄ψg and ψ̄ψgg vertices for scalar ψ will have the

color-factor symmetry.

7.3 Vertices involving spin-one fundamentals

To derive the contribution of the ψ̄ψg and ψ̄ψgg vertices to the radiation vertex expansion

for spin-one fundamentals ψ, we examine the effect of attaching a gluon to a massive vector

leg, either external or internal.

First we single out (vector) leg 1, denoting the contribution of an (n − 1)-point dia-

gram I ′ to the amplitude as ε1µ1C
i1µ1(k1, · · · ) where · · · denotes momenta belonging to

{2, · · · , n} \ {a}. Attaching gluon a to external vector leg 1 we obtain

− g√
2

(T aa)i1 j
(ka + k1)2 −m2

1

V µ1νµa(k1,−k1 − ka, ka)Pνλ(k1 + ka)C
jλ(k1 + ka, · · · ) . (7.28)

Contracting with ε1µ1εaµa , we obtain

−
√

2g
(T aa)i1 j
2ka · k1

ε1µ1

[
εa · k1ηµ1ν + (εµ1a k

ν
a − ενakµ1a )

]
C j
ν(k1 + ka, · · · ) (7.29)

where we used k24 = ε4 · k4 = ε1 · k1 = 0 and k21 = m2
1. We did not use the vanishing of

eq. (4.3). Similar expressions result from attaching gluon a to the other legs. By comparing

eq. (4.4) and (7.29), we observe that the expression is the same for a massless or a massive

vector particle.

Next we single out one of the internal lines of I ′, which divides the diagram into two

subdiagrams B and C, and splits the external legs {1, · · · , n}\{a} into two complementary

sets Sa,B and Sa,C . The contribution of the diagram can thus be written as

Bµ
j (−K, · · · )

(−iδjk)Pµν(K)

K2 −m2
Ckν(K, · · · ) (7.30)

where K =
∑

d∈Sa,B kd is the momentum running through the line, and the · · · in B and

C denote momenta belonging to Sa,B and Sa,C respectively. Attaching gluon a to the line

connecting the two subgraphs and contracting with εaµa , we obtain

− ig√
2
Bµ

j (−K, · · · )
(T aa)j kPµλ(K)εaµaV

λκµa(K,−K − ka, ka)Pκν(K + ka)

[K2 −m2][(K + ka)2 −m2]
Ckν(K+ka, · · · ) .

(7.31)

Now we use the identity [35]

Pµλ(K)εaµa
V λκµa(K,−K − ka, ka)Pκν(K + ka)

[K2 −m2][(K + ka)2 −m2]
(7.32)

=
1

ka ·K

{
−Pµλ(K)

[
δλνεa ·K + ελakaν − kλaεaν

]
K2 −m2

+

[
δ κµ εa ·K + εaµk

κ
a − kaµεκa

]
Pκν(K + ka)

(K + ka)2 −m2

}

to rewrite this as
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Bµj (−K, · · · )−iPµλ(K)

K2 −m2

{
−
√

2g
(T aa)j k
2ka ·K

[
ηλνεa ·K +

(
ελak

ν
a − ενakλa

)]
Ck
ν(K + ka, · · · )

}
(7.33)

+

{
√

2gBjµ(· · · ,−K)
(T aa)j k
2ka ·K

[
ηµκεa ·K + (εµak

κ
a − εκakµa )

]} −iPκν(K + ka)

(K + ka)2 −m2
Ckν(K + ka, · · · ) .

We did not use the vanishing of eq. (4.8). We associate each of the terms in curly brackets

with one of the two vertices to which the line is attached.

For the rest of the discussion, we can be brief. The expressions for the contributions

to the radiation vertex expansion from ψ̄ψg and ψ̄ψgg vertices are similar to those for

spin-zero fundamentals, except that we must include Jr and Sr terms for r = 1 and 2. The

proof that these vertex contributions are invariant under the color-factor symmetry relies

on some of the results from section 4.

Thus we have shown that the full amplitude An(ψ̄1, g2, g3, · · · , gn−1, ψn) with massive

spin-one fundamentals is invariant under the color-factor shift. In fact, any amplitude

built with ψ̄ψg and ψ̄ψgg vertices with a massive vector particle ψ will have the color-

factor symmetry.

We can go even further and state that any amplitude built from ggg and ψ̄gψ vertices

(with ψ having arbitrary spin ≤ 1) where not only ψ but also some of the gluons are massive

(i.e., through spontaneous symmetry breaking) will be invariant under the color-factor shift.

The only particle in the amplitude that must be massless is the gluon associated with the

color-factor symmetry.

8 Null eigenvectors of the propagator matrix

The symmetry that we have introduced in this paper is possessed not only by gauge-theory

amplitudes but also by the amplitudes of the much simpler theory [48] of massless scalars

φaa
′

transforming in the adjoint of the color group U(N)×U(Ñ). These bi-adjoint scalars

have only cubic interactions of the form

fabcf̃a′b′c′φ
aa′φbb

′
φcc
′

(8.1)

where fabc and f̃a′b′c′ are the structure constants of U(N) and U(Ñ). The tree-level n-point

amplitude is given by the sum over cubic diagrams

Ascalar
n =

∑
i

cic̃i
di

. (8.2)

Using eq. (2.10), the bi-adjoint scalar tree amplitude (8.2) can be written as

Ascalar
n =

∑
γ∈Sn−2

∑
δ∈Sn−2

c1γn m(1γn|1δn) c̃1δn (8.3)

where

m(1γn|1δn) =
∑
i

Mi,1γnMi,1δn

di
(8.4)

– 37 –



J
H
E
P
1
0
(
2
0
1
6
)
1
3
0

are double-partial amplitudes of the bi-adjoint scalar theory [48]. The m(1γn|1δn) are also

the entries of (n − 2)! × (n − 2)! propagator matrix defined in ref. [7]. Vaman and Yao

argued that the propagator matrix has rank (n− 3)! by virtue of momentum conservation,

using explicit low n examples. Cachazo, He, and Yuan confirmed this for general n by ex-

pressing the double-partial amplitudes as a sum over the (n−3)! solutions of the scattering

equations [48].

The cubic vertex expansion of the n-point bi-adjoint scalar amplitude with respect to

external scalar a (see section 2) is given by

Ascalar
n =

∑
I

∑
v∈V(a,I)

1∏3
s=1 d(a,I,v,s)

3∑
r=1

c(a,I,v,r)c̃(a,I,v,r)

2ka ·K(a,I,v,r)
(8.5)

where
3∑
r=1

c(a,I,v,r) = 0 ,

3∑
r=1

c̃(a,I,v,r) = 0 . (8.6)

The color-factor shift with respect to massless scalar a acts on the color factors appearing

in eq. (8.5) as

δa c(a,I,v,r) = α(a,I,v) ka ·K(a,I,v,r) . (8.7)

The variation of eq. (8.5) under this shift

δa Ascalar
n =

1

2

∑
I

∑
v∈V(a,I)

α(a,I,v)∏3
s=1 d(a,I,v,s)

3∑
r=1

c̃(a,I,v,r) (8.8)

vanishes by virtue of eq. (8.6), thus establishing that the amplitudes of the bi-adjoint scalar

theory possess the color-factor symmetry.

Now we consider the variation of the amplitude (8.3) under the shift (2.14) associated

with a = 2,

δ2 Ascalar
n (8.9)

=
∑

σ∈Sn−3

α2,σ

n∑
b=3

(
k1 · k2+

b−1∑
c=3

k2 · kσ(c)

)
m(1, σ(3), · · · , σ(b− 1), 2, σ(b), · · · , σ(n− 1), n|1δn)) c̃1δn .

Using the invariance of Ascalar
n , together with independence of α2,σ and c̃1δn, we obtain

n∑
b=3

(
k1 · k2 +

b−1∑
c=3

k2 · kσ(c)

)
m(1, σ(3), · · · , σ(b− 1), 2, σ(b), · · · , σ(n− 1), n|1δn) = 0

(8.10)

i.e., we have derived a set of (n−3)! null eigenvectors of the propagator matrix. Other sets

of null eigenvectors are obtained from the color-factor shifts associated the other massless

scalars in the amplitude.

Since the (n− 2)!× (n− 2)! propagator matrix is known [48] to have rank (n− 3)!, at

most (n− 3)(n− 3)! of these null eigenvectors can be independent. Thus, the color-factor

symmetry associated with n − 3 of the massless scalars suffices to guarantee the reduced
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rank of the propagator matrix. This nicely explains a result found by one of the present

authors in ref. [68], viz., that the propagator matrix persists in having rank (n− 3)! even

when up to three of the external particles in the amplitude are massive, but if more than

three particles are massive, the rank of the propagator matrix is greater. We now see

that for m ≥ 3 massive and n − m massless particles, the number of null eigenvectors

generated by the color-factor symmetry will be (n−m)(n− 3)! , and therefore the rank of

the propagator matrix will be (m− 2)(n− 3)! for m = 3 through m = n.

Returning now to Yang-Mills theory, if we assume that the numerators of the n-gluon

amplitude obey color-kinematic duality, i.e. they obey the same Jacobi relations as ci, then

they can similarly be expressed in terms of (n− 2)! half-ladder numerators n1γn via

ni =
∑

γ∈Sn−2

Mi,1γn n1γn . (8.11)

Using eq. (2.17) and (8.11), the color-ordered amplitudes in the Kleiss-Kuijf basis can be

written in terms of the propagator matrix as

A(1, γ(2), · · · , γ(n− 1), n) =
∑

δ ∈Sn−2

m(1γn|1δn) n1δn . (8.12)

Thus the null eigenvectors of the propagator matrix (8.10) imply that the color-ordered

n-gluon amplitudes obey the BCJ relations (2.19).

As we saw in section 2, however, it is not necessary to require color-kinematic du-

ality in order to prove the BCJ relations. The BCJ relations follow from the weaker

constraint (2.26), and both eq. (2.26) and the BCJ relations are a consequence of the

color-factor symmetry of the amplitude, which is established through the radiation vertex

expansion.

9 Loop-level amplitudes

Given the connection established in this paper between the color-factor symmetry of tree-

level gauge-theory amplitudes and color-kinematic duality/BCJ relations, it is naturally of

great interest to see whether these ideas can be extended to loop level. In this section, we

generalize the cubic vertex expansion introduced in section 2 to loop-level amplitudes. We

then define a set of shifts of one-loop color factors that depend on the loop momentum as

well as the momenta of external particles, and ask whether the cubic vertex expansion of

the one-loop amplitude is invariant under these shifts.

It is obvious from the variation of the cubic vertex expansion (2.25) that the tree-

level amplitude will be invariant under a color-factor shift if the numerators satisfy color-

kinematic duality. The reader may have noticed, however, that up until now we have taken

great pains not to invoke color-kinematic duality to prove color-factor symmetry. We have

chosen rather to show that it follows directly from a Lagrangian approach. At loop level,

we no longer have that luxury, at least at the current stage of development. Instead we

will explicitly invoke loop-level color-kinematic duality (for the theories in which it has

been shown to hold [1, 2, 10–20]) in order to demonstrate the color-factor symmetry of the
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Figure 4. Some of the diagrams to which a gluon is attached to obtain the one-loop four-point

cubic decomposition.
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Figure 5. Diagrams [14]23, 1[24]3, 12[34], 1234, 1423, and 1243.

one-loop amplitude. We then show that the invariance of the amplitude under color-factor

shifts implies a set of relations among the integrands of its color-ordered amplitudes.

9.1 Cubic vertex expansion for loop-level amplitudes

To construct the cubic vertex expansion of an L-loop n-gluon amplitude with respect to

gluon a, we begin with the set of L-loop (n− 1)-point cubic diagrams I with external legs

{1, · · · , n}\{a}. For example, for the one-loop four-gluon amplitude, two of the three-point

diagrams are shown in figure 4; the rest are obtained from relabelings of the external legs.

Then we attach gluon a in all possible ways, either to the external legs or to the internal

lines of I. For example, attaching gluon 4 to the triangle diagram in figure 4 in all possible

ways, we obtain the diagrams in figure 5. The diagrams in figure 5 correspond to the

following terms in the cubic decomposition of the one-loop four-point amplitude [1, 2]

A(1)
4,tri =

∫
dD`

(2π)D

[
c[14]23 n[14]23

d[14]23
+
c1[24]3 n1[24]3

d1[24]3
+
c12[34] n12[34]

d12[34]

+
c1234 n1234
d1234

+
c1423 n1423
d1423

+
c1243 n1243
d1243

]
(9.1)

where the denominators in eq. (9.1) are the products of inverse propagators associated with

the diagrams. (There could be different sets of denominators depending on the mass of the

particle circulating in the loop.) Explicit definitions of the color factors are given below in

eq. (9.6). The terms obtained by attaching the gluon to an internal line — in this case, the

last three terms of eq. (9.1) — are split into two by applying the identity (2.20) or, in the

case of massive internal lines, eq. (5.3). The terms are then reorganized into a sum over

the vertices of I. For example, the terms in eq. (9.1) are reorganized into
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A(1)
4,tri =

∫
dD`

(2π)D

{
1

`2(`− k2 − k3)2(`− k3)2

[
c[14]23 n[14]23

2k4 · k1
+
c1234 n1234

2k4 · `
− c1423 n1423

2k4 · (`+ k1)

]
+

1

`2(`+ k1)2(`− k3)2

[
c1[24]3 n1[24]3

2k4 · k2
+

c1423 n1423
2k4 · (`+ k1)

− c1243 n1243
2k4 · (`+ k1 + k2)

]
(9.2)

+
1

`2(`+k1)2(`+k1+k2)2

[
c12[34] n12[34]

2k4 · k3
+

c1243 n1243
2k4 · (`+ k1 + k2)

− c1234 n1234
2k4 · (`+ k1 + k2 + k3)

]}

where ` in the last term of the last line of eq. (9.2) differs from the label in figure 5 by

a shift.14 If the particle circulating in the loop has mass m, the expressions (` + · · · )2

in eq. (9.2) (i.e., those outside the square brackets) are all replaced by (` + · · · )2 − m2.

We hasten to remind the reader that A(1)
4,tri is only one part of the one-loop four-gluon

amplitude; similar expressions are obtained by attaching gluon 4 to the other one-loop

three-point diagrams I.

Observe that if we apply a shift to the numerators

δ4n[14]23 = βk4 · k1, δ4n1[24]3 = βk4 · k2, δ4n12[34] = βk4 · k3, (9.3)

δ4n1234 = βk4 · `, δ4n1423 = βk4 · (`+ k1), δ4n1243 = βk4 · (`+ k1 + k2),

the expression (9.2) remains unchanged as a result of the Jacobi identities

0 = c[14]23 + c1234 − c1423 = c1[24]3 + c1423 − c1243 = c12[34] + c1243 − c1234 (9.4)

which means that eq. (9.3) corresponds to a generalized gauge transformation.

The n-point generalization of eq. (9.2), obtained by attaching gluon n to the (n−1)-gon

diagram, is given by

A(1)
n,(n−1)gon =

∫
dD`

(2π)D

n−1∑
b=1

{
1∏b

c=1

(
`+

∑c−1
a=1 ka

)2∏n−1
d=b+1

(
`−

∑n−1
a=d ka

)2 (9.5)

×

c···[bn]···n···[bn]···
2kn · kb

+
c···b−1,n,b···n···b−1,n,b···

2kn ·
(
`+

∑b−1
a=1 ka

) − c···b,n,b+1···n···b,n,b+1···

2kn ·
(
`+

∑b
a=1 ka

)
}

where

c12···n ≡
∑

b1,...,bn

fb1a1b2fb2a2b3 · · · fbnanb1 ,

c[12]3···n ≡
∑

b1,...,bn

fa1a2b2fb1b2b3fb3a3b3 · · · fbnanb1 . (9.6)

14This points up an inherent ambiguity in defining a common loop momentum when adding together

different loop-level diagrams, as in eq. (9.1) and (9.2). This requires further study. For now, we simply

note that there exists a choice of loop momentum for each diagram such that (part of) the one-loop

amplitude has the form (9.2). With this choice, the numerator shifts defined in eq. (9.3) correspond to a

generalized gauge transformation.
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Figure 6. Diagrams with color factors c···[bn]··· and c···b−1,n,b···.

The “ring” diagrams c12···n are cyclically symmetric and reflection symmetric

c12...n = (−1)ncn···21 . (9.7)

The color factors appearing in eq. (9.5) are shown in figure 6 and satisfy the Jacobi relations

0 = c···[bn]··· + c···b−1,n,b··· − c···b,n,b+1··· . (9.8)

Again, if a particle of mass m is circulating in the loop, we replace terms of the form

(` +
∑
k)2 with (` +

∑
k)2 −m2. Similar expressions are obtained by attaching gluon n

to the other one-loop (n− 1)-point diagrams I, including (n− 1)-gon diagrams with other

permutations of the external legs {1, · · · , n− 1},
Recently, partial fraction identities similar to eq. (2.20) have been employed to recast

one-loop amplitudes into a new form whose denominators contain factors linear in the loop

momentum [69–74], somewhat analogous to eq. (9.5). These new expressions are those

that naturally emerge from a scattering-equation approach to loop-level amplitudes.

9.2 Color-factor symmetry at one-loop level

Next we consider the behavior of one-loop amplitudes under momentum-dependent shifts

of its color factors. First we must define a set of shifts consistent with the requirements

elucidated earlier in the paper. For the one-loop four-gluon amplitude, the color-factor

shift associated with gluon 4 must satisfy

δ4c[14]23 = αk4 · k1, δ4c1[24]3 = αk4 · k2, δ4c12[34] = αk4 · k3 (9.9)

since these diagrams have gluon 4 attached to an external leg. Requiring the color-factor

shift to respect the Jacobi relations (9.4) implies that

δ4c1423 = δ4c1234 + αk4 · k1 δ4c1243 = δ4c1234 + αk4 · (k1 + k2) . (9.10)

Unlike the tree-level case, however, these requirements alone are not sufficient to fix the

values of all the shifts; one of them, δ4c1234, remains arbitrary. In analogy with eq. (9.3),

we define the remaining shift to be

δ4c1234 = αk4 · ` (9.11)
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where ` is the loop momentum.15 The effect of this shift on eq. (9.2) is

δ4A(1)
4,tri =

α

2

∫
dD`

(2π)D

[
n[14]23 + n1234 − n1423
`2(`− k2 − k3)2(`− k3)2

+
n1[24]3 + n1423 − n1243
`2(`+ k1)2(`− k3)2

+
n12[34] + n1243 − n1234
`2(`+ k1)2(`+ k1 + k2)2

]
. (9.12)

Similar expressions are obtained for the contributions to the cubic vertex expansion from

the other three-point diagrams.

A goal consistent with the development in this paper would be to prove by some

alternative means (such as the radiation vertex expansion) that δ4A(1)
4 vanishes under the

one-loop color-factor shift. That would imply the vanishing of the r. h. s. of eq. (9.12)

plus the expressions obtained from the other three-point diagrams, imposing a generalized-

gauge-invariant constraint on the one-loop kinematic numerators (namely, that the terms

in the square brackets in eq. (9.12) add up to something that integrates to zero). But at

this point in the development of the subject, we have no such proof, and therefore we will

turn the argument around, and use the knowledge that there exist kinematic numerators

for the one-loop four-gluon amplitude that obey color-kinematic duality

0 = n[14]23 + n1234 − n1423 = n1[24]3 + n1423 − n1243 = n12[34] + n1243 − n1234 (9.13)

for pure Yang-Mills theory (with only gluons circulating in the loop) [19] as well as for

theories with other particles circulating in the loop [1, 20]. In these cases, the kinematic

Jacobi identities (9.13) imply that eq. (9.12) vanishes, as do the other contributions to

the cubic vertex expansion. Thus, the one-loop four-gluon amplitude in these theories is

invariant under the color-factor shift specified by eqs. (9.9), (9.10), and (9.11).

The cubic vertex expansion of the one-loop four-point amplitude of the bi-adjoint scalar

theory may be obtained by replacing the kinematic numerators ni with a second copy of

the color factors c̃i. Since the latter obey the one-loop color Jacobi identities (9.4), the bi-

adjoint scalar one-loop four-point amplitude is also invariant under the color-factor shift.

It is known that an independent basis of one-loop color factors are those associated

with ring diagrams modulo cyclic permutations and reflections [52]. Therefore the one-loop

n-gluon amplitude can be written

A(1)
n =

∫
dD`

(2π)D

∑
γ∈Sn−1/Z2

c1γ I(1, γ(2), · · · , γ(n)) (9.14)

where γ is a permutation of {2, · · · , n}, Z2 denotes the reflection symmetry c123...n →
c1n···32, and I(1, γ(2), · · · , γ(n)) are the integrands of the one-loop color-ordered amplitudes.

Eq. (9.14) may be regarded as the result of a generalized gauge transformation in which

the kinematic numerators associated with the non-ring color factors are set to zero [11].

Specializing to the one-loop four-gluon amplitude, eq. (9.14) gives

A(1)
4 =

∫
dD`

(2π)D
[c1234I(1, 2, 3, 4) + c1423I(1, 4, 2, 3) + c1243I(1, 2, 4, 3)] . (9.15)

15See footnote 14.
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For theories whose numerators respect one-loop color-kinematic duality, the invariance of

the one-loop amplitude under the color-factor shift implies the following condition on the

integrands

0=

∫
dD`

(2π)D
[k4 · ` I(1, 2, 3, 4) + k4 · (`+ k1) I(1, 4, 2, 3) + k4 · (`+ k1 + k2) I(1, 2, 4, 3)] .

(9.16)

Relations of this form were first uncovered in refs. [49–51] from the perspective of on-shell

recursion relations, and revisited recently using monodromy relations in string theory [75].

(See also ref. [76] for BCJ-type relations among loop-level integrands.) Conversely, if the

integrands of the one-loop amplitude of a theory can be shown to satisfy eq. (9.16), then it

follows that the one-loop amplitude is invariant under the color-factor shift, avoiding the

need to invoke color-kinematic duality.

It is straightforward to generalize these considerations to one-loop n-gluon amplitudes.

We may define a color-factor shift associated with any external gluon a, but for simplicity

of presentation we will focus on gluon n. Let σ denote a permutation of {2, · · · , n − 1}.
The color factor c···[σ(b)n]··· shown in figure 6 undergoes a shift

δnc···[σ(b)n]··· ∝ kn · kσ(b) (9.17)

because gluon n is attached to gluon leg σ(b). Requiring the shifts to respect the Jacobi

relation (9.8) implies

δnc···σ(b)nσ(b+1)··· = δnc···σ(b−1)nσ(b)··· + δnc···[σ(b)n]··· (9.18)

We must additionally define the shifts

δnc1σ(2)···σ(n−1)n = αn,σ kn · ` (9.19)

for a set of half16 of the permutations σ, where αn,σ are a set of (n − 2)!/2 independent

arbitrary constants. Together these conditions imply that the shifts of the ring color factors

are given by

δnc1σ(2)···σ(b−1)nσ(b)···σ(n) = αn,σ

(
kn · `+ kn · k1 +

b−1∑
c=2

kn · kσ(c)

)
, b ∈ {2, · · · , n− 1}

(9.20)

and the shifts of all other one-loop color factors are fixed by requiring that they respect the

Jacobi relations. Thus there is an (n − 2)!/2-dimensional family of one-loop color-factor

shifts associated with gluon n.

Applying the shift (9.20) to eq. (9.5), we obtain

δnA(1)
n,(n−1)gon ∝

∫
dD`

(2π)D

n−1∑
b=1

(
n···[bn]··· + n···b−1,n,b··· − n···b,n,b+1···

)
∏b
c=1

(
`+

∑c−1
a=1 ka

)2∏n−1
d=b+1

(
`−

∑n−1
a=d ka

)2 . (9.21)

16The shifts of the other half are then determined by the reflection symmetry (9.7). For example for the

four-point case δ4c1234 = α4,23k4 ·` but δ4c1324 = δ4c1423 = α4,23k4 · (`+k1), which is not of the form (9.19).
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For N = 4 supersymmetric Yang-Mills theory, numerators for the one-loop five-gluon [10]

and higher-point [13, 16] amplitudes have been constructed which satisfy color-kinematic

duality

0 = n···[bn]··· + n···b−1,n,b··· − n···b,n,b+1··· (9.22)

and which therefore imply that eq. (9.21) vanishes. The shifts of the terms in the cubic

vertex expansion obtained from other (n− 1)-point diagrams I similarly vanish. Thus, we

have established that these amplitudes possess one-loop color-factor symmetry. The one-

loop n-point amplitudes of the bi-adjoint scalar theory also possess this symmetry because

the second copy of the color factors c̃i obey Jacobi identities (9.8).

As we did above for the four-gluon amplitude, we can use this invariance to derive

constraints on the integrands of color-ordered amplitudes. Eq. (9.14) can be rewritten as

A(1)
n =

∑
σ∈Sn−2/Z2

∫
dD`

(2π)D

n∑
b=2

c1σ(2)···σ(b−1)nσ(b)···σ(n−1)I(1, σ(2), · · · , σ(b−1), n, σ(b), · · · , σ(n−1))

(9.23)

Invariance of this expression under eq. (9.20) together the independence of the parameters

αn,σ yields

0 =

∫
dD`

(2π)D

n∑
b=2

kn ·

(
`+ k1 +

b−1∑
c=2

kσ(c)

)
I(1, σ(2), · · · , σ(b− 1), n, σ(b), · · · , σ(n− 1))

(9.24)

the relations uncovered in refs. [49–51, 75]. Conversely, if we were to establish that the

integrands of the color-ordered amplitudes of a given theory satisfy eq. (9.24), we would

have proven that the one-loop amplitude is invariant under the color-factor shift, indepen-

dently of the assumption of color-kinematic duality. Further study of this alternate path

is merited.

10 Discussion and conclusions

In this paper, we have introduced a new set of symmetries of gauge-theory amplitudes,

which act as momentum-dependent shifts on the color factors appearing in the cubic de-

composition of the amplitude. These symmetries are intimately linked to the presence

of massless gauge bosons in the amplitude (or massless adjoint scalars in the case of the

bi-adjoint scalar theory) and can be considered generalizations of the radiation symmetry

of ref. [36]. We demonstrated that a wide class of tree-level gauge-theory amplitudes are

invariant under these shifts, using a representation of the amplitude known as the radiation

vertex expansion [35]. We also introduced a related but distinct cubic vertex expansion

of the amplitude, and used this to derive a set of generalized-gauge-invariant constraints

on the kinematic numerators appearing in the cubic decomposition of the amplitude. All

known BCJ relations for tree-level gauge-theory amplitudes [1, 4, 5, 41, 42] follow as a

direct consequence of the color-factor symmetry (this paper and ref. [47]). Finally, we gen-

eralized the cubic vertex expansion and color-factor symmetry to loop level. We showed
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that one-loop amplitudes that satisfy color-kinematic duality are invariant under the one-

loop color-factor symmetry, and derived a set of relations among the integrands of one-loop

color-ordered amplitudes.

Let us take a look at the connection between the color-factor symmetry and more

fundamental symmetries of the Lagrangian, gauge and Poincaré invariance [35]. The

color-factor symmetry follows as a result of the vanishing of certain expressions, namely

eqs. (4.19), (7.10), and (7.22), associated with the cubic vertices of a gauge-theory ampli-

tude, and eqs. (4.23), (4.24), and (7.27), associated with the quartic vertices. It is illustra-

tive to examine the various contributions in a soft expansion in the gluon momentum ka,

even though the color-factor symmetry is exact in ka.

The leading term in the soft expansion corresponds to the O(k0a) term in each of

eqs. (4.19), (4.23), (7.10), (7.22), and (7.27). These are all proportional to
∑

r εa ·Kr where

Kr are the momenta flowing out of each leg of the vertex. This vanishes by εa · ka = 0

together with momentum conservation ka +
∑

rKr = 0 — a result of symmetry under

spacetime translations.

The subleading term in the soft expansion corresponds to the O(k1a) term in each

of eqs. (4.19), (7.10), (7.22), and (7.27), and to eq. (4.24). These expressions are all

given by a sum of angular momentum generators Jαβr , which act as a first-order Lorentz

transformation on the relevant vertex factors. They vanish by Lorentz invariance.

Thus the first two terms in the soft expansion vanish as a result of Poincaré invariance.

It is a little more difficult to pin down the underlying symmetry responsible for the vanishing

of the sub-subleading terms in eq. (4.19) and (7.22), together with an analogous expression

for spin-one particles. The O(k2a) term in eq. (4.19) is proportional to

(Sαβ1 )µ1
ν

∂

∂K1γ
V νµ2µ3(K1,K2,K3)+(Sαβ2 )µ2

ν
∂

∂K2γ
V µ1νµ3(K1,K2,K3)+(Sαβ3 )µ3

ν
∂

∂K3γ
V µ1µ2ν(K1,K2,K3)

= 2i
(
−ηαµ1ηβµ2ηγµ3 + ηαµ1ηγµ2ηβµ3

)
+ (cyclic permutations of 123) (10.1)

and the O(k2a) term in eq. (7.22) is proportional to

(Sαβ3 )µ3ν
∂

∂K3γ
V ν(K1,K2,K3) = λ

(
ηαµ3ηβγ − ηβµ3ηαγ

)
. (10.2)

Neither expression vanishes by itself but both do when contracted with εaαkaβkaγ for

gluon a. These identities, which go beyond the first-order Poincaré cancellation and are

connected to Yang-Mills gauge symmetry, are key ingredients contributing to the color-

factor symmetry.

Returning to our discussion in the introduction of the connection of the color-factor

symmetry with the photon radiation symmetry and radiation zeros (for a collection of early

references, see refs. [23, 24, 35–38, 77–81]), we have uncovered some additional analogs. For

example, we can write a factorized form for the four-gluon amplitude (2.1)

A4 = s
(cs
s
− ct

t

)(ns
s
− nu

u

)
(10.3)

which vanishes at cs/s = ct/t = cu/u = const. This is a non-abelian version of the original

radiation zero studied almost forty years ago in qq̄Wγ and eνWγ reactions, with a zero at
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Qc/kc ·ka = constant. This original radiation factorization and its zero led to the prediction

of a measurable experimental dip, which has now been confirmed [82, 83]. The analogous

zero in the four-gluon amplitude is washed out, however, by the color averaging that must

be performed in observable quark-gluon processes.

In the generalization to tree-level n-point amplitudes, the abelian radiation symme-

try and existence of zeros for Qc/kc · ka = constant (for photon momentum ka) rest on

having gauge-theory couplings, as noted earlier. The non-abelian color-factor symmetry

uncovered in this paper can also lead to zeros in n-point amplitudes, but with an impor-

tant complication. The invariance under ci → ci + αi
∑

c∈Sa,i kc · ka for the attachment

of a gluon with momentum ka cannot be used to systematically cancel out the complete

n-gluon amplitude using an overall common value for αi. Because of the Jacobi relations,

that overall common value must vanish. There are in principle zeros, however, for separate

islands of αi values. Although they are again washed out by color-averaging, the gener-

alized factorization coming from the color-factor symmetry remains useful for theoretical

analysis of tree amplitudes. In a different direction, note that the BCJ form of the gluon

amplitudes has been utilized in the planar zeros studied recently in refs. [84, 85].

The analogs described above are a bridge to a final overall remark. It has been help-

ful to think of gluon emission or absorption as effecting a (first-order) transformation in

both color and kinematic space simultaneously on the graph to which it is attached. In

particular, the attachments lead to transformations of the various legs and vertices of the

“parent” diagram in either momentum or space-time representations. All the parent wave

functions end up transformed, and identities derived from eq. (2.20) for the different spins,

e.g., eq. (7.5) and (7.32), yield exactly the two terms expected from the propagator with its

bilinearity in the wave functions. The cancellations highlighted throughout this paper arise

precisely because we consider those theories whose amplitudes transform covariantly under

color and kinematic transformations. Adding all possible massless gluon attachments to a

complete set of parent graphs leads to a sum of corresponding color shifts that vanishes

because of invariance. Such a picture should help in finding directions in the diagram-

matic analyses of a variety of extensions of the gauge theories considered in this paper,

supersymmetric and otherwise.
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A Five-gluon amplitudes

In this appendix, we use the five-gluon amplitude to provide an explicit example of the

cubic vertex expansion (2.21) introduced in section 2, and the relations among kinematic

numerators (2.26) resulting from the color-factor symmetry.

The cubic decomposition (2.8) of the five-gluon amplitude is given by

A5 =
c12345 n12345

s12s45
+

c32145 n32145
s23s45

+
c13245 n13245

s13s45
+

c13425 n13425
s13s25

+
c13524 n13524

s13s24
(A.1)

+
c12435 n12435

s12s35
+

c42135 n42135
s24s35

+
c14235 n14235

s14s35
+

c14325 n14325
s14s25

+
c14523 n14523

s14s23

+
c42315 n42315

s24s15
+

c32415 n32415
s23s15

+
c34215 n34215

s34s15
+

c34125 n34125
s34s25

+
c34512 n34512

s34s12

where cα are half-ladder color factors defined in eq. (2.9). Let us recast this amplitude in

a cubic vertex expansion with respect to gluon 2. We have already arranged the terms in

eq. (A.1) so that each line corresponds to one of the four-gluon diagrams I obtained by

omitting gluon 2. We rewrite the denominator of the third term of the first line as

1

s13s45
=

1

s45(−s12 − s23)
+

1

s13(−s24 − s25)
(A.2)

and similarly the denominators of the third terms of the other two lines to obtain

A5 =
1

s45

(
c12345 n12345

s12
+

c32145 n32145
s23

− c13245 n13245
s12 + s23

)
+

1

s13

(
− c13245 n13245

s24 + s25
+

c13425 n13425
s25

+
c13524 n13524

s24

)
+

1

s35

(
c12435 n12435

s12
+

c42135 n42135
s24

− c14235 n14235
s12 + s24

)
+

1

s14

(
− c14235 n14235

s23 + s25
+

c14325 n14325
s25

+
c14523 n14523

s23

)
+

1

s15

(
c42315 n42315

s24
+

c32415 n32415
s23

− c34215 n34215
s23 + s24

)
+

1

s34

(
− c34215 n34215

s12 + s25
+

c34125 n34125
s25

+
c34512 n34512

s12

)
(A.3)

which is precisely of the form of the cubic vertex expansion (2.21). To make this connection

more explicit, note that the first two lines of eq. (A.3) correspond to adding gluon 2 to the

four-gluon diagram shown in figure 7 which we label as I = 1. The color factors c(a,I,v,r)
(see figure 1) associated with the left- and right-hand vertices of this diagram are

c(2,1,L,1) = c12345 c(2,1,L,2) = − c32145 c(2,1,L,3) = − c13245

c(2,1,R,1) = c13524 c(2,1,R,2) = − c13425 c(2,1,R,3) = c13245 (A.4)

and obey
∑3

r=1 c(a,I,v,r) = 0. The relative signs result from flipping legs across lines.

Because c13245 is associated with both left- and right-hand vertices, we have c(2,1,L,3) =
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Figure 7. One of the four-gluon diagrams to which gluon 2 is added in all possible ways.

−c(2,1,R,3). Since K(2,1,L,3) = −K(2,1,R,3), this implies that α(2,I,L) = α(2,I,R) as discussed

in subsection 2.4.

The six independent five-gluon half-ladder color factors (in the notation of ref. [1]) are

c1 = c12345 c15 = c13245 c9 = c13425

c12 = c12435 c14 = c14235 c6 = c14325. (A.5)

According to eq. (2.14), the color-factor shifts associated with gluon 2 act as

δ2 c1 = αs12 δ2 c15 = α(s12 + s23) δ2 c9 = −αs25
δ2 c12 = α′s12 δ2 c14 = α′(s12 + s24) δ2 c6 = −α′s25 (A.6)

where α = α2,34 and α′ = α2,43 are arbitrary constants. The nine remaining five-gluon

color factors, and the action of the color-factor shifts thereon, are determined by the Jacobi

relations to be

c2 = c23451 = c1 + c6 − c14 − c15, δ2 c2 = (α′ − α)s23

c3 = c34512 = c1 − c12, δ2 c3 = (α− α′)s12
c4 = c45123 = c1 − c15, δ2 c4 = −αs23
c5 = c51234 = c1 + c6 − c9 − c12, δ2 c5 = (α− α′)(s12 + s25)

c7 = c32514 = c6 − c14, δ2 c7 = α′s23

c8 = c25143 = c6 − c9, δ2 c8 = (α− α′)s25
c10 = c42513 = c9 − c15, δ2 c10 = αs24

c11 = c51342 = c9 + c12 − c14 − c15, δ2 c11 = (α− α′)s24
c13 = c35124 = c12 − c14, δ2 c13 = −α′s24 . (A.7)

Applying this shift to eq. (A.3), we obtain

δ2 A5 = α2,34

(
n1 − n4 − n15

s45
+
n15 − n9 + n10

s13
+
n11 − n2 + n5

s15
+
−n5 + n8 + n3

s34

)
(A.8)

+α2,43

(
n12 − n13 − n14

s35
+
n14 − n6 + n7

s14
+
−n11 + n2 − n5

s15
+
n5 − n8 − n3

s34

)
= 0

which is precisely of the form of eq. (2.26). The color-factor shift with respect to gluon 3

instead yields
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δ3 A5 = α3,24

(
n1 − n4 − n15

s45
+
n3 − n1 + n12

s12
+
n11 − n2 + n5

s15
+
n10 − n11 + n13

s24

)
(A.9)

+α3,42

(
n6 − n8 − n9

s25
+
n14 − n6 + n7

s14
+
−n11 + n2 − n5

s15
+
−n10 + n11 − n13

s24

)
= 0 .

Since α2,34, α2,43, α3,24, and α3,42 are independent arbitrary constants, each expression

in parentheses vanishes, yielding four independent constraint equations on the kinematic

numerators of the five-gluon amplitude. No additional independent constraints are obtained

from the color-factor symmetries associated with the other three gluons. These “generalized

Jacobi relations” for five-gluon amplitudes were previously derived in refs. [39, 40] by using

the properties of string theory amplitudes.
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