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1 Introduction

In our previous paper [1], following [2, 3], we pointed out that a bulk local state in a gravity

theory in the anti-de Sitter space (AdS) is a linear superposition of Ishibashi states [4] for

a crosscap in the dual conformal field theory (CFT). In this paper, we will discuss how to

take the linear superposition.

Ishibashi’s original construction is for boundary states, but they can be turned into

crosscap states by applying the dilatation by the imaginary unit, corresponding to trans-

lation by one quarter of the period in the global Lorentzian time in AdS. For each primary

state |φ〉, one can define an Ishibashi state |φ〉〉,

Mab|φ〉〉 = 0, (Pa +Ka)|φ〉〉 = 0, (1.1)

preserving one half of the SO(2, d) global conformal symmetry of R × Sd−1, generated by

the Hamiltonian H along R, the rotation Mab of S
d−1, translation Pa and special conformal

transformation Ka (a = 1, . . . , d). The equations (1.1) were solved explicitly in [1] as,

|φ〉〉 = Γ

(

∆− d

2
+ 1

)(

P

2

)d/2−∆

J∆−d/2(P )|φ〉, (1.2)

where J∆−d/2(P ) is the Bessel function of the first kind with ∆ being the scaling dimension

of φ. It was observed in [1] that the dependence on the momentum P is the same as that

for the bulk-boundary smearing function in AdS, where the bulk point is evaluated at

the center of AdSd+1 [5–7]. (For simplicity, we are discussing Ishibashi states for scalar

primaries. See [1] for conditions when primary states carry non-zero spins.)
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The question we would like to address is how to take a linear superposition of Ishibashi

states |φ〉〉 over primary states |φ〉 to construct a local state in the bulk AdS. One may

be tempted to speculate that a bulk local state also has a special role to play in the dual

CFT. A natural guess would then be that it satisfies consistency conditions for a crosscap

in CFT, in particular a bootstrap condition for crossing symmetry, which are analogous to

the Cardy conditions on boundary states.

We will show, contrary to such an expectation, that the bootstrap condition in CFT

contradicts with the microscopic causality in AdS, which has been proposed as conditions

on bulk local states in [8–12]. Namely, crosscap states obeying the bootstrap constraints

generically do not correspond to local states in the bulk. We will also discuss bulk inter-

pretation of crosscap states, which satisfy the bootstrap condition, and compare it with

bulk local states satisfying the microscopic causality in AdS.

When d = 2, the conformal symmetry is enhanced to the Virasoro symmetry. We

will argue that a crosscap state in CFT preserves one half of the Virasoro symmetry,

generalizing (1.1) to,

(Ln − (−1)nL̄−n)|φ〉〉Virasoro = 0, (1.3)

for the left and right Virasoro generators, Ln, L̄n (n ∈ Z). On the other hand, we will

present an evidence to show that the microscopic causality in AdS cannot be satisfied by

a linear superposition of Ishibashi states of the Virasoro symmetry obeying (1.3). This

also highlights the difference between local states in the bulk and crosscap states on the

boundary.

It would be desirable to understand how to characterize bulk local states in the lan-

guage of CFT. Our result shows that the bootstrap condition does not give a proper

characterization of such states and that the Virasoro symmetry in two dimensions does not

give a useful guiding principle to solve the microscopic causality in AdS.

This paper is organized as follows. In section II, we will review relations between

the bulk and boundary coordinates and discuss causality and crossing symmetry in these

coordinates. In section III, we discuss the microscopic causality conditions for local states

in AdS and study solutions to these conditions. In section IV, we discuss the bootstrap

condition on crosscaps in CFT, and compare their solutions to those of the microscopic

causality conditions. In section V, we discuss a bulk interpretation of crosscap states.

This also highlights the difference between crosscap states in CFT and local states in AdS.

In section VI, we discuss whether crosscap states and bulk local states can be organized

usefully in the AdS3/CFT2 case by Ishibashi states of the Virasoro symmetry. We find

that the answer is yes for crosscaps but no for bulk local states.

2 Causality and cross-ratio

A crosscap state can be used to compute correlation functions of CFT on the real projective

plane, which is usually considered in the Euclidean signature. On the other hand, the

causality in AdS should be discussed in the Lorentzian signature. Thus, in order to compare

the bootstrap condition on the projective plane and the microscopic causality in AdS, it is
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useful to understand analytic continuation between coordinates. In this paper, we will use

the global coordinates (t, ρ,Ω) of AdS with the metric,

ds2 = −cosh2ρ dt2 + dρ2 + sinh2ρ dΩ2, (2.1)

where coordinates on Sd−1 are denoted by Ω, which is identified with a unit vector in

R
d. As a consequence of working in the global patch, the causal interpretation of the

crosscap cross-ratio η, defined below, is slightly different from that discussed in [8–12] in

the Poincaré patch. We work in the global patch as we find it more convenient to compare

the microscopic causality and the condition for the crosscap bootstrap.

In the Euclidean signature, the global coordinates with the metric,

ds2 = cosh2 ρdτ2 + sinh2 ρdΩ2 + dρ2, (2.2)

and the Poincaré coordinates with the metric,

ds2 =
dz2

z2
+

dx2

z2
, (2.3)

with x ∈ R
d cover the same (d+ 1)-dimensional hyperbolic space. In particular the center

of Euclidean AdS τ = 0, ρ = 0 corresponds to z = 1, x = 0.

On the boundary, the two coordinates are related to each other by the standard formula

for the radial quantization, x = eτΩ. Thus, the involution,

x → x

x2
, (2.4)

to define the real projective plane is,

(τ,Ω) → (−τ,−Ω). (2.5)

In the following, an important role is played by the crosscap cross-ratio η of two points x1
and x2 on the plane defined by,

η =
(x1 − x2)

2

(1 + x21)(1 + x22)
. (2.6)

In the Euclidean signature, we always have 0 ≤ η ≤ 1, and η = 1 corresponds to the limit

in which x1 approaches the image of x2, namely x1 → −x2/x
2
2. To see this, we note that

η ≤ 1 is equivalent to,

1 + 2x1 · x2 + x21x
2
2 = x22

(

x2
x22

+ x1

)2

≥ 0. (2.7)

In the global coordinates (2.2), the cross-ratio is expressed as,

η =
cosh(τ1 − τ2)− Ω1 · Ω2

cosh(τ1 − τ2) + cosh(τ1 + τ2)
, (2.8)

Its Lorentzian continuation, τ = it, gives,

η =
cos(t1 − t2)− Ω1 · Ω2

cos(t1 − t2) + cos(t1 + t2)
, (2.9)

– 3 –



J
H
E
P
1
0
(
2
0
1
6
)
0
8
5

and takes values in −∞ ≤ η ≤ ∞. In the Lorentzian case, η = 1 corresponds to the limit

where (t1,Ω1) and (−t2,−Ω2) are light-like separated.

Let us discuss a bulk interpretation of η and relate it to the causality. Since the future

light-cone from the center (t = 0, ρ = 0) of AdS reaches the boundary at t = π/2, a

boundary point (t,Ω) is space-like separated from the center if and only if |t| < π/2. Using

this fact, we can show that, when η > 1, at least one pair of the three points are space-like

separated, modulo the 2π period in t.

3 Microscopic causality in the bulk

A bulk local operator ψ̂ is a function (more generally a section) over the bulk AdS and acts

on the Hilbert space of the dual CFT. In [1], we required the action of the bulk isometry

on ψ̂ to be compatible with that of the corresponding conformal symmetry in the CFT,

[J, ψ̂] = iLJ ψ̂, (3.1)

where J is a Killing vector of the AdS corresponding to any one of the conformal generators,

H,Mab, Pa,Ka, and LJ is the Lie derivative on ψ̂ with respect to J . Since the isotropy

subgroup SO(1, d) at the origin (t = 0, ρ = 0) is generated by Mab and Pa +Ka, the bulk

local operator there should commute with them as,

[Mab, ψ̂(0)] = 0,

[Pa +Ka, ψ̂(0)] = 0. (3.2)

Correspondingly, the state |ψ(0)〉 = ψ̂(0)|0〉 satisfies the condition,

Mab|ψ(0)〉 = 0,

(Pa +Ka)|ψ(0)〉 = 0, (3.3)

which we identified in [1] as a condition for crosscap states in CFT. Since Ishibashi states

span the space of solutions to these equations, each bulk local state |ψ(0)〉 should be their

linear superposition as,

|ψ(0)〉 =
∑

φ

ψφ|φ〉〉. (3.4)

The crosscap Ishibashi states may be regarded as a time-evolution of the boundary Ishibashi

states by quarter period of the global Lorentzian time in AdS.

If ψ̂(t, ρ,Ω) represents a single particle excitation in the bulk, it should approach a

single trace primary operator φ0(t,Ω) at the boundary. Thus, ψφ0
= 1 in (3.4) and all

other φ in the sum should have scaling dimensions larger than that of φ0. If only |φ0〉〉 is
in the sum, ψ̂ would satisfy a free field equation in the bulk, because the crosscap Ishibashi

state is an eigenstate of the Casimir operator of the conformal symmetry, which is equal

the Laplacian in AdS when acting on ψ̂ by (3.1).

To go beyond the free field limit in the bulk, it was proposed in [8–12] to impose the

microscopic causality:

[ψ̂(X), ψ̂(Y )] = 0 (3.5)
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when the two points, X and Y are space-like separated. It turns out that ψφ in the

expansion (3.4) can be determined order by order in the largeN expansion, as demonstrated

to order 1/N2 in [12].

The first non-trivial constraint coming from the microscopic causality is of three-point

functions (two on the boundary and one in the bulk). In the large N limit, a bulk local

state is equal to a particular Ishibashi state, and the three-point function can be expressed

as a two-point functions evaluated on the Ishibashi state. To write down the three-point

function, it is convenient to use the Poincaré coordinates (z, x) with the metric,

ds2 =
dz2 + dx2

z2
. (3.6)

As shown in the previous section, the center of AdS in the global coordinates corresponds

to (z = 1, x = 0), which is where the bulk point is evaluated in the smearing function (1.2).

The two-point function for primary fields, φ1 and φ2, at the boundary points x1, x2
evaluated on the Ishibashi state |φ3〉〉 is given by,

〈0|φ1(x1)φ2(x2)|φ3〉〉 =
(1 + x21)

∆2−∆1
2 (1 + x22)

∆1−∆2
2

(x1 − x2)∆1+∆2
g123(η), (3.7)

where ∆1 and ∆2 are scaling dimensions of the primary fields dual to ψ̂1 and ψ̂2, and

η =
(x1 − x2)

2

(1 + x21)(1 + x22)
, (3.8)

is a cross-ratio invariant under the SO(1, d) preserved by the crosscap. The function g123(η)

takes the form,

g123(η) = C123 η∆3/2 × 2F1

(

∆1 −∆2 +∆3

2
,
∆2 −∆1 +∆3

2
;∆3 + 1− d

2
; η

)

, (3.9)

where C123 is the OPE coefficient of φ1 and φ2 into φ3.

One way to derive (3.9) is to use the explicit form of the scalar OPE with conformal

descendants [13],

φ1(x1)φ2(x2) =
∑

i

C12i

(x1 − x2)∆1+∆2−∆i
C∆i,∆1−∆2(x1−x2, ∂x2

)φi(x2)+higher spin tensors,

(3.10)

where

Ca,b(x, ∂) =
1

B(a+, a−)

∫ 1

0
dααa+−1(1− α)a−−1 ×

∑

m=0

(

−1
4x

2α(1− α)∂2
)m

m!(a+ 1− 1
2d)m

eαx·∂ , (3.11)

with a± = a± b, and evaluate the one-point functions with the Ishibashi state, |φi〉〉.
Alternatively, one may act the conformal Casimir on the two-point function and solve

the eigenvalue problem in the OPE limit as a boundary condition of the second order

differential equation. The latter approach is more or less equivalent to solving the Klein-

Gordon equation in the AdS space-time from the holographic perspective [9, 10]. The
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three-point function computed in this prescription is the Wightman function, so the non-

zero commutator outside of the lightcone generates as a cut in η when any two of the

three-points are light-like separated.

The function g123(η) for generic values of ∆1,2,3 has a cut in η > 1. As we saw in

the previous section, when η > 1, at least one pair of the three points becomes space-like

separated. Therefore, it was proposed in [11] that the cut in η > 1 should be cancelled

by superposition of Ishibashi state and that this procedure determines the superposition

coefficient ψφ order by order in the 1/N expansions.

Let us illustrate the microscopic causality in AdS, by the following two examples.

First we consider a free scalar field ψ̂ in AdS. The three-point function of two ψ̂’s on the

boundary and one composite operator ψ̂ × ψ̂ at the center of AdS, z = 1, x = 0, can be

computed using the bulk boundary propagator,

〈ψ̂(z = 0, x)ψ̂(z = 1, x = 0)〉 =
(

1

1 + x2

)∆

, (3.12)

as,
〈

ψ̂(z = 0, x1)ψ̂(z = 0, x2)
[

ψ̂ × ψ̂
]

(z = 1, x = 0)
〉

AdS
=

2

(1 + x21)
∆(1 + x22)

∆
. (3.13)

Setting the right-hand side to be equal to G(η)/(x1 − x2)
2∆, we find,

G(η) = 2η∆, (3.14)

which does not have singularity or cut at η = 1, as expected.

As another example, consider a local CFT in the bulk AdS (for holographic interpre-

tation of such a model, see [14]). The three-point function can be computed using the

conformal mapping from the flat space to AdS as,

〈ψ1(z=0, x1)ψ2(z=0, x2)ψ3(z=1, x=0)〉AdS=
(1 + x21)

∆2−∆1
2 (1 + x22)

∆1−∆2
2

(x1 − x2)∆1+∆2
G(η) (3.15)

with

G(η) = C123η
∆3
2 . (3.16)

Again we find no singularity or cut at η = 1.

In this case, we can compute the coefficient ψφ of the Ishibashi state expansion (3.4)

of |ψ̂〉 decomposition. Assuming ∆1 = ∆2 for simplicity, we can expand G(η) as

η
∆3
2 =

∑

n=0

Cnη
∆3
2

+n × 2F1

(

∆3

2
+ n,

∆3

2
+ n; ∆3 + 2n+ 1− d

2
; η

)

. (3.17)

with

Cn =
n
∏

k=1

(∆3 + 2k − 2)2

2k(d− 2(∆3 + n+ k − 1))
(3.18)

Therefore, we need to add the infinite tower of Ishibashi states with even integer spacing

to reproduce this bulk operator ψ. Note that the coefficients are not 1/N suppressed

because the bulk theory is strongly interacting. Note also that not all the CFTs have such

a structure of the operator spectrum.
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4 Bootstrap condition on crosscaps

In this section, we consider CFT on a d-dimensional real projective plane RPd, defined by

quotienting the flat Euclidean space R
d by the involution,

x → − x

x2
, (4.1)

which preserves the SO(1, d) subgroup of the Euclidean conformal symmetry SO(1, d+ 1).

The fundamental domain may be taken as x2 ≥ 1.

Conformally mapping the Euclidean space to the cylinder R×Sd−1, the involution (4.1)

becomes (τ,Ω) → (−τ,−Ω), where τ is a coordinate on R, and Ω is a unit vector in R
d

parametrizing Sd−1. Analytically continuing to the Lorentzian signature cylinder, t = −iτ ,

the involution becomes (t,Ω) → (−t,−Ω) and the fundamental domain may be taken as

t ≥ 0. If there is an additional global symmetry in CFT, the involution can be combined

with φ → ǫφ, where ǫ is taken as a Z2 element of the symmetry so that the action is

compatible with the OPE.

Correlation functions of CFT on the real projective plane can be computed by using

the crosscap state, which is a superposition of the Ishibashi states (1.2) as,

|C〉 =
∑

φ

Aφ|φ〉〉 . (4.2)

The coefficient Aφ is related to the one-point function of a primary operator φ on the

projective plane:

〈φ(x)〉RPd
=

Aφ

(1 + x2)∆φ
, (4.3)

where ∆φ is the scaling dimension of φ. As noted n [1], the rotational invariance demands

that only scalar operators have non-zero one-point functions on RPd.

The two-point function of two scalar primary operators, φ1(x1) and φ2(x2), can be

expressed as,

〈φ1(x1)φ2(x2)〉 =
(1 + x21)

∆2−∆1
2 (1 + x22)

∆1−∆2
2

(x1 − x2)∆1+∆2
G(η) , (4.4)

and G(η) has the conformal partial wave decomposition as,

G(η) =
∑

φ

C12φAφη
∆φ

2 × 2F1

(

∆1 −∆2 +∆φ

2
,
−∆1 +∆2 +∆φ

2
;∆φ + 1− d

2
; η

)

. (4.5)

Consistency of CFT on RPd requires the crossing symmetry of two-point functions [15,

16]. It compares the expansion (4.5) at η = 0 to another expansion at η = 1, where x1
approaches the mirror image of x2. Since the OPE is convergent and the two-point functions

are analytic, we obtain the crossing equation or crosscap conformal bootstrap equation, [16],

G(η) = ǫ

(

η

1− η

)

∆1+∆2
2

G(1− η), (4.6)

where the possibility of non-trivial involution ǫ was first introduced in [17].
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Clearly, both examples we discussed at the end of the last section — the free massless

scalar field and the local CFT in AdS, where G(η) = C123η
∆3
2 — do not satisfy (4.6). This

already shows a tension between the microscopic causality and the bootstrap condition.

To see that the bootstrap equation (4.6) is incompatible with the bulk locality in

general, we can apply the conformal partial wave decomposition to the right-hand side

of (4.6) as,

G(η) = ǫ

(

η

1− η

)

∆1+∆2
2

G(1− η)

= ǫη
∆1+∆2

2

∑

φ

C12φAφ(1− η)
∆φ−∆1−∆2

2

× 2F1

(

∆1 −∆2 +∆φ

2
,
−∆1 +∆2 +∆φ

2
;∆φ + 1− d

2
; 1− η

)

. (4.7)

We see that G(η) contains a cut at η > 1 because of the factor of (1 − η)
∆φ−∆1−∆2

2 if

∆φ − ∆1 − ∆2 is not an even integer. We conclude that a solution to the bootstrap

equation (4.6) cannot satisfy the microscopic causality, unless C12φAφ = 0 for all φ’s with

∆φ /∈ ∆1 +∆2 + 2Z.

It may also be instructive to examine a simple solution to the crosscap bootstrap

equation, given by a free scalar field φ(x) in d-dimension with ∆φ = d
2 − 1, and see if they

satisfy the microscopic causality. By using the method of image, the two-point function on

RPd can be computed as

〈φ(x1)φ(x2)〉RPd
=

1

(x1 − x2)d−2
+

ǫ

(1 + 2x1 · x2 + x21x
2
2)

d
2
−1

, (4.8)

where ǫ = ±1 reflects the additional Z2 symmetry on the free scalar field φ → ±φ, which

can be combined with the involution. The corresponding G(η) is given by,

G(η) = 1 + ǫ

(

η

1− η

)
d
2
−1

. (4.9)

This satisfies the conformal bootstrap equation, but the microscopic causality is violated

when d is not even.

5 Gravity dual of crosscap states

We found that the microscopic causality for local states in AdS and the bootstrap condition

for crosscap states in CFT are generically not compatible to each other. Given this, one

may ask if crosscap states have a different geometric interpretation in AdS. In this section,

we discuss a straightforward interpretation using an involution on AdS and find that its

properties are different from those expected for bulk local states.

On the fixed AdS background, the involution acts on the global coordinates

ds2 = − cosh ρ2dt2 + dρ2 + sinh ρ2dΩ2, (5.1)

– 8 –
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as,

(t, ρ,Ω) → (−t, ρ,−Ω). (5.2)

The involution preserves the SO(2, d−1) subgroup of the AdS isometry, and at the boundary

it reduces to the field theory involution discussed in the previous section. The bulk fields

are identified as

ψ̂(t, ρ,Ω) → ǫψ̂(−t, ρ,−Ω) , (5.3)

where we are allowing a possibility of an additional Z2 action ǫ on ψ̂.

After the Euclidean continuation, both the global coordinates (τ, ρ,Ω) and the Poincaré

coordinates (z, x) cover the entire hyperbolic space. Therefore, the Euclidean continuation

of the involution (5.3) can be expressed in the Poincaré coordinates as,

(z, x) →
(

z

z2 + x2
,

−x

z2 + x2

)

. (5.4)

The fundamental domain can be taken z2 + x2 ≥ 1.

The crosscap state |C〉 defined in this way is a superposition of the Ishibashi states,

|C〉 =
∑

φ

Aφ|φ〉〉. (5.5)

The coefficients Aφ’s are computable in the bulk as the one-point function of the bulk field

ψ̂ dual to φ on the boundary. The one-point function vanishes unless φ is scalar.

If the bulk gravity theory is weakly coupled, the bulk field ψ̂ corresponding to a single-

trace scalar operator φ can be described approximately by the free theory,

S =

∫

dd+1x
√−g

(

∂µψ̂∂
µψ̂ +m2ψ̂2

)

. (5.6)

In this case, the one-point function vanishes because of the Z2 symmetry of the action

under ψ → −ψ. We therefore predict that, for all single trace operators, Aφ = 0 in the

weakly coupled gravity regime. Note that this argument does not apply to multi-trace

operators since composites of even number of ψ̂’s are Z2 even.

Continuing to work in the weakly coupled gravity limit, two-point function of single

trace operators φ1 and φ2 can be computed using the method of image as,

G(η) = δφ1,φ2

(

1 + ǫ

(

η

1− η

)∆φ1

)

, (5.7)

with the choice of the involution ǫ = ±1. This reproduces the two-point function of the

generalized free field theory on the real projective plane and satisfies the crosscap bootstrap

equation (4.6). The conformal partial wave decomposition of (5.7) generates infinite towers

of double-trace operators as,

G(η) =
∑

n

Cnη
∆φ1

+n × 2F1

(

∆φ1
+ n,∆φ1

+ n; 2∆φ1
+ 2n+ 1− d

2
; η

)

, (5.8)
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with C0=1, C1=ǫ∆1, C2=ǫ (−2+d)∆1(1+∆1)
2(−6+d−4∆1)

and so on. Therefore the bulk crosscap state |C〉
contains the corresponding infinite towers of Ishibashi states for the double trace operators

of the form, ψ̂�nψ̂ (This infinite sum can be truncated in the free massless scalar case since

�ψ̂ = 0). This can be repeated for two-point functions of multi-trace operators to show

that the crosscap state |C〉 contains an infinite tower of multi-trace Ishibashi states as well.

We have found that contributions of Ishibashi states for single-trace operators are

suppressed in crosscap states in the weakly coupled gravity limit due to the Z2 symmetry

ψ̂ → −ψ̂ of the free scalar action (5.6). In contrast, bulk local states are dominated by

single-trace states in the same limit. This also highlights the difference between crosscap

states and bulk local states.

Recently it was suggested in [18] that CFT on the two-dimensional projective plane may

not have a smooth geometric dual. This may be related to the fact the bulk involution (5.2)

has a fixed point at the origin of AdS and quotieting by it may generate an orbifold

singularity in the bulk.

6 Enhancement to the Virasoro symmetry

When d = 2, the global conformal symmetry is enhanced to the Virasoro symmetry. We

will argue that crosscap states preserve one half of the full Virasoro symmetry in this case

and that we can use Ishibashi states for the full Virasoro symmetry rather than the global

conformal symmetry to expand crosscap states. On the other hand, we will provide some

evidence that bulk local states are not necessarily organized by the Virasoro symmetry.

6.1 Virasoro enhancement at crosscaps

Before discussing crosscap states, it would instructive to review the case for boundary

states. Consider a (t, σ) plane and place a boundary located at t = 0 and extending in

the σ-direction. Because of the scale invariance, the left and right-moving components of

the energy-momentum tensor match at the boundary up to a total derivative along the

boundary as,

Tσt(t = 0, σ) = T (t = 0, σ)− T̄ (t = 0, σ) = ∂σjσσ(σ) . (6.1)

In addition, if we require the local Weyl invariance on the boundary, the total derivative

term must vanish ∂σjσσ = 0 and that the boundary preserves half of the bulk Virasoro

symmetry [19].

There is one more possibility: if we only require the global conformal invariance at the

boundary, the condition becomes [20],

jσσ(σ) = ∂σℓσ(σ) . (6.2)

If this is non-zero, the boundary preserves one half of the global conformal symmetry but

not of the full Virasoro symmetry. The reason why such a possibility exists at all is because

we can always put an additional 0 + 1 dimensional conformal quantum mechanical system

at the boundary, which does not necessarily have the Virasoro symmetry.

– 10 –
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The situation is different for crosscap states, where we cannot introduce localized

degrees of freedom. In particular, if the involution we used to define a crosscap acts

trivially on the energy-momentum tensor, the global conformal invariance alone demands

that the crosscap condition takes the form,

T (t, σ)− T̄ (−t, σ + π) = 0. (6.3)

In this case, one half of the full Virasoro symmetry is automatically preserved.

One consequence of this is that the bootstrap condition with the Virasoro symmetry

is the same as the one with only the global conformal symmetry. Indeed, the numerical

analysis in [16] shows that, in simple models such as the 2d critical Ising model, the

bootstrap condition for the crosscap is so strong that the solution automatically respects

the Virasoro symmetry.

There is one caveat: when the energy-momentum tensor is a part of a larger chiral alge-

bra such as the W-symmetry, there is a possibility to introduce non-trivial action on Tµν un-

der the involution. From the holographic viewpoint, this can happen in higher spin theories.

Preserving one-half of the Virasoro symmetry imposes strong constraints on solutions

to the bootstrap equation. In fact, the constraints can be too strong to have any solution

at all. For example, a heterotic CFT with different values of Virasoro central charges for

its left and right-movers do not admit an involution on the real projective plane.

6.2 No Virasoro enhancement for bulk local states

Let us turn to the microscopic causality conditions. We will use the 2d critical Ising model

as an example to see if the conditions can be satisfied by a superposition of Ishibashi states

for the full Virasoro symmetry.

In the critical Ising model, the Virasoro OPE gives,

[σ]× [σ] = [1] + [ǫ], (6.4)

and because of the Virasoro symmetry, one may construct the crosscap state from the

Virasoro Ishibashi states as,

|C〉 = |1〉〉Virasoro +

√
2− 1

2
|ǫ〉〉Virasoro. (6.5)

Correspondingly, the two-point function of the spin operator σ on the real projective plane

can be decomposed as,

Gσσ(η) = (1− η)3/82F1

(

3

4
,
1

4
;
1

2
; η

)

+

√
2− 1

2
η1/2(1− η)3/82F1

(

3

4
,
5

4
;
3

2
; η

)

. (6.6)

This two-point function satisfies the bootstrap equation for the crossing symmetry, G(η) =

[η/(1− η)]∆σG(1− η).

Let us turn our attention to the microscopic causality condition. The question is

whether it is possible to take an appropriate superposition,

G(η) = (1− η)3/82F1

(

3

4
,
1

4
;
1

2
; η

)

+ ψǫ η
1/2(1− η)3/82F1

(

3

4
,
5

4
;
3

2
; η

)

, (6.7)
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to cancel the cut at η > 1 by adjusting the parameter ψǫ. It turns out that it is not

possible. Since both conformal blocks,

2F1

(

3

4
,
5

4
;
3

2
; η

)

=

√

2

η
·
√

1−√
1− η√

1− η

2F1

(

3

4
,
1

4
;
1

2
; η

)

=
1√
2
·
√

1 +
√
1− η√

1− η
. (6.8)

have cut for η > 1 in both their denominators and numerators, it is not possible to cancel

them by adjusting the single parameter ψǫ. In this case, we cannot construct a solution to

the microscopic causality by a superposition of Ishibashi states for the Virasoro symmetry.

Though we do not expect that the 2d Ising model has a weakly coupled gravity de-

scription, this illustrates the difficulty in cancelling cuts at η > 1 by a superposition of

Virasoro conformal blocks for a crosscap.
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