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on the color factors of the amplitude. Using the radiation vertex expansion, we prove
the invariance under this color-factor shift of the m-gluon amplitude, as well as ampli-
tudes involving massless or massive particles in an arbitrary representation of the gauge
group with spin zero, one-half, or one. The Bern-Carrasco-Johansson relations are a direct
consequence of this symmetry.

We also introduce the cubic vertex expansion of an amplitude, and use it to derive a
generalized-gauge-invariant constraint on the kinematic numerators of the amplitude. We
show that the amplitudes of the bi-adjoint scalar theory are invariant under the color-factor
symmetry, and use this to derive the null eigenvectors of the propagator matrix.

We generalize the color-factor shift to loop level, and prove the invariance under this
shift of one-loop n-gluon amplitudes in any theory that admits a color-kinematic-dual
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known relations among the integrands of one-loop color-ordered amplitudes.
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1 Introduction

In 2008, Bern, Carrasco, and Johansson discovered a novel set of linear relations satisfied
by tree-level color-ordered amplitudes in gauge theories [1]. They arrived at these relations
by writing the tree-level n-gluon amplitude as a sum over (2n — 5)!! diagrams assembled
from cubic vertices

C; Ny

K2

where the color factor ¢; associated with the diagram is composed of group theory struc-
ture constants fipe, the denominator d; consists of the product of the inverse propaga-
tors associated with the diagram, and the kinematic numerator n; depends on the mo-
menta and polarizations of the gluons. All contributions from diagrams with quartic
vertices are redistributed among the cubic diagrams. By virtue of the Jacobi identity
fabefede + facefdbe + fadefoce = 0 satisfied by the structure constants, the color factors ¢;
obey a set of Jacobi relations of the form

ci+cj+c,=0. (1.2)

Because of these linear dependences, the kinematic numerators n; are not uniquely defined,
but can undergo generalized gauge transformations n; — n; + dn; which leave eq. (1.1)
unchanged [2, 3]. The authors of ref. [1] conjectured that there exists a generalized gauge
in which the kinematic numerators satisfy the same algebraic relations as the color factors;
in particular, they can be made to satisfy kinematic Jacobi relations

ni—i—nj—l—nk:O. (1.3)

From this assumption of color-kinematic duality, they demonstrated the existence of new
relations (subsequently known as BCJ relations) satisfied by the color-ordered amplitudes
A(1,---,n). These relations can be derived from the fundamental BCJ relation (and
permutations thereof) [4-6]

n b—1
Z(ZkQ-kC>A(1,3,-~-,b—1,2,b,---,n):0 (1.4)

b=3 \c=1

where k, are the (outgoing) momenta of the gluons. Besides color-kinematic duality, these
relations rely on the properties of the propagator matrix [7], constructed from the inverse
denominators 1/d; (see section 8 for a precise definition). Specifically, as a consequence of
momentum conservation, this (n—2)! x (n—2)! matrix has rank (n— 3)!, and consequently
possesses a set of (n — 3)(n — 3)! eigenvectors with eigenvalue zero.

The BCJ relations (1.4) were subsequently proven using string-theory techniques [4, 8]
and BCFW on-shell recursion [5, 9], providing evidence for the conjecture of tree-level



color-kinematic duality. Bern et al. conjectured that color-kinematic duality also applies
to the integrands of loop-level amplitudes [1, 2]; while not proven, this conjecture has been
tested for N' = 4 supersymmetric Yang-Mills theory through four loops [10-18], and for
pure Yang-Mills theory through two loops [19, 20]. Another exciting aspect of the story
is that gauge-theory kinematic numerators obeying color-kinematic duality can be used to
construct gravitational amplitudes via the double copy procedure [1-3]. A recent review
of all of these developments may be found in ref. [21].

Despite the fact that the BCJ relations for n-gluon amplitudes have been definitively
established, interest in tree-level kinematic numerators continues, not least because the
numerators that are naturally generated by Feynman rules' generally do not obey the
relations (1.3) except in the case of four-point amplitudes [23, 24]. Many approaches have
been developed to obtain kinematic numerators that obey color-kinematic duality directly
from a Lagrangian approach [3, 25-34].

In this paper, we introduce a new set of symmetries obeyed by tree-level gauge-theory
amplitudes, associated with each external gluon in the amplitude.? These symmetries act
on the color factors ¢; of the amplitude, shifting them by momentum-dependent quantities.
Since color factors do not carry any momentum dependence, this is a purely formal op-
eration; we prove, however, that the tree-level n-gluon amplitude is invariant under these
shifts by writing it in an alternative form known as the radiation vertex expansion [35].

We then show that the BCJ relations (1.4) follow as an immediate consequence of
the color-factor symmetry of the n-gluon amplitude. Although BCJ relations have been
previously established, our results reveal a more direct connection to the symmetries of the
Lagrangian formulation of gauge theory and its Feynman rules (i.e., gauge and Poincaré
invariance) and provide a basis for generalizations.

Let us describe this symmetry in a bit more detail, reserving a full description for
section 2. Given a tree-level n-gluon color factor ¢;, the choice of one of the external gluon
legs a divides the diagram in two at its point of attachment. Let S,; denote the subset of
the remaining legs on one side of this point; it does not matter which side we choose. The
shift of the color factor ¢; associated with gluon a must satisfy

0aCi X Z kg - ke . (1.5)

CGSayi

Choosing to sum over the complement of S, ; gives the same result (up to sign) due to
momentum conservation. The constants of proportionality in eq. (1.5) are then constrained
by requiring that the shifted color factors respect all the Jacobi relations satisfied by ¢; for
any values of the momenta.

Consider the case where a is one of the legs involved in the Jacobi identity (see fig-
ure 1). Imagine that each of the three graphs in figure 1 is embedded in a larger tree
diagram, the same for each. Denote the color factors associated with each diagram by
¢(ry, where r = 1,2, 3. For example, the color factor ¢(;) for the figure on the left contains

1String theory can generate numerators that respect color-kinematic duality [22].
2For bi-adjoint scalar theories, there is a symmetry for each external massless adjoint scalar in the
amplitude.
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Figure 1. Attaching a gluon to the legs of a cubic vertex. These form parts of the color factors
1y, ¢(2), and c(3), respectively.

-+ fajaqbfbaghs - - - » Where the labels on f,pc follow the diagram in clockwise order. Flipping
a to the other side of a leg changes the sign of the color factor due to the antisymmetry of
fabe. As a result of the Jacobi identity, the color factors obey Zle ¢ty = 0. By eq. (1.5),
the shifts of these color factors are

5aC(T) = Qp) kq - K(T) (1.6)

where K, is the momentum flowing out of each leg. Requiring Zi:l dac(yy = 0 implies
that (. is independent of r, as a result of momentum conservation and masslessness of
the gluon. A more detailed description of the color-factor shifts is given in section 2.

The symmetry we have introduced has roots in the radiation symmetry [36] that under-
lies the general radiation zero theorem [35, 37, 38]. In theories with local gauge couplings
and spins < 1, all single-photon tree amplitudes vanish if the ratios Q./kq k. are all equal,?
where k, is the photon momentum, and c labels external particles with momentum k. and
charge Q.. These spin-independent zeros have spin-dependent counterparts where Q). are
replaced by numerators J., closely related to the kinematic numerators n; in eq. (1.1).
The underlying radiation symmetry refers to invariance under Q. — Q. + ak, - k. as well
as J. — J. + Bkg - ke for arbitrary a and 8. The extension to nonabelian “charges” has
also been considered and the details behind a nonabelian radiation vertex expansion dis-
cussed [35, 36]. The general color-factor symmetry introduced here, however, incorporates
crucial nonabelian constraints (Jacobi relations) on «, which lead to a complete set of BCJ
relations, and have not heretofore been developed. Nevertheless, since the color-factor sym-
metry relies on the presence of massless gauge bosons, we may regard it as a generalized
radiation symmetry.

We also introduce in this paper the cubic vertex expansion of an n-point amplitude A,
with respect to one of the gluons a. Consider the set of cubic diagrams I that contribute
to the (n — 1)-point amplitude of all the particles in A,, except for gluon a. We show that,
for any a, the amplitude A,, can be written as a triple sum over the legs r of the vertices
v of the cubic diagrams I:

3

1 Ca,Iv,7) VN (a,Iv,r)
A, = ) 1.7
ZI:Z [T > 2ka * K(a,10) 4o

(a,1,v,8) p=1

Here d(q 1., is the product of inverse propagators that branch off from leg r of vertex
v of diagram I, ¢(4,1 ) 18 the color factor of the n-point diagram obtained by attaching

3 A universal ratio is restrictive and few photon amplitudes have zeros in the physical phase space.



gluon a to leg r of vertex v of diagram I (exactly as in figure 1), and n, 1, is the

associated n-point kinematic numerator. The shift of ¢(q 1, ) associated with gluon a is

Oa Cla,Tor) = Qa,1,w) Ka * K(a,1,0,r), Where, as explained above, a4 1) is independent of r.

Since the alternative radiation vertex expansion shows that the amplitude A, is invariant

under the color-factor shift, we may conclude from the cubic vertex expansion of A, that
3

zfzzni(iil’”) >t = 0. (1.8)

v (a,1v,8) r=1
Note that this constraint on the kinematic numerators, less stringent than the kinematic
Jacobi relations (which state that Zle N(a,Iwr) = 0 for each vertex), is nonetheless suf-
ficient to imply the BCJ relations (1.4). Moreover, unlike the kinematic Jacobi relations,
the condition (1.8) is invariant under generalized gauge transformations. A constraint of
precisely the form (1.8) was derived in refs. [39, 40] for the five-gluon amplitude using the
monodromy properties of string theory amplitudes.

We show in this paper that more general gauge-theory amplitudes, with both gluons
and massless or massive particles in an arbitrary representation of the gauge group and
with arbitrary spin < 1, are also invariant under the color-factor symmetry. Consequently,
the kinematic numerators of these amplitudes obey a constraint analogous to eq. (1.8).
We further show that color-factor symmetry implies BCJ relations for the color-ordered
amplitudes of a class of n-point amplitudes involving n — 2 gluons and a pair of particles in
an arbitrary representation of the gauge group and arbitrary spin, as previously conjectured
in refs. [41, 42].

BCJ relations for the primitive amplitudes of a more general class of amplitudes con-
taining gluons and an arbitrary number of pairs of differently flavored fundamentals (based
on a proper decomposition developed by Melia [43-45] and Johansson and Ochirov [42])
were conjectured by Johansson and Ochirov [42], and subsequently proven using BCFW
on-shell recursion by de la Cruz, Kniss, and Weinzierl [46]. In a sequel to this paper [47],
we prove that these BCJ relations also follow as a direct consequence of the color-factor
symmetry.

The amplitudes of the theory of massless bi-adjoint scalars with cubic interactions [48]
also exhibit invariance under color-factor symmetry, as we show using the cubic vertex ex-
pansion. In this case, the color-factor shifts are associated with each massless adjoint scalar
in the amplitude. As a consequence, we demonstrate the reduced rank of the propagator
matrix for the n-gluon gauge-theory amplitude by deriving the set of its null eigenvectors.

Finally, we generalize the cubic vertex expansion and color-factor symmetry to loop-
level amplitudes containing at least one external gluon. We exhibit an independent set of
shifts that act on the color factors of one-loop n-gluon amplitudes and which depend on
the loop momentum as well as external momenta. These one-loop amplitudes are invariant
under color-factor shifts in theories that admit a color-kinematic-dual representation of
numerators. The color-factor symmetry also implies certain relations among the integrands
of one-loop color-ordered amplitudes that were previously uncovered in refs. [49-51].

The contents of this paper are as follows. In section 2 we define the color-factor shift for
the n-gluon amplitude and derive the BCJ relations as a consequence of the invariance of



the amplitude under this shift. We also introduce the cubic vertex expansion, and use it to
derive a generalized-gauge-invariant constraint on the kinematic numerators of the n-gluon
amplitude. We introduce an analogous set of shifts of the kinematic numerators, and show
that they correspond to a generalized gauge transformation. In section 3, we prove the
invariance of the four-gluon amplitude under the color-factor symmetry, and in section 4, we
extend this to the n-gluon amplitude by using the radiation vertex expansion. In section 5,
we define the color-factor shift for more general amplitudes, and derive the BCJ relations
for the class of amplitudes containing n — 2 gluons and a pair of particles in an arbitrary
representation R. In section 6, we prove the invariance of the four-point amplitude with
two gluons and a pair of massive particles of arbitrary spin < 1 and representation R
under the color-factor symmetry, and in section 7, we extend this to a general n-point
amplitude containing gluons and other particles. In section 8, we prove the invariance of
the amplitudes of the bi-adjoint scalar theory under the color factor symmetry, and derive
the null eigenvectors of the propagator matrix. In section 9, we generalize the cubic vertex
expansion and color-factor symmetry to loop-level amplitudes, and derive a constraint on
the integrands of one-loop color-ordered amplitudes. Section 10 contains a discussion and
conclusions. In appendix A, we write the shifts for all the color factors of the five-gluon
amplitude, and derive the explicit constraint on the kinematic numerators that follow from
the color-factor symmetry.

2 Color-factor symmetry and its consequences

We begin this section by introducing the color-factor symmetry in the simplest context,
the tree-level four-gluon amplitude

A= CsMNig . ciny n CuMy (2.1)

S t U

where

Cs = falazbfba3b4 y Ct = fala4bfba2b3 y Cy = fa133bfba4b1 (22)

and s, t, and u are Mandelstam variables. We define the four-point color-factor shift to
act as’

cs — Cs+a s, ¢ — g +at, Cu — Cut+oau (2.3)

where « is arbitrary. Eq. (2.3) preserves the Jacobi relation ¢s + ¢; + ¢, = 0 by virtue of
momentum conservation s+t + u = 0.

The statement that eq. (2.1) is invariant under eq. (2.3) implies the kinematic Jacobi
relation

ng+mng+ny, =0. (2.4)

It is well-known [23, 24] that eq. (2.4) is satisfied in the case of the four-gluon amplitude,
and we will show this explicitly in section 3. This serves as proof of the invariance of the
four-gluon amplitude under the color-factor shift.

4In the case of the four-gluon amplitude, the shifts associated with various legs are all the same.
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Figure 2. Diagram for the half-ladder color factor ¢ (2)...y(n—1)n-

Recall that the kinematic numerators n; are not uniquely defined by eq. (2.1) because
a generalized gauge transformation

ns — ng + 3 s, ng — ng+ B t, Ny — Ny + B 1 (2.5)

(with B arbitrary) leaves eq. (2.1) unchanged by virtue of the Jacobi identity cs + ¢; +
¢y = 0. In the case of the four-gluon amplitude, however, the sum ng 4+ ny + n,, is well-
defined: it is invariant under the generalized gauge transformation (2.5) due to momentum
conservation.

The four-gluon amplitude can be written in terms of color-ordered amplitudes as

As = s A(1,2,3,4) — cuA(1,3,2,4) . (2.6)
Invariance of eq. (2.6) under the shift (2.3) immediately implies
§ Ay =sA(1,2,3,4) —uA(1,3,2,4) =0 (2.7)
which is the four-gluon BCJ relation [1].

2.1 Color-factor shift for n-gluon amplitudes

Next we turn to tree-level n-gluon amplitudes with n > 4, which may be written as a sum
over diagrams composed of cubic vertices (referred to as cubic diagrams) [1]

A, = Z Cid:“ . (2.8)

Associated with each cubic diagram ¢ is a color factor ¢; obtained by sewing together
structure constants fape. Among these color factors ¢; we may identify the subset of half-
ladder color factors c, defined by (see figure 2)

c()t = Z faa(l)aa(z)bl fblaa(3)b2 tt fbn,gaa(n_l)aa(n) b « e STL . (29)

bl,.‘.,bn73

The color factors ¢; are not independent but obey a set of Jacobi relations. Using the
procedure outlined in ref. [52], the Jacobi identity fapefcde + facefdbe + fade foce = 0 may be
repeatedly applied to reduce each ¢; to a linear combination of half-ladder color factors

G = Z Mi,l'yncl'yna Clyn = Ci1y(2)-y(n—1)n (210)
’Yesn—Q
where v denotes a permutation of {2,---,n — 1}. The (n — 2)! half-ladders ¢y, form

an independent set. Alternatively, M; 1+, may be computed by rewriting ¢; using fape =



o(b-1) o(b) G(b+1) o(b-1) a a(b)

Iy

Figure 3. Diagrams with color factors ¢i...;(b—1)[ao(b)]o(b+1)--n A0 C1...o(b—1)ac (b)--n-

Tr([T?, TP]T°), reducing the resulting expression to a linear combination of single traces,
and then identifying the coefficient of Tr(7217%® ... T%(=1)T?) (see e.g., ref. [53]).

We now define a set of momentum-dependent shifts, associated with each external
gluon a in the amplitude, that act on the color factors ¢;. The action of the shift d,c;
associated with gluon a is constrained by two requirements: (I) that it preserve all the
Jacobi relations satisfied by ¢;, and (II) that it satisfy

SaCi o< Y kg ke (2.11)

CESaﬂ'

where S, ; denotes the subset of the external particles on one side® of the point at which
a is attached to ¢;. In particular, if ¢; is a color factor in which gluon « is attached to
an external leg b, the shift is proportional to k, - kp, which is an inverse propagator in the
associated Feynman diagram. More generally, eq. (2.11) is related (see eq. (2.20)) to the
propagators in the Feynman diagram associated with c;.

Consider the subset of n-point color factors obtained from a given (n — 1)-point cubic
diagram I by attaching gluon a to it in all possible ways. Omne of these color factors
has gluon a attached to external leg 1 of the (n — 1)-point diagram;® define its shift to
be ajk, - k1. One may easily verify (using the argument in the introduction) that the
conditions (I) and (II) above uniquely fix the coefficients of the shifts of all the other color
factors in this subset. The coefficients « for different (n — 1)-point diagrams are then
constrained by Jacobi relations among their color factors.

We now demonstrate that there is an (n — 3)!-parameter family of color-factor shifts
associated with each gluon a in the n-gluon amplitude. First choose a € {2, -+ ,n — 1},
and consider the subset of half-ladder color factors ci45n, where o € S,,_3 denotes a per-
mutation of {2,---,n — 1} \ {a}. We define the color-factor shift associated with gluon a
to act on these half ladders as

da Clao(2)--o(n—1)n = Qa0 ko - k1 (212)

where o, , are a set of (n — 3)! arbitrary, independent constants (or functions) for each a.
Let ¢1...g(0—1)[ac (b)]o (b+1)...n denote the color factor shown in figure 3; its shift is proportional
to kq - ky(p). This together with eq. (2.12) and the Jacobi relation

C10(2)---o(b—1)[ac(b)]o(b+1)--o(n—1)n = C1(2)-—-o(b—1)ac(b)--o(n—1)n — C1g(2)---o(b)ac(b+1)--o(n—1)n
(2.13)

SEither side gives the same result up to sign due to momentum conservation.
SUnless a = 1.



implies that J, acts on the independent half-ladder color factors ¢y, as’

b—1
6(1 Clo’(2)-~~a(b71)aa(b)~»-a(n71)n = Qg0 <ka ' kl + Z ka . ka(c)) y @, be {27 M — 1}a b 7é a
c=2
(2.14)
consistent with eq. (2.11). The action on the remaining color factors is given by
5[1 C; = Z Mi,l’yn (Sa Cl’yn (2.15)

'Yesn—2

which is also consistent with eq. (2.11), as may be shown using the procedure described in
ref. [52].

The color-factor shifts associated with the gluons {2,--- ,n — 1} are not all indepen-
dent. In particular, the (n — 3)l-parameter family of shifts associated with gluon n — 1 are
linear combinations of shifts associated with a € {2,--- ,n — 2} as a result of momentum
conservation.® We may also define (n — 3)!-parameter families of shifts associated with
gluons 1 and n. These are also not independent of the others. Thus the dimension of the
(abelian) group of color-factor shifts is (n — 3)(n — 3)!.

2.2 Fundamental BCJ relations from the color-factor symmetry

By using eq. (2.10), the tree-level n-gluon amplitude (2.8) may be rewritten in the Del
Duca-Dixon-Maltoni half-ladder decomposition [52, 54]

A= " c1ymA(L4(2), - ,y(n—1),n) (2.16)
YESn_2
where the coefficients
Mi,l’yn g
ALA@), - A= 1)m) = 3 =l (217)
7

are color-ordered amplitudes belonging to the Kleiss-Kuijf basis [55]. In the previous
subsection, we defined the action of the color-factor symmetry associated with a given

gluon a. The variation of eq. (2.16) under the shift associated with a = 2 gives

n

b—1
G A=Y 025 <k1 kY k- k,,(c)> A(1,0(3), - ,0(b—1),2,0(b),--- ,0(n—1),n).
c=3

oES,_3 b=3

(2.18)
In sections 3 and 4, we prove that A, is invariant under this shift. Since ap, are arbitrary
and independent, this implies that

n b—1
> <k:1 ha+ > ko ko.(c)) A(1,0(3),-- ,0(b—1),2,0(b), - ,0(n—1),n) =0 (2.19)

b=3 c=3

"In the case a = 2, replace o(2) with ¢(3), and the sum over c should begin with 3. In the case a = n—1,
replace o(n — 1) with o(n — 2).

8We have verified this numerically through n = 9, but we know the result must be true for all n because,
as we will see in section 8, the color-factor shifts correspond to null eigenvectors of the propagator matrix.
Since the (n — 2)! x (n — 2)! propagator matrix has rank (n — 3)! [48] there are at most (n — 3)(n — 3)!
independent null eigenvectors.



which is the fundamental BCJ relation (1.4). All other permutations of this relation can
be obtained using the invariance of the amplitude under the color-factor shifts associated
with gluons 3 through n — 1.

It is known [1] that the BCJ relations reduce the number of independent color-ordered
amplitudes from (n — 2)! to (n — 3)!. Not surprisingly, the difference between these, (n —
3)(n — 3)!, is the dimension of the group of color-factor shifts that leave the amplitude
invariant.

2.3 Cubic vertex expansion

In order to examine the implications of the color-factor symmetry for the kinematic numer-
ators n; appearing in the cubic decomposition (2.8), we introduce in this section the cubic
vertex expansion of the amplitude with respect to one of the gluons. This expansion is sim-
ilar to, but distinct from, the radiation vertex expansion [35] that will be used in sections 4
and 7 to prove the invariance of n-point gauge-theory amplitudes under color-factor shifts.

The cubic decomposition (2.8) is a sum over the (2n—5)!! cubic diagrams of an n-gluon
amplitude, but for any a € {1,--- ,n} it can be viewed as a sum over the (2n — 7)!! cubic
diagrams of an (n — 1)-point function with external legs {1,--- ,n} \ {a}, to each of which
gluon a is attached in 2n — 5 different ways. Let us label these (n— 1)-point cubic diagrams
by I and their denominators by d, 1.

Each (n — 1)-point cubic diagram I has n — 3 vertices, the set of which we denote
by Via,r). For each vertex v € V|, 1), we can break d(, ) into three factors Hi:l d(a,1,0,7)>
where d(, 1., is the product of propagators that branch off from leg r of the vertex. If leg
7 is an external leg of the diagram, then d(, ., = 1.

We can attach gluon a either to one of the n — 1 external legs or to one of the n — 4
internal lines of I, yielding altogether 2n — 5 of the terms in the sum (2.8). Let K be the
momentum running through one of the internal lines of I. Attaching gluon a to this line
will replace the factor K2 in d, ;) with K?(K + k4)?. We split the inverse denominator
into two terms using the identity

1 1 1
KK + ko) K22k - K) | (—2ke - K)(K + Fa)?

(2.20)

and we associate each of the terms on the right hand side of the equation with one of the
two vertices to which the internal line is connected. Thus, with this doubling of internal
line terms, we now have a total of (n—1)+2(n—4) = 3(n—3) terms for each I; namely, one
term for each of the legs of each of the n — 3 vertices of I. We label this term by (a, I,v,7),
and write the cubic vertex expansion of the n-gluon amplitude with respect to gluon a as

o 1 Cla,I,v,r)(a,I,0,r)
An B Z Z H3 Z 2k7a ' K(a,[,v,r) (221)

I ’UEV'(Q’I) s=1 d(a,I/U,S) r=1

where ¢(q,1 0, are the color factors c(,) in figure 1 associated with each vertex (a,1,v),
N(a,I,0r) are the associated kinematic numerators, and K4, ,) denotes the momentum
flowing out of leg r. The ¢(q 14, and n(q 1., are equal to the ¢; and n; in eq. (2.8) up to

~10 -



signs (such that (1,577 (a,1,0,r) = €ii). An explicit example of the cubic vertex expansion
for the five-gluon amplitude is given in appendix A.

The + freedom in the definition of ¢, 7,,) is used to make the relative signs in the
Jacobi relation positive:

3
> g =0. (2.22)
r=1
The denominators in each triple also sum to zero
3
> ko Kagun =0 (2.23)
r=1

by momentum conservation k, + 22:1 K410y = 0 and the masslessness of the gluon
k2 = 0. A priori, however, there is no reason for the kinematic numerators N(a,T,0,r)
associated with each vertex to sum to zero. We will see in the next subsection, however, that
the color-factor symmetry of the amplitude leads to a constraint on the sum of kinematic
numerators.

2.4 Constraint on kinematic numerators from the color-factor symmetry

Having introduced the cubic vertex expansion of the n-gluon amplitude with respect to
gluon a, we now consider the effect of a color-factor shift d, on the amplitude. The shift
associated with gluon a acts on the color factors appearing in the cubic vertex expan-
sion (2.21) as

dq Cla,Iw,r) = Ca,Iv) kq - K(a,],v,r) (224)

where «(, 1, 18 a linear combination of o, uniquely determined by the Jacobi relations.
These shifts respect eq. (2.22) by virtue of eq. (2.23). The variation of eq. (2.21) under

this shift gives
3

72 Z GIU Z N(a,l,v,r) - (225)

I ’UGV(a 1 Hs 1 d(aIUS) r=1

We prove that §,.4,, = 0 in sections 3 and 4; hence the color-factor symmetry implies the
following constraint on the kinematic numerators

3

Z Z H (:1(11) )Z (a,lo,r) — 0. (226)
s=1 a,l v,8

I UEV((L,])

Now if the constants a(q, 1 ,) Were all independent, then we could conclude from this argu-
ment that 22:1 N(a,1wr) = 0, .. that the kinematic numerators necessarily obey Jacobi
relations. This would be in conflict with the well-known fact that the kinematic numera-
tors obtained from Feynman rules in general do not satisfy color-kinematic duality;” indeed
this is not a valid inference from eq. (2.26) because the a(, ) are not independent. The
set of vy 1) for all the vertices of a given diagram I are equal (up to signs) because any

90Only in the case n = 4, where there is only one term in the sum (2.26), may we conclude that
ns +nt +ny =0.
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two adjacent vertices share a common color factor (see the example discussed in the ap-
pendix). In fact, with an appropriate choice of signs for c(q 1.4,), the (4 1,,) may be made
independent of v. The «, 1) for different diagrams I are further constrained by the Jacobi
relations among the color factors of I.

While eq. (2.26) does not imply that the numerators satisfy the kinematic Jacobi
relations, it does impose a set of (generalized-gauge-invariant) conditions that the color-
kinematic violations A;;, = n; + nj + ng must satisfy. We wish to emphasize that, while
the kinematic Jacobi relations n; + n; + nj = 0 are not invariant under generalized gauge
transformations!? (hence the actual claim of color-kinematic duality is that there exists
a generalized gauge in which they hold true), the conditions (2.26) are invariant under
generalized gauge transformations. The argument for this is simple. A generalized gauge
transformation is a transformation n; — n) that leaves the amplitude (2.8) unchanged.
Hence by starting with A, =Y ".(¢;n;/d;) and following the steps above (since the condition
da Ay = 0 is also gauge invariant), we obtain the same result (2.26) except with n(q 1 )
replaced with n’(avm,r).

To obtain a more explicit form of eq. (2.26), we would need to identify all the linear
dependences among the «, ) required by the color Jacobi relations. Previously, we
observed that the number of independent color-factor shifts was (n—3)(n—3)!, parametrized
by constants agq ,, where a = 2,--- ,n—2 and o € S,,_3 denotes a permutation of {2, --- ,n—
1} \ {a}. If we were to write o, s, in terms of these independent constants, eq. (2.26)
would yield (n — 3)(n — 3)! independent constraints on the A;j;. In appendix A, we carry
out this procedure for the five-gluon amplitude.

While the BCJ relations (2.19) were originally derived as a consequence of the assump-
tion of color-kinematic duality, it was known [39, 40] from early on that they are equivalent
to a set of weaker conditions on the numerators. The conditions for five-gluon numerators
were derived in refs. [39, 40] as a consequence of the monodromy properties of string-theory
amplitudes. These conditions are equivalent to eq. (2.26), as we show in appendix A. In
this section, we have demonstrated that both eq. (2.26) and the BCJ relations (2.19) are a
consequence of the invariance of the amplitude under the color-factor symmetry.

2.5 Kinematic numerator shift symmetry

We have considered the effect on the amplitude of a shift of the color factors. One may
ask what effect an analogous shift of the kinematic numerators would have.!'’ We show in
this section that such a shift is simply a generalized gauge transformation.

Let us define the kinematic shift associated with leg a, where a € {2,--- ,n — 1}, on
the half-ladder numerator ni., to be

b—1
6an10(2)---cr(bfl)aa(b)-uo(nfl)n = ﬁa,o’ (kl ko + Z kq - ka(c)) , abe {27 N — 1}) b 7é a

- (2.27)

10 Again except in the case of four-gluon amplitudes.
" These can be considered a generalization of the shifts of J considered in refs. [36, 38].
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where o € S,,_3 denotes a permutation of {2, --- ,n—1}\{a}, and f3, , are a set of arbitrary
constants (or functions). The action on all other numerators n; is then defined by

Sami= Y M1y aDiyn . (2.28)
'Yesn—Q

Note that we have not assumed that the n; obey the Jacobi relations (1.3). However, the
numerator shifts defined by eq. (2.27) and (2.28) will satisfy

(5a(ni +n; + nk) =0 (2.29)

so if the n; do satisfy kinematic Jacobi relations, the shifted numerators will continue to
do so, and if they do not, then the neither will the shifted numerators.
Now consider the cubic vertex expansion of the n-gluon amplitude

3
c a,l,v,r n a,l,v,r
A= Z 3 (%Z ' [){(;I;T)) . (2.30)

1 UE‘/( ) 5 1 d(a 17”75) r=1

The kinematic shift with respect to gluon a acts on the numerators appearing in this
expression as

6(1 n(a,[,v,r) = B(a,[,v) ka : K(a,[,v,r) (231)

and therefore on the amplitude itself as

72 Z H Z?U) Z C(a,I,v,r) - (232)
s=1

I veVin a,1,v,8) r=1

This vanishes courtesy of eq. (2.22); hence the n-gluon amplitude is invariant under the
shift of kinematic numerators. This is precisely the definition of a generalized gauge trans-
formation [2, 3].

3 Proof of color-factor symmetry for four-gluon amplitudes

In this section we prove that the tree-level four-gluon amplitude is invariant under the
color-factor symmetry. In doing so, we develop some results that will be necessary for our
more general proof of the invariance of the n-gluon amplitude in the next section.

The four-gluon amplitude can be constructed from a three-gluon vertex by attaching a
fourth gluon to a propagator emanating from each of the legs of the vertex or to the vertex
itself. This yields

Er)"(r)
Ay — 3.1
=Y G (3.)
where
C(l) = fala4bfba233a 6(2) = faga4bfba3317 6(3) = fa3a4bfb3132 . (32)
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The kinematic numerator n(,) receives contributions from the diagram in which gluon 4 is
attached to leg r as well as from the four-gluon vertex. The color-factor symmetry (asso-
ciated with gluon 4) acts on the color factors (3.2) and the four-gluon amplitude (3.1) as

3
1
54C(T) =y ky - kr — (54./44 = 50{4 Z () - (33)

r=1

Thus, by showing that 23:1 ney = 0, we will establish that d444 = 0. This we now
proceed to do.

3.1 Attaching a gluon to a leg

The three-gluon vertex is'?

7
- %falamvmm%(kl, ko, ks) (3.4)

where
V2R3 (B ko, kg) = nltH2 (kg — k) + nf2H3 (k3 — koM 4 nl3Ht (ky — k3)H2 (3.5)

and k, are outgoing momenta. In Feynman gauge, the gluon propagator is —in,,dap/ k2.
Attaching gluon 4 to leg 1 yields the expression
)
g fa1a4bfba2a3 v
= LRSS RS MY ([ ey —ky — k) V2P (K + kg, ko K
3 (r + ) (K1, kg, —k1 — ka)V,, '213 (k1 + Ky, ko, k3)
;2
tg C(l) |: ,ull/klm ,u4uk;;t1 1 g k k v
- — — 3.6
2 Gtk (114 R R (36)

+ QnﬂleuiM +2 (77“1“41{72 _ 77“41’14351) Vyuwg (k’l + k‘4, k2’ k’3) .

The contribution of this diagram to the four-gluon amplitude (3.1) is obtained by contract-
ing with Hizl Eap, and dividing by i. The first and second terms in the square brackets
vanish using €, - k, = 0. The third term vanishes due to

(k1 + ka)"V, 1213 (ky + ka, ko, k3)eop,e3u, =0 (3.7)

using k3 = k3 = 0. The contribution of the remaining terms of eq. (3.6) to the kinematic
numerator nyy can be written

n(l) = 9261N1 [54 . kléﬂyl — i64ak4/6(51a”8)‘u11, VVvH2ms (kl + k?4, kQ, k3)62M283#3 (3.8)

leg
where
(S, = i(nroF, — nPrrse) (3.9)

are the spin-one angular momentum matrices acting on gluon r. These satisfy the Lorentz
algebra commutation relations

(529, 87%] = =i [ 1877 — ST — 1820 4 5] (3.10)

120ur structure constants are normalized by fape = Tr([T?, T°)T°) with Tr(7°T*) = §*, so that [T2,T°] =
fabeT¢. This differs from the standard textbook convention by a factor of iv2. We use noo = 1 in this paper.
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3.2 Attaching a gluon to a vertex

Attaching gluon 4 directly to the three-gluon vertex, we obtain the four-gluon vertex

)
g
VS = | Farasboanan (/" 1ompors — ppiisgyans)
+ fazasb foaga (/2Hon/HHe — pltienlens) (3.11)

+ fa3a4bfb3132 (77”1“377/12#4 _ 77#2#3np1u4):| .
Using eq. (3.5), this can be recast as

. 2
ig 0 0 0
V;qygggsfél N _7 <C(1) 8k1#4 * 6(2) 8l€2u4 " 6(3) 6k3u4

> VHWR2ES (kg ko, k3) . (3.12)

The contribution of this vertex to the four-gluon amplitude is obtained by contracting with
Hi:l €ap, and dividing by 7. This contribution is then parceled out among the three terms
in eq. (3.1); the contribution to n(j) is

0 .
(1) = —gk1 - kica, VHHRES (Fy Ko, K3 )E 1y €20 E3ps - (3.13)

vertex 5] 1pg

The reader may be concerned about the use of eq. (3.12) for the following reason. The
three-gluon vertex (3.5) can be rewritten using momentum conservation Zi:l ko = 0. For
example, we can eliminate k3 from eq. (3.5), writing it as

VIR (o, ) = 11 (g — Ry )0 0 (< — 2ha ) (2K + k) (3.14)
The partial derivatives (0/0kqu,)V (k1, ko, k3) obtained from eq. (3.14) differ from those
obtained from eq. (3.5), so that eq. (3.12) gives

- 2
HIM2p3 04 g
‘/;1323334 - 2 fala4bfba2a3

+ fasasboagay (20/2H0nHte —pltiepfsis — piarspzia) | (3.15)

(nM1M2nM3H4 + nM2N3nM1M4 _ 277M1M3nﬂ2ﬂ4)

Nonetheless eq. (3.15) is equal to eq. (3.11) courtesy of the Jacobi relation S7°_, cry =
0. Eq. (3.15) simply corresponds to a different way of parceling the four-gluon vertex
among the color factors (), and the expressions n) will differ by a generalized gauge
transformation (2.5). The amplitude (3.1) of course remains unchanged.

3.3 Kinematic numerators of the four-gluon amplitude

Using the fact that the three-gluon vertex (3.5) is linear in momenta, we rewrite eq. (3.8)
using

0
k1

VYRS (kg 4 kg, kg, k3) = <1 + Ky > VVH2ES (Foy, ko, k3) (3.16)
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and then combine eq. (3.8) and (3.13) to obtain

n(l) - n(l) leg + n(l vertex
= g2€1“1 [84 . klé’ﬁ} — Z'€4ak413(8(11ﬁ)uly — 7;€4ak4/3L(115(5MV1 VVM2M3(k1’ kg, k3)€2#263ﬂ3
. 0 o i
+ g% {—1€4ak46(5?6)“b] <k4”8k1 >V HRHS (v, ko, ks e eus (3.17)
0

where the orbital angular momentum operators are defined as

0 0
af __ « 1.8
L8 = (k 5y b 8km) . (3.18)

These satisfy the Lorentz algebra commutation relations
(L3P, L)) = —i [n”L@ — LY =LY+ nﬁ‘sL?”] : (3.19)

Similar expressions are obtained for ng) and n). Finally, defining the total angular
momentum operator

(JEP), = LYPaky + (SpP), (3.20)

we can write all the kinematic numerators as

Npy = 92 SV kr - Z'E4ak‘45<]fﬂ - i54ak45k473$‘5 V(kl, kz, ]{:3) (3.21)

Ok~
where we have suppressed the polarization vectors €1, €2, and €3. The subscripts on J, and
S, indicate on which polarization indices these operators act.

Note that under a gauge transformation €4 — &4 + Aky of gluon 4, the last two terms
in eq. (3.21) vanish by virtue of the antisymmetry of J° and S&°, and the first term gives
Ny = Ny + Ag%ky4 - k. in accord with eq. (2.5).

We observe that the operators L% and S are the same as those appearing in the
Burnett-Kroll form [56] of the subleading terms of the Low soft-photon theorem [57] as
applied to gluons [58-62]. (See refs. [63-65] for recent derivations of the soft-gluon theorem
from gauge invariance.) The first two terms in eq. (3.21) correspond precisely to the leading
and subleading terms in the k4 — 0 expansion of the four-gluon amplitude; the third term
is higher order in the soft momentum. We emphasize, however, that eq. (3.21), and the
vertex expansion that we will derive in the next section, are exact, and not dependent on
taking a soft limit.

3.4 Kinematic Jacobi relation

We will now show that the sum of the four-gluon kinematic numerators (3.21) vanishes.
This result, which has been known at least since 1980 [23, 24| inspired the conjecture of
color-kinematic duality [1]. We demonstrate it in a way that will facilitate the proof of
color-factor symmetry of the n-gluon amplitude.
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Using eq. (3.21), we see that

3

3
D ngy =g (Z €4 - k) V (K1, ka, k3)
r=1

r=1

3
—ig2esakag (Z J7?‘f3> V (K1, ko, k3) (3.22)

r=1

3
. 2 af
— kqgk S,
19" €4aRapR4~ Z " ok,
r=1 v
The first sum on the right-hand side of eq. (3.22) vanishes by momentum conservation
Z;‘f:l k, = 0 together with €4 - k4 = 0. The second sum on the right hand side of eq. (3.22),
which may be written more explicitly as

(Jloéﬁ)myvl/#w;%(kb k, ks) + (Jgéﬁ)myvuwus (ki ka, k) + (J?ﬁ)%y‘/#ww(kl’ ko, ks) (3.23)

is the first-order Lorentz transformation of the three-gluon vertex. This vanishes, as may
be verified by explicit computation, because VF1H#2H3 (ky ko, k3) is a Lorentz tensor. Alter-
natively, we can define the spin-one angular momentum operator to act on polarization
indices [63, 64]

0 0
af __ - «a B 4
S =1 (ar e er 8em> (3.24)

in which case

23 23 9 9 9 9
< JT ) V(k17 k27 k?’) 7 — (kr 8k r 8]{;,,,a + 87" agrﬁ ET‘ agra) V(k17 k27 k3)

—k
r=1 T8
(3.25)

where
V(ki,ko,ks) =€1-e2e3- (ko —ki1)+ea-e3 €1 (kg —ka) +e3-e1e2- (k1 —ks). (3.26)

Eq. (3.25) vanishes because V(k1, ko, k3) is a Lorentz-invariant function of k, and &,. The
third sum in eq. (3.22) is proportional to

0 0 0

SpPyI V2 (o oy, )+ (S5 )2, VIS Ky Ky, Keg) (S50 )8, VMY (o ey e
(517) T (ky, ka2, k3)+(557) T (F1, ke, k3)+(557) ¥ s (F1, k2, ks3)
= 2i (—nHipPragies 4 pergi2pPis) 4 (cyclic permutations of 123) . (3.27)

This expression is antisymmetric in # and 7. Since it multiplies k4gks, in eq. (3.22), the
whole expression vanishes. The cancellations that we have just exhibited were originally
used in ref. [35] to prove the radiation zero theorem.

We have shown that the sum of kinematic numerators vanishes (the kinematic Jacobi
relation), and thus have demonstrated the invariance of the four-gluon amplitude d4.44 = 0
under the color-factor shift symmetry. We would like to emphasize that in proving the
vanishing of eq. (3.23) and (3.27) we did not use that k, were on-shell, nor did we use
g -k =0 for r = 1,2,3. Thus we will be able to use these results in section 4 for an
off-shell three-gluon vertex VH1F213 (ke ko, k3).
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4 Proof of color-factor symmetry for n-gluon amplitudes

We now turn to the proof that the tree-level n-gluon amplitude is invariant under a color-
factor shift associated with any of the gluons. To do so, we employ a decomposition of
the amplitude known as the radiation vertex expansion [35]. This is a recursive approach
which constructs an n-point amplitude by attaching a massless vector boson to all possible
(n — 1)-point diagrams.

Consider the set of all tree-level (n — 1)-gluon diagrams with external legs {1, -+ ,n}\
{a} constructed using Feynman rules. Label these diagrams by I’. Please note that this set
differs from the set of (n — 1)-point diagrams appearing in the cubic vertex expansion (cf.
section 2) because it includes not only cubic diagrams but also diagrams with four-gluon
vertices. (In the cubic decomposition (2.8), all diagrams containing quartic vertices are
redistributed among the cubic diagrams.)

We will construct all possible n-gluon diagrams by attaching gluon a to each (n — 1)-
gluon diagram I’ in all possible ways. This includes: (1) attaching gluon a to an external
leg, (2) attaching gluon a to an internal line, or (3) attaching gluon a to one of the three-
gluon vertices of I’ to make a four-gluon vertex. By rearranging terms and discarding
pieces that vanish by Ward identities, we obtain simple expressions for the contribution
to the n-gluon amplitude from each vertex of diagram I’. We then show that each such
contribution is invariant under the color-factor shift associated with gluon a.

4.1 Attaching a gluon to an external leg

First we single out one of the external legs, b, of I, denoting the resulting expression as
5b#ngbb (Ko, +) (4.1)

where k; and ¢, are the momentum and polarization vector of gluon b, and --- denotes
momenta belonging to gluons {1,--- ,n}\ {a,b}. Attaching gluon a to external leg b and
using eq. (3.5) we obtain

g fa agb aV
_E (ka _l;_ kb)z |Zas (kln ka7 _ka - kb)Bbu(ka + kln o )

= = e kg ek ) (4:2)

+ 277%1/%@ + 2 (nfoHaky — ptat ko) | By, (kg + kb, -+ ) .

Contracting this with &y, €4, eliminates the first two terms in the square brackets. The
third term is proportional to

(ka + kb)VBbu(ka + kba ce ) . (43)

This term does not vanish by itself as it did in the case of the four-gluon amplitude, but
when we obtain the total n-gluon amplitude by including all (n — 1)-point diagrams I’
the sum of such terms vanishes due to gauge invariance (Ward identity). Therefore we are
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left with the last two terms in square brackets, which yield the two terms in the following
expression

- ﬂgme% [ga g + (20 KY — 2k | Boy (ki + ki, -+ ) - (4.4)

We set this expression aside for now.

4.2 Attaching a gluon to an internal line

Next we single out one of the internal lines of I’, which divides the diagram into two
subdiagrams B and C, and splits the external legs {1,--- ,n}\ {a} into two complementary
sets S4.p and S, c. The contribution of the diagram can thus be written as

(—in7p)0b
where K = Zdesa i, ka 1s the momentum running through the line, and the --- in B and
C denote momenta belonging to S, g and S, ¢ respectively. Attaching gluon a to the line
connecting the two subgraphs yields

foca, Ve (K, —K — kaq, ka)

ig
B (—K.---
ou(—F ) K2(K + kq)?

V2

Writing the three-gluon vertex (3.5) as

Coo (K + kgy- ). (4.6)

Vit (K — K —kq, k) = —n* ki ppha? KFppita (K 4k, )Y —2nH KHa —2 (gf#Ha k¥ — phav )

(4.7)
we see that the first term vanishes when contracted with e,,,. The second and third terms
give terms proportional to

K"'By,(—K,--), (K4 ko)'Cor(K + kg, ). (4.8)

Again these terms do not vanish by themselves, but when we include all (n — 1)-gluon
diagrams I’, By, will be replaced by the sum over all diagrams containing external legs
Sa,B plus one additional off-shell line, and similarly for Cc,, and these expressions will
vanish by gauge invariance (Ward identity). We are thus left with

focas MV €a - K + (kY — el kb))
K2(K + kq)?

_ \/éz-ngM(_K’) CCV(K+ka,"'). (49)

Now we use the identity (2.20) to rewrite this as

Bpu(—K, -+ )% {\/592]?’[( [n“”sa K 4 (SR — ek } Con(K + ka, - - - )} (4.10)

+{_\/§g Jocaq Bpu(-++ ,—K) [nﬂl’ga - K+ (ehk, —egszj)]} Cor(K 4+ kgy---).

—i
2%k, - K (K +kgy)?

We associate each of the terms in this equation with one of the two vertices to which the
line is attached.
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4.3 Radiation vertex expansion

In the previous subsections, we showed that attaching gluon a to an (n — 1)-gluon diagram
yields one term (4.4) for each external leg and two terms (4.10) for each internal line, or in
other words, one term for each leg of each vertex of I’. We can therefore reorganize these
terms into a sum over the legs of the vertices of each of the (n —1)-gluon diagrams I'. This
is the radiation vertex expansion [35].

First we choose one of the three-gluon vertices v of I’ (if it has any). Such a vertex
divides the external legs into three non-overlapping subsets S(q 17 4r), 7 = 1,2,3 such that
U2, Sa,rwr) = {1,---,n} \ {a}. The contribution of diagram I’ to the (n — 1)-gluon
amplitude can be expressed

\/*fC1C2C3VM1M2MJ(K17K27K3 HAS‘.:LT Kr,"') (411)
r=1

where K, = ;c Sttt o) kq is the momentum flowing out of each leg of the vertex, and - - -

(r)

in A denotes momenta belonging to S(a,1'v,r)- If any of the legs is external, then Ac,y,
is just pe, Eppy -

We now attach gluon a to each of the legs of this three-gluon vertex, either to an
external leg or to an internal line. From eq. (4.4) and (4.10) this yields

3
ig? T[AL), (~Ko.--) (f"%f;{ (P17 0B (e )| VP (K b, Ko, K (4.12)

g oo oo T gy 4 (et — o) [V, 1o (5 K 4 b )

2k, - Ko
+ Jocsaq foeico [77”3”5 K3+ (efskY — 6”k“3)]V”1“2 (K1,Ko, K3+ kq) ) -

2ka ; K3 a a “Va a’Va v ) ) a
We can also attach gluon a directly to the three-gluon vertex itself. Using eq. (3.12), this
yields

zg 9 H1p2ps
H crur c ) fbclaabeQc;;eaua OK (Kl,Kz, KS)
a 1 2 43
+ fchaabe3c15ap,a V (Kl,KQ,Kg) (4.13)
8K2Na

+ fbesaa fbeico V“1“2“3(K1,K2,K3)> :

Eaq,
Ha aK?)p,a

We now use eq. (3.16) in eq. (4.12), and combine eq. (4.12) and (4.13) as we did in section 3.
Leaving the indices on VF1#2H3 (K Ky, K3) implicit, we obtain the contribution of the
three—gluon vertex to the radiation vertex expansion

2 fbcla fbczc . B 0
zg ]:[Acr 7", .. ( Qk Kl 3 |:€a'K115aakaﬁJ Z€aa aﬁka»ys 8K17:|V(K1’ KQ, Kg) (414)

0
+ % |:€a . KQ — i&‘aakaﬁjgﬁ — iswkaﬁkmSaﬂ] V(Kl,KQ, K3)
a ’ 2

0
+ % |:5a . K3 — iEaakaﬁJ;B — igmk;aﬁk;mSa’g] V(Kl, KQ, K3))
a "3
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where the subscripts on J, and S, indicate on which indices of V#1#213( K, Ko, K3) these
operators act.

Next we choose one of the four-gluon vertices v of I’ (if it has any). Such a vertex
divides the external legs into four non-overlapping subsets S(q 17 ), 7 =1, ,4 such that
U;‘le S(a,r'wr) = 11,--- ,n} \ {a}. The contribution of the diagram I’ can be expressed as

Veiharns H A (K-, (4.15)

We now attach gluon a to each of the legs of this four-gluon vertex. From eq. (4.4) and (4.10)
we obtain

bciag
—V2g H Acrur 7"')<2£ C_l:}(l [77’””% K1+ (ehtky — b kL) |m V&Sié‘é’” (4.16)
a
foeraa [ T
g 1 e Ka o (el — uk?) Vel
foesaa [ T A
4 2288 pHsVe . K+ (eM3kY — eVkHs) ] AV ek

iq - K3

fb a I 14 14 14 | >\
+ ﬁ _77“4 o Ky + (eh*ky — egkl*) ] "71//\Vc/fé§c2£ :

One cannot attach gluon a to the four-gluon vertex itself since there are no five-gluon
vertices. Thus the contribution to the radiation vertex expansion from the four-gluon
vertex is

4
VB TL AL (o) (0 [0 K1 = ka7, | Vi

bcoaa [ . |
b g (e, K — isaaaa(55°) | VIR

bcsaa [ . )
e e Ko =i S5 VR

+ M _5Nlj1€a . K4 - igaakaﬁ(sffﬁ)u4u_ VM1M2M3V> . (417)

2ka i K4 L cicacsb

To summarize this section, we have expressed an n-gluon amplitude as a sum over the
vertices of all of the (n—1)-gluon diagrams I’, comprising a term (4.14) for each three-gluon
vertex of I’ and a term (4.17) for each four-gluon vertex of I'.

4.4 Invariance of the radiation vertex expansion under color-factor symmetry

Computing the variation of the radiation vertex expansion of the amplitude under a color-
factor shift is somewhat more delicate than calculating the variation of the cubic vertex
expansion of the amplitude (as we did in section 2) because each factor A((;T)MT in eq. (4.14)
and (4.17) can contain more than one color factor ¢; due to the possible presence of four-
gluon vertices.

First let us consider the contribution (4.14) of a three-gluon vertex to the radiation

vertex expansion, and for the moment let us assume that the subdiagrams corresponding
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to Ag)m contain only three-gluon vertices. Designate by ¢4 1/, with 7 =1,2,3 the color
factor associated with each line of eq. (4.14). Thus, for example, c(4 1 ,,1) is the product
of fbeyay foeacs and the structure constants from all the three-gluon vertices in Hi:l AgLr.
These color factors manifestly satisfy Zle C(a,1'w,r) = 0. The variation of c(q 1/ ) under

the color-factor shift associated with gluon a is
5(1 C(a,I’,'u,r) = a(a,[’,v) ka ' Kr (418)

which preserves 22:1 Ca,1 w,r) = 0. The variation of eq. (4.14) under the color-factor shift
is therefore proportional to

3 | \ | 3 8
[(Tzl €q - Kr> — i€aakap (Z Jf‘ﬁ) — iqakapkay (Z Sf‘ﬁ 8Km>

r=1 r=1

V(K1, Ko, K3) .

(4.19)
In section 3, we demonstrated that each of the three terms in eq. (4.19) vanishes. If
the diagrams corresponding to AgLT contain four-gluon vertices, we can use eq. (3.11) to
expand these expressions and then use the argument above to show that each separate
contribution will vanish under the color-factor shift. Therefore the contribution of the
three-gluon vertices (4.14) to the radiation vertex expansion is invariant under the color-
factor shift associated with gluon a.
Second let us consider the contribution (4.17) of a four-gluon vertex to the radiation

vertex expansion. Again we begin by assuming that the diagrams corresponding to AQ;L,,

contain only three-gluon vertices. We now expand the four-gluon vertices V& eh&ldl ' in

eq. (4.17) into several terms, one of which is

4
el AL (—Kqp ) (4.20)
r=1
belaabeQdde3C4 gh K . k Saﬁ 1 vps, 2l Vg, 42143
x TR vEa - K1 —i€aakap(S) 7)1, | (nHomHt — nenens)
a
fbczaafclbdde3C4 -5“2 K. . k Saﬁ 142 W13 VHLg 11 [ VL3
LT o sa - Koy —igaakap(Sy")", | ("t en it — pftlan™is)
o L
4 bc?"”‘;kf b‘f“;édclc“’ S, - K — icaakas(SS° )“%] (it — pikagher)
. L
be4aafC3bdfdc1C2 _5N4 K . k Saﬁ o 143, 2V UiV, (23
+ 2]{ K4 I/sa. 4_7’6(10[ aﬁ(4 ) v (77 77 _77 T’ ) .
o L
Designate by c(q1 ) With r = 1,---4 the color factor associated with each line of

eq. (4.20), including the structure constants from all the three-gluon vertices in Hle Ag)m.

These color factors satisfy Z;‘le C(a,1"w,r) = 0 by virtue of

fbclaa bezdde3C4 + beQBa fc1bdde3C4 + be3aabe4dfdc1c2 + be4aafC3bdfdc1c2 =0. (421)
The variation of ¢, 1, under the color-factor shift associated with gluon a is

5(1 Cla, I’ w,r) = Oa, I’ w) kq - K. (422)
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The variation of eq. (4.20) under the color-factor shift therefore contains two sums. The
first

4
(Z €a- Kr> (frhsppeks — pititigpeis) (4.23)
r=1

vanishes by momentum conservation, k, + Zle K, = 0, together with ¢, - k, = 0. The
second

(SPOV, (rhaphans — piagizis) 4 (SOP Y (paksprie _ piaaguis)

14

+ (Sglﬁ)usy (qfavphens — pipapuevy (SZB M (qEABS oV Y o) (4.24)

is the first-order Lorentz transformation of the tensor nHiH3nH2rs — plildpk2i3 which van-
ishes. The variation under the color-factor shift of the other two terms from the expansion

of VELelE! similarly vanishes. Furthermore, the same argument applies when the dia-

grams corresponding to A((;:Lr contain four-gluon vertices, by expanding these expressions
using eq. (3.11). Therefore the contribution of the four-gluon vertices (4.17) to the radiation
vertex expansion is invariant under the color-factor shift associated with gluon a.

In fine, we have shown that each contribution to the radiation vertex expansion is
invariant under the color-factor shift associated with gluon a, and therefore the entire

n-gluon amplitude is invariant under this shift. QED

5 Color-factor symmetry for more general amplitudes

In sections 3 and 4, we proved the color-factor symmetry of n-gluon amplitudes, from which
follow the BCJ relations for color-ordered amplitudes. Color-factor symmetry is a property
of a much larger class of tree-level gauge-theory amplitudes, namely those containing at
least one gluon together with massless or massive particles in arbitrary representations of
the gauge group with arbitrary spin < 1, with the usual gauge-theory couplings. We will
establish the invariance of this larger class of gauge-theory amplitudes under a color-factor
shift in sections 6 and 7.

Consider a tree-level n-point gauge-theory amplitude A,, with gluons as well as particles
¢ and 1), either massless or massive, with spin zero, one-half, or one, in an arbitrary
representation of the gauge group. For convenience, throughout the next three sections
we refer to ¢ (and 1) as fundamentals (and antifundamentals), but they can be in any
representation. This amplitude has the cubic decomposition

/ /
G (5.1)

=2

1
where we decorate the color factors, kinematic numerators, and denominators with primes
to distinguish them from the analogous quantities for n-gluon amplitudes. The denominator
d; now consists of the product of inverse propagators for both massless and massive parti-
cles. The color factor ¢ associated with each cubic diagram is obtained by sewing together
ggg vertices fape and ¥ gy vertices (T2)! j where T denote the generators in the appropriate
representation. Contributions from Feynman diagrams with quartic vertices (either gggg
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or 1ggy in the case of a scalar or vector 1) are parceled out among the cubic diagrams.
The number of cubic diagrams in the sum (5.1) will generally be fewer than for the n-gluon
amplitude, as some will be excluded for violating fermion number or flavor symmetry.

Just as in the case of the n-gluon amplitude, the amplitude A,, can be written in a
cubic vertex expansion with respect to gluon a:

C

/
(a,IvT) a,[,vr)
An ZZU T, PO Kerom (5.2)

1 %(a,I,v,s) r=1

The only difference between the derivation of this expression and that for the n-gluon
amplitude given in section 2 is that we must use the modified identity

1 1 1
K2 = m2[(K + ko — ]~ [K2 =m0k ) | (—2ka B(K +E)2 - Y

when gluon «a is attached to a propagator of a massive field.

As usual, the color-factor shift associated with gluon «a is defined by two requirements:
(I) that it satisfy all the algebraic symmetries (e.g., Jacobi relations) obeyed by the color
factors ¢, and (II) that it satisfy

8aCi Z ko - ke (5.4)

CGSaﬂ'

where S, ; denotes the subset of the external particles on one side of the point at which a
is attached to c;. These together imply that

da Cl(a,[,v,r) = Q(q,Iw) kq - K(a,[,v,r) . (55)

Therefore the invariance of the amplitude under the color-factor shift implies the constraint

3

ZZ d ZnZa,I,vﬂ’) =0 (56)

=1 "(a,lv,s) r=1

on the sums of kinematic numerators appearing in the cubic decomposition.

As in the case of n-gluon amplitudes, color-factor symmetry can be used to derive
BCJ relations among the color-ordered amplitudes associated with A,,. BCJ relations for
n-point amplitudes with gluons and a single pair of massive fundamentals were conjec-
tured in ref. [41] and more generally for amplitudes containing an arbitrary number of
pairs of fundamentals in ref. [42], based on the assumption of color-kinematic duality. A
proof of these BCJ relations using BCFW on-shell recursion was given in ref. [46]. In
order to derive these relations, however, it is necessary to write the amplitude in a proper
decomposition [45], i.e., in terms of an independent set of color factors and generalized-
gauge-invariant primitive amplitudes. For general amplitudes, this is a subtle problem,
which was recently solved for the case of multiple pairs of distinct-flavor fundamentals by
Melia [43-45] and Johansson and Ochirov [42]. In a sequel to this paper [47], we review
their solution, and then derive the BCJ relations using the color-factor symmetry.
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There is one class of amplitudes, however, for which the story is practically identical
to the n-gluon case, namely, n-point amplitudes with n — 2 gluons and a single pair of
fundamentals. For that case, an independent set of (n — 2)! color factors is given by the
half-ladders

o = (TPOTE - THe-v)t, (5.7)
All other color factors ¢, can be reduced to half ladders
C; = Z Mi717ncll'yn (5.8)

ﬂfesn—2

i
]
tudes [52]. The coefficients M; 1, are precisely the same as in the n-gluon case. The

by repeatedly applying fabc (TC)i i = [Ta,Tb} , similar to the case of n-gluon ampli-
n-point amplitude can then be written in a proper decomposition [66, 67]

An(d_}l:g%g?n e 7gn—17wn) = Z cllfyn A/(177(2)> T 77(” - 1)1 n) (59)
YESH—2

where the primitive amplitudes are given by

/ Mi,l'yn ’I’L;
A1), 7 — 1)) = Y0 ek (5.10)
7 K2
We define an (n—3)!-parameter family of shifts associated with each gluona € {2,--- ,n—1}
via
b—1
da Cllo(2)-~a(b—1)aa(b)---a(n—1)n = Qa0 (ka k1 + Z ka - ko(c)) , abe {27 N 1}a b 7£ a
c=2
Sa¢i="Y Miiyn Saciy, (5.11)
YESn—2
where 7 is a permutation of {2,---,n — 1}, o is a permutation of {2,---,n — 1} \ {a},

and g is a set of (n — 3)! arbitrary constants for each a. As in the case of the n-gluon
amplitude, the dimension of the (abelian) group of color-factor shifts is (n —3)(n —3)!. We
show in sections 6 and 7 that the amplitude A, (11, g2, 93, , gn_1,%n) is invariant under
the color-factors shifts (5.11). As a consequence, the color-ordered amplitudes defined in
eq. (5.9) obey BCJ relations that have the same form (when expressed in terms of invariants
kq - kp, where k, is the momentum of a gluon) as those for the n-gluon amplitude, namely

n b—1
Z <k1 ko + Zkg . ka(c)> A(1,0(3), - ,0(b—1),2,0(b), -+ ,0(n—1),n) =0 (5.12)
c=3

b=3

together with all permutations of this equation with 2 replaced by a, as conjectured in
refs. [41, 42].
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6 Proof of color-factor symmetry for the A4(v1, 2, g3, gs) amplitude

In this section, we prove that the tree-level four-point amplitude with two gluons and two
massive particles in an arbitrary representation of the gauge group (which for convenience
we refer to as fundamentals) with spin zero, one-half, or one is invariant under the color-
factor symmetry. We will use these results for the proof of the invariance of the more
general n-point amplitude in section 7.

The four-point amplitude Ay (v, 2, g3, 1) can be constructed from the 11pg vertex by
attaching a gluon to a propagator emanating from each of the external legs of the vertex,
or (in the case of a spin-zero or spin-one fundamental) to the vertex itself. This yields

con
T (r)(r)
— 6.1
As(1,v2, 93, 94) ;:1 Sy ko (6.1)
where the color factors
oy =—(THT>)1 gy = (TBT)1 gy = faasp(TO), (6.2)

obey Zle c’(r) = 0 using [T?,T°] = fapcT°. The color-factor symmetry (associated with
gluon 4) acts on the color factors (6.2) and the four-point amplitude (6.1) as

3
1
546,(7») =aqky -k - 54./44 = 50&4 Z n'(r) . (6.3)

r=1

We will establish that d4.44 = 0 by showing that Zle n’(T) = 0, a result that has long
been known [23, 24]. We will do this separately for spin zero, spin one-half, and spin one
fundamentals.

6.1 Kinematic numerators for spin-one-half fundamentals

We begin with the case of a spin-one-half fundamental, which is simpler due to the absence
of a Ypgg vertex. The ¢npg vertex'® and Dirac propagator are

g i i0';
Ta3)it_ K3 )
v Fom

Attaching gluon 4 to (fermion) leg 1 yields the expression

(6.4)

ig>
2 2k4 - Ky

2-92 (Ta4Ta3)i1i2 » "
—TW’Y (Fy+Ey+m)yhs =

[y 2 5B 2

(6.5)

The contribution of this diagram to eq. (6.1) is obtained by sandwiching eq. (6.5) between

u(k1) and u(—Fky), contracting with e3,,,€4,,, and dividing by ¢. The first term in the square
brackets vanishes using @(k1)(—F; +m) = 0, leaving

n/(l) = 92@(1431) €4 k1 — i84ak4ﬂzaﬂ ¢3u(—k2), »nob =

% [’Va, ’ﬂ (6.6)

Recall that Tr(7°T") = §°°.
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where the spin-one-half angular momentum matrices 2 satisfy the Lorentz algebra com-
mutation relations

(28 270 = —4 |V Rfd — adnhY _ pfryed o pfoser ) (6.7)
Similarly, attaching gluon 4 to (fermion) leg 2 yields

ig? (L7, ig? <
ey by = - 7M3[M4(%2+m)—2k’“‘+ e, kﬂ

2 (ka1 ki) 2 2k ko )
Using (k9 + m)u(—kq) = 0, we obtain o
Ny = gu(k1)d, [54 o+ z%szaﬂ u(—ks) . (6.9)
Finally, attaching gluon 4 to (gluon) leg 3 yields

N = gPesuulky) [54 kgt ismkw(sgﬂ)uﬂ (k) . (6.10)

The sum of the kinematic numerators is thus

Zn(r u(k1)dqu( (Z €4k )
— ig?epakpegu ) (D009 — 4950 4 (S§0Y0" u(—ky) . (6.1)

The first sum on the right-hand side of this equation vanishes by momentum conservation
Zﬁ:l k. = 0 together with 4 - k4 = 0. The second sum vanishes because

Eaﬁvm pNE yob 4 (S?ﬁ)“g’yvl’ (6.12)

is the first-order Lorentz transformation of 4* (acting on both spinor indices as well as the
vector index) and hence vanishes. Thus the sum of kinematic numerators for the amplitude
A4(1b1,2, g3, g4) is zero for spin-one-half fundamentals.

6.2 Kinematic numerators for spin-zero fundamentals

Next we turn to the case of spin-zero fundamentals. The g vertex is

%(Ta?’)iliZV“?’(kl, ko, ks), VI3 (K, ko, ks) = (k1 — ko)b@ (6.13)

where k, are outgoing momenta. The scalar propagator is id' j/ (k2

—m?). Thus attaching
gluon 4 to (scalar) leg 1 yields the expression
Z'g2 (T34Ta3>
2 (k‘l + k‘4) — ’I?”L2

VH (K1, —k1 — ka, ko) VF3 (k1 + ka, k2, k3)

. /

A O TR

= [ky" + 2K ) VS (k1 + Ky, ko, ks) - (6.14)
2 ey - ky
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The contribution of this diagram to eq. (6.1) is obtained by contracting with e3,,4,,, and
dividing by ¢. The first term in the square brackets vanishes using €4 - k4 = 0, leaving

. = 9284 . k1€3M3V‘u3 (kl + kyq, ko, kg) . (6.15)
eg

/
()
Similarly, attaching gluon 4 to (scalar) leg 2 yields

/

n(z) = g2€4 . k283“3 VHs (kl, ko + k4, kg) . (6.16)

leg

Attaching gluon 4 to (gluon) leg 3 yields
s Leg = g%e3u4 [54 k3ot — ie4ak4,3(5§“5)“3y] V k1, ko, k3 + k) - (6.17)

Attaching gluon 4 directly to the ¥1)g vertex, we obtain the 11gg vertex

- 2

1g i
S ({1, T, (6.18)
which can be written as
)
igc(, 0O , 0 , 0
~ 5 Y VH3(ky, ko, k3) . 6.19
> <c(1) Ok, + €2 ko, +C3) 8l<:3u4> (K1, ko, k3) ( )

The rest of the story proceeds exactly as in section 3, allowing us to write the kinematic

numerators as

)
Oy

iy =9° [64 ky — i€aakag R’ — icaokapkar 527 ] V(k1, ko, ks) (6.20)

where we have suppressed the polarization vector €3. Because two of the legs are scalars,
we have Sffﬁ = Sgﬁ = 0, whereas S?B is given by eq. (3.9).

Now consider the sum of kinematic numerators

3
> nfy =g (Z es- k:> V (k1 ko, ks)
r=1

r=1

3
—ig%esakap (Z J£ﬂ> V (K, ko, k3) (6.21)

r=1
. 0
— ig2eaakapkay S5 ——V (k1 ko, k3)
Ok3,
where the scalar-scalar-gluon vertex is V#3(ky, ko, k3) = (k1 — ko + A[k1 + k2 + k3])#® with
A arbitrary due to momentum conservation. The first sum on the right-hand side of this
equation vanishes as usual by momentum conservation. The second sum, which may be

written more explicitly as

LYOVH5 (ky, ko, kes) + LS VIS (ky, ko, ks) + (J§7)5, VY (ky, Ko, k) (6.22)
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is the first-order Lorentz transformation of )¢ vertex. This vanishes, as may be seen by
explicit computation, because V#3(ky, ko, k3) is a Lorentz tensor. The third term on the
right-hand side of eq. (6.21) is

o 0
54ak4,3k4’7(53 ﬁ)“gzl 8/{337

V¥ (k1, ko, ks) = X (k3 el — eq - ka ki) (6.23)

which automatically vanishes due to k% = 0 and 4 - k4 = 0. Again, we emphasize that in
proving the vanishing of eq. (6.22) and (6.23) we did not use that k, were on-shell, nor did
we use &, - k. = 0, for r = 1,2,3. Thus these results remain valid for an off-shell vertex
V“3(k‘1, ko, ]{33)

6.3 Kinematic numerators for spin-one fundamentals

Finally we consider massive spin-one fundamentals with ¢ g vertex of the form

%(Tag)ilbvullm#g(kl;k27k3) (6.24)

where VH1H2E3 (L ko ks3) is given by eq. (3.5). We emphasize that although we refer to

the vector particles as fundamentals, they could be in any representation, including the

adjoint, in which case (7%)%',) = fa a3a, and eq. (6.24) is equal to eq. (3.4), except that
now the vector boson is massive. The propagator for a massive spin-one particle is

—i0' By ()

k2 —m2 "’

In the case in which the vector boson gets its mass from a spontaneously-broken symme-

kK,
P (k) = nu — # : (6.25)

try, eq. (6.25) is the propagator in unitary gauge; this is most convenient for tree-level
calculations as we need not compute contributions involving Goldstone bosons.
Attaching gluon 4 to leg 1 yields the expression

) Cl
g (1) v A

—-— VHIHAY (L b e — P,, k k) VAR2H3 (L k ,k ,k . 6.26
2 (ky + k)2 — m? (K1, ka, —k1 — ka) Py (k1 + Ka) (k1 + ka, ko, k). (6.26)

The contribution of this diagram to eq. (6.1) is obtained by contracting with H3=1 Eapta
and dividing by ¢, giving

nl(l) leg = 9251#1 €4 klé‘lll} — i€4ak4ﬁ(5?ﬂ)my] VvH2ps (]{1 =+ ]{34, ko, k3)52ﬂ253,ﬂ3 (6.27)
where we have used 0 = ki =¢e4-ks =1k and k% = m% but we did not use eq. (3.7),

which is not valid in this case because k3 # k% Analogous expressions are obtained for
n’(2) and ”,(3)' Attaching gluon 4 directly to the ¥1)g vertex, we obtain the 11gg vertex

_ @ c 9 + c 9 + c i
9 1 k1, (2) Ok, (3) k3,

Again, the rest of the story proceeds exactly as in section 3, allowing us to write the

) VHI2ES (| ko, kg) . (6.28)

kinematic numerators as

B
Okiry

!/

Nipy = gQ |:€4 -k, — ’L'€4ak‘45<]g6 - i54ak4ﬂk4’ysﬁéﬁ

] V(k1, ko, k3) (6.29)
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where we have suppressed the polarization vectors ¢, for r = 1, 2, 3. Note that the kinematic
numerators nzr) have exactly the same form as the kinematic numerators for the four-gluon
amplitude, even though the masses for particles 1 through 3 can be nonzero. The proof of
the vanishing of the sum of numerators proceeds exactly as in section 3.

In this section, we have explicitly shown that the sum of kinematic numerators for
four-point amplitudes A4 (11,42, g3, g4) vanishes (where v can have spin zero, one-half, or
one) and thus have demonstrated the invariance of the four-point amplitude under the
color-factor symmetry associated with gluon 4. As the results of the last subsection have
shown, this result remains valid even when particles 1 through 3 are massive; only the
gluon associated with the color-factor symmetry need be massless. The results we have
derived will be used in the next section to prove a more general result.

7 Proof of color-factor symmetry for more general amplitudes

In this section, we use the radiation vertex expansion to demonstrate the invariance under
the color-factor symmetry of tree-level gauge-theory amplitudes containing at least one
gluon together with massless or massive particles in arbitrary representations of the gauge
group (but referred to as fundamentals for convenience) and with arbitrary spin < 1.
For concreteness, we focus on the n-point amplitude Ay, (1, 92,93, - » gn_1,%n) With n —
2 gluons and a pair of fundamentals ¢, but it will be clear that the proof applies to
more general amplitudes. The proof is very similar to that given in section 4 for n-gluon
amplitudes, and so we only highlight the differences.

The radiation  vertex  expansion  constructs the n-point  amplitude
An(¥1,92,93, -+ ,Gn—1,%n) by attaching gluon a € {2,---,n — 1} to all possible
(n — 1)-point diagrams I’, with two fundamentals and n — 3 gluons, in all possible ways,
and reorganizing this as a sum over all the vertices of the (n — 1)-point diagram. We have
already shown in section 4 that the contributions of the three- and four-gluon vertices are
invariant under the color-factor symmetry, so we only need to demonstrate the same for
vertices involving two fundamentals. We do this separately for fundamentals with spin
zero, one-half, and one.

7.1 Vertices involving spin-one-half fundamentals

To derive the contribution of the ¥1)g vertices to the radiation vertex expansion for spin-
one-half fundamentals 1), we examine the effect of attaching a gluon to a fermion leg, either
external or internal.

First we single out (fermion) leg 1, denoting the contribution of an (n — 1)-point
diagram I’ to the amplitude as @(k1)C' (k1,---) where --- denotes momenta belonging to
{2,---,n}\ {a}. Attaching gluon a to external fermion leg 1, using @(k1)(—§; +m) = 0,
and contracting with £4,,, we obtain

)", .
~ V29— (k) [0 b1 — iaakas =P Gk + Kay ). (7.1)
2kq - k1
Next, we single out (fermion) leg n, denoting the contribution of the diagram I’ to the
amplitude as B; (kp,---)u(—ky), where -- - denotes momenta belonging to {1,--- ,n—1}\
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{a}. Attach gluon a to external fermion leg n, use (K,, +m)u(—k,) = 0, and contract with
€ap, tO obtain

(T2a) in

+V2gB;(kn -HCa,"')m

[54 o+ ¢54ak4ﬂzaﬁ] w(—kn). (7.2)
Now we single out one of the internal fermion lines of I’, which divides the diagram into two
subdiagrams Bj and CJ, and splits the external legs {1, - -+ ,n}\{a} into two complementary
sets Sy p and S, . The contribution of the diagram I’ can thus be written as
i
Bi(—K, ) CHE, ) (73)
K—m

where K =3 . s, 5 kd 1s the momentum running through the line, and the -+ in B and
C' denote momenta belonging to S, g and S, ¢ respectively. Attaching gluon a to the line
connecting the two subgraphs and contracting with &4,,,, we have

B K ) (T g

—CN(K + kg, ). 7.4
)K —m “K+f,—m ( ) (7.4)
Now we use the identity [35]

1 ¢ 1 — 1 (EQ'K_}_% [¢a’%a]) _ (8a'K+i [gza’kajl) 1
K_m aK‘i‘ka_m K_m ko - K ko - K K+ka—m
(7.5)
to rewrite this as
B(-K,--) ‘ {—ﬁg(Taa)jk [s - K —iggak Eaﬁ}Ck(K-ﬁ-k )} (7.6)
j ) K_m Qka'K a aalvaf a .
+{ﬁg(Taa)jkB-(—K--.)[g K — gk zaﬂ}ick(KJrk )
2ka‘K j ) a aalvaf K"‘ka_m as .

Each term can be associated with one of the two vertices to which the line is attached.

We now choose one of the 11)g vertices v of I’. Such a vertex divides the external
legs into three non-overlapping subsets S(q 1/ ), 7 = 1,2,3 such that Ui:l S, wr) =
{1,---,n}\{a}. The contribution of the diagram I’ to the (n — 1)-point amplitude can be
expressed as

ig

V2

where K, = ZdeS(a o) kq is the momentum flowing out of each leg of the vertex, and

ALy (— K, ) By, (= [y, )y (T9); O (=K, ) (7.7)

the --- in B, C, and A denote momenta belonging to Sta,r'w,1)s S, v,2)s and S 1743
respectively. If either fermion leg is external, then Bj = ﬂ(k:l)5i1jl or Cl2 = u(—k;n)ébin.

If the gluon leg is external, then Ag’Ls iS Obey Ebpy -
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We now attach gluon a to each of the legs of this 11)g vertex, either to an external leg
or to an internal line. Using the expressions above as well as those in section 4, we obtain

ig? AL} (~ K, ) By, (=K1, )

(Ta“TC3 )h_ (Tchaa )Jll
X ( S |:Ea Ky — iaaaka[gzo‘ﬁ] ~H3 4 12 3 [aa Ko+ iaaakagzo‘ﬁ]

o Ky 2%k Ky
f .csb Tb)jl_ .
a;:gk(.}-{:gh |:"7M3V€a : K3 - i€aakaﬁ(5§ﬂ)ﬂ3yj| 71/> CJQ(_KZ? e ) (78)

which is the contribution of the 1)1)g vertex to the radiation vertex expansion.

We now wish to show that eq. (7.8) is invariant under the color-factor symmetry. Asin
section 4, we first assume that the subdiagrams corresponding to A, B, and C' contain no
four-gluon vertices. Designate by c(q,1/ ) With r = 1,2, 3 the color factors associated with
cach of the three terms in eq. (7.8), including factors of fape and (T2 ) , in the subdiagrams.
These color factors manifestly satisfy 22:1 Cla,I'v,r) = 0, and the variation of ¢, 14,
under the color-factor shift associated with gluon a is

(5a c(a,[’m,r) = a(a,]’,v) ka . KT (79)

which preserves Zi’::l C(a,'wy) = 0. The variation of eq. (7.8) under eq. (7.9) is then
proportional to

3
(Z €4 KT> Y3 —teqakap Zaﬁ'y’“‘*’ — 7“320"8 + (S?ﬁ)%”fyy} . (7.10)
r=1

The first term vanishes by momentum conservation, and the second by the transformation
properties of v, as we saw in section 6. If the subdiagrams A, B, and C do contain four-
gluon vertices, we can expand eq. (7.8) into individual pieces, each of which is invariant
under the color-factor symmetry. Together with the result from section 4 that the contri-
butions to the radiation vertex expansion from the three- and four-gluon vertices are also
invariant, we have thus shown that the amplitude A, (11, 92,93, " ,gn_1,¥n) With spin-
one-half fundamentals is invariant under the color-factor symmetry. In fact, this proof
applies to an amplitude with an arbitrary number of pairs of fundamentals, and will be
used in the sequel [47] to prove the BCJ relations [42] for that class of amplitudes.

7.2 Vertices involving spin-zero fundamentals

To derive the contribution of the ¢1pg and ¥npgg vertices to the radiation vertex expansion
for spin-zero fundamentals v, we examine the effect of attaching a gluon to a scalar leg,
either external or internal.

First we single out (scalar) leg 1, denoting the contribution of an (n —1)-point diagram
I’ to the amplitude as C™ (kq, - - - ) where - - - denotes momenta belonging to {2,--- ,n}\{a}.
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Attaching gluon a to external scalar leg 1 we obtain

g (Taa)ilj _
_ﬁ (k + k1)2 —m?2 V“ﬂ(kh —k1 — ka; ka)CJ(kl =+ ka’ .. )
g (T o
:_EQka'kl [ka +2k1 ]C(k1+kav"')' (7.11)

Contracting this with g4, eliminates the first term in the square brackets, leaving

(Tau)ilj

— V2
\fg%a Tk

o k1O (ki + ko, ). (7.12)

Similarly, attaching gluon a to external scalar leg n, we obtain

(=), (7.13)

+ \/598(1 : knBj(kn + ka, - )W

Next we single out one of the internal scalar lines of I’, which divides the diagram into two
subdiagrams Bj and (1, and splits the external legs into two complementary sets Sq,p and
Sa,c- The contribution of the diagram I’ can thus be written as

id)
k __CHEK, ) (7.14)

Bj(—Kw")m

where K = Zdesu », ka 1s the momentum running through the line, and the --- in B and
C' denote momenta belonging to S, g and S, ¢ respectively. Attaching gluon a to the line
connecting the two subgraphs yields

_ g (Taa)jkvﬂa(lg —K —ka, ka)

Bi(-K,--- KK 4+ kq,--+). 1
\/i J( ) )[KQ—mZ][(K—}—ka)2—m2]C ( + ) ) (7 5)
Contracting with &4, and using ¢, - k, = 0, we have
%) ey - K
VBB (K, ) g ) CK(K 4+ ko). (116)

(K7 = m?[(K + ka)? = ]

Now we use the identity (5.3) to rewrite this as

i (T2
BJ(_K?)m {_\/592]{'@ .[gsa ‘K Ck(K+kaa)}

+ {\/igBj(—K, > );Z>]§g - K} " kj)2 — CM(K + kay---). (7.17)

We associate each of the terms in this equation with one of the two vertices to which the
line is attached.

Next we choose one of the scalar-scalar-gluon vertices v of I’ (if it has any). Such
a vertex divides the external legs into three non-overlapping subsets S(q 17 ,,), 7 = 1,2,3
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such that (J?_, S,y = {1,---;n} \ {a}. The contribution of the diagram I’ can be
expressed as

%W?’ (K, K, K Ay (K ) By (K, ) (T9) (K, ) (T.18)

where K, = ZdeS( o
the --- in B, C, and A denote momenta belonging to Sa,r'w1)s Sa,rv,2), and S 17 4.3)

kq is the momentum flowing out of each leg of the vertex, and

respectively. If either scalar leg is external, then Bj, = ¢" j, or Ciz = 6J2in. If the gluon leg
is external, then A£§L3 iS Obey Ebpy, -
We now attach gluon a to each of the legs of this scalar-scalar-gluon vertex, either to

an external leg or to an internal line. This yields

ZQQA((:i)Lg(_K?M.)BJ1(_K17.) (7.19)
(Taa Tes )Jl ) (TC3 Taa )Jl _
2 . ©3 R b . n3
( Ty [0 K| VP2 (B + e, B, ) + Taeya [0 12| V72 (K1, K 4 s )
faac_a,b(Tb)jl

jz M3V . K3 1.V _ VI1.U3 o [
Qk’a'Kg |:77 Ea K3+(5a ka Eaka )}Vy(Kl,K27K3+ka)>C ( K2, )

We can also attach gluon a directly to the scalar-scalar-gluon vertex itself. Using eq. (6.19),
this yields
;9
9" 4@
A (~ K, ) By, (K, )

- 0
o~ OHa 6K1#a

- 0
9~ OHa 8K2,ua

aqC3\J C3rag \J
X(—(T ), VES(Ky, Ko, K3) + (T9T°% )" VI (K1, K, K3)

+ faac3b(Tb)J1j2€aua 8K3
Ha

VH (K, Ky, K3)>Cj2(—K2, ). (7.20)

We now use eq. (3.16) in eq. (7.19), and combine eq. (7.19) and (7.20) as we did in section 6.
Leaving the 3 index implicit, we obtain the contribution of the scalar-scalar-gluon vertex
to the radiation vertex expansion

i AQ (K3, +) By, (— K1, )

(TaaTC3)j1j 5
X < — W |:Ea . K1 — iSaakaﬂL? :| V(Kl, KQ, K3) (721)
a’ 1
+W%{5 Ky — ek Laﬁ}v([( Ko, K3)
2ka . K2 a 2 aalvapig 1,H.2,03
fa C3b(Tb)J1j2 0 .
—_ 2 a'K _‘aaka QB_‘aozka ka =f KvK K 12 _Kv
2]4},1 ) Kg |:6 3 (23 ﬁJS (23 B 753 8K3,Y:| V( 1 2, 3))0 ( 2 )

where J3 and S3 act on the ps index of V/(K1, Ko, K3) .

At the end of the last subsection, we discussed the color-factor symmetry acting on the
Ynbg vertex contribution to the radiation vertex expansion. Under eq. (7.9), the variation
of eq. (7.21) is proportional to

3 3
K i af | _; ap_0
[(;5 K) i€aakap <ZJT ) i€aakaskarSs oK,

r=1

V(K1 Ky, K3).  (7.22)
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In section 6, we demonstrated that each of the three terms in eq. (7.22) vanishes. Therefore
the contributions of the v1)g vertices (7.21) to the radiation vertex expansion are invariant
under the color-factor shift associated with gluon a.

Finally we choose one of the scalar-scalar-gluon-gluon vertices v of I’ (if it has any).
Such a vertex divides the external legs into four non-overlapping subsets S, 17y ), 7 =
1,---,4 such that Ule S, wry =11, ,n} \ {a}. Using eq. (6.18), the contribution of
diagram I’ can be expressed as

. 9 .
%77“3“4A<(:§L3(—K37 VAW (—Ky, ) By (— Ky, - ) ({T9, T, Ol (—Ky, ).
(7.23)
We now attach gluon a to each of the legs of this scalar-scalar-gluon-gluon vertex, either
to an external leg or to an internal line. This yields

. 3
1g 4
19 A s YA (KB ()
" j
L aegs ey
2k, - K3

({r=0, 7o}
2k, - Ko

J1
[Ea : K1:| nN3M4 + ) J2 |:€a . KQ] "7“3M4

Fauesp (T, T}
e w3~ _ aByus |,V
T [5,,5@ K3 —icqakap(S5") V}n
fa b TC3’Tb J1_ )
secib({ D [5“;‘5@-K4—i5ml<:a5(525)“4y}77“3” Ci2(—Ky,---). (7.24)
2%y - K4

We now need to consider the variation under the color-factor symmetry of this contribution
to the radiation vertex expansion. Designate by c(q 17, With 7 =1,---4 the color factor
associated with each of the terms in eq. (7.24), including the factors of fapc and (Ta)jk in
the subdiagrams. These color factors satisfy Zle C(a,I'v,r) = 0 by virtue of

(T TN+ (T T+ o en(T2 TN, 4 fanen (T, TP, =01

(7.25)
The variation of ¢, 1, under the color-factor shift associated with gluon a is
(Sa c(a,[’,v,r) = O‘(a,[’,v) k‘a . KT . (726)
The variation of eq. (7.24) under eq. (7.26) is therefore proportional to
4
(Z €a - Kr) nHeHe — igaakaﬂ (S;?’B)“Sﬂlw‘l + (Sfﬁ)““yﬁ%y . (727)
r=1

The first term vanishes by momentum conservation, kﬁ—Ef:l K,=0,and g, -k, = 0. The
second term is the first-order Lorentz transformation of the tensor n#3#4, which vanishes.
Thus each vertex involving scalars that contributes to the radiation vertex expan-
sion is invariant under the color-factor shift associated with gluon a. Together with the
result from section 4 that the contributions from the three- and four-gluon vertices to
the radiation vertex expansion are also invariant, we have shown that the full amplitude
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An(¥1,92,93, -+ » Gn—1, ¥n) with spin-zero fundamentals is invariant under the color-factor
shift. In fact, any amplitude built with 1tg and 1gg vertices for scalar 1 will have the
color-factor symmetry.

7.3 Vertices involving spin-one fundamentals

To derive the contribution of the ¢1pg and ¥n)pgg vertices to the radiation vertex expansion
for spin-one fundamentals 1, we examine the effect of attaching a gluon to a massive vector
leg, either external or internal.

First we single out (vector) leg 1, denoting the contribution of an (n — 1)-point dia-
gram I’ to the amplitude as slmCi”“(kl, -++) where --- denotes momenta belonging to
{2,---,n}\ {a}. Attaching gluon a to external vector leg 1 we obtain

g (1)

_ 9 Vit (ky, —ky — ka, ka) Pox(ky + ka)CMky + kg, - +) . (7.28
V2 (kg + k1)2 — m? =l il k)G oo

Contracting with €1,,€q,, We obtain

Taa i1 .
(% )kjglm €a - k" + (e kg — szké”)]@(kl +kay o) (7.29)
a * vl

V3

where we used ki =¢e4-ky=¢€1-k =0and k:% = m%. We did not use the vanishing of
eq. (4.3). Similar expressions result from attaching gluon a to the other legs. By comparing
eq. (4.4) and (7.29), we observe that the expression is the same for a massless or a massive
vector particle.

Next we single out one of the internal lines of I’, which divides the diagram into two
subdiagrams B and C, and splits the external legs {1,--- ,n}\{a} into two complementary
sets S, p and S, c. The contribution of the diagram can thus be written as

(—i0}) P (K)

BM(_Kv) K2 — m2

CY(K,---) (7.30)

where K =3 s, 5 kd 1s the momentum running through the line, and the --- in B and
C' denote momenta belonging to S, g and S, ¢ respectively. Attaching gluon a to the line
connecting the two subgraphs and contracting with 4,,, we obtain

(Taa)j kPu)\(K)ga,uaV)\Kua (K, —K — kg, ka)Pm/(K + k’a)

1g kv
2 B¥M_K. ... K+kq,---).
v e (K2 — (K + ka)? — ] )
(7.31)
Now we use the identity [35]
Pur(K)eap, V¥ (K, — K — ko, ko) Py (K + ka) (7.32)

(K2 = m?|[(K + ka)? —m?]
_ 1 —Pu(K) [(V\uga K +egkan — ké\ga”] + [5;5& K+ eauky — kaugﬁ Py (K + ka)
ke K K2 —m?2 (K + ka)2 —m?

to rewrite this as
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—iP A(K) (Taa)j v v v
B (-K, ) g {ﬁgw [1ea - K + (eakl — etky)] Cy(K + ka,---) (7.33)

—iPy, (K + kq)
(K + k)2 —m?

CkU(K+ka7"')'

T3a J
+{¢w%m~,ngLQW%mK+@%se%mw

We did not use the vanishing of eq. (4.8). We associate each of the terms in curly brackets
with one of the two vertices to which the line is attached.

For the rest of the discussion, we can be brief. The expressions for the contributions
to the radiation vertex expansion from 1)g and 1gg vertices are similar to those for
spin-zero fundamentals, except that we must include J, and S, terms for »r = 1 and 2. The
proof that these vertex contributions are invariant under the color-factor symmetry relies
on some of the results from section 4.

Thus we have shown that the full amplitude A, (11, 92,93, - » gn_1,1n) With massive
spin-one fundamentals is invariant under the color-factor shift. In fact, any amplitude
built with ¢7pg and 1pgg vertices with a massive vector particle ¢» will have the color-
factor symmetry.

We can go even further and state that any amplitude built from ggg and gy vertices
(with ¢ having arbitrary spin < 1) where not only v but also some of the gluons are massive
(i.e., through spontaneous symmetry breaking) will be invariant under the color-factor shift.
The only particle in the amplitude that must be massless is the gluon associated with the
color-factor symmetry.

8 Null eigenvectors of the propagator matrix

The symmetry that we have introduced in this paper is possessed not only by gauge-theory
amplitudes but also by the amplitudes of the much simpler theory [48] of massless scalars
¢ transforming in the adjoint of the color group U(N) x U(N). These bi-adjoint scalars
have only cubic interactions of the form

abe faryer % ¢ o= (8.1)

where fape and f,po are the structure constants of U(N) and U(N). The tree-level n-point
amplitude is given by the sum over cubic diagrams
Ciél'

idi'

scalar __
ASet =

(8.2)

Using eq. (2.10), the bi-adjoint scalar tree amplitude (8.2) can be written as
Ascalar — Z Z Ciyn m(1yn|1én) €15y, (8.3)
YESn—2 0ESn_2

where Moo M
m(1yn|lon) = Z %ﬂan (8.4)

7
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are double-partial amplitudes of the bi-adjoint scalar theory [48]. The m(1yn|1dn) are also
the entries of (n — 2)! x (n — 2)! propagator matrix defined in ref. [7]. Vaman and Yao
argued that the propagator matrix has rank (n — 3)! by virtue of momentum conservation,
using explicit low n examples. Cachazo, He, and Yuan confirmed this for general n by ex-
pressing the double-partial amplitudes as a sum over the (n—3)! solutions of the scattering
equations [48].

The cubic vertex expansion of the n-point bi-adjoint scalar amplitude with respect to
external scalar a (see section 2) is given by

Azcalar — Z Z

I veVia 1 HS:]_ d(a,[,v,s) r=1

3 ~
Ca,Iv,r)Ca,],v,r)

E 8.5

2kq - K(a,LvJ’) (8.5)

where
3

3
Y ot =0, Z Clat o) = (8.6)

r=1
The color-factor shift with respect to massless scalar a acts on the color factors appearing
in eq. (8.5) as
da Cla,Iv,r) = X(a,Iw) kq - K(a,[,v,’r‘) . (87)
The variation of eq. (8.5) under this shift

3
Sa Azcalar _ Z Z HS 1‘;(1;’[ . g 5 a,lv,r) (8.8)

I ’UE‘/( )

vanishes by virtue of eq. (8.6), thus establishing that the amplitudes of the bi-adjoint scalar
theory possess the color-factor symmetry.

Now we consider the variation of the amplitude (8.3) under the shift (2.14) associated
with a = 2,

5 Ascalar (89)
=Y a202<k1 k‘2+2k2 ,,(C> ,0(3),--,0(b—1),2,0(b),--- ,a(n—1),n[10n)) €15, -
oESn_3

Using the invariance of Affalar, together with independence of g, and €15, we obtain

n b—1
Z (kl ko + ZkQ ) ka(c)) m(laa(g)v T 70(b - 1)’2)0(b)7 T )U(n - 1)7n|15n) =0
b=3 c=3

(8.10)

i.e., we have derived a set of (n— 3)! null eigenvectors of the propagator matrix. Other sets

of null eigenvectors are obtained from the color-factor shifts associated the other massless
scalars in the amplitude.

Since the (n — 2)! x (n — 2)! propagator matrix is known [48] to have rank (n — 3)!, at

most (n — 3)(n — 3)! of these null eigenvectors can be independent. Thus, the color-factor

symmetry associated with n — 3 of the massless scalars suffices to guarantee the reduced

— 38 —



rank of the propagator matrix. This nicely explains a result found by one of the present
authors in ref. [68], viz., that the propagator matrix persists in having rank (n — 3)! even
when up to three of the external particles in the amplitude are massive, but if more than
three particles are massive, the rank of the propagator matrix is greater. We now see
that for m > 3 massive and n — m massless particles, the number of null eigenvectors
generated by the color-factor symmetry will be (n —m)(n —3)! , and therefore the rank of
the propagator matrix will be (m — 2)(n — 3)! for m = 3 through m = n.

Returning now to Yang-Mills theory, if we assume that the numerators of the n-gluon
amplitude obey color-kinematic duality, i.e. they obey the same Jacobi relations as ¢;, then
they can similarly be expressed in terms of (n — 2)! half-ladder numerators n;,,, via

n;, = Z Mz’,l'yn Illfyn . (811)
’Yesn—Q

Using eq. (2.17) and (8.11), the color-ordered amplitudes in the Kleiss-Kuijf basis can be
written in terms of the propagator matrix as

A1 y(2), -y =1),n) = Y m(lyn|16n) nis, . (8.12)
0€Sn_2

Thus the null eigenvectors of the propagator matrix (8.10) imply that the color-ordered
n-gluon amplitudes obey the BCJ relations (2.19).

As we saw in section 2, however, it is not necessary to require color-kinematic du-
ality in order to prove the BCJ relations. The BCJ relations follow from the weaker
constraint (2.26), and both eq. (2.26) and the BCJ relations are a consequence of the
color-factor symmetry of the amplitude, which is established through the radiation vertex
expansion.

9 Loop-level amplitudes

Given the connection established in this paper between the color-factor symmetry of tree-
level gauge-theory amplitudes and color-kinematic duality /BCJ relations, it is naturally of
great interest to see whether these ideas can be extended to loop level. In this section, we
generalize the cubic vertex expansion introduced in section 2 to loop-level amplitudes. We
then define a set of shifts of one-loop color factors that depend on the loop momentum as
well as the momenta of external particles, and ask whether the cubic vertex expansion of
the one-loop amplitude is invariant under these shifts.

It is obvious from the variation of the cubic vertex expansion (2.25) that the tree-
level amplitude will be invariant under a color-factor shift if the numerators satisfy color-
kinematic duality. The reader may have noticed, however, that up until now we have taken
great pains not to invoke color-kinematic duality to prove color-factor symmetry. We have
chosen rather to show that it follows directly from a Lagrangian approach. At loop level,
we no longer have that luxury, at least at the current stage of development. Instead we
will explicitly invoke loop-level color-kinematic duality (for the theories in which it has
been shown to hold [1, 2, 10-20]) in order to demonstrate the color-factor symmetry of the
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1 3

Figure 4. Some of the diagrams to which a gluon is attached to obtain the one-loop four-point
cubic decomposition.

Figure 5. Diagrams [14]23, 1[24]3, 12[34], 1234, 1423, and 1243.

one-loop amplitude. We then show that the invariance of the amplitude under color-factor
shifts implies a set of relations among the integrands of its color-ordered amplitudes.

9.1 Cubic vertex expansion for loop-level amplitudes

To construct the cubic vertex expansion of an L-loop n-gluon amplitude with respect to
gluon a, we begin with the set of L-loop (n — 1)-point cubic diagrams I with external legs
{1,--- ,n}\{a}. For example, for the one-loop four-gluon amplitude, two of the three-point
diagrams are shown in figure 4; the rest are obtained from relabelings of the external legs.
Then we attach gluon a in all possible ways, either to the external legs or to the internal
lines of I. For example, attaching gluon 4 to the triangle diagram in figure 4 in all possible
ways, we obtain the diagrams in figure 5. The diagrams in figure 5 correspond to the
following terms in the cubic decomposition of the one-loop four-point amplitude [1, 2]

Ag)_ _ / aPe [0[14}23 n[14]23 n C1[24]3 M1[24]3 n C12[34] M12[34]
o (2m)P dj14]23 di[2413 di2[34]
C1234 1234 | C1423 M1423 | C1243 T1243 (9.1)
d1234 d1423 d1243

where the denominators in eq. (9.1) are the products of inverse propagators associated with
the diagrams. (There could be different sets of denominators depending on the mass of the
particle circulating in the loop.) Explicit definitions of the color factors are given below in
eq. (9.6). The terms obtained by attaching the gluon to an internal line — in this case, the
last three terms of eq. (9.1) — are split into two by applying the identity (2.20) or, in the
case of massive internal lines, eq. (5.3). The terms are then reorganized into a sum over
the vertices of I. For example, the terms in eq. (9.1) are reorganized into
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AW / daPe { 1 {0[14}23 T[14]23 n C1234 M1234 C1423 M1423 ]

i [ @mD | 20— ky — ks)2(0 — ks)? | 2kg - ks 2ky - L 2k - (€ + k)
I 1 [01[24]3 T1[24]3 C1423 T1423 C1243 11243 ] (9 2)
(04 F1)? (L — k3)? 2ky - ko 2ky - (0+ k1) 2kg- (L+ K1+ ko) '
n 1 {012[34] 112[34] C1243 11243 _ C1234 701234 }
£2(£+k‘1)2(€+k1+k2)2 2ky - ks 2ky - (€+k51 +k}2) 2ky - (€—|—]{i1 —|—]<12—|-/€3)

where £ in the last term of the last line of eq. (9.2) differs from the label in figure 5 by
a shift.'* If the particle circulating in the loop has mass m, the expressions (£ + ---)?2
in eq. (9.2) (i.e., those outside the square brackets) are all replaced by (£ + ---)% — m?.
We hasten to remind the reader that Agt)ri is only one part of the one-loop four-gluon
amplitude; similar expressions are obtained by attaching gluon 4 to the other one-loop
three-point diagrams I.

Observe that if we apply a shift to the numerators

danji423 = Bka - k1, danyoq3 = Bka - k2, daniopa) = Bka - ks, (9-3)
d4ni234 = Bky - L, daniazg = Pka - (L + k1), danigaz = Pka - (L + ki + ka2),

the expression (9.2) remains unchanged as a result of the Jacobi identities
0 = 1423 + 1234 — C1423 = C1[24)3 + C1423 — C1243 = Co[34] + C1243 — C1234 (9.4)

which means that eq. (9.3) corresponds to a generalized gauge transformation.
The n-point generalization of eq. (9.2), obtained by attaching gluon n to the (n—1)-gon
diagram, is given by

D n—1
1) d=e 1
_ 9.5
An,(n—l)gon / (27T)D Z { b ’ -1 i 2 n—1 [ — n—1 k 2 ( )
b=1 Hc:l + Za:l a d=b+1 Za:d a
y C...[bn]---T-..[bn]--- i Corb—1m,b-Tbb—1mb- Cocbnbg1---T0bn by 1o }
. b— b
2Ky - kp 2%k, - (g + Za:ll ka> 2%k, - (g +30 k@)
where
C12..n = Z fblalbgfbgagbg, T fbnanbl )
bi,....byn
C[12]3--n = Z Jarasbs fo1bobs fozasbs = * fbpanb, - (9.6)
bi,....byn

This points up an inherent ambiguity in defining a common loop momentum when adding together
different loop-level diagrams, as in eq. (9.1) and (9.2). This requires further study. For now, we simply
note that there exists a choice of loop momentum for each diagram such that (part of) the one-loop
amplitude has the form (9.2). With this choice, the numerator shifts defined in eq. (9.3) correspond to a
generalized gauge transformation.
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Figure 6. Diagrams with color factors c... ... and c..p—1,np...-

The “ring” diagrams cyo...,, are cyclically symmetric and reflection symmetric
c12.n = (=1)"cn..21 - (9.7)
The color factors appearing in eq. (9.5) are shown in figure 6 and satisfy the Jacobi relations

0= C...[bn]-- +Cob—1nb — Cobnbtle - (9.8)

Again, if a particle of mass m is circulating in the loop, we replace terms of the form
(¢ +>"k)? with (¢ + > k)? — m?. Similar expressions are obtained by attaching gluon n
to the other one-loop (n — 1)-point diagrams I, including (n — 1)-gon diagrams with other
permutations of the external legs {1,--- ,n — 1},

Recently, partial fraction identities similar to eq. (2.20) have been employed to recast
one-loop amplitudes into a new form whose denominators contain factors linear in the loop
momentum [69-74], somewhat analogous to eq. (9.5). These new expressions are those
that naturally emerge from a scattering-equation approach to loop-level amplitudes.

9.2 Color-factor symmetry at one-loop level

Next we consider the behavior of one-loop amplitudes under momentum-dependent shifts
of its color factors. First we must define a set of shifts consistent with the requirements
elucidated earlier in the paper. For the one-loop four-gluon amplitude, the color-factor
shift associated with gluon 4 must satisfy

(546[14]23 = ak4 : kl, 5461[24]3 = k4 : kg, 54612[34} = k4 : k3 (9.9)

since these diagrams have gluon 4 attached to an external leg. Requiring the color-factor
shift to respect the Jacobi relations (9.4) implies that

d4c1423 = 04C1234 + acky - Ky d4c1243 = 04C1934 + by - (k1 + ko) . (9.10)

Unlike the tree-level case, however, these requirements alone are not sufficient to fix the
values of all the shifts; one of them, d4c1234, remains arbitrary. In analogy with eq. (9.3),
we define the remaining shift to be

041934 = vy - 0 (9.11)
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where £ is the loop momentum.'® The effect of this shift on eq. (9.2) is

sAD @ dPl [ npapes +n1234 — n1423 Nq[24]3 T M1423 — 11243
4 tri —

2 ) @m0 —ky —k3)2(0 —k3)2 (0 + k1)2(0 — k3)?
N12[34] T 11243 — N1234
Cl+F)2(0+ k1 + k)2 ]

Similar expressions are obtained for the contributions to the cubic vertex expansion from

(9.12)

the other three-point diagrams.

A goal consistent with the development in this paper would be to prove by some
alternative means (such as the radiation vertex expansion) that (54Az(11) vanishes under the
one-loop color-factor shift. That would imply the vanishing of the r. h. s. of eq. (9.12)
plus the expressions obtained from the other three-point diagrams, imposing a generalized-
gauge-invariant constraint on the one-loop kinematic numerators (namely, that the terms
in the square brackets in eq. (9.12) add up to something that integrates to zero). But at
this point in the development of the subject, we have no such proof, and therefore we will
turn the argument around, and use the knowledge that there exist kinematic numerators
for the one-loop four-gluon amplitude that obey color-kinematic duality

0 = n[1493 + 11234 — N1423 = Ny[pa)3 + N1423 — N1243 = Nyg[34] + N1243 — 1234 (9.13)

for pure Yang-Mills theory (with only gluons circulating in the loop) [19] as well as for
theories with other particles circulating in the loop [1, 20]. In these cases, the kinematic
Jacobi identities (9.13) imply that eq. (9.12) vanishes, as do the other contributions to
the cubic vertex expansion. Thus, the one-loop four-gluon amplitude in these theories is
invariant under the color-factor shift specified by eqs. (9.9), (9.10), and (9.11).

The cubic vertex expansion of the one-loop four-point amplitude of the bi-adjoint scalar
theory may be obtained by replacing the kinematic numerators n; with a second copy of
the color factors ¢;. Since the latter obey the one-loop color Jacobi identities (9.4), the bi-
adjoint scalar one-loop four-point amplitude is also invariant under the color-factor shift.

It is known that an independent basis of one-loop color factors are those associated
with ring diagrams modulo cyclic permutations and reflections [52]. Therefore the one-loop
n-gluon amplitude can be written

D
A7(11) :/(;Tf[) Z ey I(1,7(2), -+ ,v(n)) (9.14)

YESn—1/Z2

where v is a permutation of {2,--- ,n}, Zs denotes the reflection symmetry cia3. ., —
Cin--32, and I(1,4(2),- -+ ,v(n)) are the integrands of the one-loop color-ordered amplitudes.
Eq. (9.14) may be regarded as the result of a generalized gauge transformation in which
the kinematic numerators associated with the non-ring color factors are set to zero [11].
Specializing to the one-loop four-gluon amplitude, eq. (9.14) gives

dPy
Al = /W (19341 (1,2,3,4) + c1ao3(1,4,2,3) + c10431(1,2,4,3)] . (9.15)

15Gee footnote 14.
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For theories whose numerators respect one-loop color-kinematic duality, the invariance of
the one-loop amplitude under the color-factor shift implies the following condition on the
integrands

D
oz/d : oy - € I1(1,2,3,4) + kg - (C+ k1) 1(1,4,2,3) + kg - (€ + k1 + ko) 1(1,2,4,3)] .

(2m)P
(9.16)
Relations of this form were first uncovered in refs. [49-51] from the perspective of on-shell
recursion relations, and revisited recently using monodromy relations in string theory [75].
(See also ref. [76] for BCJ-type relations among loop-level integrands.) Conversely, if the
integrands of the one-loop amplitude of a theory can be shown to satisfy eq. (9.16), then it
follows that the one-loop amplitude is invariant under the color-factor shift, avoiding the
need to invoke color-kinematic duality.
It is straightforward to generalize these considerations to one-loop n-gluon amplitudes.
We may define a color-factor shift associated with any external gluon a, but for simplicity
of presentation we will focus on gluon n. Let o denote a permutation of {2,--- ,n — 1}.
The color factor c...[g(p)n)... shown in figure 6 undergoes a shift

(5nC...[U(b)n]... X kn . ko(b) (9.17)

because gluon n is attached to gluon leg o(b). Requiring the shifts to respect the Jacobi
relation (9.8) implies

5nC..,g(b)ng(b+1)... = 5nC-~-o—(b—1)no(b)~- + 5nC...[g(b)n]... (9.18)
We must additionally define the shifts
5ncla(2)~~a(n—1)n = Qno k- € (919)

for a set of half'® of the permutations o, where a,,, are a set of (n — 2)!/2 independent
arbitrary constants. Together these conditions imply that the shifts of the ring color factors
are given by

b—1

5nclo(2)---o(bfl)n0'(b)---o’(n) = Ongo (kn Atk R+ Z ke - ko(c)) ’ be {27 N 1}
c=2
(9.20)

and the shifts of all other one-loop color factors are fixed by requiring that they respect the
Jacobi relations. Thus there is an (n — 2)!/2-dimensional family of one-loop color-factor
shifts associated with gluon n.

Applying the shift (9.20) to eq. (9.5), we obtain

D n—1
ol & Tob L b — Tl b
5, A / dPy (Tfon]r F Mecb—Lin b — Mo bt 1) (0.21)

n,(n—1)gon (2m)P i~ ITo-s (ﬁ +300 ka)z b1 (£ - X k“)2

15The shifts of the other half are then determined by the reflection symmetry (9.7). For example for the

four-point case dsci234 = aua,23ka € but daci1324 = dac1423 = 4,23k - (£ + k1), which is not of the form (9.19).
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For N = 4 supersymmetric Yang-Mills theory, numerators for the one-loop five-gluon [10]
and higher-point [13, 16] amplitudes have been constructed which satisfy color-kinematic
duality

0= Mo fbn]- F Meb—1n b — Mevbyp bt 1o (9.22)

and which therefore imply that eq. (9.21) vanishes. The shifts of the terms in the cubic
vertex expansion obtained from other (n — 1)-point diagrams I similarly vanish. Thus, we
have established that these amplitudes possess one-loop color-factor symmetry. The one-
loop n-point amplitudes of the bi-adjoint scalar theory also possess this symmetry because
the second copy of the color factors ¢; obey Jacobi identities (9.8).

As we did above for the four-gluon amplitude, we can use this invariance to derive
constraints on the integrands of color-ordered amplitudes. Eq. (9.14) can be rewritten as

dPl &
‘A?(“Ll) = Z / 27T D 10(2)"-a(b—l)no(b)"~o(n—1)I(1»0(2)7"' 7J(b_1)’n70(b)7'” ’U(n_l))

ogES,— 2/Z

(9.23)
Invariance of this expression under eq. (9.20) together the independence of the parameters
oy, o yields

de n b—1
/%DZk <€+k1+2ko(c)) I(1,0(2),-+- ,o(b—1),n,0(b), - ,o(n—1))

c=2
(9.24)
the relations uncovered in refs. [49-51, 75]. Conversely, if we were to establish that the
integrands of the color-ordered amplitudes of a given theory satisfy eq. (9.24), we would
have proven that the one-loop amplitude is invariant under the color-factor shift, indepen-
dently of the assumption of color-kinematic duality. Further study of this alternate path
is merited.

10 Discussion and conclusions

In this paper, we have introduced a new set of symmetries of gauge-theory amplitudes,
which act as momentum-dependent shifts on the color factors appearing in the cubic de-
composition of the amplitude. These symmetries are intimately linked to the presence
of massless gauge bosons in the amplitude (or massless adjoint scalars in the case of the
bi-adjoint scalar theory) and can be considered generalizations of the radiation symmetry
of ref. [36]. We demonstrated that a wide class of tree-level gauge-theory amplitudes are
invariant under these shifts, using a representation of the amplitude known as the radiation
vertex expansion [35]. We also introduced a related but distinct cubic vertex expansion
of the amplitude, and used this to derive a set of generalized-gauge-invariant constraints
on the kinematic numerators appearing in the cubic decomposition of the amplitude. All
known BCJ relations for tree-level gauge-theory amplitudes [1, 4, 5, 41, 42] follow as a
direct consequence of the color-factor symmetry (this paper and ref. [47]). Finally, we gen-
eralized the cubic vertex expansion and color-factor symmetry to loop level. We showed
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that one-loop amplitudes that satisfy color-kinematic duality are invariant under the one-
loop color-factor symmetry, and derived a set of relations among the integrands of one-loop
color-ordered amplitudes.

Let us take a look at the connection between the color-factor symmetry and more
fundamental symmetries of the Lagrangian, gauge and Poincaré invariance [35]. The
color-factor symmetry follows as a result of the vanishing of certain expressions, namely
egs. (4.19), (7.10), and (7.22), associated with the cubic vertices of a gauge-theory ampli-
tude, and eqs. (4.23), (4.24), and (7.27), associated with the quartic vertices. It is illustra-
tive to examine the various contributions in a soft expansion in the gluon momentum k,,
even though the color-factor symmetry is exact in k.

The leading term in the soft expansion corresponds to the O(kY) term in each of
egs. (4.19), (4.23), (7.10), (7.22), and (7.27). These are all proportional to ), ¢, - K, where
K, are the momenta flowing out of each leg of the vertex. This vanishes by €4 - k; = 0
together with momentum conservation ko + >, K, = 0 — a result of symmetry under
spacetime translations.

The subleading term in the soft expansion corresponds to the O(kl) term in each
of eqgs. (4.19), (7.10), (7.22), and (7.27), and to eq. (4.24). These expressions are all
given by a sum of angular momentum generators J;* p , which act as a first-order Lorentz
transformation on the relevant vertex factors. They vanish by Lorentz invariance.

Thus the first two terms in the soft expansion vanish as a result of Poincaré invariance.
It is a little more difficult to pin down the underlying symmetry responsible for the vanishing
of the sub-subleading terms in eq. (4.19) and (7.22), together with an analogous expression
for spin-one particles. The O(k2) term in eq. (4.19) is proportional to

« 1 0 v < « b 0 v o 0 1oV
(51 B)MuaTHV HWJ(KDK2»K3)+(S2B)MVBK% v "3(K1,K27K3)+(S3/8)“31,8737V“ He (K17K27K3)
=2 (—7}0‘“1776“277W3 + 7]7“2775“3) + (cyclic permutations of 123) (10.1)
and the O(k2) term in eq. (7.22) is proportional to
, 0 ;
(5?5)’“”81;(3 VY(K1, Ka, K3) = A (77‘”“37757 - 775‘“770”) : (10.2)
¥

Neither expression vanishes by itself but both do when contracted with ecqqkqgks, for
gluon a. These identities, which go beyond the first-order Poincaré cancellation and are
connected to Yang-Mills gauge symmetry, are key ingredients contributing to the color-
factor symmetry.

Returning to our discussion in the introduction of the connection of the color-factor
symmetry with the photon radiation symmetry and radiation zeros (for a collection of early
references, see refs. [23, 24, 35-38, 77-81]), we have uncovered some additional analogs. For
example, we can write a factorized form for the four-gluon amplitude (2.1)

Ag=s (% -4 (B - (10.3)

t S U

which vanishes at ¢s/s = ¢;/t = ¢,,/u = const. This is a non-abelian version of the original
radiation zero studied almost forty years ago in ¢qqgW~ and evW~ reactions, with a zero at
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Qc/kc ko = constant. This original radiation factorization and its zero led to the prediction
of a measurable experimental dip, which has now been confirmed [82, 83]. The analogous
zero in the four-gluon amplitude is washed out, however, by the color averaging that must
be performed in observable quark-gluon processes.

In the generalization to tree-level n-point amplitudes, the abelian radiation symme-
try and existence of zeros for Q./k. - ko, = constant (for photon momentum k,) rest on
having gauge-theory couplings, as noted earlier. The non-abelian color-factor symmetry
uncovered in this paper can also lead to zeros in n-point amplitudes, but with an impor-
tant complication. The invariance under ¢; — ¢; + o Zce Su ke - ko for the attachment
of a gluon with momentum k, cannot be used to systematicélly cancel out the complete
n-gluon amplitude using an overall common value for «;. Because of the Jacobi relations,
that overall common value must vanish. There are in principle zeros, however, for separate
islands of «a; values. Although they are again washed out by color-averaging, the gener-
alized factorization coming from the color-factor symmetry remains useful for theoretical
analysis of tree amplitudes. In a different direction, note that the BCJ form of the gluon
amplitudes has been utilized in the planar zeros studied recently in refs. [84, 85].

The analogs described above are a bridge to a final overall remark. It has been help-
ful to think of gluon emission or absorption as effecting a (first-order) transformation in
both color and kinematic space simultaneously on the graph to which it is attached. In
particular, the attachments lead to transformations of the various legs and vertices of the
“parent” diagram in either momentum or space-time representations. All the parent wave
functions end up transformed, and identities derived from eq. (2.20) for the different spins,
e.g., eq. (7.5) and (7.32), yield exactly the two terms expected from the propagator with its
bilinearity in the wave functions. The cancellations highlighted throughout this paper arise
precisely because we consider those theories whose amplitudes transform covariantly under
color and kinematic transformations. Adding all possible massless gluon attachments to a
complete set of parent graphs leads to a sum of corresponding color shifts that vanishes
because of invariance. Such a picture should help in finding directions in the diagram-
matic analyses of a variety of extensions of the gauge theories considered in this paper,
supersymmetric and otherwise.
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A Five-gluon amplitudes

In this appendix, we use the five-gluon amplitude to provide an explicit example of the
cubic vertex expansion (2.21) introduced in section 2, and the relations among kinematic
numerators (2.26) resulting from the color-factor symmetry.

The cubic decomposition (2.8) of the five-gluon amplitude is given by

C12345 112345 , €32145 132145 | €13245 T13245 = C€13425 M13425 = C13524 113524
As = + + - + (A.1)

512845 523545 513845 513525 513524
C12435 1112435 C42135 1142135 C14235 1114235 C14325 114325 C14523 1114523
+ + + + +

512835 524535 5145835 514525 514523

C42315 142315 C32415 132415 C34215 134215 C34125 134125 C34512 134512
+ + + + +

524815 523815 534515 534525 534512

where ¢, are half-ladder color factors defined in eq. (2.9). Let us recast this amplitude in
a cubic vertex expansion with respect to gluon 2. We have already arranged the terms in
eq. (A.1) so that each line corresponds to one of the four-gluon diagrams I obtained by
omitting gluon 2. We rewrite the denominator of the third term of the first line as

1 1 1
= + (A.2)
$13545  Sas(—s12 — S23)  s13(—S24 — S25)

and similarly the denominators of the third terms of the other two lines to obtain

A 1 <012345 112345 i C32145 132145 C13245 n13245>
5 = — -
845 $12 S23 S12 + 523
1 C13245 T13245  C13425 113425 = C13524 M13524
+— - + +
S13 So4 + S25 525 S24
" 1 (012435 112435 n C42135 42135  C€14235 n14235>
535 512 S24 S12 + S24
1 C14235 114235 C14325 114325 C14523 114523
+— - + +
S14 S23 + S25 825 S23
n 1 <C42315 142315 n C32415 32415  C34215 n34215)
S15 S24 S23 S23 + So24
1 C34215 M34215 |, C34125 134125 = C34512 134512
+— - + + (A.3)
534 S12 + S25 525 S12

which is precisely of the form of the cubic vertex expansion (2.21). To make this connection
more explicit, note that the first two lines of eq. (A.3) correspond to adding gluon 2 to the
four-gluon diagram shown in figure 7 which we label as I = 1. The color factors c(q 1,4,
(see figure 1) associated with the left- and right-hand vertices of this diagram are

C(2,1,L,1) = C12345 C(2,1,L,2) = — €32145 C(2,1,1,3) = — C13245
C(2,1,R,1) = C13524 C(2,1,R,2) = — C13425 C(2,1,R,3) = C13245 (A.4)
and obey Zle C(a, 1) = 0. The relative signs result from flipping legs across lines.

Because cj3245 is associated with both left- and right-hand vertices, we have C(2,1,1,3) =
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Figure 7. One of the four-gluon diagrams to which gluon 2 is added in all possible ways.

—C(2,1,R,3)- Since Kz 1.3) = —K(2,1,r3), this implies that oz 11) = a(2,1,r) as discussed
in subsection 2.4.
The six independent five-gluon half-ladder color factors (in the notation of ref. [1]) are

C1 = C12345 C15 = C13245 C9g = C13425

C12 = C12435 C14 = C14235 C6 = C14325- (A.5)
According to eq. (2.14), the color-factor shifts associated with gluon 2 act as

d2 €1 = as12 d2 c15 = as12 + s23) 02 g = —aus2s

b2 c12 = a's12 b c14 = o/ (512 + 524) dy g = —a'szs (A.6)

where a = ag34 and o = a3 are arbitrary constants. The nine remaining five-gluon
color factors, and the action of the color-factor shifts thereon, are determined by the Jacobi
relations to be

/
Co = C23451 = €1 + € — C14 — C15, d2 2 = (' — a)sg3
_ o S o Y
€3 = C34512 = €1 — C12, 2 3= (00— a')si2
C4 = C45123 = C1 — C15, 02 €4 = —usa3
_ _ _ _ 5 _ A
C5 = C51234 = €1 + C6 — C9 — C12, 2 ¢c5 = (v —a')(s12 + 525)
!
C7 = C32514 = C6 — Cl4, 09 C7 = (/' S93
/
€8 = C25143 = C6 — Co, 9y g = (o — ') s25
C10 = €42513 = Cy — C15, d2 c10 = sy
/
€11 = C51342 = C9 + C12 — C14 — C15, 02 c11 = (@ — a')so4
/
€13 = C35124 = C12 — Cl4, 0y c13 = —'S94 . (A.7)

Applying this shift to eq. (A.3), we obtain

Ny —MNg—MNi5  Nis —Ng+N1g N1 —N2+n5  —Ns+ng+ng
02 As = .34 ( + + + (A.8)
545 513 S15 534
N1 —N13 —N14  Ni4g —Ng+N7  —Ni1+N2g—Ns5 N5 —Ng— N3
+a2 43 ( + + + =0
835 S14 S15 S34

which is precisely of the form of eq. (2.26). The color-factor shift with respect to gluon 3
instead yields
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03 As = 304 (

ny—"ng —"n ng—mniy+n niy —no+n nig — N1 +n
1 4 15+ 3 1 12+ 11 2 5+ 10 11 13) (A.9)

545 S12 S15 524

s (nes —ng — Ny i Nni4 — Ne + N7 n —Ni1 + N2 —Ns n —Ni0 + N1t — 7113) —0.
825 S14 515 524

Since ap34, (243, 324, and 342 are independent arbitrary constants, each expression

in parentheses vanishes, yielding four independent constraint equations on the kinematic

numerators of the five-gluon amplitude. No additional independent constraints are obtained

from the color-factor symmetries associated with the other three gluons. These “generalized

Jacobi relations” for five-gluon amplitudes were previously derived in refs. [39, 40] by using

the properties of string theory amplitudes.
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