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1 Introduction and result

When passing through matter, high energy particles lose energy by showering, via the

splitting processes of hard bremsstrahlung and pair production. At very high energy,

the quantum mechanical duration of each splitting process, known as the formation time,

exceeds the mean free time for collisions with the medium, leading to a significant reduction

in the splitting rate known as the Landau-Pomeranchuk-Migdal (LPM) effect [1–3]. A long-

standing problem in field theory has been to understand how to implement this effect in

cases where the formation times of two consecutive splittings overlap.

Let x and y be the longitudinal momentum fractions of two consecutive bremsstrahlung

gauge bosons. In the limit y � x � 1, the problem of overlapping formation times has

been analyzed at leading logarithm order in refs. [4–6] in the context of energy loss of high-

momentum partons traversing a QCD medium (such as a quark-gluon plasma). We sub-

sequently developed and implemented field theory formalism needed for the more general

case where x and y are arbitrary [7–9]. In this paper, we finally complete the calculation

of the effect of overlapping formation times on the differential rate dΓ/dx dy for double

bremsstrahlung from an initial high-energy gluon (with various simplifying assumptions

detailed below). The missing element, presented in this paper, is the inclusion of processes

involving the 4-gluon vertex.

1.1 What we compute (and what we do not)

The preceding work [7–9] computed all of the interference contributions involving only

3-gluon vertices, which are presented by the diagrams of figures 1 and 2, which we re-

spectively refer to as “crossed” and “sequential” diagrams. The upper (blue) part of each

diagram depicts a contribution to the amplitude and the lower (red) part depicts a contri-

bution to the conjugate amplitude. Only the high energy particles are shown; their (many)

interactions with the medium are implicit. (See ref. [7] for more details.)

In this paper, we will evaluate the remaining contributions, which are the diagrams

involving 4-point gluon vertices, shown in figures 3 and 4. (We will see later, by a sym-

metry argument, that the ȳ4x̄ contribution in figure 3 vanishes.) Once we find the correct

normalization of the 4-gluon vertex in our formalism, the evaluation of these diagrams will

be a relatively straightforward application of techniques developed in previous papers [7, 8].

As discussed in the preceding work [7, 8], it is possible to set up the formalism in a quite

general way that would require both highly non-trivial numerics and a non-trivial treatment

of color dynamics to implement, but one can proceed much further analytically by making

a few additional approximations. Though the methods we discuss in this paper can be

applied more generally, we will follow refs. [7, 8] when it comes to explicit calculations, by

making the following approximations.

• We will assume that the medium is static, uniform and infinite (which in physi-

cal terms means approximately uniform over the formation time and corresponding

formation length).

• We take the large-Nc limit of QCD to simplify the color dynamics.
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xyyx xyxy

time

y, 1−,x( x−y)+ permutations of

+ conjugates

+

xyyx

+

Figure 1. The subset of interference contributions to double splitting previously evaluated

in ref. [7], the “crossed” diagrams, depicted as amplitudes (blue) sewn together with conjugate

amplitudes (red). The dashed lines are colored according to whether they were first emitted in the

amplitude or conjugate amplitude. To simplify the drawing, all particles, including bremsstrahlung

gluons, are indicated by straight or curved lines. The long-dashed and short-dashed lines are the

daughters with momentum fractions x and y respectively. The naming of the diagrams indicates

the time order in which emissions occur in the amplitude and conjugate amplitude. For instance,

xȳyx̄ means first (i) x emission in the amplitude, then (ii) y emission in the conjugate amplitude,

then (iii) y emission in the amplitude, and then (iv) x emission in the conjugate amplitude.

xyxy xxyy xxyy

time

+ +

y, 1−,x( x−y)+ appropriate permutations of

+ conjugates

Figure 2. The interference contributions evaluated in ref. [8]: the “sequential” diagrams.

• We make the multiple-scattering approximation to interactions with the medium,

appropriate for very high energies and also known as the harmonic oscillator or q̂

approximation.

In this paper, we focus on completing the calculation of the rate for producing two

real bremsstrahlung gluons (g → ggg). We defer to another time the related calculation

of the change in the single-bremsstrahlung rate due to virtual corrections. (In the special

limiting case y � x� 1, the sum of these real and virtual processes has been worked out in

the context of leading parton average energy loss in refs. [4–6] and is related to anomalous

scaling of the effective medium parameter q̂ with energy.)

Finally, as discussed in ref. [8], the double bremsstrahlung rate dΓ/dx dy by itself

includes processes where two single-bremsstrahlung processes are separated by times large

compared to their corresponding formation times. In the idealization of an infinite, uniform

medium, this causes dΓ/dx dy to be formally infinite. But what we actually want to know
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4yx yx4y4x

x ,( , 1−y x−y )

+

+ conjugates

+

+ appropriate permutations of

Figure 3. The interference contributions involving a single 4-gluon vertex. The naming conven-

tions are the same as described in the caption of figure 1 with the addition that “4” indicates a

4-gluon vertex where x and y are emitted simultaneously.

44

+ conjugate

Figure 4. The interference contribution involving two 4-gluon vertices.

is the correction to double bremsstrahlung due to overlapping formation times,

∆
dΓ

dx dy
≡ dΓ

dx dy
−
[
dΓ

dx dy

]
IMC

, (1.1)

where [dΓ/dx dy]IMC represents the idealized in-medium “Monte Carlo” result one would

obtain based only on the rates for single-bremsstrahlung processes. See the introduction

of ref. [8] for a detailed explanation. The correction ∆ dΓ/dx dy is finite and only depends

on time separations that are . formation times. The subtraction (1.1) is an issue relevant

only to the the sequential diagram contributions of figure 2; we will not need to worry

about it when evaluating the 4-gluon vertex diagrams of figures 3 and 4. The subtraction

will be relevant only for presenting complete, final results for the double bremsstrahlung

rate, which combine all the contributions of figures 1–4.

1.2 Preview of results

Numerical results for the total ∆ dΓ/dx dy are shown in figure 5, which includes all contri-

butions from figures 1–4. In ref. [8], it was shown that the contribution from crossed and

sequential diagrams (figures 1 and 2) scale as 1/xy3/2 for y � x � 1, and for this reason

it has been convenient to show the result in figure 5 in units of

C2
Aα

2
s

π2xy3/2

√
q̂A

E
. (1.2)
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Figure 5. Result for π2xy3/2 ∆ dΓ/dx dy in units of C2
Aα

2
s

√
q̂A/E [which is equivalent to saying

the result for ∆ dΓ/dx dy in units of (1.2)]. Since all three final state particles are gluons and so are

identical particles, we only show results for the region y < x < z ≡ 1−x−y. (All other orderings

are related by permutation.) The red line shows where the result vanishes, dividing the sub-region

of positive corrections from the sub-region of negative corrections. At the apex (x=y= 1
3 ) of the

triangular region, π2xy3/2 ∆ dΓ/dx dy = 1.12C2
Aα

2
s

√
q̂A/E.

In comparison to the similar plot in ref. [8], not much has changed: the inclusion of the

4-gluon vertex contributions of figures 3 and 4 in this paper have had only a small effect

on the total. We show the contributions of figures 3 and 4 individually in figures 6 and 7.

The first of these is numerically negligible compared to the total of figure 5. (We do not

know any qualitative explanation for why it should be so small.1) The second (figure 7) is

only a very modest contribution to the total.

None of the new, 4-gluon vertex contributions to ∆ dΓ/dx dy grow as quickly as (1.2)

for y � x� 1. We find that they instead scale as 1/y1/2 in this limit.

1.3 Outline and referencing

In the next section, we show how to calculate the 4ȳx̄ interference diagram of figure 3, which

will be our canonical example in this paper. Section 3 then explains how to obtain all of the

other diagrams involving 4-gluon vertices. A summary of final formulas is given in section 4,

and we offer our brief conclusion in section 5. Along the way, some details and cross-checks

are relegated to appendices. In particular, for the sake of completeness, we have collected

in appendix D the formulas for crossed and sequential diagrams from refs. [7–9], so that

this paper contains, in one place, all the formulas necessary for implementing the complete

calculation of ∆ dΓ/dx dy. Also, the integral formula we will derive for ∆ dΓ/dx dy is a

1Some readers may wonder if (i) this contribution vanishes for some unidentified reason and (ii) the small

numbers are just artifacts of imprecise numerical calculations. However, we have checked that figure 5 does

not change when we steadily increase the precision of our calculations (including the working precision of

intermediate calculations).
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Figure 6. As figure 5 but only showing the contribution from the diagrams of figure 3,

which are the diagrams with a single 4-gluon vertex. At the apex, π2xy3/2[dΓ/dx dy](4) =

0.00012C2
Aα

2
s

√
q̂A/E.

Figure 7. As figure 5 but only showing the contribution from the diagrams of figure 4, which are

the diagrams with two 4-gluon vertices. At the apex, π2xy3/2[dΓ/dx dy](44) = 0.072C2
Aα

2
s

√
q̂A/E.

complicated expression that is painstaking to implement. In appendix E, we provide, as

an alternative, a relatively simple analytic formula that has been fitted to approximate

figure 5 very well.

In this paper, we will occasionally (in footnotes and appendices) use the author

acronym AI as shorthand for Arnold and Iqbal [7] so that, for example, we may write

“AI (5.2)” to refer to eq. (5.2) of ref. [7].
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yt(4)t xt

time

−hi, x̂1=−1

hy, x̂2=y

hx, x̂4=x

hz, x̂3=z≡1−x−y

−h̄, −(x̂3+x̂4)=− (1−y)

Figure 8. Labeling conventions for helicities hi and longitudinal momenta xi for the 4ȳx̄ inter-

ference diagram.

2 The 4ȳx̄ diagram

2.1 Starting point

We start with the 4ȳx̄ diagram shown in figure 8. In the notation of ref. [7], this is[
dI

dx dy

]
4ȳx̄

=

(
E

2π

)2 ∫
t(4)<tȳ<tx̄

∑
pol.

〈|i δH|Bx̄〉 〈Bx̄, tx̄|Bȳ, tȳ〉〈Bȳ|i δH|C ȳ
34,C

ȳ
12〉

× 〈C ȳ
34,C

ȳ
12, tȳ|C

(4)
34 ,C

(4)
12 , t(4)〉〈C

(4)
34 ,C

(4)
12 |−i δH|〉. (2.1)

〈C ȳ
34,C

ȳ
12, tȳ|C

(4)
34 ,C

(4)
12 , t(4)〉 and 〈Bx̄, tx̄|Bȳ, tȳ〉 represent, respectively, the (i) 4-particle

evolution in the initial time interval t(4) < t < tȳ in the figure, and (ii) 3-particle evo-

lution of the system in the final interval tȳ < t < tx̄. Because of the symmetries of the

problem, these have been reduced to effective (i) 2-particle and (ii) 1-particle problems

in non-Hermitian two-dimensional quantum mechanics, described by effective transverse

coordinates (i) (C34,C12) and (ii) B. δH represents the piece of the fundamental QCD

Hamiltonian associated with the splitting vertices for the high-energy particles (as opposed

to the interactions of those high-energy particle with the medium, or the interaction of the

medium with itself). So 〈C(4)
34 ,C

(4)
12 |δH|〉 represents the matrix element for the 4-gluon

splitting vertex in figure 8, appropriately normalized according to the normalization con-

ventions for the states |C(4)
34 ,C

(4)
12 〉 and |〉 given in ref. [7].

Above, Cij ≡ (bi−bj)/(xi+xj) where the bi are the various transverse positions of the

individual particles and xi are their longitudinal momentum fractions (defined as negative

for particles in the conjugate amplitude). B ≡ B12 = B23 = B31 is defined similarly for

the case of three particles.

The appropriately normalized results for the 3-gluon vertices were found in ref. [7]:2

〈B|δH|〉 = −
igT color

i→jk

2E3/2
P i→jk ·∇δ(2)(B) (2.2)

2AI (4.13–15).
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and

〈C41,C23|δH|B〉 = −
igT color

i→jk

2E3/2
P i→jk ·∇δ(2)(C23) |x̂4 + x̂1|−1 δ(2)(C41 −B), (2.3)

where T color are color generators and the P i→jk are proportional to square roots of helicity-

dependent, vacuum Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) splitting func-

tions. These were translated into the more general diagrammatic rules of figure 9, which

apply to 〈B| −i δH|〉, 〈Cij ,Ckl| −i δH|B〉, 〈| −i δH|B〉 and 〈B| −i δH|Cij ,Ckl〉, as well as

similar matrix elements 〈· · · |+i δH| · · · 〉 relevant to evolution in the conjugate amplitude.

[The bar over δH here and in formulas like (2.1) is just a notation for emphasizing that

δH is operating on particles in the conjugate amplitude in those cases.]

In appendix B, we apply the same methodology to evaluating the 4-gluon vertex we

need above and find

〈C34,C12|δH|〉 = g2
[
fa1a2efa3a4e(δh1,−h3δh4,−h2 − δh1,−h4δh2,−h3)

+ fa1a3efa2a4e(δh1,−h2δh3,−h4 − δh1,−h4δh2,−h3)

+ fa1a4efa2a3e(δh1,−h2δh3,−h4 − δh1,−h3δh4,−h2)
]

× (2E)−2|x1x2x3x4|−1/2|x3 + x4|−1 δ(2)(C12) δ(2)(C34), (2.4)

where ai and hi are the color index and helicity ± associated with particle i. The first few

lines of (2.4) can be recognized as having the structure of the usual relativistic Feynman

rule for a 4-gluon vertex; the last line has the normalization factors appropriate for the

way we normalize the transverse position variables Cij and the state |C34,C12〉 [7]. The

two delta functions in the last line, δ(2)(C12) δ(2)(C34) ∝ δ(2)(b1− b2) δ(2)(b3− b4), enforce

that the four particles all be in the same place (b1=b2=b3=b4) at the time of the 4-point

interaction. (Generically, two δ-functions may seem insufficient to enforce this, but in our

problem the positions bi are already implicitly constrained by the additional condition

x1b1 + x2b2 + x3b3 + x4b4 = 0 with x1 + x2 + x3 + x4 = 0. See section III of ref. [7].)

A diagrammatic version of (2.4) is given in figure 10. Like the top graph of figure 9,

this particular rule only applies when there are no other particle lines present at that time.

So, it can be used for 4ȳx̄ and ȳx̄4 in figure 3 but not for ȳ4x̄. The 4-point vertex requires

different normalization factors in the latter case, which we give in appendix B.2, but that

detail is unimportant because ȳ4x̄ turns out to vanish.

The sign ∓ in figure 10 simply reflects the fact that in the amplitude the vertex

corresponds to matrix elements of −i δH whereas in the conjugate amplitude it corresponds

to matrix elements of +i δH (which we denote as +i δH).3

3Readers may wonder why there is not a similar explicit ∓ sign in the 3-gluon vertex rule of figure 9.

The reason is because that sign is already there, hidden in the formulation of the rule. As mentioned in

the caption of figure 9, Buv ≡ (bu − bv)/(xu + xv). However, our convention for momentum fractions xi is

that they are negative for particles in the conjugate amplitude. So, if going from consideration of the rule

applied to splitting of particles in the amplitude to the same rule applied to splitting of particles in the

conjugate amplitude, the value of the Bji will automatically negate. Since ∇δ(2)(Bji) is an odd function

of Bji, this automatically takes care of the sign difference between −i δH and +i δH.
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bi, ai bj , aj

bk, ak

xi, hi

xj , hj

xk, hk
= −

g(T akR )aj ,ai
2E3/2

Phihjhk(xi, xj , xk) ·∇δ(2)(Bji)

bn bs

bm brxn xs

xm xr
= × |xm + xn|−1 δ(2)(Bmn−Brs)

Figure 9. The diagrammatic rules for splittings linking (via either −i δH or +i δH) the state |〉 to

|B〉 (top rule) or |B〉 to |C34,C12〉 or permutation thereof (bottom rule). Buv ≡ (bu−bv)/(xu+xv)

and may refer, in different contexts, to ± the 3-particle B, or one of the 4-particle Cuv, or to some

mixture. However, note that Bji = Bkj = Bik in the top rule, which can be used to always

write expressions in terms of 3-particle B and/or 4-particle Cij ’s. The blue arrows on the particle

line indicate color flow of color representation R. (In the case of R=A, appropriate to g → gg

splitting, the direction of the color flow does not matter.) bl, al, xl, and hl indicate the transverse

position, color index, longitudinal momentum, and helicity of each particle. The black arrows give

the convention for the flow of xl and hl in the statement of the rule, and these values should be

negated if they are instead defined by flow in the opposite direction. In the bottom rule, color and

helicity indices and their contractions are not explicitly shown for the spectators because they are

trivially contracted. Conservation of longitudinal momentum means xi + xj + xk = 0 (top) and

additionally xm = xr and xn = xs (bottom).

2.2 Color routings

The diagram for 4ȳx̄ shown in figure 8 is technically symmetric under the permutation

x ↔ z, where z ≡ 1−x−y. However, in this paper we will work in the large-Nc limit in

order to simplify the color dynamics of 4-particle evolution. In this limit, there are two

distinct color routings of the 4ȳx̄ diagram which are not individually y ↔ z symmetric, just

like the situation for the xyx̄ȳ diagram discussed in ref. [8]. We show these two large-Nc

color routings in figures 11 and 12, which we will refer to as 4ȳx̄1 and 4ȳx̄2 respectively.

Note that the two routings are related by x↔ z, and so we could also call them 4ȳz̄2 and

4ȳz̄1 respectively.

Like the situation for the xyx̄ȳ diagram discussed in ref. [8], the distinguishing differ-

ence between the calculation of the two color routings is the assignment of the longitudinal

– 9 –
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bi, ai bj , aj

bl, al bk, ak

hi

hj

hk

hl

=

∓ ig2
[
faiajefakale(δhi,−hkδhl,−hj − δhi,−hlδhj ,−hk)

+ faiakefajale(δhi,−hjδhk,−hl − δhi,−hlδhj ,−hk)

+ faialefajake(δhi,−hjδhk,−hl − δhi,−hkδhl,−hj )
]

× (2E)−2|xixjxkxl|−1/2|xk + xl|−1 δ(2)(Bij) δ
(2)(Bkl)

Figure 10. The diagrammatic rule for a 4-gluon vertex without additional spectators (e.g. as in

the 4ȳx̄, ȳx̄4 and 44̄ diagrams of figures 3 and 4 but not the ȳ4x̄ diagram). The rule is symmetric

under permutations of the four gluon lines, though this is not obvious from the way it is written.

The upper and lower signs of ∓ apply when the 4-gluon interaction is in the amplitude and conjugate

amplitude, respectively.

4yx14yx1

A B

A B

(b)

timetime

A B

A B

(a)

3

4

2

1

Figure 11. One of the two distinct large-Nc color routings of the 4ȳx̄ interference diagram drawn

on a cylinder (similar to figure 23 of ref. [8], and following the general convention of refs. [7, 8]

for discussing time-ordered large-Nc planar diagrams). The top edge AB of the shaded region is

to be identified with the bottom edge AB. (b) explicitly shows the corresponding color flow for

an example of medium background field correlations (black) that gives a planar diagram (and so

leading-order in 1/Nc). In our notation, this interference contribution could be referred to as either

4ȳx̄1 or 4ȳz̄2.

momentum fractions xi for the 4-particle part of the evolution, which occurs here for

t(4) < t < tȳ. Going around the cylinder depicted in figure 11, the first routing 4ȳx̄1 has

(x1, x2, x3, x4) = (−1, y, x, 1−x−y), (2.5)

whereas the second routing 4ȳx̄2 of figure 12 has

(x1, x2, x3, x4) = (−1, y, 1−x−y, x) ≡ (x̂1, x̂2, x̂3, x̂4). (2.6)

Note that the ordering of the xi does not matter until we take the large-Nc limit and decide

that the 4-particle propagator 〈C ȳ
34,C

ȳ
12, tȳ|C

(4)
34 ,C

(4)
12 , t(4)〉 will henceforth represent only a

– 10 –
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4yx24yx2

3

4

2

1

A B

A B

(b)

timetime

A B

A B

(a)

Figure 12. As figure 11 but showing the other distinct color routing of 4ȳx̄. In our notation, this

interference contribution could be referred to as either 4ȳx̄2 or 4ȳz̄1.

single color routing. That is why the xi assignment of figure 8, before we discussed large-Nc,

could represent the entire contribution of 4ȳx̄, but in our convention after we implement

the large-Nc limit for discussion of the 4-particle propagator, the same assignment (2.6)

now represents only a single color routing (figure 12).

We will focus on the second routing (2.6) just because the assignment xi = x̂i is

identical to the one used for the canonical diagram analyzed in ref. [7]. We can obtain the

other routing via x↔ z: [
dI

dx dy

]total

4ȳx̄

=

[
dI

dx dy

]
4ȳx̄2

+ [x↔ z]. (2.7)

The details of extracting what pieces of the color and helicity factors given by figure 10

correspond to which of the two large-Nc color routings are a bit untidy. One can either (i)

figure out how to split up the factors in figure 10 or else (ii) switch to large-Nc Feynman

rules. Here we’ll take the first option, as we found it the least confusing way to keep track

of overall normalization factors.

If we label the gluon lines as (i, x, y, z) for the initial, x, y, and z bosons, then the color

and helicity factors given by figure 10 for the 4-point vertex are

faiaxefayaze(δhi,hyδhz,−hx − δhi,hzδhx,−hy)

+ faiayefaxaze(δhi,hxδhy,−hz − δhi,hzδhx,−hy)

+ faiazefaxaye(δhi,hxδhy,−hz − δhi,hyδhz,−hx). (2.8)

The large-Nc routing 4ȳx̄2 of figure 12 corresponds to the first term above plus half of the

second term,

faiaxefayaze(δhi,hyδhz,−hx − δhi,hzδhx,−hy)

+ 1
2f

aiayefaxaze(δhi,hxδhy,−hz − δhi,hzδhx,−hy), (2.9)
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while the rest of (2.8) corresponds to the routing of figure 11. The advantage of the large-

Nc limit is that it then allows us to do a naive color contraction of the vertices in figure 11a

and 12a for each routing.4 In figure 12a, (2.9) is contracted with adjoint color factors

(T
ay

A )aiā(T
ax
A )āaz = −fayaiāfaxāaz (2.10)

associated with the two 3-point vertices and averaged over initial color ai, giving

− 1
2C

2
A(δhi,hxδhy,−hz + δhi,hyδhz,−hx − 2δhi,hzδhx,−hy) (2.11)

overall.

Using the rules for 3-gluon vertices, the general expression (2.1) then becomes[
dI

dx dy

]
4ȳx̄2

=−
(
E

2π

)2 ∫
t(4)<tȳ<tx̄

∑
hx,hy,hz,h̄

∫
Bȳ

× i
2C

2
Ag

4(δhi,hxδhy,−hz + δhi,hyδhz,−hx − 2δhi,hzδhx,−hy)

× 1
2E
−3/2 P−hz,h̄,−hx

(−x̂3, x̂3+x̂4,−x̂4) ·∇Bx̄〈Bx̄, tx̄|Bȳ, tȳ〉
∣∣∣
Bx̄=0

× 1
2E
−3/2|x̂3 + x̂4|−1 P−h̄,hi,−hy

(x̂1+x̂2,−x̂1,−x̂2) ·∇Cȳ
12

〈C ȳ
34,C

ȳ
12, tȳ|C

(4)
34 ,C

(4)
12 , t(4)〉

∣∣∣
Cȳ

12=0=C
(4)
34 =C

(4)
12 ; Cȳ

34=Bȳ

× (2E)−2|x̂1x̂2x̂3x̂4|−1/2|x̂3 + x̂4|−1. (2.12)

for the routing 4ȳx̄2. (See appendix A for details on the overall sign.)

2.3 Helicity sums

For the helicity sums, we need∑
hx,hy,hz,h̄

P n̄−hz,h̄,−hx

(
−(1−x−y), 1−y,−x

)
Pm̄−h̄,hi,−hy

(
−(1−y), 1,−y

)
× (δhi,hxδhy,−hz + δhi,hyδhz,−hx − 2δhi,hzδhx,−hy)|x̂1x̂2x̂3x̂4|−1/2 (2.13)

which is equivalent to∑
hx,hy,hz

[∑
h̄

P n̄h̄→hz,hx

(
1−y → 1−x−y, x

)
Pm̄hi→h̄,hy

(
1→ 1−y, y

)]∗
× (δhi,hxδhy,−hz + δhi,hyδhz,−hx − 2δhi,hzδhx,−hy)|x̂1x̂2x̂3x̂4|−1/2. (2.14)

Note that we have found it convenient to include the |x̂1x̂2x̂3x̂4|−1/2 factor from (2.12) here.

By transverse parity invariance, we may average over the initial helicity. By transverse

rotational invariance, the initial helicity average of (2.14) must be of the form

ζ(x, y) δn̄m̄ (2.15)

4A similar use of naive color contractions in large Nc was made in the analysis of ref. [7] to get eq. (4.16)

of that reference. The various factors of Nc associated with each additional loop caused by an interaction

with the medium in figures 11b and 12b are accounted for in the value of the medium parameter q̂.
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for some function ζ(x, y). Taking the formulas for the splitting functions P from ref. [7],5

we find

ζ =
2x2 − z2 − (1−y)4 + 2y2z2 − x2y2

x2y2z2(1−y)3
, (2.16)

where z ≡ 1−x−y. Replacing (2.13) by (2.15) in (2.12) gives[
dI

dx dy

]
4ȳx̄2

=− i
C2

Aα
2
s

8E3

ζ

|x̂3 + x̂4|2

∫
t(4)<tȳ<tx̄

∫
Bȳ

∇Bx̄〈Bx̄, tx̄|Bȳ, tȳ〉
∣∣∣
Bx̄=0

·∇Cȳ
12
〈C ȳ

34,C
ȳ
12, tȳ|C

(4)
34 ,C

(4)
12 , t(4)〉

∣∣∣
Cȳ

12=0=C
(4)
34 =C

(4)
12 ; Cȳ

34=Bȳ
. (2.17)

2.4 Harmonic oscillator approximation

Now take the harmonic oscillator approximation. As reviewed in ref. [7], for 3-particle evo-

lution this corresponds to treating 〈B, t|B′, t′〉 as evolution of a two-dimensional harmonic

oscillator with a certain effective mass M and complex natural frequency Ω. In the case of

the final 3-particle evolution tȳ < t < tx̄ in figures 8 and 12, these are [7]6

Mf = x̂3x̂4(x̂3+x̂4)E = x(1−y)(1−x−y)E (2.18a)

and

Ωf =

√
− iq̂A

2E

(
− 1

x̂3 + x̂4
+

1

x̂4
+

1

x̂3

)
=

√
− iq̂A

2E

(
− 1

1−y
+

1

x
+

1

1−x−y

)
. (2.18b)

Using a harmonic oscillator propagator gives7

∫ +∞

tȳ

dtx̄ ∇Bx̄〈Bx̄, tx̄|Bȳ, tȳ〉
∣∣∣∣
Bx̄=0

= − iMfB
ȳ

π(Bȳ)2
exp
(
−1

2 |Mf |Ωf(B
ȳ)2
)
, (2.19)

which recasts (2.17) as[
dΓ

dx dy

]
4ȳx̄2

=−
C2

Aα
2
sMf

8πE3

ζ

|x̂3 + x̂4|2

∫ ∞
0

d(∆t)

∫
Bȳ

exp
(
−1

2 |Mf |Ωf(B
ȳ)2
)

(2.20)

× Bȳ

(Bȳ)2
·∇Cȳ

12
〈C ȳ

34,C
ȳ
12,∆t|C

(4)
34 ,C

(4)
12 , 0〉

∣∣∣
Cȳ

12=0=C
(4)
34 =C

(4)
12 ; Cȳ

34=Bȳ
,

where ∆t ≡ tȳ − t(4). We now treat the 4-particle propagator 〈C ȳ
34,C

ȳ
12,∆t|C

(4)
34 ,C

(4)
12 , 0〉

just as in section V.C of ref. [7], except that here we have chosen to use the same basis

5AI (4.35).
6AI (5.4).
7AI (5.9b).
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(C34,C12) in both the bra and the ket. The propagator is given by

exp
(
− 1

2 |Mf |Ωf(C
ȳ
34)2

)
〈C ȳ

34,C
ȳ
12,∆t|C

(4)
34 ,C

(4)
12 , 0〉 =

(2πi)−2(−x1x2x3x4)|x3+x4|2E2Ω+Ω− csc(Ω+∆t) csc(Ω−∆t)

× exp

[
−1

2

(
C

(4)
34

C
(4)
12

)>(
X(4) Y(4)

Y(4) Z(4)

)(
C

(4)
34

C
(4)
12

)
− 1

2

(
C ȳ

34

C ȳ
12

)>(
Xȳ Yȳ

Yȳ Zȳ

)(
C ȳ

34

C ȳ
12

)

+

(
C

(4)
34

C
(4)
12

)>(
X(4)ȳ Y(4)ȳ

Y (4)ȳ Z(4)ȳ

)(
C ȳ

34

C ȳ
12

)]
, (2.21)

where we have included on the left-hand side of (2.21) the additional factor

exp
(
−1

2 |Mf |Ωf(B
ȳ)2
)

= exp
(
−1

2 |Mf |Ωf(C
ȳ
34)2

)
from (2.20) because that makes the defi-

nitions of the symbols X, Y , and Z more convenient for later use. Those symbols are then

given by (
X(4) Y(4)

Y(4) Z(4)

)
≡ −ia−1>

(4) Ω cot(Ω ∆t) a−1
(4), (2.22a)(

Xȳ Yȳ

Yȳ Zȳ

)
≡

(
|Mf |Ωf 0

0 0

)
− ia−1>

ȳ Ω cot(Ω ∆t) a−1
ȳ , (2.22b)(

X(4)ȳ Y(4)ȳ

Y (4)ȳ Z(4)ȳ

)
≡ −ia−1>

(4) Ω csc(Ω ∆t) a−1
ȳ , (2.22c)

where (given our choice of basis at the 4-point vertex)

a(4) = aȳ =

(
C+

34 C
−
34

C+
12 C

−
12

)
. (2.23)

Above, Ω ≡
(Ω+

Ω−

)
. Formulas from [7] for the two 4-particle evolution frequencies Ω±

and the corresponding normal modes (C±34, C
±
12) are collected in appendix D.2.

Using (2.21) in (2.20) gives[
dΓ

dx dy

]
4ȳx̄2

=
C2

Aα
2
sMf

8πE3

ζ

|x̂3 + x̂4|2

∫ ∞
0

d(∆t)

∫
Bȳ

(2πi)−2(−x̂1x̂2x̂3x̂4)|x̂3 + x̂4|2E2

× Ω+Ω− csc(Ω+ ∆t) csc(Ω−∆t)Yȳ exp
(
−1

2Xȳ(Bȳ)2
)
. (2.24)

The Gaussian Bȳ integral is straightforward, yielding[
dΓ

dx dy

]
4ȳx̄2

=−
C2

Aα
2
sMf

16π2E
(−x̂1x̂2x̂3x̂4)ζ

∫ ∞
0
d(∆t)Ω+Ω− csc(Ω+ ∆t) csc(Ω−∆t)

Yȳ

Xȳ
. (2.25)

Our final result for the 4ȳx̄ diagram is the above formula together with the corresponding

version of (2.7), [
dΓ

dx dy

]total

4ȳx̄

=

[
dΓ

dx dy

]
4ȳx̄2

+ [x↔ z]. (2.26)
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3 The other diagrams

3.1 The ȳx̄4 diagram

The ȳx̄4 diagram is the third diagram of figure 3. Instead of going through an explicit

calculation, we can relate the answer for this diagram to the 4ȳx̄ diagram computed in the

last section, along the lines of how the xȳyx̄ and xyȳx̄ diagrams of figure 1 were related

in ref. [7].

The first thing to note is that all three diagrams shown explicitly in figure 3 have the

same factors of helicity contractions and DGLAP splitting functions associated with their

vertices — these factors are unaffected by the time ordering of the 4-point vertex in the

amplitude relative to the two vertices in the conjugate amplitude. As to the rest of the

computation, note that the diagrams ȳx̄4 and 4x̄ȳ in figure 3 look like mirror images of

each other except for the identification of which gluon has which momentum fraction. For

each color routing, we show one way of making this change of identification in figure 13.

There, when reflecting 4ȳx̄ into ȳx̄4, we change

(x1, x2, x3, x4) = (−1, y, x, 1−x−y) (3.1)

to

(x1, x2, x3, x4) =
(
−(1−x−y),−x,−y, 1

)
(3.2)

for the first color routing, and

(x1, x2, x3, x4) = (−1, y, 1−x−y, x) (3.3)

to

(x1, x2, x3, x4) =
(
−x,−(1−x−y),−y, 1

)
(3.4)

for the second. Both cases can be summarized as

(x1, x2, x3, x4)→ (−x4,−x3,−x2,−x1). (3.5)

We also need to appropriately change the mass M used for the 3-particle part of the

evolution. As for similar diagram transformations in ref. [7], this will be taken care of

automatically if we write this mass in terms of the 4-particle xi as in (2.18a):

M = x3x4(x3+x4)E, (3.6)

which, for example, gives M = x(1−y)(1−x−y)E (2.18a) for 3-particle evolution in the

4ȳx̄2 case of (x1, x2, x3, x4) = (x̂1, x̂2, x̂3, x̂4) and gives M = −y(1−y)E for the correspond-

ing ȳx̄42 case (x1, x2, x3, x4) = (−x̂4,−x̂3,−x̂2,−x̂1).

The upshot is that we can convert the result for 4ȳx̄ into a result for ȳx̄4 by (i)

making the change (3.5) to the 4-particle xi, (ii) always using the form (3.6) for the 3-

particle evolution mass, and (iii) leaving ζ(x, y) unchanged.8 For the sake of readers wary

of the glibness of the above argument, we give a more straightforward derivation of ȳx̄42

in appendix C and verify that the result is the same.

8Because we only care about the real part of interference diagrams, the negation of the xi in (3.5) does

not matter at the end of the day. Negation of all the xi simply has the effect of complex conjugation of the

diagram (i.e. swapping the amplitude and conjugate amplitude).
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Figure 13. The two color routings of 4ȳx̄ (left) compared to those of ȳx̄4 (right). There are many

topologically-equivalent ways to draw the same diagram: we’ve chosen to draw the ȳx̄4 diagrams

above in a way that gives a straightforward pictorial correspondence to our rule (3.5) for going from

the 4ȳx̄ diagrams on the left to the ȳx̄4 diagrams on the right.

3.2 The ȳ4x̄ diagram

Now consider the ȳ4x̄ interference contribution, depicted by the second diagram in figure 3.

The starting point, analogous to (2.1), is[
dI

dx dy

]
ȳ4x̄

=

(
E

2π

)2 ∫
tȳ<t(4)<tx̄

∑
pol.

〈|i δH|Bx̄〉 〈Bx̄, tx̄|B(4), t(4)〉

× 〈B(4)|i δH|B′(4)〉 〈B′(4), t(4)|Bȳ, tȳ〉〈Bȳ|i δH|〉. (3.7)

We will not need to work out the explicit normalization of the 4-gluon vertex matrix element

〈B(4)|i δH|B′(4)〉 (though we give it in appendix B) because we will find that (3.7) is zero.

The important point is that the helicity factors and splitting factors P are the same as

they were for 4ȳx̄ in section 2.3, and so, using figure 9,[
dI

dx dy

]
ȳ4x̄

∝ ζδm̄n̄
∫
tȳ<t(4)<tx̄

∑
pol.

∇n̄Bx̄〈Bx̄, tx̄|B(4), t(4)〉
∣∣∣
Bx̄=0=B(4)

×∇m̄Bȳ〈B′(4), t(4)|Bȳ, tȳ〉
∣∣∣
Bȳ=0=B′(4)

. (3.8)

The reason that B(4) and B′(4) are set to zero above is because in 3-particle evolution

(analogous to the earlier statement about 4-particle evolution), the transverse positions bi
in our problem are implicitly constrained by the condition x1b1 + x2b2 + x3b3 = 0 with
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Figure 14. The three distinct large-Nc color routings of the 44̄ interference diagram, drawn on a

cylinder in large-Nc double-line notation. Other possible ways to draw color routings are equivalent.

As usual, long-dashed and short-dashed lines refer to the gluons with momentum fraction x and y

respectively.

x1 + x2 + x3 = 0. (See section III of ref. [7].) One may use this constraint to show that

there is but one relevant transverse degree of freedom for the three transverse positions in

3-particle evolution:9

B ≡ b1 − b2

(x1 + x2)
=

b2 − b3

(x2 + x3)
=

b3 − b1

(x3 + x1)
. (3.9)

So, in our application, when any two of the three particles are coincident, then B = 0 and

all three of the particles are necessarily coincident.

But now we can see the result. The factors

∇n̄Bx̄〈Bx̄, tx̄|B(4), t(4)〉
∣∣∣
Bx̄=0=B(4)

and ∇m̄Bȳ〈B′(4), t(4)|Bȳ, tȳ〉
∣∣∣
Bȳ=0=B′(4)

(3.10)

must both be zero by parity, and so the ȳ4x̄ contribution (3.8) vanishes.

3.3 The 44̄ diagram

The 44̄ diagram, shown in figure 4, is formally given by[
dI

dx dy

]
44̄

=

(
E

2π

)2 ∫
t(4)<t(4̄)

∑
pol.

〈|i δH|C(4̄)
34 ,C

(4̄)
12 〉 〈C

(4̄)
34 ,C

(4̄)
12 , t(4̄)|C

(4)
34 ,C

(4)
12 , t(4)〉

× 〈C(4)
34 ,C

(4)
12 |−i δH|〉. (3.11)

This diagram has three distinct large-Nc color routings, shown in figure 14, which are

related by permutations of the three final-state gluons (x, y, 1−x−y).

The helicity and color factors associated with the 4-gluon matrix elements do not

depend on the longitudinal momentum fractions (e.g. x and y) of the various gluons and

so, when summed over polarizations and colors, give the exact same helicity/color factor

for each of the three color routings of figure 14. Each is therefore a third of the total

helicity/color factor S we would get in a vacuum calculation, where we would not need to

9AI (2.29).
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split the calculation into different color routings but could simply square and initial-state

average the color/helicity factors (2.8) of the 4-point vertex:

S ≡ 1

2dA

∑
h’s

∑
color

[
faiaxefayaze(δhi,hyδhz,−hx − δhi,hzδhx,−hy)

+ faiayefaxaze(δhi,hxδhy,−hz − δhi,hzδhx,−hy)

+ faiazefaxaye(δhi,hxδhy,−hz − δhi,hyδhz,−hx)
]2

= 9C2
A (3.12)

(where dA is the dimension of the adjoint representation). So each color routing has a

corresponding factor of S/3 = 3C2
A.

We will focus on the second color routing 44̄2, which is convenient because it again

corresponds to our canonical choice (2.6),

(x1, x2, x3, x4) = (−1, y, 1−x−y, x) ≡ (x̂1, x̂2, x̂3, x̂4). (3.13)

The corresponding contribution to (3.11) is[
dI

dx dy

]
44̄2

=

(
E

2π

)2 ∫
t(4)<t(4̄)

3C2
Ag

4(2E)−4|x̂1x̂2x̂3x̂4|−1|x̂3 + x̂4|−2

× 〈C(4̄)
34 ,C

(4̄)
12 , t(4̄)|C

(4)
34 ,C

(4)
12 , t(4)〉

∣∣∣
all Cij=0

. (3.14)

From (2.21),

〈C(4̄)
34 ,C

(4̄)
12 ,∆t|C

(4)
34 ,C

(4)
12 , 0〉

∣∣∣
all Cij=0

=

(2πi)−2(−x1x2x3x4)|x3+x4|2E2Ω+Ω− csc(Ω+∆t) csc(Ω−∆t), (3.15)

and so [
dΓ

dx dy

]
44̄2

= −
3C2

Aα
2
s

16π2

∫ ∞
0

d(∆t) Ω+Ω− csc(Ω+ ∆t) csc(Ω−∆t). (3.16)

We may then sum all the color routings by adding appropriate permutations:[
dΓ

dx dy

]total

44̄

=

[
dΓ

dx dy

]
44̄2

+ [x↔ z] + [y ↔ z]. (3.17)

Note that
[

dΓ
dx dy

]
44̄

should be positive since it is the medium average of the magnitude-

squared of something (the amplitude for double bremsstrahlung via the 4-gluon vertex

in the background of the medium). The numerical result shown in figure 7 verifies this

is the case.10

10One might think of checking that the total double bremsstrahlung rate dΓ/dx dy, which is also the

medium average of the magnitude squared of something (the total amplitude for double bremsstrahlung),

is also positive. However, as discussed in ref. [8], the total dΓ/dx dy is formally infinite in our calculation,

and the physically relevant quantity is instead ∆ dΓ/dx dy defined by (1.1). The latter is a difference of

two positive quantities and so can have either sign (as seen in figure 5).
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We also note in passing that we can evaluate (3.16) analytically in the limit that one

of the final-state gluons in soft. For y � x and z, the result for the total contribution of

figure 4 (i.e. adding in the conjugate diagrams) is

[
dΓ

dx dy

]
(44)

≡ 2 Re

[
dΓ

dx dy

]
44̄

' 6 Re

[
dΓ

dx dy

]
44̄2

'
9C2

Aα
2
s ln 2

16π2

√
q̂A

yE
(y � x, z). (3.18)

(See appendix A.)

4 Summary of formula

The total result for the correction ∆ dΓ/dx dy due to overlapping formation times is

∆
dΓ

dx dy
=

[
dΓ

dx dy

]
crossed

+

[
∆

dΓ

dx dy

]
seq

+

[
dΓ

dx dy

]
(4)

+

[
dΓ

dx dy

]
(44)

, (4.1)

where [dΓ/dx dy]crossed and [∆ dΓ/dx dy]seq are given respectively in ref. [7, 9] and ref. [8].

For completeness, we have summarized those formulas in appendix D. The contributions

new to this paper, involving one or more 4-gluon vertices, are summarized below.

4.1 Diagrams with one 4-gluon vertex

The diagrams of figure 3 (including all permutations, large-Nc color routings, and conju-

gates) give the following contribution to dΓ/dx dy:[
dΓ

dx dy

]
(4)

= A(4)(x, y) +A(4)(1−x−y, y) +A(4)(x, 1−x−y)

+ A(4)(y, x) +A(4)(y, 1−x−y) +A(4)(1−x−y, x) (4.2)

where A(4)(x, y) is the result for one color routing of 4ȳx̄+ ȳ4x̄+ ȳx̄4 plus conjugates. We

will write this as

A(4)(x, y) ≡
∫ +∞

0
d(∆t) 2 Re

(
B(4)(x, y,∆t)

)
(4.3)

where

B(4)(x, y,∆t) = D(4)(x̂1, x̂2, x̂3, x̂4, ζ,∆t) +D(4)(−x̂4,−x̂3,−x̂2,−x̂1, ζ,∆t)

= D(4)(−1, y, 1−x−y, x, ζ,∆t) +D(4)(−x,−(1−x−y),−y, 1, ζ,∆t) (4.4)

corresponds to (i) the 4ȳx̄2 color routing of 4ȳx̄ plus (ii) the related color routing ȳx̄42 of

ȳx̄4. ζ = ζ(x, y) is given by (2.16). Each of the terms in (4.4) is given by

D(4)(x1, x2, x3, x4, ζ,∆t) =

−
C2

Aα
2
sMf

16π2E
(−x1x2x3x4)ζΩ+Ω− csc(Ω+ ∆t) csc(Ω−∆t)

Yȳ

Xȳ
, (4.5)

– 19 –



J
H
E
P
1
0
(
2
0
1
6
)
1
2
4

which is the integrand of (2.25). Here, the X,Y, Z are defined by (2.22) and (2.23), with

Mf = x3x4(x3+x4)E, (4.6)

Ωf =

√
− iq̂A

2E

(
1

x3
+

1

x4
− 1

x3+x4

)
. (4.7)

As mentioned earlier, explicit formulas for the 4-particle evolution frequencies Ω± in terms

of (x1, x2, x3, x4) are collected in appendix D.2.

Unlike for the crossed and sequential diagrams analyzed in refs. [7, 8], it is unnecessary

to explicitly subtract the vacuum contribution from D(4). That’s because the vacuum limit

q̂ → 0 (and so Ω± → 0 and Ωf → 0) of (4.5) already vanishes.

Also unlike the crossed and sequential diagrams [7, 8], there are no 1/∆t divergences

associated with the individual diagrams of figure 3, and so there are no “pole” term con-

tributions that need to be included in A(4) above.

4.2 Diagrams with two 4-gluon vertices

The diagrams of figure 4 give the following contribution:[
dΓ

dx dy

]
(44)

= A(44)(x, y) +A(44)(1−x−y, y) +A(44)(x, 1−x−y) (4.8)

where A(44)(x, y) is the result for one color routing of 44̄ plus conjugate. We write this as

A(44)(x, y) ≡
∫ +∞

0
d(∆t) 2 Re

(
B(44)(x, y,∆t)

)
(4.9)

where

B(44)(x, y,∆t) = C(44)(x̂1, x̂2, x̂3, x̂4,∆t) = C(44)(−1, y, 1−x−y, x,∆t) (4.10)

corresponds to the color routing 44̄2 with vacuum subtraction. The vacuum subtraction is

C(44) = D(44) − lim
q̂→0

D(44), (4.11)

where D(44) is the unsubtracted result extracted from (3.16),

D(44)(x1, x2, x3, x4,∆t) = −
3C2

Aα
2
s

16π2
Ω+Ω− csc(Ω+ ∆t) csc(Ω−∆t). (4.12)

Again, there are no 1/∆t divergences associated with the diagrams here, and so there

are no “pole” term contributions that need to be included in A(44̄) above.

5 Conclusion

We have now completed the calculation of the overlapping formation time correction to

double bremsstrahlung for the process g → ggg of emitting two real bremsstrahlung gluons

from an initial gluon. The size of interference terms involving 4-gluon vertices had to be
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computed (i) for completeness and (ii) to see how big they are. However, the conclusion

we can take from the numerical results of figures 5–7 is that their effect on the result is

small and one would not go far wrong in ignoring them, at least insofar as ∆ dΓ/dx dy is

concerned.

An important reason for calculating the overlapping formation time correction is to test

whether it is large or small for realistic value of αs. It is already known that the corrections

due to soft bremsstrahlung (y � 1) are large due to large logarithms but that such soft

corrections can be resummed into a running value of q̂ that depends on energy [4–6, 10–12].

But what about the contribution from overlapping hard bremsstrahlung, which cannot be

absorbed into q̂? In the thick-medium approximation used here, these corrections are

controlled by the value of αs at scales of order11 Q⊥ ∼ (q̂E)1/4. An answer concerning the

size of these non-absorbable corrections will need to wait longer until we are in a position

to calculate an infrared-safe physical quantity characterizing shower development, which

will require (i) including the effects of virtual corrections to single bremsstrahlung and (ii)

consistent factorization of the effects of soft bremsstrahlung into q̂.
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A More details on some formulas

Eq. (2.12). The overall sign of this formula arises as follows, similar to the discussion

of AI (4.16) in appendix A of ref. [7]. Consider first the rule associated with the t = tȳ
vertex in figure 8 (remembering that the ordering of xi used in that figure was chosen

to match the ordering of the large-Nc color routing 4ȳx̄2 of figure 12). According to the

rules of figure 9, this vertex comes with a factor of (T akR )ajai∇δ(2)(Bji), with lines (i, j, k)

identified as in the figure. Using the cyclic permutation identity Bji = Bkj = Bik noted in

the caption, and comparing figure 9 to the t = tȳ vertex in figure 8, we can identify these

factors as (T akR )ajai∇δ(2)(Bkj) = (T
ay

A )aiā∇δ(2)(C21). Similarly, the vertex at t = tx̄ comes

with a factor of (T akR )ajai∇δ(2)(Bik) = (T ax
A )āaz∇δ(2)(C34). Since we have identified C34

with B in (2.12), the latter is (T ax
A )āaz∇δ(2)(B). The color factors (T

ay

A )aiā(T
ax
A )āaz from

these two vertices (and the signs that arise from them) have already been accounted for

in (2.10), which has already been combined with the 4-gluon vertex factor (and its signs)

in (2.11). We are left with the δ-function factors ∇δ(2)(C21)∇δ(2)(B). Since C21 = −C12,

these may be rewritten as

−∇δ(2)(C12)∇δ(2)(B), (A.1)

which is the form used in (2.12), where both C12 and B have been integrated by parts.

This minus sign combines with the minus sign in (2.11) and the ∓ = − in figure 10 to give

the overall minus sign in (2.12).

11See, for example, the comments in section I.E of ref. [7].
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Eq. (3.18). In the limit that y is small compared to both x and z ≡ 1−x−y, the formulas

for the 4-particle frequencies Ω± collected in appendix D.2 satisfy, for the case xi = x̂i,

Ω− � Ω+ ' Ωy ≡

√
− iq̂A

2yE
. (A.2)

The factor of csc(Ω+ ∆t) in (3.16) means that the integrand is negligible unless Ω+∆t . 1,

in which case Ω−∆t� 1. So the integral may be approximated as[
dΓ

dx dy

]
44̄2

' −
3C2

Aα
2
s

16π2

∫ ∞
0

d(∆t)

∆t
Ωy csc(Ωy ∆t). (A.3)

This approximation is the same for all three color routings. Correspondingly multiplying

by 3, and then adding in the conjugate diagram 4̄4 by taking twice the real part,[
dΓ

dx dy

]
(44)

' −
9C2

Aα
2
s

8π2
Re

∫ ∞
0

d(∆t)

∆t
Ωy csc(Ωy ∆t). (A.4)

As we do with all diagrams, we now subtract out the vacuum contribution q̂ → 0 (i.e.

Ωy → 0), leaving[
dΓ

dx dy

]
(44)

' −
9C2

Aα
2
s

8π2
Re

∫ ∞
0

d(∆t)

∆t

[
Ωy csc(Ωy ∆t)− 1

∆t

]
= −

9C2
Aα

2
s

8π2
Re

(
iΩy

∫ ∞
0

dτ

τ

[
1

sh τ
− 1

τ

])
=

9C2
Aα

2
s ln 2

8π2
Re(iΩy), (A.5)

which gives (3.18).

B The 4-gluon matrix element

B.1 〈C34, C12|δH|〉

To derive the matrix element 〈C34,C12|δH|〉, we will follow the method used for deriving

other matrix elements in appendix B of ref. [7]. We start in a description of states where

we individually distinguish each high-energy particle, using the conventions of figure 15a.

First, the δH matrix element in the amplitude, written conventionally in terms of the

individual particles in the Hilbert space H (as opposed to the Hilbert space H̄⊗H used to

simultaneously describe particles in the amplitude and conjugate amplitude), is

〈b2, b3, b4|δH|b′2〉 = H δ(2)(b2−b′2) δ(2)(b3−b2) δ(2)(b4−b2) (B.1)

with

H ≡ g2
[
fa1a2efa3a4e(δh1,−h3δh4,−h2 − δh1,−h4δh2,−h3)

+ fa1a3efa2a4e(δh1,−h2δh3,−h4 − δh1,−h4δh2,−h3)

+ fa1a4efa2a3e(δh1,−h2δh3,−h4 − δh1,−h3δh4,−h2)
]

× (2|x1|E)−1/2(2|x2|E)−1/2(2|x3|E)−1/2(2|x4|E)−1/2. (B.2)
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b ,x4 4

b ,x3 3

b ,x2 2

2,x’2b’

b ,x1 1,x’1b’1

b ,x3 3

b ,x2 2

b ,x1 1,x’1b’1

2,x’2b’
3,x’3b’

(a) (b)

Figure 15. The notation used in (a) appendix B.1 and (b) appendix B.2 to label different particles’

states immediately before and after a 4-gluon vertex. The dashed connection in (a) indicates the

fact that in this case the initial particles in the amplitude and conjugate amplitude represent the

same particle (and so, for instance, b′1 = b′2 and, given our conventions, x′1 = −x′2).

Eq. (B.1) is the usual relativistic formula except for a few small differences. The factors

of (2Ei)
−1/2 = (2|xi|E)−1/2 for each particle above are included because we use non-

relativistic rather than relativistic normalization for the states. We have written the rule

in transverse b-space instead of transverse momentum space, so there are δ-functions re-

quiring the points to be coincident at the vertex instead of a δ-function for overall trans-

verse momentum conservation. We have assumed that the longitudinal momenta have

already been chosen to satisfy longitudinal momentum conservation, and we have (just as

in ref. [7]) chosen a normalization of our states where we implicitly drop the corresponding

momentum-space δ(p′2z−p2z−p3z−p4z). Finally, we have used the fact that the initial state

represents a single on-shell particle to link the color and helicity of particle 2′ to that of

1′ and thus, via figure 15a, to particle 1. We have accordingly chosen to label the corre-

sponding color and helicity indices in (B.2) by 1 instead of by 2′. The convention used for

the flow of helicity here is that of figure 10. The δ···δ··· terms in (B.2) for helicity come

from contracting the usual factors gµνgαβ in the Feynman rule for the 4-point vertex with

normalized helicity polarizations εµ(h) for each particle.

The corresponding matrix element in the space H̄⊗H that includes the particle in the

conjugate amplitude is

〈b1, b2, b3, b4|δH|b′1, b′2〉 = 〈b2, b3, b4|δH|b′2〉 δ(2)(b1−b′1). (B.3)

Next we want to use the symmetry of the problem to project each state onto a subspace

with two fewer degrees of freedom, as discussed in AI section III and AI appendix B [7].

Using the notation of that reference,

〈{Cij}|δH|〉 =
1

Ṽ⊥

∫
∆b
〈b1, b2, b3, b4|δH|b′1+∆b, b′2+∆b〉, (B.4)

where it is understood that both the initial and final positions satisfy the constraint∑
i xibi = 0 and where Ṽ⊥ is a formally infinite normalization given by

Ṽ⊥ ≡ δ(2)(
∑
xibi)

∣∣∣∑
xibi=0

. (B.5)
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Using (B.1) and (B.3),

〈{Cij}|δH|〉 =
H

Ṽ⊥

∫
∆b
δ(2)(b1 − b′1−∆b) δ(2)(b2−b′2−∆b) δ(2)(b3−b2) δ(2)(b4−b2)

=
H

Ṽ⊥
δ(2)(b12−b′12) δ(2)(b32) δ(2)(b42), (B.6)

where bij ≡ bi − bj . The initial state |b′1, b′2〉 satisfies the constraint x′1b
′
1 + x′2b

′
2 = 0 with

x′1 + x′2 = 0, and therefore b′12 = 0, giving

〈{Cij}|δH|〉 =
H

Ṽ⊥
δ(2)(b12) δ(2)(b32) δ(2)(b42). (B.7)

Given the presence of the other two δ-functions, the first one can be rewritten as

δ(2)(b12) = x2
1 δ

(2)(x1b12+x3b32+x4b42) = x2
1 δ

(2)(x1b1+x2b2+x3b3+x4b4), (B.8)

where the last equality uses

x1 + x2 + x3 + x4 = 0. (B.9a)

Since

x1b1 + x2b2 + x3b3 + x4b4 = 0 (B.9b)

as well, the substitution (B.8) in (B.7) gives

〈{Cij}|δH|〉 = Hx2
1 δ

(2)(b32) δ(2)(b42) (B.10)

by (B.5). Because of the constraints (B.9), the variables b32 and b42 are related to C12 ≡
b12/(x1+x2) and C34 ≡ b34/(x3+x4) by12

b32 = −b23 = x1C12 + x4C34, (B.11a)

b42 = −b24 = x1C12 − x3C34, (B.11b)

and the Jacobean for the change of variables is ∂(b32, b42)/∂(C12,C34) = [x1(x3+x4)]2.

So (B.10) can be rewritten as

〈{Cij}|δH|〉 =
H

(x3+x4)2
δ(2)(C12) δ(2)(C34). (B.12)

Changing normalization as in ref. [7],13

|C34,C12〉 ≡ |x3+x4|
∣∣{Cij}〉, (B.13)

then gives the matrix element (2.4) displayed in the main text.

12AI (5.14).
13AI (4.23).
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bi, ai bj , aj

bl, al bk, ak

hi

hj

hk

hl

bm bn

=

∓ ig2
[
faiajefakale(δhi,−hkδhl,−hj − δhi,−hlδhj ,−hk)

+ faiakefajale(δhi,−hjδhk,−hl − δhi,−hlδhj ,−hk)

+ faialefajake(δhi,−hjδhk,−hl − δhi,−hkδhl,−hj )
]

× (2E)−2|xixjxkxl|−1/2|xm|−2 δ(2)(Bij) δ
(2)(Bkl)

Figure 16. As figure 10 but for the case with an an additional spectator (e.g. as in the ȳ4x̄

diagram of figure 3).

B.2 〈B|δH|B′〉

We do not need to figure out the correct normalization of the matrix element 〈B|δH|B′〉
for this paper, but we do so here just for the sake of completeness. The corresponding

diagrammatic rule we will find is shown in figure 16.

Analogous to (B.1), start with the amplitude matrix element

〈b2, b3|δH|b′2, b′3〉 = H′ δ(2)(b2−b′2) δ(2)(b3−b′3) δ(2)(b3−b2), (B.14)

using the labeling of figure 15b. Here H′ is the same as (B.2) except that the indices 1 and

4 are replaced by 2′ and 3′. Including the particle in the conjugate amplitude,

〈b1, b2, b3|δH|b′1, b′2, b′3〉 = 〈b2, b3|δH|b′2, b′3〉 δ(2)(b1−b′1). (B.15)

Projecting the number of degrees of freedom in each state from 3 to 1 as in ref. [7],

〈B|δH|B′〉 =
1

Ṽ⊥

∫
∆b
〈b1b2, b3|δH|b′1+∆b, b′2+∆b, b′3+∆b〉

=
H′

Ṽ⊥
δ(2)(b21−b′21) δ(2)(b31−b′31) δ(2)(b32). (B.16)

Using the constraint x′1+x′2+x′3 = 0 and the primed version of the relationships (3.9)

defining B,

〈B|δH|B′〉 =
H′

Ṽ⊥
δ(2)(b21−x′3B′) δ(2)(b31+x′2B

′) δ(2)(x′1B
′)

=
H′

(x′1)2Ṽ⊥
δ(2)(b21) δ(2)(b31) δ(2)(B′). (B.17)

Given the other δ-functions, the middle one can be rewritten as

δ(2)(b31) = x2
3 δ

(2)(x2b21+x3b31) = x2
3 δ

(2)(x1b1+x2b2+x3b3). (B.18)
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xtyt (4)t

time

−hz, ẋ2=−z=−(1−x−y)

−hx, ẋ1=−x

−hy, ẋ3=−y

hi, ẋ4=1

−h̄, −(ẋ3+ẋ4)=−(1−y)

Figure 17. Labeling conventions for the ȳx̄4 interference diagram.

From the constraint x1b1+x2b2+x3b3=0 and (B.5), we then have

〈B|δH|B′〉 =
H′

(x′1)2
x2

3 δ
(2)(b21) δ(2)(B′)

=
H′

x2
1

δ(2)(B) δ(2)(B′), (B.19)

where in the last line we’ve used x3 = −(x2+x1) and have noted that x′1 = x1 in the

diagram of figure 15b.

C Relating ȳx̄4 to 4ȳx̄

In this appendix, we sketch what happens if we evaluate ȳx̄4 by following the same steps

used for 4ȳx̄ in section 2. Figure 17 shows the analog of figure 8. Here, the ẋi are the

xi of (3.4):

(ẋ1, ẋ2, ẋ3, ẋ4) ≡
(
−x,−(1−x−y),−y, 1

)
= (−x̂4,−x̂3,−x̂2,−x̂1). (C.1)

The starting point analogous to (2.1) is

[
dI

dx dy

]
ȳx̄4

=

(
E

2π

)2 ∫
tȳ<tx̄<t(4)

∑
pol.

〈|−i δH|C(4)
34 ,C

(4)
12 〉〈C

(4)
34 ,C

(4)
12 , t(4)|C x̄

34,C
x̄
12, tx̄〉

× 〈C x̄
34,C

x̄
12|i δH|Bx̄〉 〈Bx̄, tx̄|Bȳ, tȳ〉〈Bȳ|i δH|〉. (C.2)

Following the same arguments as in section 2.2, the expression for the large-Nc color routing
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ȳx̄42 of figure 13 is[
dI

dx dy

]
ȳx̄42

=−
(
E

2π

)2 ∫
tȳ<tx̄<t(4)

∑
hx,hy,hz,h̄

∫
Bx̄

× i
2C

2
Ag

4(δhi,hxδhy,−hz + δhi,hyδhz,−hx − 2δhi,hzδhx,−hy)

× 1
2E
−3/2|ẋ3 + ẋ4|−1 P−hz,h̄,−hx

(ẋ2,−ẋ1−ẋ2, ẋ1) ·∇Cx̄
12

〈C(4)
34 ,C

(4)
12 , t(4)|C x̄

34,C
x̄
12, tx̄〉

∣∣∣
Cx̄

12=0=C
(4)
34 =C

(4)
12 ; Cx̄

34=Bx̄

× (2E)−2|ẋ1ẋ2ẋ3ẋ4|−1/2|ẋ3 + ẋ4|−1

× 1
2E
−3/2 P−h̄,hi,−hy

(−ẋ3−ẋ4, ẋ4, ẋ3) ·∇Bȳ〈Bx̄, tx̄|Bȳ, tȳ〉
∣∣∣
Bȳ=0

, (C.3)

analogous to (2.12). The helicity sums are exactly the same in terms of x and y as those

in section 2.3, giving[
dI

dx dy

]
ȳx̄42

=− i
C2

Aα
2
s

8E3

ζ

|ẋ3 + ẋ4|2

∫
tȳ<tx̄<t(4)

∫
Bx̄

∇Cx̄
12
〈C(4)

34 ,C
(4)
12 , t(4)|C x̄

34,C
x̄
12, tx̄〉

∣∣∣
Cx̄

12=0=C
(4)
34 =C

(4)
12 ; Cx̄

34=Bx̄

·∇Bȳ〈Bx̄, tx̄|Bȳ, tȳ〉
∣∣∣
Bȳ=0

(C.4)

as the analogy to (2.17). In the harmonic oscillator approximation,14∫ t

−∞
dt′∇B′〈B, t|B′, t′〉

∣∣∣∣
B′=0

= − iMB
πB2

exp
(
−1

2 |M |ΩB
2
)
, (C.5)

and so[
dΓ

dx dy

]
ȳx̄42

=−
C2

Aα
2
sṀ

8πE3

ζ

|ẋ3 + ẋ4|2

∫ ∞
0

d(∆t)

∫
Bx̄

exp
(
−1

2 |Ṁ |Ω̇(Bx̄)2
)

(C.6a)

× Bx̄

(Bx̄)2
·∇Cx̄

12
〈C(4)

34 ,C
(4)
12 ,∆t|C

x̄
34,C

x̄
12, 0〉

∣∣∣
Cx̄

12=0=C
(4)
34 =C

(4)
12 ; Cx̄

34=Bx̄
,

where

Ṁ = ẋ3ẋ4(ẋ3+ẋ4)E (C.6b)

and

Ω̇ =

√
− iq̂A

2E

(
− 1

ẋ3+ẋ4
+

1

ẋ4
+

1

ẋ3

)
. (C.6c)

Eq. (C.6a) differs from the 4ȳx̄2 result (2.20) only in (i) the change of xi to (C.1), (ii) the

names used for some superscript labels, and (iii) the transposition of the 4-particle propa-

gator from 〈C34,C12,∆t|C(4)
34 ,C

(4)
12 , 0〉 to 〈C(4)

34 ,C
(4)
12 ,∆t|C34,C12, 0〉. The latter makes no

difference to the form of the right-hand side of eq. (2.21) for the propagator.15 The only

change that matters, then, is the change of xi, as asserted in the main text.

14AI (5.9).
15There are some other sign issues to worry about here, but they are resolved the same way as in

appendix E.1 of ref. [7].
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D Summary of crossed and sequential formulas

For the sake of completeness, we thought it useful to include a complete summary of all

of the formulas necessary for a complete evaluation of the total ∆ dΓ/dx dy (4.1) in one

paper, especially since there have been corrections [9] to the results of one of the earlier

papers [7]. The formulas for the contributions involving 4-gluon vertices have already been

given in the main text. This appendix summarizes the contributions from the crossed and

sequential diagrams, as well as giving some of the explicit lower-level formulas that were

needed in the main text.

It is possible to scale out the factors of q̂A and E from all of our numerical results by

replacing ∆t by the dimensionless variable ∆t ≡ (q̂A/E)1/2∆t. For numerics, it is conve-

nient to work in units where q̂A=1 and E=1, which then gives the result for ∆ dΓ/dx dy

in units of (q̂A/E)1/2.

D.1 Crossed diagrams

Here we collect the result for the crossed diagrams [7] as corrected by ref. [9]. A brief

summary of the interpretation of each piece below can be found in section VIII of ref. [7].[
dΓ

dx dy

]
crossed

= A(x, y) +A(1−x−y, y) +A(x, 1−x−y) (D.1)

A(x, y) = Apole(x, y) +

∫ +∞

0
d(∆t) 2 Re

[
B(x, y,∆t) +B(y, x,∆t)

]
(D.2)

B(x, y,∆t) = C({x̂i}, α, β, γ,∆t) + C({x′i}, β, α, γ,∆t) + C({x̃i}, γ, α, β,∆t)
= C(−1, y, 1−x−y, x, α, β, γ,∆t) + C

(
−(1−y),−y, 1−x, x, β, α, γ,∆t

)
+ C

(
−y,−(1−y), x, 1−x, γ, α, β,∆t

)
(D.3)

C = D − lim
q̂→0

D (D.4)

D(x1, x2, x3, x4, α, β, γ,∆t) = (D.5)

C2
Aα

2
sMiMf

32π4E2
(−x1x2x3x4)Ω+Ω− csc(Ω+∆t) csc(Ω−∆t)

×
{

(βYyYȳ + αY yȳYyȳ)I0 + (α+ β + 2γ)ZyȳI1

+
[
(α+ γ)YyYȳ + (β + γ)Y yȳYyȳ

]
I2 − (α+ β + γ)(Y yȳYȳI3 + YyYyȳI4)

}
Apole(x, y) ≡ 2 Re

[
C2

Aα
2
s

16π2
xy(1−x)2(1−y)2(1−x−y)2

×
{
−i[Ω−1,1−x,x + Ω−(1−y),1−x−y,x − Ω∗−1,1−y,y − Ω∗−(1−x),1−x−y,y]

×
[(

(α+ β) +
(α+ γ)xy

(1−x)(1−y)

)
ln

(
1−x−y

(1−x)(1−y)

)
+

2(α+ β + γ)xy

(1−x)(1−y)

]
− π[Ω−1,1−x,x + Ω−(1−y),1−x−y,x + Ω∗−1,1−y,y + Ω∗−(1−x),1−x−y,y]

×
(

(α+ β) +
(α+ γ)xy

(1−x)(1−y)

)}]
(D.6)
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I0 =
4π2

(XyXȳ −X2
yȳ)

(D.7a)

I1 = − 2π2

Xyȳ
ln

(
1−

X2
yȳ

XyXȳ

)
(D.7b)

I2 =
2π2

X2
yȳ

ln

(
1−

X2
yȳ

XyXȳ

)
+

4π2

(XyXȳ −X2
yȳ)

(D.7c)

I3 =
4π2Xyȳ

Xȳ(XyXȳ −X2
yȳ)

(D.7d)

I4 =
4π2Xyȳ

Xy(XyXȳ −X2
yȳ)

(D.7e)

(
Xy Yy

Yy Zy

)
≡

(
|Mi|Ωi 0

0 0

)
− ia−1>

y Ω cot(Ω ∆t) a−1
y (D.8a)(

Xȳ Yȳ

Yȳ Zȳ

)
≡

(
|Mf |Ωf 0

0 0

)
− ia−1>

ȳ Ω cot(Ω ∆t) a−1
ȳ (D.8b)(

Xyȳ Yyȳ

Y yȳ Zyȳ

)
≡ −ia−1>

y Ω csc(Ω ∆t) a−1
ȳ (D.8c)

Ω ≡

(
Ω+

Ω−

)
(D.9)

Mi = x1x4(x1+x4)E, Mf = x3x4(x3+x4)E (D.10)

Ωi =

√
− iq̂A

2E

(
1

x1
+

1

x4
− 1

x1+x4

)
, Ωf =

√
− iq̂A

2E

(
1

x3
+

1

x4
− 1

x3 + x4

)
(D.11)

aȳ =

(
C+

34 C
−
34

C+
12 C

−
12

)
(D.12)

ay =
1

(x1 + x4)

(
−x3 −x2

x4 x1

)
aȳ (D.13)

αβ
γ

=

−+
+

[ x

y3(1−x)3(1−y)3(1−x−y)
+

y

x3(1−x)3(1−y)3(1−x−y)

+
1−x

x3y3(1−y)3(1−x−y)
+

1−y
x3y3(1−x)3(1−x−y)

]

+

+

−
+

[ x

y3(1−x)(1−y)(1−x−y)3
+

y

x3(1−x)(1−y)(1−x−y)3

+
1−x−y

x3y3(1−x)(1−y)
+

1

x3y3(1−x)(1−y)(1−x−y)3

]
+
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+

+

+

−

[ 1−x
xy(1−y)3(1−x−y)3

+
1−y

xy(1−x)3(1−x−y)3

+
1−x−y

xy(1−x)3(1−y)3
+

1

xy(1−x)3(1−y)3(1−x−y)3

]
(D.14)

The q̂ → 0 limit for the vacuum piece in (D.4) corresponds to taking all Ω’s to zero and so

making the replacements

Ωi → 0, Ωf → 0, Ω cot(Ω ∆t)→ (∆t)−1, Ω csc(Ω ∆t)→ (∆t)−1, (D.15)

Ω± csc(Ω±∆t)→ (∆t)−1. (D.16)

D.2 4-particle frequencies and normal modes

Here we collect formulas for the large-Nc frequencies and normal modes associated with

4-particle propagation (section V.B of ref. [7]).

Ω± =

[
− iq̂A

4E

(
1

x1
+

1

x2
+

1

x3
+

1

x4
±
√

∆

)]1/2

(D.17)

∆ =
1

x2
1

+
1

x2
2

+
1

x2
3

+
1

x2
4

+
(x3+x4)2 + (x1+x4)2

x1x2x3x4
(D.18)

C±34 =
x2

x3 + x4

√
x1x3

2N±E

[
1

x3
− 1

x1
+

1

x4
+

x1

x3x2
±
√

∆

]
(D.19a)

C±12 = − x4

x1 + x2

√
x1x3

2N±E

[
1

x1
− 1

x3
+

1

x2
+

x3

x1x4
±
√

∆

]
(D.19b)

N± ≡ −x1x2x3x4(x1 + x3)∆± (x1x4 + x2x3)(x1x2 + x3x4)
√

∆ (D.20)

D.3 Sequential diagrams

Here we collect the result for the sequential diagrams [8]. A brief summary of the inter-

pretation of each piece below can be found in section III of ref. [8]. Symbols such as Ω± or

ay, which are written in the exact same notation as symbols defined above, are given by

their definitions above.[
∆

dΓ

dx dy

]
sequential

= Aseq(x, y) +Aseq(1−x−y, y) +Aseq(x, 1−x−y)

+Aseq(y, x) +Aseq(y, 1−x−y) +Aseq(1−x−y, x) (D.21)

Aseq(x, y) = Apole
seq (x, y)+

∫ ∞
0
d(∆t)

[
2 Re

(
Bseq(x, y,∆t)

)
+ Fseq(x, y,∆t)

]
(D.22)

Bseq(x, y,∆t) = Cseq({x̂i}, ᾱ, β̄, γ̄,∆t)
= Cseq(−1, y, 1−x−y, x, ᾱ, β̄, γ̄,∆t) (D.23)

Cseq = Dseq − lim
q̂→0

Dseq (D.24)

– 30 –



J
H
E
P
1
0
(
2
0
1
6
)
1
2
4

Dseq(x1, x2,x3, x4, ᾱ, β̄, γ̄,∆t) =

C2
Aα

2
sMiM

seq
f

32π4E2
(−x1x2x3x4)Ω+Ω− csc(Ω+∆t) csc(Ω−∆t)

×
{

(β̄Y seq
y Y seq

x̄ + ᾱY
seq
yx̄ Y

seq
yx̄ )Iseq

0 + (ᾱ+ β̄ + 2γ̄)Zseq
yx̄ I

seq
1

+
[
(ᾱ+ γ̄)Y seq

y Y seq
x̄ + (β̄ + γ̄)Y

seq
yx̄ Y

seq
yx̄

]
Iseq

2

− (ᾱ+ β̄ + γ̄)(Y
seq
yx̄ Y

seq
x̄ Iseq

3 + Y seq
y Y seq

yx̄ Iseq
4 )
}

(D.25)

Fseq(x, y,∆t) =
α2

sP (x)P ( y
1−x)

4π2(1− x)

[
Re(iΩi) Re

(
∆t (Ωseq

f )2 csc2(Ωseq
f ∆t)

)
+ Re(iΩseq

f ) Re
(
∆tΩ2

i csc2(Ωi ∆t)
)]

(D.26)

Apole
seq (x, y) =

α2
s P (x)P (y)

2π2(1− x)

(
−1

2 Re(iΩE,x + iΩ(1−x)E,y) + π
4 Re(ΩE,x + Ω(1−x)E,y)

)
(D.27)

Iseq
0 =

4π2

[Xseq
y Xseq

x̄ − (Xseq
yx̄ )2]

(D.28a)

Iseq
1 = − 2π2

Xseq
yx̄

ln

(
1−

(Xseq
yx̄ )2

Xseq
y Xseq

x̄

)
(D.28b)

Iseq
2 =

2π2

(Xseq
yx̄ )2

ln

(
1−

(Xseq
yx̄ )2

Xseq
y Xseq

x̄

)
+

4π2

[Xseq
y Xseq

x̄ − (Xseq
yx̄ )2]

(D.28c)

Iseq
3 =

4π2Xseq
yx̄

Xseq
x̄ [Xseq

y Xseq
x̄ − (Xseq

yx̄ )2]
(D.28d)

Iseq
4 =

4π2Xseq
yx̄

Xseq
y [Xseq

y Xseq
x̄ − (Xseq

yx̄ )2]
(D.28e)

(
Xseq

y Y seq
y

Y seq
y Zseq

y

)
≡

(
|Mi|Ωi 0

0 0

)
− ia−1>

y Ω cot(Ω ∆t) a−1
y =

(
Xy Yy

Yy Zy

)
, (D.29a)(

Xseq
x̄ Y seq

x̄

Y seq
x̄ Zseq

x̄

)
≡

(
|M seq

f |Ω
seq
f 0

0 0

)
− i(aseq

x̄ )−1>Ω cot(Ω ∆t) (aseq
x̄ )−1, (D.29b)(

Xseq
yx̄ Y seq

yx

Y
seq
yx̄ Zseq

yx̄

)
≡ −ia−1>

y Ω csc(Ω ∆t) (aseq
x̄ )−1 (D.29c)

M seq
f = x2x3(x2+x3)E (D.30)

Ωseq
f =

√
− iq̂A

2E

(
1

x2
+

1

x3
− 1

x2 + x3

)
(D.31)

aseq
x̄ ≡

(
0 1

1 0

)
ay (D.32)

P (x) = Pg→gg(x) = CA
[1 + x4 + (1−x)4]

x(1−x)
(D.33)
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ᾱβ̄
γ̄


xȳx̄y

=

−+
+

 4

xy(1−x)6(1−x−y)

+

+

−
+

[ 1

x3y3(1−x)2(1−x−y)3
+

1−x−y
x3y3(1−x)2

+
x

y3(1−x)2(1−x−y)3
+

y

x3(1−x)2(1−x−y)3

]

+

+

+

−

[ (1−x)2

x3y3(1−x−y)3
+

(1−x−y)

x3y3(1−x)6
+
x(1−x−y)

y3(1−x)6

+
y

x3(1−x)6(1−x−y)3
+

xy

(1−x)6(1−x−y)3

]
(D.34)

E Approximate analytic formula fitted to result

Similar to what was done in appendix A of ref. [8], the following approximation reproduces

the results of figure 5 with a maximum absolute error16 of 0.017 for all y > 10−4 (assuming

one permutes the final state gluons to choose y < x < z, just as in figure 5):

π2 x y
3
2 ∆

dΓ

dxdy
=

3∑
m=0

4∑
n=0

(
amn + bmn

(y
x

) 1
3

)
smtn, (E.1)

where the parameters

s ≡ 2(x− y)

t
, t ≡ 2x+ y (E.2)

each vary independently from 0 to 1. The numerical coefficients amn and bmn are given in

tables 1 and 2. We have made no effort to make the approximation work well for y < 10−4.

HH
HHHHm

n
0 1 2 3 4

0 -5.00370 41.0019 -200.721 355.883 -204.864

1 6.37665 -82.3722 414.714 -739.307 424.729

2 -2.34616 49.6745 -253.978 453.977 -260.422

3 0.0251252 -7.35668 38.8566 -69.7090 40.0310

Table 1. The coefficients amn in eq. (E.1).

16We quote absolute error rather than relative error because the result is zero along the red curve in

figure 5. Any numerical approximation will have infinite relative error exactly on this curve, which is

irrelevant to the question of how useful the approximation is.
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HH
HHHHm

n
0 1 2 3 4

0 5.48414 -41.2208 201.848 -357.473 206.179

1 -3.83142 62.2511 -316.542 565.450 -325.181

2 0.238156 -19.3169 101.583 -182.650 105.175

3 0.401059 -3.48365 16.8782 -29.6769 16.7608

Table 2. The coefficients bmn in eq. (E.1).

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
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