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1 Introduction

During the last decade we have witnessed substantial progress in the developing of on-

shell methods for the computation of S-matrix elements, following after the breakthrough

paper of E. Witten [1] on scattering amplitudes of pure YM theory in four dimensions. A

particular promising development for a wider class of theories and in arbitrary dimension

has been done in recent years by F. Cachazo, S. He and E. Yuan (CHY), who have proposed

a compact form for the tree-level massless S-matrix in terms of integrals on the moduli space
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of n−punctured spheres [2–4]. Those integrals are localized over solutions of the so-called

scattering equations, which can be written as,

Ea =

n∑
b=1
b 6=a

ka · kb
σa − σb

= 0, a ∈ {1, 2, . . . , n}, (1.1)

where kµa denotes the momentum of the ath external particle, associated to the location σa
on the sphere.

CHY have extended their approach to the study of scattering of scalars, gauge bosons,

gravitons and mixing interactions among them [2, 3, 5–9]. More recently, interesting in-

teraction mixings have been found in the single-soft limit of some of those theories [10].

Althought the formalism remains conjectural, it have already passed several non-trivial

checks. It has been proved to reproduce the expected soft-limits [2] in the theories where

it can be applied. It also has been proved to reproduce the correct BCFW [11] recurrence

relations in Yang-Mills and Bi-adjoint Φ3 theories [12].

Although the CHY prescription is a promising powerful computational tool for scat-

tering ampitudes in arbitrary dimensions, it highlight among other methods by making

explicit some properties that are hidden in standard approaches, such as the soft limits

at arbitrary miltiplicity on the theories where it is applicable. Since by construction the

method is applicable to theories than can be written as a product of two factors, this allow

us to find links between different theories, such as the well-know fact that Gravity can be

written as the “square”of YM. It also make explicit the expansion of YM in terms of cubic

diagrams [13], that is invisible to conventional methods.

So far many methods have been developed to deal with the integration over the

punctured sphere at the solutions of the scattering equations. Early attempts consid-

ered solutions of (1.1) at particular kinematics [3, 14, 15] as well as at particular dimen-

sions [5, 16–18]. Later, methods which avoid solving the equations were developed [19–27]

and some mathematical new structures have been found recently in [28, 29]. Generalized

Feynman rules for single poles diagrams were developed in [30, 31] and a generalization to

second order poles was done in [32]. More recently, by using cross-ratio identities coming

from the scattering equations, an algorithm have been proposed to reduce the order of any

higher-order integrand to simple poles [33].

A natural task in order to move forward is upgrading the CHY formalism to loop-level.

Some progress in this direction has been done recently from sligtly different approaches.

By using ambitwistor string [34], a proposal was made for the integration measure as

well as the corresponding scattering equations at one-loop has been obtained in [35, 36].

By performing a forward limit on the scattering equations for massive particles formulated

previously in [12, 37], the scattering equations at one-loop have also been obtained and used

in [38, 39]. A generalization of this approach to higher loops has been considered in [40].

On a parallel approach, we have generalized the double-cover formulation made at tree

level in [41] to the one-loop case by embedding the Torus in a CP2 throught a Elliptic curve

and we have used it to reproduce the Feynman n−gon diagram [42].
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In this paper, we would like to show how the prescription given in [42] applies straight-

forwardly to deal with any one-loop computation in theories admitting CHY description.

In order to do so, we provide a proposal to build one-loop integrands from the known

tree-level counterparts. Based on the fact that any integrand at tree-level can be written

as products, or chain of products, in the “distances” zab between the puncture location za
and zb, we build some analogous connectors-like objects on the moduli of the n−punctured

Elliptic curves, which depends on the way how we link two points σa and σb on the surface

of a Torus, namely by going around a b−cycle in one-direction, by going around a b−cycle

in the opposite direction or by not circling any b−cycle at all. Doing so, we sooner realize

that replacing zab, or even better its equivalent form τa:b in the double cover approach,

by those generalized connectors have the effect of blowing-up loops in the corresponding

Feynman diagrams and therefore corresponds to loop CHY-integrands.

In a sort of inverse treatment we also present a simple set of rules to build the corre-

sponding CHY-integrad on the Torus by starting instead from a given Feynman diagram

at one-loop. This rules can be thought as a one-loop generalization of the rules presentend

in [30]. Although the ones presented here are somehow analogous to the one-loop rules

presented in [43], our rules are different in nature, in particular the rules presented in this

paper are fundamentally graphical.

Finally, by using the Λ−algorithm [41] we solve the given CHY-integrands at one-loop

obtaining the expected results in the examples considered.

We would like to clarify that in this work we refer to integrands as the integrands in

the CHY formalism and not as the integrands in the integration over the loop momenta.

The later, are instead the resulting from the “integration” of our CHY-integrands.

The remainder of this paper is organized as follows. In section 2 and 3 we review

the double cover formulation of CHY for the tree and one-loop level scattering amplitudes

respectively. We also define connectors on M1,n, which are used to build the integrands on

M1,n. We show how to use those connectors on some examples in section 4 and in section 5

we apply it to the particular Bi-adjoint Φ3 theory, where we also provide explicit examples.

The final section 6 is used for some discussions and possible perspectives.

2 Tree-level scattering amplitudes

Before proceeding to the main concern of this paper, let us summarize the results of [41, 42]

which will provide the background for the remaining sections.

2.1 Tree-level scattering amplitude prescription

The prescription for the computation of scattering amplitudes at tree-level by a double

cover approach was proposed in [41]. The n−particle amplitude is given by the expression1

At
n(1, 2, . . . , n) =

1

23

∫
Γt

(
n∏
a=1

ya dya
Ct
a

)
×

(
n−3∏
i=1

dσi
Et
i

)
×∆2

FP(n−2, n−1, n)×It
n(σ, y), (2.1)

1Without loss of generality, we have fixed the {σn−2, σn−1, σn} punctures and the {Et
n−2, E

t
n−1, E

t
n}

scattering equations.
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where the Γt integration contour is defined by the 2n− 3 equations

Ct
a = 0, a = 1, . . . , n, Et

i = 0, i = 1, . . . , n− 3. (2.2)

Let us remind that, the (2n−3)-tupla, (σ1, . . . , σn−3, y1, . . . , yn), are the inhomogeneous co-

ordinates of the direct product between the moduli space of n-punctured Riemann spheres

(M0,n) and the n-dimensional complex plane (Cn), i.e. M0,n × Cn. We denote this space

as M0,n :=M0,n × Cn.

The Et
i ’s correspond to the tree-level scattering equations given by2

Et
a :=

1

2

n∑
b=1
b 6=a

(
yt
b

yt
a

+ 1

)
ka · kb
σa − σb

= 0, where (yt
a)

2 = σa − 1, (2.3)

and we also have used the constraints defining the double covered sphere as

Ct
a := (yt

a)
2 − (σa − 1) . (2.4)

The Faddeev Popov determinant, ∆FP(n− 3, n− 2, n), is defined as

∆FP(n− 2, n− 1, n) = 23 (yt
n−2 y

t
n−1 y

t
n)

∣∣∣∣∣∣∣
1 yt

n−2 (yt
n−2)2

1 yt
n−1 (yt

n−1)2

1 yt
n (yt

n)2

∣∣∣∣∣∣∣ .
The It

n(σ, y) integrand, which defines the theory, is a rational function in terms of

chains. Let us remind that we define a k-chain as a sequence of k-objects [26], in this case

a k-chain is read as

τi1:i2τi2:i3 · · · τik−1:ikτik:i1 := (i1 : i2 : · · · : ik)t, (2.5)

where the τa:b’s are the third-kind forms given by

τa:b :=
1

2 yt
a

(
yt
a + yt

b

σab

)
=

1

2 yt
a

(
1

yt
a − yt

b

)
, (2.6)

on the support, Ct
a = 0.

In this paper, we call the connectors to the objects that shape a chain. In this case,

the τa:b’s third-kind forms are the connectors.

In addition, it is useful to note that in this context the chains have a maximum length,

which is the total number of particles, i.e., n. A n-chain is known as a Parker-Taylor factor.

Finally, under the transformation, σa = z2
a + 1, one can check that (2.1) is mapped in

the original CHY prescription.

2The upper index “t” means tree level.
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Figure 1. The It5(1, 2, 3, 4, 5) regular graph.

2.2 CHY-tree level graph

Let us recall here that each It
n(σ, y) integrand have a regular graph3 (bijective map) asso-

ciated, which we denoted by G = (VG, EG) [26, 44, 45]. The vertex set of G is given by the

n-labels (punctures)

VG = {1, 2, . . . , n}

and the edge set is given by the elements

τa:b ↔ a b (Line) (2.7)

τ−1
a:b ↔ a − − − − b (Anti− line). (2.8)

Since τa:b always appears into a chain, then the graph is not a directed graph, in the

same way as in [26].

For example, let us consider the integrand

It
5(1, 2, 3, 4, 5) =

(1 : 5 : 2 : 4)t(3 : 4 : 2 : 5)t × (1 : 4 : 2 : 5)t(3 : 5 : 2 : 4)t

(4 : 5)t
. (2.9)

This integrand is represented by the G graph in figure 1.

Note that for each vertex the number of lines minus anti-lines must always be 4,

# Lines−# Antilines = 4,

this is in order to obtain PSL(2,C) invariance.

2.2.1 Color code

Since most of the computations are performed using the Λ-algorithm [41], which is a pic-

torial technique, we introduce the color code given in figure 2, to be used quite often in the

remaining of the paper.

3 One-loop scattering amplitudes

Before proceeding to the one-loop amplitude prescription, let us remind that the whole

construction is supported on a Torus embedded in a CP 2 space, with local coordinates

(z, y), i.e. a Torus described by the Elliptic curve

y2 = z(z − 1)(z − λ) , (3.1)

being λ the complex moduli of tori. In addition, for the rest of the paper we will take the

a− cycle on the upper brach cut, y =
√
z(z − 1)(z − λ).

3A G graph is defined by the two finite sets, V and E. V is the vertex set and E is the edge set.
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Anti−line 

Free Vertex

Fixed Vertex (Puncture) by scale invarianceBranch Cut 

Fixed Puncture by Global Symmetry

Massive and fixed Vertex (Puncture)

Figure 2. Color Code.

3.1 One-loop scattering amplitude prescription

In [42] we have proposed a prescription for computing scattering amplitudes on the moduli

space of n-punctured Elliptic curves. The prescription for the n−particle amplitude at

one-loop is given by the following expression,

A1
n(1, . . . , n) =

∫
dDq

∫
Γ1

dλ

λ(1− λ)
×

(
n∏
a=1

dya
Ca

)
×

(
n−1∏
i=1

dσi
E1
i

)(
∆2

FP(n)

L
∏n
b=1 yb

)
H(σ, y),

(3.2)

where the elements of the 2n-tupla, (λ, σ1, . . . , σn−1, y1, . . . , yn), are the coordinates of the

direct product between the moduli space of n-punctured Elliptic curves (M1,n) and the

n-dimensional complex plane (Cn), i.e. M1,n × Cn. We denote this space as M1,n :=

M1,n × Cn.

The prescription in (3.2) is obtained after performing the global residue theorem, where

the function

L := ρ

∮
a−cycle

[
qµ +

1

2

n∑
a=1

kµa
z − σa

(ya + y)

]2
dz

y
, with

1

ρ
:=

∫
a−cycle

dz

y
, (3.3)

becomes to be part of the integrand, so it does not define a integration cycle anymore.4

The integration contour, Γ1, is defined by the 2n equations5 [42]

λ = 0, Ca = 0, a = 1, . . . , n, E1
i = 0, i = 1, . . . , n− 1, (3.4)

where the Ca’s are the constraints on the punctures over the Elliptic curve,

Ca = y2
a − σa(σa − 1)(σa − λ), (3.5)

and the E1
i ’s are the Elliptic scattering equations defined as

E1
a :=

q · ka
ya

+
1

2

n∑
b=1
b 6=a

(
yb
ya

+ 1

)
ka · kb
σa − σb

= 0, a ∈ {1, 2, . . . , n}, (3.6)

which are the genus, g = 1, generalization of the tree level scattering equations (2.3). The

Faddeev Popov determinant, ∆2
FP(n) = (yn)2, is given by fixing6 the σn puncture and the

E1
n scattering equation.

4As it was shown in [42], the L function becomes to be the square loop momentum after integration over

the moduli λ.
5Let us remember that the integration around the poles, λ = {0, 1,∞}, is the same. Therefore, it is

enough just to integrate around λ = 0.
6σn is a constant such that σn 6= {0, 1,∞}. Note that {0, 1,∞} are the branch points.
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The dDq measure is the integration over the freedom to add a global holomorphic form,

where qµ is related, by a shift, with the physical loop-momentum.

Finally, the H(σ, y) function defines the theory at one-loop that one would be consid-

ering and it is the main topic of our discussion in this paper.

Let us then move now to the simplest possible H(σ, y) at one-loop, namely H(σ, y) =

constant.7

3.2 The n-gon and its CHY-graph

In the particular case when H(σ, y) = 1, the integral in (3.2) becomes

An−gon
n (1, . . . , n) =

∫
dDq

∫
Γ1

dλ

λ(1− λ)
×

(
n∏
a=1

dya
Ca

)
×

(
n−1∏
i=1

dσi
E1
i

)(
∆2

FP(n)

L
∏n
b=1 yb

)
. (3.7)

It was shown in [42] that this integral, in fact, corresponds to the n − gon.

Performing the integration over the λ variable, i.e λ = 0, the integral in (3.7) can be

written as a tree level amplitude in the double cover prescription [41, 42], such as in (2.1)

An−gon
n (1, . . . , n) =

∫
dD`

`2
It

n−gon(1, . . . , n| − `, `), (3.8)

where the loop momentum `µ is defined as a shift of qµ,

`µ := (−I)

(
qµ − 1

2

n∑
b=1

yT
b k

µ
b

)
, with I :=

√
−1, (3.9)

the 1/L becomes

L
∣∣∣
λ=0

= ρ

∮
|z|=ε

[
qµ +

1

2

n∑
a=1

kµa
z − σa

(ya + y)

]2

λ=0

dz

y
= −`2, (3.10)

and the It
n(1, . . . , n| − `, `) integrand is read as

It
n−gon(1, . . . , n| − `, `) (3.11)

=

∫
Γt

(
n∏
a=1

yt
a dy

t
a

Ct
a

)(
n−1∏
i=1

dσi
Et
i

)
∆2

FP(n, n+ 1, n+ 2)×
∏n
a=1(a : n+ 1)t(a : n+ 2)t

[(n+ 1 : n+ 2)t](n−2)
,

with (σn+1, y
t
n+1) := (σ`, y

t
`) = (0, I), (σn+2, y

t
n+2) := (σ−`, y

t
−`) = (0,−I), kµn+1 := `µ and

kµn+2 := −`µ.

In figure 3, we have drawn the CHY-graph on a sphere (tree-level) that represents the

It
n−gon(1, . . . , n|`,−`) integrand, where the yellow vertex denotes the puncture fixed by the

gauge symmetry on a Torus and the red vertices denotes fixed punctures such that `2 6= 0

(for details on the color code see figure 2). A natural question arises, What is a n-gon

CHY-graph on a Torus?

We will give an answer to this question in next section.

7In this paper we are going to consider only functions H(σ, y) analytic in y variable.
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Figure 3. n-gon representation. (1) CHY-graph on a sphere (up to `2 overall factor). (2) Feynman

diagram.

3.2.1 CHY-graph on a torus

Before giving a general graph interpretation on a Torus, let us consider again the expression

in (3.7), which can be rewritten as

An−gon
n =

∫
dDq

∫
Γ1

dλ

λ(1− λ)
×

(
n∏
a=1

ya dya
Ca

)
×

(
n−1∏
i=1

dσi
E1
i

)
∆2

FP(n)×
(

1

L
∏n
b=1 y

2
b

)
.

(3.12)

Comparing (3.12) with the tree level double cover prescription in (2.1), one can read the

last term as an integrand for the n-gon, i.e.

I1
n−gon(1, . . . , n) =

1

L

(
1

y1 y2 · · · yn

)
×
(

1

y1 y2 · · · yn

)
. (3.13)

The 1/L factor, which comes from one the scattering equations, is just interpreted as the

propagator, 1/`2, by (3.10).

Now the question is, how to interpret the
∏n
b=1 y

−2
b factor?

Let us remember that the CHY-graph on the sphere in figure 3 was obtained performing

the integral around λ = 0 in (3.7), i.e. pinching the a-cycle. After this procedure two new

off-shell punctures arises on different sheets, which are conected by anti-lines.

The whole process is shown graphically in figure 4, where the red rectangle represents

a Torus. At this moment, we are able to give the following interpretation to the 1/ya factor

Ha:a := 1
ya

Loop around b-cycle connecting the σa puncture.
(3.14)

Clearly, this kind of mathematical object does not have an analog at tree level or on

M0,n. The reason is because on the sphere there is not a non-trivial homological cycle.

Hence, unlike to the tree level scattering amplitudes, where all possibles CHY-graphs are

regular graphs, here on a Torus, the self-connections (loops) are allowed.

Let us remind what happens with Ha:a when λ = 0,

Ha:a

∣∣∣
λ=0

=
1

σa yt
a

, (3.15)

– 8 –
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Figure 4. CHY Torus representation for the n-gon. After pinching the a-cycle one obtains the

CHY-tree level graph. One can think that the anti-lines among σ` and σ−` arose in order to obtain

PSL(2,C) invariance on the CHY-tree level graph.

on the support of the Elliptic curve, Ca

∣∣∣
λ=0

= y2
a − σ2

a(σa − 1) = σ2
aC

t
a = 0. As it was

shown in [42], the expression in (3.15) can be written as

Ha:a

∣∣∣
λ=0

= (22 I)τa:n+1τn+2:a = −(22 I)τa:n+2τn+1:a, (3.16)

where (σn+1, y
t
n+1) := (σ`, y

t
`) = (0, I), (σn+2, y

t
n+2) := (σ−`, y

t
−`) = (0,−I). The 22 extra

factor in (3.16) arises from the connector that links the fixed off-shell punctures,

τn+1:n+2 = τn+2:n+1 =
1

2 yt
n+1

(
1

yt
n+1 − yt

n+2

)
= − 1

22
. (3.17)

Therefore, (3.15) can be read as

Ha:a

∣∣∣
λ=0

= (−I)
τa:n+1τn+2:a

τn+2,n+1
= (I)

τa:n+2τn+1:a

τn+1,n+2
(3.18)

= (−I)
(a : n+ 1 : n+ 2)t

(n+ 1 : n+ 2)t
= (I)

(a : n+ 2 : n+ 1)t

(n+ 1 : n+ 2)t
. (3.19)

3.3 Generalizing integrands

In order to construct any integrands on M1,n (one-loop), we would like to generalize the

idea presented in section 3.2.1, where we learned how to connect a puncture with itself

through the form Ha:a (connector). Now, we must build a form connecting two punctures

at different locations on a Torus, namely σa with σb. Nevertheless, at this point we have

two options, which are given in figure 5.

The first option, which we have called Ta:b, is the simplest one. This object has the

particularity that the line connecting σa with σb does not go around the b-cycle, similar to

tree level, i.e. τa:b. So, in order to construct the Ta:b form we impose the following condition

Ta:b

∣∣∣
λ=0

= τa:b, (3.20)

– 9 –
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Figure 5. Two different options to connect σa with σb on a Torus.

Figure 6. Two different ways to encircle the b-cycle. G+
a:b is on the right hand and G−

a:b is on the

left hand.

on the support of Ca = Cb = 0. Given this constraint we propose the form

Ta:b := 1
2 ya

(
ya+yb
σab

+ yb
σb

)
Connecting σa with σb without encircle the b-cycle.

(3.21)

It is straightforward to check that Ta:b satisfies the condition in (3.20) on the support of

Ca = Cb = 0.

The next step is to construct the Ga:b form. Note that there are two possibilities to

assemble Ga:b, or in other words, there are two possible directions to encircle the b-cycle,

which are given in figure 6. So as to build G+
a:b, we impose the following two constraints

on the support of Ca = Cb = 0,

G+
a:b

∣∣∣
λ=0

= (−I)
τa:n+1 τn+2:b

τn+2:n+1
= (−I)

τa:n+1 τn+1:n+2 τn+2:b

(n+ 1 : n+ 2)t
, (3.22)

G+
a:a

∣∣∣
λ=0

= Ha:a

∣∣∣
λ=0

,

where8 (σn+1, y
t
n+1) := (σ`, y

t
`) = (0, I), (σn+2, y

t
n+2) := (σ−`, y

t
−`) = (0,−I). These two

8Let us remind that τn+1:n+2 = τn+2:n+1.
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conditions are natural from the figure 6 and the limit in (3.18). Our proposal for G+
a:b is

G+
a:b := 1

ya

[
(ya+Iσa) (yb−Iσb)

σa σ2
b

]
Connecting σa with σb and encircling the b-cycle from the right.

(3.23)

It is simple to check that G+
a:b in (3.23) satisfies (3.22). In a similar way, the conditions for

G−a:b are

G−a:b

∣∣∣
λ=0

= (I)
τa:n+2 τn+1:b

τn+1:n+2
= (I)

τa:n+2 τn+2:n+1 τn+1:b

(n+ 1 : n+ 2)t
, (3.24)

G−a:a

∣∣∣
λ=0

= Ha:a

∣∣∣
λ=0

.

So, our proposal for G−a:b is

G−a:b := 1
ya

[
(ya−Iσa) (yb+Iσb)

σa σ2
b

]
Connecting σa with σb and encircling the b-cycle from the left.

(3.25)

It is straightforward to see that in fact G−a:b satisfies the constraints in (3.24).

Although we have been able to build the forms Ta:b, G
+
a:b and G−a:b, which are the

connectors, we do not know yet whether they are unique or not.

With this basic ingredients we are now ready to build integrands on M1,n.

3.3.1 Integrands

The connectors just obtained, {Ha:a, Ta:b, G
±
a:b}, become the building blocks of the inte-

grands on M1,n. Before to proceed on some examples let us do an important remark on

them.

For the sake of clarity, let us recall the n-gon amplitude,

An−gon
n =

∫
dDq

∫
Γ1

dλ

λ(1− λ)
× dµ∆2

FP(n)× I1
n−gon(1, . . . , n), (3.26)

where dµ is the analogous measure to the one on M0,n (tree-level),

dµ :=

(
n∏
a=1

ya dya
Ca

)
×

(
n−1∏
i=1

dσi
E1
i

)
, (3.27)

and the integrand is given by

I1
n−gon(1, . . . , n) =

(H1:1H2:2 · · ·Hn:n)2

L
. (3.28)

It is very interesting to note that the n-gon can also be written as the following product of

two n- chains (Parker-Taylor × Parker-Taylor)

I1
n−gon(1, . . . , n) =

1

L
(
G+

1:2G
−
2:3G

+
3:4 · · ·G

±
n−1:nG

∓
n:1

)
×
(
G−1:2G

+
2:3G

−
3:4 · · ·G

∓
n−1:nG

±
n:1

)
. (3.29)
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For example, the box and pentagon are written as

I1
4−gon(1, 2, 3, 4) =

1

L
(
G+

1:2G
−
2:3G

+
3:4G

−
4:1

)
×
(
G−1:2G

+
2:3G

−
3:4G

+
4:1

)
, (3.30)

I1
5−gon(1, 2, 3, 4, 5) =

1

L
(
G+

1:2G
−
2:3G

+
3:4G

−
4:5G

+
5:1

)
×
(
G−1:2G

+
2:3G

−
3:4G

+
4:5G

−
5:1

)
.

Using the identities given in (3.18), (3.22) and (3.24), it is trivial to check(
G+

1:2G
−
2:3G

+
3:4G

−
4:1

)
×
(
G−1:2G

+
2:3G

−
3:4G

+
4:1

) ∣∣∣
λ=0

= (H1:1H2:2H3:3H4:4)2
∣∣∣
λ=0

(3.31)(
G+

1:2G
−
2:3G

+
3:4G

−
4:5G

+
5:1

)
×
(
G−1:2G

+
2:3G

−
3:4G

+
4:5G

−
5:1

) ∣∣∣
λ=0

= (H1:1H2:2H3:3H4:4H5:5)2
∣∣∣
λ=0

.

In (3.29) we have written the n-gon integrand as a product of two Parke-Taylor, (Parke-

Taylor)2, which is a well defined integrand on M1,n. So, from this example, we can say

that a well defined integrand on M1,n must satisfies the same condition as at tree level,

namely,

Proposition 1 A well defined integrand on M1,n is given by product of chains such that

the difference among lines and anti-lines on each vertex is always 4,

#Lines−#Antilines = 4. (3.32)

Note that Ha:a is a self-chain, in fact, it is simple to see

G+
a:bG

−
b:a

∣∣∣
λ=0

= Ha:aHb:b

∣∣∣
λ=0

. (3.33)

Now, from the connectors set, {Ha:a, Ta:b, G
±
a:b}, and following the proposition 1, we

can build integrands on M1,n. In the next sections we will give some particular examples.

4 Simple examples and the Λ-algorithm

So as to clarify the ideas presented previously, in this section we shall give some simple

examples and perform some explicit computations.

4.1 A very simple example

The first simple example that we wish to consider is the following one

Tree− Level (M0,n) One− Loop (M1,n)

It
4 = (τ1:2τ2:3τ3:4τ4:1)× (τ1:2τ2:4τ4:3τ3:1) I1

4 = (T1:2T2:3T3:4T4:1)× (T1:2T2:4T4:3T3:1) .
(4.1)

Where we have trade the τa:b’s at tree-level only by Ta:b’s at loop-level, i.e, none G± has

been used.

From now on, we will omit the global factor , 1/L, in the one-loop integrands, please

bear it in mind. The CHY-graphs on a sphere (tree-level) and a Torus (one-loop) corre-

sponding to the integrands in (4.1), are given by the left and right drawings at figure 7,

respectively, where the yellow vertices denote fixed punctures. As it is very well known
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Figure 7. CHY-graph on a sphere. CHY-graph on a Torus.

from [3], the tree-level Feynman diagram, corresponding to the CHY integrand on the left

side of (4.1), is just 1/s12. Now, we would like to know what is the result for the CHY

integrand on M1,n, which was just obtained replacing the τ ’s for T ’s, as it is shown in (4.1)

and in figure 7.

In order to solve it, the first step to follow is to integrate the λ variable, i.e λ = 0.

After integrating λ, it is straightforward to see that the one-loop amplitude prescription

becomes

dDq dµ
∣∣∣
λ=0

= dD`

(
4∏

a=1

yt
a dy

t
a

Ct
a

)
×

(
3∏
i=1

dσi
Et
i

)
, (4.2)

∆2
FP(4)

∣∣∣
λ=0

= −
[
(5 : 6)t

]2
∆2

FP(4, 5, 6) , (4.3)

I1
4

∣∣∣
λ=0

= (1 : 2 : 3 : 4)t × (1 : 2 : 4 : 3)t = It
4 , (4.4)

where `µ is as in (3.9), (σ5, y
t
5) := (σ`, y

t
`) = (0, I), (σ6, y

t
6) := (σ−`, y

t
−`) = (0,−I), kµ5 := `µ,

kµ6 := −`µ and the scattering equations are reduced to the tree-level ones in the follow-

ing way

Et
i =

1

2

4∑
j=1
j 6=i

ki · kj
σij

(
yt
j

yt
i

+ 1

)
+

1

2

ki · k5

σi5

(
yt

5

yt
i

+ 1

)
+

1

2

ki · k6

σi6

(
yt

6

yt
i

+ 1

)
, i = 1, 2, 3. (4.5)

From (4.2), (4.3), (4.4) and (4.5), it is clear that after performing the integral over λ, we

obtain a 6-point tree-level amplitude (on M0,n), with integrand given by

It
6(1, 2, 3, 4|5, 6) = (1 : 2 : 3 : 4)t(5 : 6)t × (1 : 2 : 4 : 3)t(5 : 6)t, (4.6)

such as it have been drawn in figure 8.

Naively, the graph in figure 8 looks simple to solve, nevertheless one should be very

careful. For example, using the Λ-algorithm over this graph [41], where we have fixed the

σ1 puncture by the scale invariance (green vertex in figure 9), there is only one possible

non-zero configuration, as it is shown in figure 9.

However, from the expressions obtained in (4.2), (4.3), (4.4) and (4.5), the off-shell

punctures (σ5, y
t
5) := (σ`, y

t
`) = (0, I) and (σ6, y

t
6) := (σ−`, y

t
−`) = (0,−I), are fixed on

different branch cuts and so, the following proposition is immediate
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Figure 8. From CHY-graph on a Torus to CHY-graph on a sphere. The yellow vertices mean fixed

punctures and the red vertices mean fixed off-shell punctures.

Figure 9. Applying the Λ-algorithm. There is only one possible non zero configuration.

Figure 10. Final result for the integral of (T1:2T2:3T3:4T4:1)× (T1:2T2:4T4:3T3:1).

Proposition 2 The Λ-Algorithm at One-Loop

Let G be a CHY-graph on a sphere, which is coming from a CHY-graph on a Torus, then

the Λ-algorithm over G has one restriction

• All configurations, where the punctures σ` and σ−` are located alone on the branch

cut, are forbidden.

Therefore, from the figure 9 and following the proposition 2, one has the integral for

the one-loop expression in (4.1) vanishes (see figure 10), i.e.

A1
4 =

∫
dDq

∫
Γ1

dλ

λ(1− λ)
× dµ ∆2

FP(n)
(T1:2T2:3T3:4T4:1)× (T1:2T2:4T4:3T3:1)

L
= 0. (4.7)

Finally, although we solved the CHY-graph on a Torus given in figure 7, we do not

know what is its physical meaning (Feynman diagram). Nevertheless, since that the loop
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Figure 11. CHY-Graph on a Torus. The blue lines and labels, a : b, mean G±
a:b. G

+
a:b enters in the

right hand and G−
a:b enters in the left hand.

momentum, `µ, is not connect to any vertex, figure 8, we believe that this amplitude is

just a tadpole.

4.2 A more interesting example

In this section we compute another simple yet non-trivial example.

Let us consider the same tree level integrand as in section 4.1, i.e. It
4 = (1 : 2 : 3 :

4)t × (1 : 2 : 4 : 3)t. Similarly as in the previous section, from this Φ3 tree level integrand

we construct an integrand on M1,n, but now, using the G+
a:b and G−a:b connectors. Let

I1
4 (1, 2, 3, 4) be the integrand on M1,n given by

I1
4 (1, 2, 3, 4) = (G+

1:2G
−
2:3T3:4G

+
4:1)× (G−1:2G

+
2:4T4:3G

−
3:1). (4.8)

Its CHY-graph is represented in figure 11.

Integrating the λ variable, the one loop integrand in (4.8) becomes

I1
4 (1, 2, 3, 4)

∣∣∣
λ=0

= (G+
1:2G

−
2:3T3:4G

+
4:1)× (G−1:2G

+
2:4T4:3G

−
3:1)
∣∣∣
λ=0

=
(1 : 5 : 6)t(2 : 6)t(3 : 4 : 5)t × (1 : 6 : 5)t(2 : 5)t(3 : 6 : 4)t

[(5 : 6)t]4
, (4.9)

with (σ5, y
t
5) := (σ`, y

t
`) = (0, I), (σ6, y

t
6) := (σ−`, y

t
−`) = (0,−I), kµ5 := `µ, kµ6 := −`µ. This

integrand together with the Faddeev-Popov determinant,

∆2
FP(4)

∣∣∣
λ=0

= −
[
(5 : 6)t

]2
∆2

FP(4, 5, 6),

results in a new six-point tree level integrand,

I3
6 (1, 2|3, 4|5, 6) =

(1 : 5 : 6)t(2 : 6)t(3 : 4 : 5)t × (1 : 6 : 5)t(2 : 5)t(3 : 6 : 4)t

[(5 : 6)t]2
, (4.10)

where the upper index “3” is due to the similarity with the 3 − gon graph. It is not a

coincidence and in the next section we will explain it. We must now compute a six-point

tree level amplitude with integrand given by (4.10).
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Figure 12. From CHY-Graph on a Torus to CHY-Graph on a sphere. Here (σ5, y
t
5) := (σ`, y

t
`) =

(0, I), (σ6, y
t
6) := (σ−`, y

t
−`) = (0,−I), kµ5 := `µ and kµ6 := −`µ.

In figure 12, we represent the CHY-tree level graph of this six-point integrand, where

we have fixed the σ1 puncture by scale symmetry in order to use the Λ-algorithm [41].

So as to find the answer of this six point CHY-graph, the next step is to apply the

Λ-algorithm over it.

4.2.1 The Λ-algorithm

Before applying the Λ-algorithm over the six-point graph in figure 12, it is useful to intro-

duce the following notation

ka1...am :=
m∑

ai<aj

kai · kaj , (4.11)

[a1, a2, . . . , am] = ka1 + ka2 + · · ·+ kam . (4.12)

Now we are ready to use the Λ-algorithm (for more details, please see [41]). The six-

point graph in figure 12 has only two non-zero allowable configurations, up to ` ↔ −`,
which are drawn in figure 13.

These two configurations are straightforward to carry out, and their results are given

by the expressions

(I) =
I2

5 (2|3, 4|[1, `],−`)
k`1

, (II) =
I2

4 (2, 1|`, [3, 4,−`])
k`12

× It
4(3, 4, [1, 2, `],−`), (4.13)

where I2
5 (a|b, c|i, j), I2

4 (a, b|i, j) and It
4(a, b, c, d) are read in figure 14 (the upper index “2”

means 2− gon, [42])

For the CHY-graph, I2
5 (a|b, c|i, j) we get rapidly,

I2
5 (a|b, c|i, j) =

It
4(b, c, [a, i], j)

kai
+
It

4(b, c, [a, j], i)

kaj
=

1

kbc

(
1

kai
+

1

kaj

)
. (4.14)
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Figure 13. All non-zero allowable configurations, up to ` ↔ −` symmetry.

Figure 14. CHY-graphs of I25 (a|b, c|i, j), I24 (a, b|i, j), It4(a, b, c, d) and their allowable configura-

tions.

Therefore, using the above result along with the expressions given in figure 14 the final

result for I3
6 (1, 2|3, 4|5, 6) is given by

I3
6 (1, 2|3, 4|`,−`) = (I) + (II) + (` ↔ −`) (4.15)

=
1

`2

{
I2

5 (2|3, 4|[1, `],−`)
k`1

+
I2

4 (2, 1|`, [3, 4,−`])× It
4(3, 4, [1, 2, `],−`)

k`12

+
I2

5 (2|3, 4|[1,−`], `)
k−`1

+
I2

4 (2, 1| − `, [3, 4, `])× It
4(3, 4, [1, 2,−`], `)

k−`12

}
=

1

`2 k34

{
1

k`1

(
1

k−`,2
+

1

k`,2 + k12

)
+

1

k`12

(
1

k`,2
+

1

k−`,2 + k23 + k24

)
+

1

k−`1

(
1

k`,2
+

1

k−`,2 + k12

)
+

1

k−`12

(
1

k−`,2
+

1

k`,2 + k23 + k24

)}
,

where we have introduced the overall factor, 1/`2, which is coming from the term, 1/L. In

order to interpret (4.15), let us consider the one-loop Feynman diagram in the right hand
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Figure 15. From tree-level to one -loop integrand.

side of figure 15. After using the partial fractions identity [46],

1∏n
i=1Di

=
n∑
i=1

1

Di
∏
j 6=i(Dj −Di)

, (4.16)

the one-loop Feynman diagram in figure 15 becomes

22 IFeynman =
1

`2 k34

∑
σ∈P3

1

k`σ1 k`σ1σ2
, (4.17)

where P3 is the permutation group defined as

P3 : = {{a1, a2, a3}, {a2, a3, a1}, {a3, a1, a2}, {a2, a1, a3}, {a1, a3, a2}, {a3, a2, a1}}, (4.18)

with a1 = 1, a2 = 2, a3 = 34,

for example, k`a2a3 = k`234.

The expression found in (4.15) is exactly the same as that given in (4.17). So, one can

say in fact that the integral on M1,n with integrand

I1
4 (1, 2, 3, 4) =

1

L
{

(G+
1:2G

−
2:3T3:4G

+
4:1)× (G−1:2G

+
2:4T4:3G

−
3:1)
}
, (4.19)

(see figures 11 and 12), it is just the one-loop Φ3 amplitude given by the Feynman diagram

at the right side of figure 15.

This is an encouraging result and in the next sections we will elaborate more on it.

5 Φ3 theory at one-loop

The connectors set, {Ha:a, Ta:b, G
±
a:b}, are our main ingredients in order to construct inte-

grands on M1,n. With them, we will be able to build a wide range of integrands.

In this section we give a systematic way to obtain the Φ3 one-loop Feynman diagrams

from integrals on M1,n, and conversely we also provide a set rules to obtain the integral

on M1,n corresponding to a given Feynman diagram.
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Tree− Level (M0,n) One− Loop (M1,n)

(τ1:2 τ2:3 τ3:4 τ4:1)t × (τ1:2 τ2:4 τ4:3 τ3:1)t (G+
1:2 T2:3 T3:4G

−
4:1)× (G+

1:2 T2:4 T4:3G
−
3:1), (1)

(G+
1:2G

−
2:3 T3:4 T4:1)× (G+

1:2G
−
2:4 T4:3 T3:1), (2)

(T1:2G
+
2:3G

−
3:4 T4:1)× (T1:2 T2:4G

+
4:3G

−
3:1), (3)

(T1:2 T2:3G
+
3:4G

−
4:1)× (T1:2G

+
2:4G

−
4:3 T3:1), (4)

(T1:2G
+
2:3 T3:4G

−
4:1)× (T1:2G

+
2:4 T4:3G

−
3:1), (5)

(G+
1:2G

−
2:3 T3:4G

+
4:1)× (G−1:2G

+
2:4 T4:3G

−
3:1), (6)

(T1:2G
+
2:3G

−
3:4G

+
4:1)× (T1:2G

−
2:4G

+
4:3G

−
3:1), (7)

(G−1:2G
+
2:3G

−
3:4G

+
4:1)× (G+

1:2G
−
2:4G

+
4:3G

−
3:1), (8)

Table 1. Left hand side: CHY integrand on the sphere. Right hand side: all possible integrands

over the torus coming from the integrand at the left hand side and satisfying Rule I.

5.1 From CHY-integrands to one-loop Φ3-Feynman diagrams

Previously, in section 4.2, we have given a simple but illustrative example, where we have

begun with a Φ3 integrand on M0,n and, replacing the τa:b’s connectors on a sphere by

connectors Ta:b’s and G±a:b’s, we have obtained a Φ3 integrand on M1,n, it is explicitly

shown in figure 15. In this subsection we would like to consider the general construction.

As it is very well known from [3], that the integral of a product of two Parker-Taylor

(PT) factors over M0,n, is just the sum over Φ3 (Bi-adjoint) tree-level Feynman diagrams.

Conversely, for any Φ3 (Bi-adjoint) tree-level Feynman diagram, there is at least a product

of two Parker-Taylor factors, such that its integral over M0,n is exactly that Φ3 ampli-

tude [30].

Following this idea, let us consider integrals made from products of two Parker-Taylor

factors, but now on M1,n.

For example, let us come back to the Φ3 integrand on M0,n in section 4, i.e.

It
4(1, 2, 3, 4) = (1 : 2 : 3 : 4)t × (1 : 2 : 4 : 3)t. Over this integrand, we perform the

following eight replacements in order to obtain a well defined expression on M1,n.

Using a similar procedure to the one presented in section 4.2, we integrate the λ variable

over the eight integrals given in table 1. It is simple to check that after integrating λ, the

eight CHY-graphs obtained are respectively given by the ones in the figure 16.

Note that the CHY-graphs, {(1), (2), (3), (4), (5)} in figure 16, look pretty similar to

the 2− gon in figure 3, while {(6), (7)} look like a 3− gon. The last graph in figure 16 is

the actually a 4− gon. This is an important observation and it will be discussed later.

As in section 4.2, the CHY-graphs in figure 16 are straightforwardly computed by the

Λ-algorithm. The results from the given evaluations are the Φ3 one-loop Feynman diagrams

displayed in figure 17. From this result, we are able to see that the similarity between the

CHY-graphs in figure 16 and the n− gon is not a mere coincidence.

We would like to use this example as a tool to identify a pattern that allow us to

construct Φ3 CHY-integrands on M1,n from integrands on M0,n.
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Figure 16. CHY-graphs on a Sphere for the 8 CHY integrands given in table 1.

Figure 17. Feynman diagrams for the 8 CHY integrands in table 1.

5.2 Construction rule

In this section, we formulate a simple rule to build Φ3 integrands on M1,n. This rule is not

a necessary condition but it is sufficient.

Let It
n be a Φ3 integrand on M0,n, i.e.

It
n := (α(1) : α(2) : · · · : α(n))× (β(1) : β(2) : · · · : β(n)). (5.1)

where α and β are a particular ordering. The integral of It
n is just the sum over all Φ3

Feynman diagrams compatible with the α and β ordering. Now, the rule is the following
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• Rule (I)

From a Φ3 integrand on M0,n, It
n, we obtain a Φ3 integrand on M1,n, with a9

“Loop” connecting the sets, A1 = {a1, a2, . . . , ak}, A2 = {b1, b2, . . . , bm}, . . . , Ap =

{p1, p2, . . . , pl}, where A1 ∪ A2 ∪ · · · ∪ Ap = {1, 2, . . . , n}, if after doing the following

replacements

τa:b →

{
G±a:b, If {a, b} * A1, {a, b} * A2, . . . , {a, b} * Ap

Ta:b, Otherwise,
(5.2)

such that G+
a:b and G−a:b are put in an alternating way, the condition

#G+
a:b −#G−c:d = 0, (Condition (I)), (5.3)

is satisfied.

Note that the integrands in table 1 satisfy the Rule (I) and Condition (I), therefore

they are Φ3 integrands as it is confirmed by the resulting Feynman diagrams in figure 17.

We give now an example where after applying the replacements in (5.2), the Condi-

tion (I) is not satisfied. Let us consider again the same tree-level integrand as in table 1

It
4(1, 2, 3, 4) = (τ1:2 τ2:3 τ3:4 τ4:1)t × (τ1:2 τ2:4 τ4:3 τ3:1)t. (5.4)

We would like to obtain a loop connecting the particle sets, A1 = {2}, A2 = {3} and

A3 = {1, 4}. Applying the replacements in (5.2), the new integrand is read as

(τ1:2 τ2:3 τ3:4 τ4:1)t×(τ1:2 τ2:4 τ4:3 τ3:1)t → (G+
1:2G

−
2:3G

+
3:4 T4:1)×(G−1:2G

+
2:4G

−
4:3G

+
3:1). (5.5)

Obviously, the expression in (5.5) does not satisfy the Condition (I), hence this is not a Φ3

integrand. Physically is simple to understand why: the tree-level integrand in (5.4) is just

the Feynman diagram given in the left hand side of figure 15, from which is not possible

to blow a loop connecting the sets (trees), A1 = {2}, A2 = {3} and A3 = {1, 4}.
Clearly, the sets, A1, A2, . . . , Ap, are just the external trees of the Φ3 one-loop Feynman

diagrams.

In addition, the Rule (I) satifies a selection rule, which we explain in the next section.

5.3 Selection rule

In order to formulate the selection rule, it is useful to give the following definition

• Compatibility (From a Tree to a Loop)

We say that a Tree-level Feynman diagram is compatible with the loop connected to

the trees A1, A2, . . . , Ap, if there is a common vertex linking these sets.

So as to illustrate the selection rule we give a simple example. Let us consider the

CHY-tree level integrand

It
4 = (1 : 2 : 3 : 4)t × (1 : 2 : 3 : 4)t. (5.6)
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Figure 18. CHY-graph and its Feynman diagram representation.

Figure 19. CHY-graph and its Feynman diagram representation for the (G+
1:2G

−
2:3 T3:4G

+
4:1) ×

(G−
1:2G

+
2:3 T3:4G

−
4:1) integrand.

It is well known that, the integral of It
4 over M0,n is just the sum over two tree-level

Feynman diagrams given in figure 18.

Now, we would like to obtain a loop among the particle sets, A1 = {1}, A2 = {2} and

A3 = {3, 4}. Applying the Rule (I), the new integrand is read as

(τ1:2 τ2:3 τ3:4 τ4:1)t× (τ1:2 τ2:3 τ3:4 τ4:1)t → (G+
1:2G

−
2:3 T3:4G

+
4:1)× (G−1:2G

+
2:3 T3:4G

−
4:1). (5.7)

Performing the integral over λ, it is not hard to check that one obtains the CHY-graph

in figure 19 (left), which, as it has been already shown, is just the Φ3 one-loop Feynman

diagram given in figure 19 (right).

This simple example shows clearly what is happening. After applying the Rule (I), the

second Feynman diagram in figure 18 is discarded. In other words, the Rule (I) selected

the tree-level Feynman diagrams compatibles with the loop connected to the trees, A1 =

{1}, A2 = {2} and A3 = {3, 4}.
Now, we are ready to formulate the selection rule

• Selection Rule

To apply the Rule (I) to the sets, A1, A2, . . . , Ap, it picks up only the Tree-level

Feynman diagrams that are compatibles with the loop connected to the trees,

A1, A2, . . . , Ap.

9In this context, “Loop” is referred to the Φ3 one-loop Feynman diagram obtained after performing the

integral over M1,n. Therefore, the sets, A1, . . . , Ap, are just the external trees of the loop.
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Figure 20. Generic 1-loop Feynman diagram and triming off of its trees.

In the next section we present an inverse method, i.e. given a 1-loop Feynman diagram,

we construct its corresponding Φ3 CHY integrand on M1,n.

5.4 From one-loop Φ3-Feynman diagrams to integrands over a torus

In what follows, by mixing the rules presented in [30] with the graphical form of the CHY

n−gon, we intent to present a graphical prescription to build integrands on M1,n from a

given Feynman diagram. In some sense we shall build the inverse operation we already

defined in the previous sections. A one-loop Feynman diagram with n external particles is

built from a set of disjoint tree diagrams attached to a p−gon, schematically represented

in the left hand side of figure 20 for the Φ3 interaction.

Starting with a given Feynman diagram at one-loop, the recipe consist in the follow-

ing steps,

• 1) Trim off all the trees attached to the loop as shown in right hand side of figure 20.

• 2) To every tip arising from a cut assign a momentum equal to k0.10

• 3) To each tree sub-diagram in the right hand side of figure 20, draw the correspond-

ing CHY-graph by following the Baadsgaard, Bohr, Bourjaily and Damgaard rules

(B.B.B.D) in [30], as schematically shown in figure 21.

In the particular case when only one leg is trimmed, as in the traditional n-gon given

in figure 3, the Feynman diagram is just a propagator and we represented it for the

CHY-graph in figure 22.

Although it would not have any physical meaning, we use this correspondence as a tool in

order to obtain a general algorithm.

• 4) For each tree-level CHY-graph, split the puncture associated to the particle of mo-

mentum k0 as two punctures with momentum ` and −` respectively. For each vertex

10The whole construction is independent of the momentum k0 as long as it is on-shell, but for definiteness

we can think of it as equal to zero.
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Figure 21. B.B.B.D. construction of CHY-graph from a tree-level Feynman diagram.

Figure 22. CHY representation for a single propagator.

Figure 23. Schematic representation of rule 4.

previously connected to the puncture of momentum k0, it must now be connected

to the puncture ` through a single edge as well as to −`, as in the tree graphs in

figure 23 and 27. If there is only one edge connecting k0 with a vertex, then this edge

can go to ` or −`, it does not matter.

For the particular case given in figure 22, two edges out of four should go to ` and

the other two go to −`, see figure 27.
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Figure 24. Final construction of the CHY-graph corresponding to a 1-loop Feynman diagram.

• 5) Glue all vertex with momentum ` together as well as all vertex with momentum

-`, as is shown in the right drawing at figure 24. The anti-lines connecting ` and −`
must be introduced in order to have PSL(2,C) invariance. In addition, one of the n

vertices is colored with Yellow, so as to fix the PSL(2,C) symmetry.

Up to this point, the resulting CHY-graph corresponds to an integrand on M0,n. Now,

we are able to build the graph on a Torus and so, to find an integrand on M1,n by using

the connectors {Ta:b, G
±
a:b}.

In order to do so, we add the following three simple rules:

• 6) Stretch out the points ` and −` forming a line (a− cycle).

• 7) Assign directions to the edges in such a way that the Rule (I) in section 5.2 is

satisfied.

• 8) For every edge connecting a point a to a point b and wrapping the b-cycle from

left to right use the chain element G+
a:b (3.23). For every line connecting a point

a to a point b and wrapping the b-cycle from right to left use the chain element

G−a:b (3.25).Finally, for every line connecting a point a to a point b no wrapping the

b-cycle use the chain Ta:b (3.21).

The main idea is to construct a product of two Parker-Taylor, which satisfies the

Rule (I) in section 5.2.

5.5 Lower point examples

In this subsection we would like to apply the rules above to a couple of simple non-trivial

examples in order to clarify the procedure.
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Figure 25. One-loop Feynman diagram with a triangular loop.

Figure 26. Trimming off the trees from the triangular loop.

Figure 27. CHY-graph construction for the one-loop diagram at figure 25.

5.5.1 Four-point and triangle-loop

Let us start considering the Feynman diagram displayed in figure 25.

Trimming off the trees attached to the loop and assigning a momentum k0 to every tip

of a cut, we get the three tree sub-diagrams represented in figure 26.

The corresponding CHY-graph for the above Feynman subdiagrams are given in fig-

ure 27.

Splitting the k0 vertex at every tree-CHY sub-graph as two-points with momentum `

and −`, we obtain something as the display at the right hand side of figure 27.

Connecting all vertices with momentum ±` to the points ±`, we get the corresponding

CHY-graph shown in figure 28, which has been previously obtained in section 4.2.

In section 4.2.1 this CHY-graph was solved by using the Λ−algorithm reproducing the

result from the Feynman diagram in figure 25, which in this section we have used as our

starting point instead.
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Figure 28. CHY-graph corresponding to the one-loop diagram at figure 25.

5.5.2 Six-point and box-loop

As a slightly more involved example, let us consider the Feynman diagram shown at the

left hand side of figure 29 and containing a box loop.

By using the rules described previously in section 5.4, we can rapidly read the corre-

sponding CHY-graph, which is given in the right hand side of figure 29, where we have

already shown explicitly the particular gauge fixing we are going to use to solve it. By

using the Λ−algorithm with the chosen gauge fixing, it is straightforward to carry out and

the answer can be written as an off-shell 4 − gon, as one given in figure 30.

Since the resulting 4−gon only contains one off-shell vertex, we can still use the

Λ−algorithm to solve it. The explicit result is given by the expression

ICHY
6−box(1, 2, 3, |4|5, 6|`,−`) =

1

k56 k456
× I4

6 (1, 2, 3, [4, 5, 6]|`,−`), (5.8)

where I4
6 (1, 2, 3, [4, 5, 6]|`,−`) is just the 4-gon (with one off-shell particle) and it was

computed in [42]

I4
6 (a, b, c, d|`,−`) =

I3
5 (b, c, d| − `, [a, `])

k`a
+
I2

4 (b, a|[−`, c, d], `) I2
4 (c, d| − `, [a, b, `])

k`ab
(5.9)

+
I2

4 (c, a|[−`, b, d], `) I2
4 (b, d| − `, [a, c, `])

k`ac
+
I3

5 (b, c, a|[−`, d], `)

k`abc

+ (` ↔ −`),

where11

I3
5 (a, b, c|i, j) =

I2
4 (b, c|i, [a, j])

kja
+
I2

4 (b, a|[c, i], j)
kjab

+ (i↔ j), (5.10)

I2
4 (a, b|i, j) =

1

kai
+

1

kaj
. (5.11)

11Let us remind, [b, c] = kb + kc and ka[b,c] = kab + kac.
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Figure 29. One-loop Feynman diagram with a box and its corresponding CHY-graph.

Figure 30. CHY-graph reduction by Λ−algorithm.

The result in (5.8) has been checked against the corresponding Feynman diagram at

figure 29 after partial fraction decomposition

25 `2 IFeynman
6−box =

1

k45k456

∑
σ∈P4

1

k`σ1k`σ1σ2k`σ1σ2σ3
, (5.12)

where P4 is defined as

P4 := permutations {a1, a2, a3, a4}, with a1 = 1 , a2 = 2 , a3 = 3 , a4 = 456 , (5.13)

for example, k`a1a4 = k`1456.

6 Discussion

In this work we have presented a prescription to build generic CHY-integrands directly over

M1,n, the moduli space of n−puncture Elliptic curves. By generalizing the τa:b connectors

on M0,n, the moduli space of n−puncture spheres [41], we have proposed a new set of
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connectors, {Ha:a, Ta:b, G
±
a:b}, on M1,n. These connectors implement the different ways to

link two punctures lying on different locations on the Torus. Namely, two points connected

by circling a b−cycle in one direction or in the opposite corresponds to linking them with

G±a:b. Connecting a point to itself by circling a b−cycle in any direction corresponds to

a link giving by Ha:b and finally two points connected without going through a b−cycle

corresponds to linking them with Ta:b.

We have shown through several examples, that one way to build physically sensible

integrands over M1,n, is by starting with a given known integrand on M0,n and replacing

all τa:b’s by Ta:b’s or G±a:b’s in such way that the winding through the b−cycle equals zero,

or in other words, that the number of G+’s equals the number of G−’s. This was applied

particularly to Φ3 theory. It is worth to recall here that, a given scattering amplitude in

Bi-adjoint Φ3 theory can be computed as an expansion in terms of partial amplitudes. The

later can in turn be written as a product of two CHY-Parker-Taylor factors and those are

the ones we have used as examples for the application of our present rules (see table 1).

Of course, the building blocks Feynman diagrams for the partial amplitudes, are those

corresponding to abelian φ3 scalar theory.

We have also provided a cut and paste graphical process to build Φ3 CHY-integrands

on M1,n, by starting from a given Feynman diagram at one loop. Roughtly speaking, by

using the rules at Φ3 tree level given in [30], one can find a CHY-loop graph by gluing

CHY-trees in a particular way, as has been schematically shown in figure 24.

Despite we have applied both constructions to the particular case of bi-adjoint Φ3

theory, we are confident that the rules presented in this paper can be easily extended to

any other theory having a CHY representation.

In section 4.1 we have noticed an interesting phenomena that happens when the con-

nectors, τa:b’s, in a given integrand over M0,n are trade only by Ta:b’s over M1,n, i.e. when

in the CHY-graph on a Torus do not encircle the b−cycle at all. It is easy to realize that

the resulting CHY-graph on the sphere corresponds to a loop disjoint from the tree(s),

which can be interpreted as a tadpole diagram. It was also shown that this kind of graphs

vanish and hence, we can said that our approach is free of tadpoles.

Speculative perspectives. We also would like to make an observation induced from

the structure of one-loop diagrams in Φ3 theory. From figure 30, it is not hard to check

that after using the Λ−algorithm, the CHY-graph in figure 29 could be factorized as in

figure 31, where ki + kj = k1 + k2 + k3.

As we see from this simple example, the one-loop CHY-graph can be rewritten in a

factorized form, as a off-shell tree-level graph times a 4−gon graph with one off-shell vertex

(k4 + k5 + k6), exactly as it happends to the Feynman diagram at the right hand side. We

believe that in general, it should be always possible to rewrite a given one-loop CHY graph

as a product of the off-shell trees graphs times an off-shell CHY p−gon. This looks like

a bold statement as it is, but, due that a given one-loop Feynman diagram possess this

factorization property it implies that the corresponding CHY-graph should also factorizes

in the same manner. Nevertheless, the Λ−algorithm does not know how to deal with more
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Figure 31. CHY-graph rewrite as the product of an off-shell tree-level CHY-graph times an off-shell

4−gon and its Feynman diagram representation.

Figure 32. CHY-graph that is presumed to represent the 2-loop Feynman diagram given on the

right side, up to 1/(`21 `
2
2) factor.

than 3 off-shell particles, so, one should apply other technique in order to prove it, perhaps

the Feynman rules given in [32].

Finally, the ideas in this paper can easily be extended to higher loop level in Φ3 theory.

For example, following the rules presented in section 5, we have found the CHY-graph in

figure 32, which should represent the two-loop Feyman diagram given over the right side

in the same figure. Nevertheless, although we have not shown this equivalence, it is a work

in progress.
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