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Abstract: We study the moduli space of type IIB string theory flux compactifications on
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the periods of the CY in the full z-plane as a series expansion in z around the critical

points to arbitrary order. This allows us to discard fake vacua, which appear as a result of

keeping only the leading order term in the series expansions. Due to monodromies vacua

are located at a given sheet in the z-plane. A dS vacuum appears for a set of fluxes. We

revisit vacua with hierarchies among the 4D and 6D physical scales close to the conifold

point and compare them with those found at leading order in [1, 2]. We explore slow-roll

inflationary directions of the scalar potential by looking at regions where the multi-field

slow-roll parameters ε and η are smaller than one. The value of ε depends strongly on the

approximation of the periods and to achieve a stable value, several orders in the expansion

are needed. We do not find realizations of single field axion monodromy inflation. Instead,

we find that inflationary regions appear along linear combinations of the four real field

directions and for certain configurations of fluxes.
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1 Introduction

Type IIB string theory flux compactifications on Calabi-Yau (CY) orientifolds have become

a fruitful scenario to construct effective four dimensional models with desirable phenomeno-

logical features. These compactifications attracted a lot of attention after the seminal work

of Giddings, Kachru and Polchinski (GKP) [1], where a mechanism for stabilization of the

axio-dilaton and the complex structure moduli was found based on the flux superpoten-

tial [3, 4]. Moreover, these compactifications provide a rich arena to study phenomenology.

Fluxes’ backreaction causes the internal CY manifold to be highly warped, as studied in [5]

where uncompact flux supergravity solutions near the conifold were found. This opened up

the possibility that large hierarchies among the space-time and compactification physical

scales can be realised in string theory constructions as discussed in [1]. Using this approach

to moduli stabilization, extensive studies appeared on the possibility to construct effective

4D models with (meta)stable de Sitter vacua, starting with the work of [6] and/or with

regions of moduli space suitable for slow-roll inflation.
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Of particular interest are stringy models of inflation with potentially detectable pri-

mordial gravitational waves1 [8–11]. These models predict, via the Lyth bound [12], a

super-Planckian field excursion and are thus particularly sensitive to ultraviolet correc-

tions through higher dimensional operators and by quantum corrections to the inflaton

mass. Therefore a mechanism to prevent such corrections while preserving the inflationary

conditions is required. An attractive possibility to address this issue is to invoke a sym-

metry that forbids large quantum corrections. In particular, the shift symmetry governing

axions can realize such a symmetry. The continuous shift symmetry can be broken by

non-perturbative effects to a discrete one, as in natural inflation [13], or spontaneously

due to couplings to non-trivial background flux for example, giving rise to a realization

of monomial or chaotic inflation [14] with axions [15]. String theoretic embeddings of the

later possibility are known as axion monodromy inflation [8, 9].

We are interested in F-term axion monodromy, which arises through the F-term in

the superpotential [16, 17]. One interesting possibility to realise F-term axion monodromy

inflation in string theory2 is to use the axion directions of the complex structure mod-

uli [25–31]. Starting with [25] various works have explored the complex structure modulus

shift symmetry and its role in axion monodromy inflation closed to the LCS point. In [30]

the CS modulus was used to realize a bottom-up model of right handed sneutrino infla-

ton. Identifying the inflaton with a CS modulus direction also seems to make possible a

hierarchically small inflaton mass as discussed in [27]. In [28] the authors suggest that the

required tuning of the fluxes to obtain small superpotential coefficients for the CS moduli is

more viable in the context of F-theory models of axion monodromy, as compared with type

IIB models. It has also been suggested [29] that these models may fulfill the constraints of

the Weak Gravity Conjecture (WGC) [32].

To study the complex structure (CS) moduli space of the internal six dimensional

manifold in CY compactifications, one has to study the periods of the CY. These are

defined as the integrals of the holomorphic (3, 0)-form over the 3-cycles of the manifold in

an integral symplectic basis of H3(CY,Z).

According to the theorem of Landman [33], at certain critical points in the complex

structure moduli space, the periods can have a logarithmic or finite order branch cut

behaviour. This leads to a monodromy matrix µi ∈ Sp(b3,Z) that acts on the periods Π(z)

when the i-th critical point is encircled. The matrix µi has the property (µki − 1)p+1 = 0,

k ∈ N and p ≤ 3, where p is the smallest integer so that the r.h.s. is zero. For p = 0, k > 1

there is an Zk orbifold singularity. The cases k = 1 are the unipotent cases. The conifold

has p = 1 and the maximal unipotent case is p = 3. In the case of the mirror quintic one

has a conifold point, a large complex structure (LCS) point, or maximal unipotent point

and a Z3
5 orbifold point.

Hence the monodromies around each of the different critical points are of different

nature. For example, the monodromy around the orbifold has a finite order. Instead,

1Although whether primordial gravitational waves can be realised within perturbative string theory

remains an open question [7].
2For further recent studies on axion monodromy see [18–21] and in non-geometric compactifica-

tions [22–24].
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monodromies around the LCS and conifold points have infinite order. This has triggered

interest in these critical points as potential set ups to realise large field inflation in string

theory supergravity models, using the mechanism of axion monodromy [8, 9]. Indeed,

the Kähler potential is invariant under a shift symmetry, or more generally a monodromy

along the argument of the complex structure, arg(z) → arg(z) + 2πn, which is broken

spontaneously by the fluxes.

A common simplification used in the literature to realise CS axion monodromy in these

type of compactifications is to consider only the leading order term in the series expansion

of the periods in terms of the CS moduli [21, 27, 34, 35] when computing the scalar potential

V =
eK

2κ2
10gs

(
|DW |2 − 3|W |2

)
,

where the periods enter into the superpotential W and the Kähler potential K (see below).

However, one may worry that by cutting the series at the leading order might lead to

apparent vacua, which disappear when higher order terms are included or miss interesting

regions for cosmological applications. In [31] for example, the authors kept up to second

order in the periods’ expansion and they found interesting new potentials suitable to study

natural inflation.

In the present work we consider this problem in detail by studying type IIB orientifold

flux compactifications keeping all orders in the series expansion of the periods in the com-

plex structure modulus, necessary to achieve convergence of the solutions we study. To

achieve this, we need to keep up to order 600 in the series’ expansion. In this sense our

computations are exact. We focus on the CY mirror of the quintic on P4 [36] and compute

the periods of this manifold in four different patches, around the three singular points,

and around a regular point, keeping all necessary orders in the series until convergence is

achieved. We also obtain the transition functions that allow us to move from one patch to

the other, covering the whole CS moduli space.

The CS moduli space of the mirror quintic has been previously studied in [36, 37].

In [38, 39] the authors studied minima using monodromies in the mirror quintic and looked

at the non-perturbative stability and inflation in the complex structure and axio-dilaton

sector. We study the periods around the conifold as in [37], but do this up to a higher

order in the series expansion in z, until convergence is achieved in the search for vacua and

inflationary regions. We also compute the periods around the orbifold, the LCS and around

regular points in the z-plane. The solutions around regular points serve to explore regions

close to the boundaries of convergence around the critical points. To date, the periods

around the conifold in the integer symplectic basis are only known numerically. This is

because the transition matrices (conifold-orbifold, conifold-LCS) can only be determined

numerically. Considering all these patches and the transition matrices we study the whole

complex structure space in the mirror of the quintic on P4. This method has been used

in [40] to study the complex structure space of the 4-fold mirror of the sextic on P5, where

an integral symplectic basis for 4-folds was constructed. The periods and the complex

structure moduli space of CY 4-folds have been studied for the first time in [41] and
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investigated through the last two decades [42–44], but the subject is still rich of open

mathematical questions.

Including the higher order terms in the series until convergence is achieved, we accom-

plish various goals. First, we find global (no-scale) vacua appearing beyond the leading

order in z. That is, by obtaining the integer symplectic basis in the whole CS moduli space,

we are able to explore the vacua landscape in regions far from the critical points. We verify

the existence of hierarchies in the physical scales as found in [1], where they took only the

leading order contributions to the periods, Π(z). We find a correction of order one to this

result. We also find that in general, the exact vacua (i.e. the solutions found keeping all

orders in the series until convergence is reached), differ from the near conifold approxi-

mation solutions studied in [1] and [2]. We verify that hierarchies are a generic feature

of flux compactifications. Finally, we look for inflationary regions, where the multi-field

slow-roll parameters are smaller than unity, by varying the fluxes and moving through the

whole moduli space. We find small slow-roll parameters over large moduli regions. These

inflationary regions seem to happen generically in a multi-field fashion, such that during

inflation there are field’s displacements along all of the moduli directions.

As mentioned already, we are interested in the dynamics and properties of the complex

structure z, and axio-dilaton τ moduli space. Therefore, we focus on no-scale models of the

mirror quintic. This will allow us to explore the CS and the dilaton moduli space in more

detail and to identify whether or not the axions associated to these fields can be used as

inflaton candidates. In order to stabilize the Kähler moduli, it would be necessary to include

non-perturbative contributions to the superpotential3 or to add (non)-geometric fluxes. It

is interesting to mention that a large number of Kähler moduli could increase the chances

to find axionic inflationary regions as recently studied in [46, 47]. Notice however that

a realistic phenomenological scenario should involve the presence of interactions between

closed string moduli and gauged symmetric fields coming from the open string sector, for

which moduli stabilization is still work in progress. For interesting approaches see [48–50]

and references therein.

The paper is structured as follows. In section 2 we fix our notation and conventions by

reviewing orientifold flux compactifications in type IIB string theory. In 2.1 we write down

the relevant N = 1 supergravity action in four dimensions and we describe the integral

symplectic basis for the periods. In section 2.2 we discuss the properties of the mirror quin-

tic CY. Finally in section 2.3 we describe the procedure to solve the PF equations for the

periods in all different patches (orbifold-, LCS-, conifold- and a regular point convergence

regions) giving explicitly approximated expressions. We finish section 2 by describing the

monodromies as shift symmetries of the Kähler potential and their breaking by the flux

generated superpotential in 2.4. In section 3 we focus on the scalar potential and describe

the vacua that we find for different flux configurations. In section 3.1 we study the vacua

near the conifold in [1, 2] and compare them with the exact vacua that we find.4 In sec-

3For example, in [45] parametrically controlled moduli stabilization of the h1,1 = 51 Kähler moduli was

demonstrated extending the analysis to F-theory [40].
4Note again that we refer to the vacua we find taking into account all necessary terms in the series for

the periods needed for the solutions to converge.
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tion 3.2 we describe in detail the vacua we find inside the conifold convergence region.

Finally in 3.3 we explore inflationary regions, where the multi-field slow-roll parameters

are small for large regions of the moduli space. We find inflationary regions extending

from the conifold- to the orbifold point where no particular direction in the moduli space

is favoured. That is, inflation seems to occur generically in a multi-field fashion. In partic-

ular, the effective inflationary direction does not seem to occur particularly along any shift

symmetric directions (arg(z) and Re(τ)). Therefore, we do not see a plausible realization

of axion monodromy inflation in this set up. We show further that the ε parameter is very

sensitive to the approximation considered for the period’s series expansion. We conclude

the main text in section 4 with a discussion of our findings. In appendix A we discuss the

integral symplectic basis for the periods in the different patches and present the relevant

transition functions. In appendix B a correction of one order of magnitude is given to the

hierarchy formula of [1]. Finally in appendix C we give an analytical description of the

scalar potential along a SUSY preserving direction for the axio-dilaton (DτW = 0), moving

with monodromies along the conifold point.

2 Type IIB flux compactification on the mirror quintic

In this section we review the basic ingredients of four dimensional supergravity which

arises from the low energy limit of type IIB string theory compactified on Calabi-Yau

(CY) orientifolds with non-trivial RR and NS-NS 3-form fluxes. We describe the integral

symplectic basis for the CY periods, which is required for flux quantization. Along the way

we fix our notation and conventions.

2.1 N = 1 SUGRA

We start with the ten dimensional effective supergravity action in the Einstein frame5

including fluxes and focus on the effective four dimensional action after dimensionally

reducing it (see [1] for details). That is, in four dimensions we are interested in the action

S4 =

∫
d4x
√
g

[
M2

Pl

2
R−M2

PlKab̄ ∂µΦa∂µΦ̄b̄ + V (Φl)

]
, (2.1)

where M2
Pl = 1/κ2

4 = V6/(κ
2
10g

2
s) is the Planck scale, V6 is the dimensionfull 6D

volume, κ2
10 = (2π)7(α′)4/2 ≡ `8s/4π, `s =

√
2πα′ the string scale and gs = 〈eφ〉 the

string coupling. The indices a, b run over the moduli fields present, which are the axio-

dilaton τ = C0 + i eφ, the complex structure zi, i = 1, . . . , h2,1 and the Kähler moduli, Tm,

m = 1, . . . , h1,1. The Kähler potential for the moduli is given by

K = − ln [−i (τ − τ̄)]− ln

[
i

∫
CY

Ω ∧ Ω̄

]
− 2 ln [V] , (2.2)

where Ω is the holomorphic (3, 0) form of the CY and V is the dimensionless volume defined

in terms of the dimensionless Kähler moduli Tm.

5We use the conventions for transforming to the Einstein frame GEMN = e(φ−φ0)/2GsMN , where GMN is

the 10D metric, 〈eφ〉 = eφ0 = gs with φ the dilaton and gs is the string coupling. With these conventions

the volumes are conformally invariant.
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The complex structure moduli can be parameterised by the integrals of Ω over a

canonical homology basis of the CY. These are known as the periods, Π of the CY. In this

work according to [51] we use the canonical integral symplectic basis (αI , β
I) on H3(CY,Z)

and its dual homology basis (AI , BI) of H3(CY,Z) satisfying∫
CY

αI ∧ βJ = δJI = −
∫

CY
βJ ∧ αI ,

∫
CY

αI ∧ αJ =

∫
CY

βI ∧ βJ = 0 , (2.3)∫
AJ
αI = −

∫
BI

βJ = δJI . (2.4)

The indices I and J run from 0 to h2,1. With respect to this basis the CY periods are

defined as

Π =

(
X I

FI

)
=

(∫
AI Ω∫
BI

Ω

)
, (2.5)

and consequently, the holomorphic 3-form can be expanded as

Ω = X IαI −FIβI . (2.6)

Similarly the Kähler potential for the complex structure moduli is given by

KCS = − ln
(
−i Π̄T Σ Π

)
, (2.7)

where Σ denotes the symplectic matrix, defined as

Σ =

(
0 1k×k

−1k×k 0

)
,

with k = 1 + h2,1.

In the following we shortly review the integral symplectic basis (2.5) which is required

for flux quantization. This basis is the one employed through the paper in all the different

patches in the CS moduli space. Special geometry implies the existence of a holomorphic

prepotential F , which is homogeneous of degree two in the X I . The FI are given as

derivatives FI = ∂F
∂XI . The prepotential determines the periods, the couplings, as well as

the Kähler potential, see e.g. [52]. Mirror symmetry implies that at the large radius point

of a CY 3-fold M3, corresponding to the large complex structure (LCS) point on the mirror

W3 the prepotential reads as follows [52, 53]

F = −
C0
ijkX iX jX k

3!X 0
+ nij

X iX j

2
+ ciX iX 0 − i χζ(3)

2(2π)3
(X 0)2 + (X 0)2f(q)

= (X 0)2F̃ = (X 0)2

[
−
C0
ijkt

itjtk

3!
+ nij

titj

2
+ cit

i − i χζ(3)

2(2π)3
+ f(q)

]
, (2.8)

where i, j, k = 1, . . . , h2,1, qi = exp(2πiti), f(q) represents the instanton contributions,

C0
ijk, cij , ni and χ are topological data of the manifold [40]. The integral basis for the
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periods at the LCS point is then given by

ΠLCS =


X 0

X i

F0

Fi

 = X 0


1

ti

2F̃ − ti∂iF̃
∂F̃
∂ti

 = X 0


1

ti

C0
ijk

3! t
itjtk + cit

i − iχζ(3)
(2π)3 + f(q)

−C0
ijk

2 titj + nijt
j + ci + ∂if(q)

 . (2.9)

The mirror map reads ti = X i
X 0 = 1

2πi

(
log(zi) + Σi(z)

)
, i = 1, . . . , h2,1, where zi are the

complex structure moduli and Σi(z) are power series in zi. In section 2.2 we describe such

LCS point for the CY 3-fold mirror of the quintic on P4 which is the compactification

employed. For this case h2,1 = 1, C0
111 = 5, c1 = 50

24 , n11 = −11
2 and χ(W3) = 200. We are

interested however on other critical points, in particular the conifold, close to which the

periods have to be determined, and one needs to obtain their expressions in terms of the

integer symplectic basis (2.9).

Turning on fluxes in the different 3-cycles of an orientifold CY, generates a four di-

mensional scalar potential for the axio-dilaton and the complex structure moduli, given

by [1],

V =
1

2κ2
10

∫
CY

d6y
√
g̃
G(3) · Ḡ(3)

12 Im τ
− i

4κ2
10 Im τ

∫
CY

G3 ∧ Ḡ3 , (2.10)

where the inner product of the three-form fluxes is performed using g̃mn given by eq. (3.7)

below. The first contribution comes from the fluxes and the second from the branes and

orientifold charges. The 3-form flux G(3) is defined in terms of the RR, NS-NS flux and

dilaton as:

G(3) = F(3) − τH(3) , (2.11)

with

F(3) = F I(3)αI − F(3)Iβ
I , H(3) = HI

(3)αI −H(3)Iβ
I , (2.12)

so that

G(3) = F(3) − τH(3) = GIαI −GIβI , (2.13)

with GI = F I(3) − τH
I
(3) and GI = F(3)I − τH(3)I .

The F(3), H(3) fluxes on the 3-cycles of the orientifold CY are quantised as

1

(2π)2α′

∫
AI
F(3) = M I ,

1

(2π)2α′

∫
AI
H(3) = N I ,

1

(2π)2α′

∫
BI

F(3) = MI ,
1

(2π)2α′

∫
BI

H(3) = NI . (2.14)

Note that due to the Dirac quantization condition the fluxes need to be defined with respect

to an integral basis of H3(CY,Z) given in (2.9). The scalar potential (2.10) can be written

in an N = 1 supergravity form as

V =
1

2κ2
10gs

eK
[
Kab̄DaWDb̄W − |W |2

]
, (2.15)
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The scalar potential (2.15) depends on the superpotential W and the Kähler potential.

In (2.15) the indices a, b denotes the moduli fields, Kab̄ is the inverse metric in field space

and DaW = ∂aW + ∂aKW is the supersymmetric covariant derivative of W . The super-

potential generated by the fluxes is given by the Gukov-Vafa-Witten (GVW) superpoten-

tial [3]:

W =

∫
CY

G(3) ∧ Ω =

∫
CY

(F(3) − τH(3)) ∧ Ω, (2.16)

= (F I(3) − τH
I
(3))FI − (F(3)I − τH(3)I)X I = GΣ Π ,

where in an abuse of notation, we have omitted the use of explicit indices in the last

expression and we have defined
∫
AI ,BJ

G(3) = G = (GI , GJ) where the fluxes are defined

through (2.14) (that is e.g.
∫
AI F(3) = M I(2π)2α′ ≡ F I(3)).

We consider non-supersymmetric no-scale models [1] where the the Kähler moduli

cancel the negative contribution to (2.15) by setting Kmn̄DmWDn̄W − 3|W |2 = 0. Since

in this case the GVW superpotential depends only on the dilaton and the complex structure

moduli the scalar potential is positive definite with the form

V =
1

2κ2
10gs

eK
[
Kij̄DiWDj̄W

]
. (2.17)

The indices run only over the axio-dilaton and the complex structure modulus. This is the

potential that we study in the rest of the paper. As already mentioned, for our analysis

we shall not consider the stabilization of the Kähler moduli. In the case of the mirror

quintic h2,1 = 1 and we use the following notation for the components of the periods and

the fluxes:

Π =

(
X I

FI

)
=


Π1

Π2

Π3

Π4

 , (2.18)

(F I(3), F(3)I) = (F1, F2, F3, F4),

(HI
(3), H(3)I) = (H1, H2, H3, H4),

(GI(3), G(3)I) = (G1, G2, G3, G4). (2.19)

2.2 The mirror of the quintic in P4

We consider the explicit orientifold compactification of type IIB string theory where the

internal manifold is the mirror of the quintic hypersurface on P4 [36]. We start by de-

scribing the properties of the CY manifold. In particular, we describe the critical points

in the complex structure moduli space of the manifold, namely the orbifold, large complex
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structure and conifold singularities and the structure of the monodromies as one encircles

these critical points. We shall describe how to compute the periods for this manifold in

the vicinity of those singular points, covering thus the full complex structure moduli space.

We use these results in the next section to explore new vacua and their properties, as well

as potential regions to realise slow-roll inflation. Let us first review the construction of the

mirror of the quintic CY in P4 following [36]. The quintic CYM is the 3-fold constructed as

the most general quintic hypersurface P̃ = 0 in P4. This variety has 101 complex structure

moduli corresponding to the independent coefficients entering P̃ . It further has a single

Kähler modulus and hence Euler number given by χ(M) = 2(h1,1 − h2,1) = −200.

The mirror of the quintic CY threefold W is obtained by modding out a Z3
5 symmetry

from a one parameter family of polynomials on P4. This family is given by

Wψ =

{
(x1, x2, x3, x4, x5) ∈ P4, P =

5∑
k=1

x5
k − 5ψ

∏
xk = 0

}
. (2.20)

Wψ has a Z3
5 symmetry generated by phase rotations xl → e

2πig
(k)
l

5 xl, l = 1, . . . , 5 with

g(1) = (0, 1, 0, 0, 4), g(2) = (0, 0, 1, 0, 4) and g(3) = (0, 0, 0, 1, 4). The symmetry [36] is

modded out to obtain the mirror quintic manifold: Wψ/Z3
5. In the mirror manifold, the

parameter of the invariant deformation ψ constitutes the single complex structure modulus.

As dictated by mirror symmetry, the mirror quintic has h1,1 = 101 Kähler moduli, a single

complex structure modulus, h2,1 = 1, which we denote by z = ψ5 and Euler number

χ(W) = +200. It also has Betti number b3 =
∑3

i=0 h
3−i,i = 4, that is, four 3-cycles where

the three-form fluxes can be turned on. Therefore it has four periods (2.5), which are all

functions of the single complex structure modulus z. There are three critical points in the

complex structure moduli space, the orbifold, the conifold and the large complex structure.

Both the conifold and the large complex structure points arise when

P = dP = 0 . (2.21)

The conifold arises at the locus ∀i 5x5
i − 5ψx1x2x3x4x5 = 0, which is satisfied for ψ5 = 1

and |xi| = 1. At this point the CY has a nodal singularity. The modulus ψ can be

parametrized by the coordinate zC given as zC = 1 − ψ−5. At the point ψ → ∞, the

manifold degenerates to x1x2x3x4x5 = 0. This is the large complex structure point (LCS)

also called the maximal unipotent monodromy (MUM) point located at zC = 1. Finally

the point ψ = 0 corresponds to an specially symmetric point, the orbifold, located at

zC =∞. Transport of the periods around the critical points ψ0 = 0, 1,∞, lead to specific

monodromy transformations:

Π→ µΠ , (2.22)

where µ is the monodromy transformation matrix. We denote the monodromies around the

conifold, the large complex structure and the orbifold points by µC , µM and µO respectively.

The monodromy around the LCS (ψ0 = ∞) fulfills the condition (µM − 1)4 = 0, which

means that this is a point of maximal unipotent monodromy. The monodromy µM is of

infinite order, which implies that at every turn around ψ0 =∞ the periods acquire different
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values. Around the orbifold point (ψ0 = 0) the monodromy satisfies µ5
O = 1, and it is

therefore of order 5. Finally, around the conifold point ψ0 = 1, we have (µC − 1)2 = 0 and

this point is unipotent. Also µC is of infinite order. The periods (2.5) obey Picard-Fuchs

(PF) equations, whose solutions give the dependence on the complex structure modulus

that will be explored in section 2.3. From the explicit expressions of the periods the

matrices µO, µC , µM can be obtained in any given basis, we will write them in terms of the

integral symplectic basis in (2.39) and (2.40).

The mirror quintic Wψ/Z3
5 possesses a symmetry which identifies x1 ↔ x2 leading to

the possibility of having O7-planes and O3-planes [54] . A fixed hyperplane under this

symmetry is given by

(x1, x1, x3, x4, x5) ∈ P4 with 2x5
1 + x5

3 + x5
4 + x5

5 − 5ψx2
1x3x4x5 = 0, (2.23)

which has two complex internal dimensions and represents an O7-plane. Additionally the

locus (1,−1, 0, 0, 0), which is also fixed under x1 ↔ x2 constitutes an O3-plane. That

is, the O7-plane divisor is given by x1 − x2 = 0, and an O3-plane appears at the point

x1 = −x2 = 1, x3 = x4 = x5 = 0.

Therefore the mirror quintic orientifold compactification contains O3 and O7-planes.

In order to cancel tadpoles in this set-up we should also include spacetime filling D7-branes,

as well as D3-branes. We make here a short review of [55] applied to our setup. The 3-form

fluxes contribute to the D3-brane charge tadpole and therefore we have

Nflux =
1

2κ2
10T3

∫
CY

H(3) ∧ F(3) =
gs

(2π)4(α′)2
F · Σ ·H,

=
NO3

2
− 2ND3 +

χ(DO7)

6
+
∑
a

(QaD7
+Q′aD7

), (2.24)

=
NO3

2
− 2ND3 +

χ(DO7)

6
+
∑
a

Na
χ(Da)

12
,

where T3 = (gs(α
′)2(2π)3)−1 is the D3-brane tension, the index a numerates the D7-branes,

Da is the divisor wrapped by the D7-brane, χ(Da) the corresponding Euler number, DO7

is the divisor that corresponds to the O7-plane, 2ND3 is the number of D3-branes and their

images. χ(DO7) is computed via [55]

χ(DO7) =

∫
CY

c2(DO7) ∧ [DO7], (2.25)

with c2 the second Chern class of the divisor DO7. The calculation of χ(DO7) is involved

because of the presence of 101 Kähler moduli. The D7 tadpole cancellation reads [55]∑
a

Na([Da] + [D′a]) = 8[DO7], (2.26)

where D′a is its image under the orientifold projection of Da.

When the D7-branes are on top of the O7-plane we have [Da] = [D′a] = [DO7], this

simplifies the equation (2.26) to
∑

aNa = 4. In this case there is a zero contribution from
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the branes to the superpotential and the Kähler potential WD7 = 0 (see (4.57) in [56]) and

KD7 = 0 (see (4.26) in [56]) avoiding a mixture with CS moduli. The D3-brane tadpole

cancellation condition (2.24) reduces to

Nflux =
NO3

2
+
χ(DO7)

2
− 2ND3. (2.27)

In what follows we assume for our study that by incorporating the necessary number

of D3-branes and by computing the Euler number of the divisors in the mirror quintic, it

is possible to cancel the tadpole (2.24) or (2.27) for any flux configuration.

2.3 Picard-Fuchs equations

In this section we write the Picard-Fuchs (PF) equations, which are fourth order differ-

ential equations, satisfied by the periods, in four different coordinates systems. Three of

those correspond to convenient coordinates near the critical points of the complex struc-

ture moduli space: the orbifold, conifold and large complex structure points. The other

coordinates system is defined near a regular point in the CS moduli space. This system

is convenient to study the periods close to the boundaries of convergence from the criti-

cal points patches. We describe the power series and logarithmic solutions in each of the

patches and the method to obtain the transition matrices to the integral symplectic ba-

sis (2.9). This moduli space has been studied previously in [37, 51]. In [37] the periods

near the conifold were obtained. Here we are interested in having the period series up

to an arbitrary order in all different patches, and for this we also compute the transition

matrices between all of those patches.

Let us start by looking at the PF equations on the vicinity of the LCS point. A change

of coordinates from ψ to ψ−5 in Wψ/Z3
5 was used in [51]. Here we instead use the variable

zM = ψ−55−5. We label the variable with a subindex M because the LCS (ψ = ∞ i.e.

zM = 0) is a point of MUM. Using this variable, the PF equation takes the form

(θ4
M − zM (θM + a1)(θM + a2)(θM + a3)(θM + a4))πM,i = 0, i = 1, 2, 3, 4, (2.28)

with πM,i the solutions on the LCS basis, θM = zM∂zM and ak = k/5, k = 1, 2, 3, 4.

The next change of variables we do is zO = 1/zM . We denote this as the orbifold basis

since the orbifold point is located at zO = 0. The PF equations in these coordinates read

(−zO/55θ4
O + (a1 − θO)(a2 − θO)(a3 − θO)(a4 − θO))πO,i = 0, i = 1, 2, 3, 4, (2.29)

with θO = zO∂zO and πO,i the solutions in the orbifold basis.

The most relevant coordinate system for our discussion, is defined as zC = (1− zM55)

denoting the conifold basis with the conifold singularity located at zC = 0. Making the

change of variables in (2.28) we obtain the PF equations

(θ4
C − (1− zC)(a1 − θC)(a2 − θC)(a3 − θC)(a4 − θC))πC,i = 0, i = 1, 2, 34, (2.30)

where πC,i are the solutions in the conifold basis and θC = (zC−1)∂zC . The three different

coordinates are related to each other via zM = 1/zO = 5−5(1 − zC). In the coordinates

– 11 –



J
H
E
P
1
0
(
2
0
1
6
)
0
8
2

MUM Conifold 

Orbifold
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Figure 1. The figure represents the three different critical points of the CS moduli space of

the mirror of the quintic CY on P4 on the complex zM plane. As well we represent the regular

point where we also constructed the solution to the PF equation in order to improve convergence,

zM = (1− eip)/55 with −π/3 < p < π/3. The yellow dashed line represents the branch cut chosen

for the conifold periods. Recall that zC = 1−55zM and zO = 1/zM . The LCS, conifold and orbifold

series convergence regions are coloured in green, pink and blue respectively.

described above around the conifold, LCS and orbifold points, the convergence radii of the

period series solution are 1, 5−5 and 55 respectively. Let us also write the PF equations

in the vicinity of an arbitrary point lying on the boundary of the conifold convergence

region. That is, we write the conifold coordinates of that point as z0
C = eiα. These new

coordinates allow us to study the potential with precision close to the limit of convergence

of the conifold coordinates. We represent the critical points as well as this regular point in

figure 1.

The coordinates of a given point in the conifold and α coordinates are related as

zC = zα + eiα. Making this change of variable in (2.30) one obtains the PF equations in

terms of the zα coordinates:

(θ4
α − (1− zα − eiα)(a1 − θα)(a2 − θα)(a3 − θα)(a4 − θα))παi = 0, i = 1, 2, 3, 4, (2.31)

where παi are the solutions in the regular point basis and θα = (zα+ eiα−1)∂zα . The point

α = π constitutes the LCS point. The convergence radius of the series power solutions

around eiα is 1. We solve the PF equations in the vicinity of the points eiα. For this

set of points, there is convergence of both the LCS and conifold coordinate series when

−π/3 < α < π/3. This reads

zα = eiα − eiπ/3, zM = 1− eiα, zC = eiα, −π/3 < α < π/3 .

This extra coordinate system serves in the study of vacua which are very close to the

conifold or LCS convergence regions. We use them to discard fake solutions appearing as

a consequence of cutting the series of the periods without achieving convergence.

Solving the PF equations. The solutions to the PF equations are generalised hyper-

geometric functions [51, 57] and have been previously studied in the literature in different
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bases. In [51] the authors studied the periods in the LCS and orbifold convergence regions

and gave an analytic expression valid for both regions. In [37] the authors computed the

periods on the conifold convergence region and the transformation matrix to the integral

symplectic basis, they explicitly gave the series to order five. Here we determine the so-

lutions near all the critical points and in particular near the conifold point, up to order

600. This allows us to achieve convergence in our calculations when looking for vacua and

inflationary regions. The transition matrices that we compute in this way, match those

in [37]. In the following we describe how to obtain the solutions of the PF equations in the

bases zM , zC , zO described previously, and the Ansätze employed.

Through this section we denote the independent solutions of the PF equations by π,

while recall that Π denotes the periods in the integral symplectic basis (2.9). First, we

search for solutions near the conifold point, making the power series Ansatz

πC,i = zxC(c0 + c1zC + c2z
2
C + · · ·+ cnz

n
C), i = 1, 2, 3. (2.32)

Applying the PF operator (2.30) to (2.32), the solutions for the initial equation are x =

0, 12, 2. The degeneracy of x at x = 1 indicates the existence of a logarithmic solution.

This solution vanishes when zC → 0 and can be constructed as

πC,4 = zC(c0 + c1zC + c2z
2
C + · · ·+ cnz

n) ln zC + zxbC (b0 + b1zC + b2z
2
C + . . . ). (2.33)

Substituting (2.32) into (2.28) we obtain a set of recursive equations for the coefficients

to each order in the expansion. For example, in the case x = 0 the first two equations are

0 =
19 c0

5
− 74 c1

5
+ 12 c2,

0 = −5399 c0

625
+ 66 c1 −

642 c2

5
+ 72 c3. (2.34)

The system of equations is solved recursively. To order six, we obtain the expressions

πC,1 = 1 +
2

54
z3
C +

97

2 · 3 · 54
z4
C +

2971

2 · 3 · 55
z5
C +

13 · 1175173

2 · 3 · 511 · 7
z6
C +O(z7

C), (2.35)

πC,2 = zC +
7

10
z2 +

41

75
z3
C +

1133

4 · 54
z4
C +

6089

56
z5
C +

7 · 13 · 29 · 61

2 · 3 · 57
z6
C +O(z7

C),

πC,3 = z2
C +

37

30
z3
C +

2309

1800
z4
C +

31 · 9241

233255
z5
C +

41932661

24 · 33 · 57
z6
C +O(z7

C),

πC,4 = − 23

360
z3
C −

6397

3 · 106
z4
C −

333323

25 · 57
z5
C +

103 · 353 · 929

25 · 57
z6
C + πC,2 ln zC +O(z7

C).

To achieve convergence in our calculations, we use the solutions (2.35) up to order 600

in our analysis. The convergence radius of the power series is obtained from the formula

limn→∞ |cn/cn+1| = 1 and similarly for bn, limn→∞ |bn/bn+1| = 1. The expressions (2.35)

for the periods near the conifold are particularly useful for our study.6

6In [51] an analytic integral expression for the periods valid in the orbifold and LCS convergence region

was given. For our exploration this expression is not enough, because we are interested in looking at the

behaviour of the potential near the conifold.
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Let us now study the solutions of the PF equations near the orbifold (2.29). This set

of solutions is also obtained by starting with an ansatz πO,i = zxO(c0 + c1zO + c2z
2
O + . . .)

and applying to it the PF operator (2.29). The terms multiplying each power of z need to

vanish. From the z0 term one gets
∏4
i=1(x − i/5) = 0, giving the x solutions x = 1

5 ,
2
5 ,

3
5

and 4
5 . For every value of x we plug the ansatz back into (2.29) and make some coefficients

choice, to obtain the solutions

πO,1 = z
1/5
O +

1

23 · 3 · 56
z

6/5
O +

3

23 · 512 · 7
z

11/5
O +O(z

16/5
O ), (2.36)

πO,2 = z
2/5
O +

2

32 · 56
z

7/5
O +

2401

23 · 34 · 512 · 11
z

12/5
O +O(z

17/5
O ),

πO,3 = z
3/5
O +

27

23 · 56 · 7
z

8/5
O +

64

512 · 7 · 11
z

13/5
O +O(z

18/5
O ),

πO,4 = z
4/5
O +

16

22 · 13 · 631
z

9/5
O +

1458

512 · 7 · 11 · 13
z

14/5
O +O(z

19/5
O ).

We proceed in a similar fashion to find the solutions near the LCS point in the zM
variables. That is, we start by making a power series Ansatz πM,1 = zx(c0+c1z+c2z

2+. . .)

plug it into (2.28) and find the solutions πM,1. As before, the degeneracy of x in the

solutions to the initial equation x4 = 0, coming from the z0 power, indicates the presence

of logarithmic solutions. One continues then with three additional Ansätze πM,2, πM,3 and

πM,4, such that all πM have a polynomial term w0
M , w

1
M , w

2
M and w3

M . The solutions to

equation (2.28) in the LCS point vicinity are then given by

πM,1 = w0
M , (2.37)

πM,2 = w1
M + w0

M ln zM ,

πM,3 =
5

2
w2
M +

5

2
w0
M (ln zM )2 + 5w1

M ln zM ,

πM,4 =
5

6
w3
M +

5

6
w0
M (ln zM )3 +

5

2
w1
M (ln zM )2 +

5

2
w2
M ln zM ,

where the power series in them are obtained to be

w0
M = πM,1 = 1 + 120zM + 113400z2

M +O(z3
M ),

w1
M = 770 zM + 810225 z2

M +O(z3
M ),

w2
M = 2875 zM +

21040875 z2
M

4
+O(z3

M ),

w3
M = −5750 zM −

16491875 z2
M

4
+O(z3

M ).

From (2.37) one can write the explicit form of the monodromy in this basis.7 In this

7The LCS monodromy in the basis (2.37) is given by
1 0 0 0

2πi 1 0 0

−10π2 10πi 1 0

− 20iπ3

3
−10π2 2πi 1

 .
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way it is possible to compute the periods fully in the vicinity of all of the singular points,

ψ = 0, 1,∞, which are zO = 0, zC = 0 and zM = 0. We obtain the transition matrices to

connect the three convergence regions by taking sample points that lay at the intersection of

the convergence regions of the orbifold-conifold and conifold-LCS and orbifold-LCS. These

are shown in appendix A. Changes of variables from (2.37), (2.36) and (2.35) are made to

express the periods in the integral symplectic basis of [36] given in (2.9). The periods in

this integral symplectic basis for the three coordinates patches ΠC ,ΠM and ΠO are given in

formulae (A.5) (A.7) and (A.6) respectively. These explicit formulae in the three different

variables allow us to determine the periods, and therefore the scalar potential, in the full

CS moduli space up to an arbitrary order.

In the integral symplectic basis the period near the conifold ΠC,3 can be expressed as

ΠC,3 = − 1

2πi
ΠC,1 ln zC +Q(zC), (2.38)

where Q(z) is a power series in z. This can be seen from (A.5). From (2.38) one reads the

monodromy around the conifold which is given by

µC =


1 0 0 0

0 1 0 0

−1 0 1 0

0 0 0 1

 . (2.39)

The periods in the integral symplectic basis in the LCS- and orbifold convergence regions

are given to first orders in (A.7) and (A.6). From these expressions one can compute the

monodromy matrices around the LCS- and the orbifold point on this basis as

µM =


1 −1 5 3

0 1 −8 5

0 0 1 0

0 0 1 1

 , µO =


1 −1 5 3

0 1 −8 5

−1 1 −4 3

0 0 1 1

 . (2.40)

The relation between monodromies around the three critical points is given by µC · µM ·
µ−1
O = 1. In figure 2 we represent three different paths in CS moduli space giving rise to

conifold, LCS and orbifold monodromies.

2.4 Symmetries of the potential

In this section we review the symmetries of the Kähler potential due to transformations of

the moduli and how these are broken by the superpotential generated by the fluxes.

First of all, there is a shift symmetry in the real part of the axio-dilation, the 0-

form C0 → C0 + b, which is part of the SL(2,Z) symmetry of the theory (see e.g. [58]).

Under this shift symmetry, the 3-form flux G(3) remains invariant, which requires F(3) to

transform. Therefore, by keeping the fluxes fixed and transforming the axio-dilaton, the

shift symmetry is spontaneously broken.

Similarly, there is a shift symmetry in the phase of the complex structure when going

around the conifold, θ → θ+ 2πn (z = reiθ), with n ∈ Z. This is a monodromy shift given
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Figure 2. The figure represents three paths leading to monodromies around the critical points of

the CS moduli space of the mirror of the quintic CY on P4 on the complex zM -plane. The paths

around the LCS, conifold and orbifold points leading to monodromies µM , µC and µO are green,

pink and blue respectively.

by n powers of µC in (2.39) under which the period Π3 transforms as

Π3 → Π3 − nΠ1, (2.41)

while the Kähler potential (2.7) remains invariant since µTCΣµC = Σ. On the other hand,

it is easy to check that the superpotential transforms as

W →W − nG1Π1. (2.42)

If we also transform the fluxes as (recall that the subindices here denote the component of

the flux vector, (2.1))

G3 → G3 − nG1, (2.43)

the superpotential remains invariant. Therefore, by keeping the fluxes fixed, this shift

symmetry is spontaneously broken. This is interesting for cosmological applications since

a common strategy in the literature in order to find inflation in supergravity and field

theory is to consider mildly breaking a symmetry. Indeed, from the discussion above, it

is natural to think that either θ or C0 or a linear combination of these fields, is a good

inflaton candidate, which can give rise to either natural or power law types of inflation.

This has been the reasoning followed in [23, 27, 29, 31, 35].

Monodromies arising from surrounding the LCS and orbifold point in the CS moduli

space, given by (2.40), are also symmetries of the Kähler potential. This is because the

monodromies keep the symplectic properties of the period basis i.e. µTM,OΣµM,O = Σ.

Again, the superpotential transforms under n mondromies around the LCS or the orbifold,

as W → GΣµnM,OΠ. This implies that the fluxes have to transform as G → G(µ−1,T
M,O )n in

order to keep the superpotential invariant. Keeping the fluxes fixed, the symmetries arising

from monodromies are spontaneously broken.

– 16 –



J
H
E
P
1
0
(
2
0
1
6
)
0
8
2

Note that since the fluxes are integers, the symmetry breaking will in general be hard

to fine tune, unless one also fine tunes the vevs of the other moduli. We will come back to

the points discussed here in section 3.3.

3 Mirror quintic flux vacua: hierarchies and inflation

We have now all ingredients to study the structure of no-scale vacua of the mirror quintic in

P4 and their potential applications for inflation. We start by revisiting the vacua near the

conifold point previously studied in the literature, giving hierarchies among the spacetime-

and compactification physical scales in the warped geometry. We then describe our search

for vacua using the exact periods and describe their properties and differences with respect

to vacua found using only the leading term in the series expansion. We finalise this section

with the exploration of slow-roll inflation in this model.

As we saw in section 2.1, the N = 1 supergravity Kähler potential and superpotential

for the dilaton and the complex structure modulus of the mirror quintic are given by

K = − ln [−i(τ − τ̄)]− ln
[
−i Π̄T Σ Π

]
, W = GΣ Π , (3.1)

with G = F − τH, so that the scalar potential is

V =
1

2κ2
10gs

eK
[
Kij̄DiWDj̄W

]
, (3.2)

with i = τ, z and recall that Π(z) are the periods given in the appendix A. We now look for

non-supersymmetric Minkowski vacua of (3.2) with DτW = DzW = 0 and W 6= 0 . The

condition DτW = 0 gives an expression for τ in terms of the complex structure modulus as

ττ (z) =
FΣΠ̄

HΣΠ̄
, (3.3)

fixing τ as a function of z. Alternatively, one can find τ(z) from the condition DzW = 0:

τz(z) =
FΣ(Π̃ΣΠ̄)

HΣ(Π̃ΣΠ̄)
, (3.4)

with Π̃ = ∂zΠ ⊗ Π − Π ⊗ ∂zΠ (observe that Π̃ has two indices). The subindices τ and z

in (3.3) and (3.4) indicate that ττ (z) and τz(z) are the axio- dilaton profiles obtained from

DτW = 0 and DzW = 0 respectively. Equating both expressions τz = ττ fixes the complex

structure z = z0, for which the fluxes are constrained to satisfy the well-known condition

∗G3 = −iG3. When there is a solution, this is located at τ(z0) = τ0 and z = z0, and it is

a Minkowski non-supersymmetric vacuum8 with V = 0 provided W 6= 0.

A strategy to find Minkowski vacua consists of setting the real and imaginary parts

of ττ − τz to zero. For our numerical analysis, it is convenient to work only with the

8Recall again that the Kähler moduli are at this point not stabilised, but we are interested in the

dynamics of the dilation and complex structure.
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numerator of this quantity. This allows us to avoid fractional values of polynomials in z

and ln z appearing in DzW and DτW . The numerator of ττ − τz is given by

A0 = (HΣΠ̄)(FΣ(Π̃ΣΠ̄))− (FΣΠ̄)(HΣ(Π̃ΣΠ̄)). (3.5)

With the purpose of finding different Minkowski vacua configurations, we also perform

conifold monodromies on the complex structure phase, for which the Kähler potential is

invariant, but as already mentioned, this symmetry is broken by the superpotential due

to the fluxes. Specifically the period Π3 in the conifold basis transforms under a conifold

monodromy as in (2.41), and since the superpotential transforms as in (2.42), the scalar

potential changes as well. Therefore, new vacua can be found by transforming (3.5) under

n conifold monodromies changing the periods via Π → µnCΠ. The new expression for the

numerator of (τz − ττ ) reads

An = (HΣµnCΠ̄)(FΣ(µnCΠ̃ΣΠ̄))− (FΣµnCΠ̄)(HΣ(µnCΠ̃ΣΠ̄)). (3.6)

In the next section we use An to search for vacua and inflationary regions of the potential.

3.1 Hierarchies revisited

The structure of the vacua for a flux configuration where the only non-vanishing flux com-

ponents are F1, H3 and H4, with H3 � H4 in a type IIB CY orientifold compactification,

was found in [1]. That study was performed at leading order in the periods series expansion

near the conifold point in the CS moduli space. Here we analyse this family of solutions by

taking into account higher order terms in the period series. First, we explore modifications

to the zeroth order hierarchy expression of [1], coming from constant contributions to DzW .

We then search for the exact vacua using the power series of the periods up to convergence

order and compare these vacua with the approximations of [1]. Next we review the near

conifold vacua solution of [2], and compare it with our exact vacua solutions.

The warped metric which preserves Poincaré symmetry reads [1]

ds2
10 = e2A(y)ηµνdxµdxν + e−2A(y)g̃mndy

mdyn. (3.7)

The hierarchy between the spacetime (4D) and compactification (6D) physical scales will

be given by the distance of the vacuum z0 to the conifold as eA ∼ z
1/3
0 [1, 59]. In the

following we write for our case the solution for z0 and τ0 when only the fluxes F1, H3 and

H4 are on and H3 � H4. The superpotential (2.16) for this case in terms of ΠC(zC) is

given by

W = F1Π3 + τ(H3Π1 +H4Π2). (3.8)

The periods were denoted by Πi instead of ΠC,i, in the rest of this section we adopt this

simplified notation, also zC will be denoted by z. The value of the axio-dilaton arising

from the condition DτW = 0 is

τ0 = − F1Π̄0
3

H4Π̄0
2

, (3.9)
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where Π0
i = limz→0 Πi and ∂zΠ

0
i = limz→0 ∂zΠi and z = 0 is the conifold point. The

third period component in the conifold convergence region, given in (A.5), reads Π3 =

Π0
3 + αz + βz ln z + O(z). To estimate the complex structure value at the minimum, z0,

we consider the leading terms in DzW = 0. Let us first note that the derivative of ∂zW

evaluated at (3.9) is given by

∂zW |z=z0 = F1 ∂zΠ3 −
F1Π̄0

3

H4Π̄0
2

(H3∂zΠ
0
1 +H4∂zΠ

0
2), (3.10)

= F1(α+ β + β ln z)− F1Π̄0
3

H4Π̄0
2

(H3∂zΠ
0
1 +H4∂zΠ

0
2) +O(z).

The covariant derivative then reads

DzW = ∂zW + ∂zK0W0 +O(z),

= F1β ln z + τ0H3∂zΠ
0
1 + a0 +O(z), (3.11)

where

W0 = (F1Π0
3 + τ0(H3Π0

1 +H4Π0
2)),

∂zK0 = −(Π̄0
2∂zΠ

0
4 − Π̄0

4∂zΠ
0
2 − Π̄0

3∂zΠ
0
1)/(Π̄0

2Π0
4 − Π̄0

4Π0
2),

a0 = F1(α+ β) + τ0H4∂zΠ
0
2 + ∂zK0W0. (3.12)

We use these relations to define a parameter δ0, which will allow us to measure the departure

from our result to that in [1], as:

δ0 =
a0

F1
= α+ β − Π̄0

3

Π̄0
2

∂zΠ
0
2 + ∂zK0Π0

3 − ∂zK0
Π̄3

3

Π̄0
2

Π0
2 ,

where we used (3.9) and W0 in (3.12).

Substituting the value of Π1 at the conifold point, Π0
1 = 0, neglecting O(z) and for the

moment, δ0 terms (which are O
(
H3
H4

)
) one gets9

zold = exp

(
H3

H4

∂zΠ
0
1Π̄0

3

βΠ̄0
2

)
= exp

(
−τ0

H3

F1

∂zΠ
0
1

β

)
. (3.13)

This is the result obtained in [1], written in our notation. Let us now see how this result

changes when we include the corrections due to the parameter δ0. When we take into

account this correction, (3.13) becomes

znew = exp

(
H3

H4

∂zΠ
0
1Π̄0

3

βΠ̄0
2

− δ0

β

)
. (3.14)

Therefore we see that there is an extra factor exp
(
− δ0
β

)
∼ 20, due to the neglected terms

contributing to DzW = 0. Using the expressions above, we can now check the effects of

9The derivative of K reads ∂zK = − Π̄T Σ∂zΠ
Π̄T ΣΠ

, and closed to the conifold its more relevant contribution

would come from Π̄1∂zΠ3 ∼ Π̄0
1β ln z, but Π̄0

1 = 0. Therefore the most relevant contribution is the constant

term ∂zK0.
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Figure 3. The plots on the first row show t1 and gs vacua true values (dots) for the set of fluxes

F1 = 80, H4 = 1 and variable H3, with the red line representing the hierarchical solution of [1]. First

plot on the second row represents the absolute value of |zold| (3.13) for the solution of [1] (dashed

line) compared with the true vacua solutions |z0| (dots). Second plot on that row represents |znew|,
the corrected equation (3.14) (yellow line) compared with the true vacuum |z0| (dots).

the corrections due to δ0. We show this in figure 3. We compare first the full value of

τ0 (3.9) at the minimum as a function of H3 (the two plots in the first line) with respect

to the approximated value obtained in [1], which corresponds to the constant red line in

the plots. As can be seen, τ0 converges rapidly to the approximated value at the minimum

as the flux is increased. Notice also that a small perturbative value of gs depends on the

smallness of the ratio F1/H4. Next we do the same for |z0| (first plot in the second row).

Here it is clear that the approximated value (dotted orange line) for |z0| does not converge

to the actual value (blue continuous line) even when the flux increases. In the last two

pictures we plot instead the true value at the vacuum (the dots) and the δ0 corrected value

znew (orange continuous line). The convergence is almost instantaneous. Therefore, we see

that the estimated value for |z0| is better represented by our corrected expression (3.14).

In appendix B we write the correction (3.14) in the notation of [1].

More generic flux configurations. We now give a condition for general configurations

of fluxes that can be used for finding vacua with hierarchies. In doing this, the fluxes F3

and H3 play an important role, because it is possible to leave the value of the axio-dilaton

fixed, by varying these fluxes, as was done in [1] for H3. The solution for z0, with |z0| � 1

at the minimum for arbitrary fluxes was given in [2] and there it was also found that the

density of vacua near the conifold is high. Here we will see how varying F3 and H3, one

can move close to the conifold point and that the true vacua approach to z0 only if the

condition |z0| � 1 is satisfied.
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Let us first find the approximate value of z0 for a vacuum near the conifold point. The

covariant derivative DzW close to the conifold point to leading order reads

DzW = (F1 − τ0H1)β ln z + (F1 − τ0H1)(α+ β) + (F2 − τ0H2)∂zΠ
0
4 (3.15)

−(F3 − τ0H3)∂zΠ
0
1 − (F4 − τ0H4)∂zΠ

0
2 + ∂zK0W0,

where

τ0 =
FΣΠ̄0

HΣΠ̄0
, W0 = (F − τ0H)ΣΠ0 . (3.16)

(Note that τ0 here depends on the fluxes). This gives as a solution for z0:

z0 ∼ exp

(
−
(
α

β
+ 1

)
+
−(F2 − τ0H2)∂zΠ

0
4 + (F3 − τ0H3)∂zΠ

0
1 + (F4 − τ0H4)∂zΠ

0
2 − ∂zK0W0

β(F1 − τ0H1)

)
.

(3.17)

Now, since Π0
1 = 0 the contribution of the fluxes F3 and H3 in τ0 is absent and therefore we

can tune these to achieve a small |z0|, which gives hierarchies, while preserving a stabilised

perturbative gs < 1. We show this explicitly in figure 4 for two configurations of fluxes.

We compare the approximate value of z0 given by (3.17) and its real value using the

exact periods.10 The figures show that the calculation with the period expansion and the

approximation (3.17) differ on a ∼ 1% for |z0| ∼ 10−1. However even for points inside

the conifold convergence region, the difference is higher, for example for |z0| ∼ 0.5 the

difference is a ∼ 12%.

3.2 Search for vacua

We search for Minkowski vacua for different flux configurations. Since we are looking for

vacua numerically, the solutions will depend on the approximation taken for the expansions

of the periods. Through our explorations we explore the convergence of r up to order 600

in the expansions. From our search we identify different generic properties of the vacua

depending on our choice of fluxes, conifold monodromies and location with respect to the

critical points. These are as follows:

1. We find Minkowski vacua for which the complex structure axion value lies outside

the basic domain region from 0 to 2π. We did not find inflationary regions for models

allowing these vacua. See section 3.3.

2. We find Fake Minkowski vacua, for which all moduli vevs depend on the order of the

approximation on the period series.

3. Inflationary regions are present for small and “large” values of the distance to the

conifold r = |z0|. This was checked starting with a given order in the series expansion,

and holds for an arbitrary order. No Minkowski vacua were found for the choices of

fluxes in these cases. In one case we found a de Sitter vacuum. We discuss this in

section 3.3.
10Where by exact we mean that we employ as many necessary terms in the period series so as to achieve

convergence, as already mentioned.
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Figure 4. The first plot shows the exact |z0| for vacua solutions vs. H3 (blue dots) together with

approximation (3.17) (red line). The second plot is a zoom of the first, showing more clearly the

difference between the exact solution and the approximation. The third and fourth plots show the

exact vacua solutions (dots) and the approximation (3.17) vs. F3, and its zoom. Turning on H3

and F3, leaves gs fixed and leads to vacua close to the conifold. This implies a hierarchy between

the four and six dimensional scales.

In all solutions, the values of the fluxes can be tuned to achieve a perturbative value

of gs, gs < 1. We now discuss these cases in more detail.

I. Minkowski vacua. We present here the flux configurations for which there are stable

Minkowski vacua in a region close to the conifold point (r < 1). Some generic features

about these solutions are the following:

• We found several Minkowski exact vacua within the conifold convergence region us-

ing the period series expansion ΠC(zC) in (A.5). The order in the period’s series

expansion is increased up to achieve convergence. In some cases we stopped at order

200, but we have obtained the period series up to order 600. In table 1 we present

14 of these vacua.

• Solutions where the vacuum lies very close to the conifold point present a large

hierarchy between the internal and the macroscopic dimensions, confirming the results

of [1] up to the correction (3.14). These were found considering only the leading

contribution to the periods and non-zero F1, H3, H4 6= 0, H3 � H4. In figure 3 we

compare the value of z0 with the one of the convergent solution for different values

of H3 with fixed values of F1 and H4. An example is the vacuum 9 in table 1, where

|z0| ∼ 2 · 10−9. One can slightly deviate from these solutions by turning on nonzero

values of H1 or F3. Also the vacua on table 1 with more generic flux configuration
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r θ t1 t2 (F1, H1) (F2, H2) (F3, H3) (F4, H4)

1 0.00387722 -7.01112 -2.965416 3.421883 (40,0) (0,0) (0,16) (0,1)

2 0.289795 -3.90606 -7.0416876 7.0353577 (80,0) (0,0) (0,8) (0,1)

3 0.289795 -3.90606 -176.04219 175.88394 (2000,0) (0,0) (0,8) (0,1)

4 0.289795 -3.90606 -4.40105 4.3971 (50,0) (0,0) (0,8) (0,1)

5 0.476018 -21.5600 -3.54466 5.02946 (9*10,1) (0,0) (27*10,16) (0,2)

6 0.26791 -2.65769 -1.13736 2.11955 (20,0) (0,0) (0,8) (0,1)

7 0.0038772 -7.01111 -4.44813 5.13282 (60,0) (0,0) (0,16) (0,1)

8 0.0553517 -1.88428 -5.51566 20.8484 (200,1) (30,1) (2,10) (2,1)

9 2.07602 · 10−6 -13.6039 -5.96259 6.84777 (80,0) (0,0) (0,30) (0,1)

10 0.160500 1.7234 0.407671 0.81259 (37, 9) (11, 2) (1, 31) (3, 5)

11 0.000301 7.2269 -1.22438 44.711 (16, 2) (7, 7) (1,−8) (4,−1)

12 6.28576 · 10−8 −4.06 123.57 124.58 (36, 2) (107, 0) (0, 5) (0, 1)

13 8.91875 · 10−7 −47.91 -4.75 1.56681 (2, 0) (4,−2) (1, 3) (1, 0)

14 0.03351 6.28319 −3 3.71019 (3,−1) (3, 0) (1, 1) (0, 0)

Table 1. The table shows the values of the moduli at the minima of the scalar potential V in the

conifold convergence region. Solutions for fluxes where Hi and Fi are proportional, have the same

z and have values of τ related as in (3.18). Here zC = reiθ, τ = t1 + it2 and the fluxes are given in

string units.

possessing hierarchies are obtained by the guideline of considering |z0| � 1 in (3.17),

examples of vacua with a strong hierarchy are 12 and 13 in the table.

• For a specific flux configuration with only F1 and H3 non-zero it is straightforward

to see from eq. (3.5) that the solution for z does not depend on the fluxes. Hence, if

there is a z0 vacuum solution, this is unique for all set of fluxes (F1, H3). However,

studying the sample case H3 = 16 and F1 = 1 we find, in agreement with [1], that is

not possible to find a vacuum close to the conifold point for this flux configuration,

which in turn implies the absence of a solution for any flux configuration of this type.

We have checked this using an expansion for the periods around the conifold up to

order 200. A simpler argument tells that a near to the conifold solution will have the

approximate value of τ0 = − F1Π̄0
3

H3Π0
1
→∞, since Π0

1 = 0.

• Another feature of the solutions comes from the set of equations (3.3) and (3.4),

from which one can see that two flux configurations (F (1), H(1)) and (F (2), H(2))

with components related by

F
(1)
i

H
(1)
i

= k
F

(2)
i

H
(2)
i

, ∀i with k ∈ Q. (3.18)

will have stable vacua at the same value of the complex structure and a fixed dilaton

value related by τ
(1)
0 = kτ

(2)
0 . This defines a similarity relation and therefore a

characteristic class [F,H] to which all the above fluxes belong to. In terms of the

corresponding characteristic class, there is only a single vacuum.

• To check the solutions found in the conifold convergence region in terms of ΠC we

explore them also on other patches (LCS, orbifold, regular point). This is particularly
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relevant for vacua that are apparently located close to the boundary of the conifold

convergence region, using instead of ΠC periods’s expansions that converge faster to

the solution. The periods expanded in local coordinates near a critical point have

the corresponding monodromy automatically. For example the ΠC expansion has

the term ln zC , causing the monodromy µC that is absent in ΠO and ΠM . If the

periods are expressed as local series expansion in the variables of other patches, the

monodromy around the original critical point has to be implemented by hand. We

find Minkowski vacua as zeroes of the numerator of (τz−ττ ), which transforms under

monodromies µC as in formula (3.6). Vacua exploration on patches different from zC
corresponds to finding zeroes of it. The periods written as a series of the complex

structure modulus in the three different coordinate systems zC , zM and zO are given

in appendix A.

• We found that the monodromies play an important role in finding vacua [38, 39]. For

certain sets of fluxes, the region 0 ≤ θ < 2π does not contain Minkowski vacua, and

one can only satisfy the conditions V = ∂iV = 0 after taking monodromies around

the conifold point, starting from that domain. This can be seen in table 1. The vacua

presented there are only found for a given value of θ but they vanish when taking

θ → θ + 2πn, n ∈ Z. However, for certain configurations of fluxes, it is possible to

find vacua at every monodromy turn differing in the values of the other moduli [2].

For all the reported vacua, the corresponding mass matrix is positive definite ensuring

stability of the minima (up to Kähler moduli).

II. Fake Minkowski vacua. Our study shows that in order to find true vacua and study

their properties, it is necessary to include higher order terms in the series expansion of the

periods in terms of the complex structure modulus. Staying at leading order leads to vacua

which vanish when higher order terms are taken into account. Let us give an example of

this: in figure 5, we plot the value of |z0| for two different sets of fluxes. The first has an

apparent vacuum at leading order in the series expansion. However, as higher orders are

included, the apparent vacuum solution does not converge to a final value. Aditionaly the

root approaches to the boundary of convergence. In the figure we see that convergence is

not reached even after taking 200 orders in the series; the n + 1 value differs from the n

values by about 1%. We checked in the orbifold patch for this vacuum and it is absent,

which tells us that it is an error of the approximation. On the right picture we see a

second configuration of fluxes for which the vacuum solution at the leading order, remains

practically unchanged after the 200th order. Indeed, in this case, convergence to the actual

vacuum is achieved very quickly.

3.3 Inflationary regions

In this section we explore the full complex structure moduli space in order to determine

whether inflationary directions can generically appear in the scalar potential. The CS

moduli space has been explored in several papers in the literature. In [39] the cosmological

evolution of the complex structure and the axio-dilaton moduli in the mirror quintic was
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Figure 5. Vacuum solutions vs. the order in the period expansion for two sets of non-zero fluxes.

The vacuum solution on the left does not converge inside the conifold convergence region after order

200th, and thus does not correspond to a true vacuum. Instead, the solution on the right converges

very quickly to a stable value.

explored, but regions supporting slow-roll were not found. In [23, 27, 29], axion inflation

was studied in the small region of the moduli space near the LCS point at leading order in

the periods’ expansion, while in [35] scalar potentials near the critical points were explored

at leading order in the period’s series expansion. The recent work of [31] on the other

hand, studied the scalar potential in the region close to the LCS point, but considered only

a small number of terms in the series’ expansion. We will comment further on this work

below. A standard strategy to look for potential inflationary directions in the literature, is

to track symmetries of the Kähler potential, which may be slightly broken by some effect,

such as fluxes. In section 2.4, we discussed the symmetries of the Kähler potential when

transforming the dilaton and the phase of the complex structure moduli, in particular by

a shift. Following this line of thought, we first let the fields evolve and look for regions

in the moduli space where the generalised slow roll conditions for multi-field inflation are

satisfied mostly along the axionic directions: the complex structure phase θ and Re(τ).

The multi-field slow-roll parameters are given by (see e.g. [60]):

ε = M2
Pl

Kij̄∇iV∇j̄V
V 2

, η = min eigenvector

[
Kij̄∇i∇j̄V

V

]
, (3.19)

where ∇ is the covariant derivative in the moduli space.

Using this approach, we did not find field regions where θ and Re(τ) have long dis-

placements and slow-roll parameters are small. This check was done at an arbitrary order

in the series expansion of the periods. This can be understood in the following way. From

the form of K and W , considering all fields but θ fixed, it is easy to see that, due to the

presence of the logarithms in the periods, the scalar potential will contain powers of θ,

besides sines and cosines, giving

V (θ) ∼ A+B θ2 + C θ cos θ + . . . (3.20)

where A,B depend on the other moduli and the fluxes, and the dots include further mixed

terms, including sines and cosines multiplied by powers of θ. This rather generic form

of the potential for the complex structure axion was pointed out in [31]. However, while
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in [31] it is argued that this kind of potential can give rise to natural inflation, in several

cases we find that the modulations of the potential along the θ-direction, are too high to

allow for slow roll inflation. Moreover the amplitude of the oscillations increases with |θ|
(see figures 6 and 7). However, as pointed out in [61], it is possible that more general slow-

roll regions appear in this direction, allowing for inflation. We also calculated ε assuming

single-field inflation along the θ direction, keeping all other moduli fixed. We found that in

some cases it was possible to get ε � 1, however the r direction was highly unstable, and

therefore the multi-field ε differed very much from the single field approximation. This can

be understood as due to higher order corrections in the period series giving contributions

to the potential producing interaction terms between r and θ.

Given this result, we explored the scalar potential in all possible directions. We

searched systematically for numerical minimization of ε, varying z, τ and the fluxes, sub-

ject to constraints on z0 and τ0 on (3.17)(3.16), |z0| � 1 and Im(τ0) > 1 respectively. We

found no flux configuration where a Minkowski vacuum near the conifold and ε� 1 occurs

simultaneously. Discarding the restriction of having a vacuum near the conifold point, we

found through numerical minimization, small values of ε for certain regions of z, τ and flux

configurations. For those cases there were no Minkowski vacua found on the orbifold and

LCS convergence regions. We discuss below our results.

1. We found that for configurations of fluxes with a Minkowski vacuum, there are no

regions where the multi-field slow roll parameters (3.19) are smaller than one. This

is shown in figure 6, where there were no inflationary regions (defined as regions

with ε, η < 1). Again, it is possible that we miss more general slow-roll regions as

discussed recently in [61]. Indeed, the potential along the θ direction shown in figure 6

resembles closely those discussed in [61].

2. We found configurations of fluxes (see table (2)) for which large inflationary regions

are present. We show examples of this in figures 9–11. As in the previous case, large

modulations appear due to higher order terms in the series expansion. We show this

in figure 7 where we also show the difference among modulations for the potential

as function of θ only, when the first and fourth order terms are kept. In figure 8 we

illustrate the effect of taking into account higher order terms in the series expansion

of the periods, by plotting the values of ε at different points in the moduli space

vs. the order of the expansion.

These configurations of fluxes however, did not give rise to Minkowski vacua since

the equations DτW = DzW = 0, did not have a solution. In the conifold conver-

gence region this happens because the solutions to both constraints ττ and τz on (3.3)

and (3.4) give imaginary parts with opposite signs. Interestingly, for these config-

urations we found many saddle points with a generic feature: the main unstables

direction are given by θ and r. Given this observation, we explored inflationary re-

gions near the orbifold singularity as we discuss below. The precise location of saddle

points turns out to be highly affected by the order of the series expansion, but con-

vergence is obtained. Additionally we found a dS vacuum for a flux configuration
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Figure 6. Scalar potential vs. θ and the rest of the moduli fixed at their vev’s for a configuration

with non-zero fluxes F1 = 20, H3 = 8, H4 = 1 and a Minkowski vacuum. Here V0 = α′2/(2κ210gs)

and the fluxes are given in string units. The values of the other moduli are set at r0 = 0.26791, t1 =

−1.13736, t2 = 2.11955. The figures show the scalar potential approximations to order 1, 4, 200 in

z from left to right and up to down. The last plot indicates the difference between order 200 and

the order one calculation.

F1, H1 F2, H2 F3, H3 F4, H4

1,1 0,-10 0,1 -10,1

2,4 2,4 1,2 3,1

1,3 0,0 10,2 0,1

2,4 0,0 6,2 0,2

43,10 193,64 198,-10 -10,-10

90,3 193,165 -10,0 -10,0

Table 2. Configurations of fluxes for which inflationary regions appear, but there are no Minkowski

vacua.

satisfying slow-roll conditions. This case is presented in figure 10. This solution is

interesting as it may give an explicit realization of the uplift mechanism proposed

in [62] once we include the Kähler moduli.

In figures 9, 10, 11 and 12 we show examples of ε � 1 values for different flux

configurations on the conifold convergence region. In table 2 we show those flux

configurations and two others where also ε� 1 values were found. In all of the cases

the fluxes do not satisfy the condition to encounter a hierarchical vacuum near the

conifold (|z0| � 1, z0 in (3.17)).

The slow-roll conditions found for this type of flux configurations occurred in general

in a multifield fashion. For example in figure 9 the η-eigenvector along the minimum
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η-eigenvalue (ηmin) is given mostly in the r direction. On the other hand in figure 10

and figure 12 the dominant contributions to the ηmin eigenvector are given by t1 and

t2. Finally in figure 11 the dominant contribution is given mostly along the direction

of t1. In figures 9–13 we give an estimate of the displacements of the canonical fields

φr, φθ, φt1 , φt2 defined as

∂µφθ = MPl

√
Kzz̄ r ∂µθ, ∂µφr = MPl

√
Kzz̄ ∂µr,

∂µφt1 = MPl
∂µt1
2t2

, ∂µφt2 = MPl
∂µt2
2t2

,

in the inflationary region. We evaluate the quantities above locally11 in order to

estimate the displacements of the canonical fields on the slow-roll region.

There seems to be no pattern indicating that slow-roll regions occurs along a preferred

direction. In particularly it doesn’t occur necessarily along a direction with a shift

symmetry. For example we did not find flux configurations with slow-roll conditions

where θ is the dominant slow-roll direction. This observation indicates that to achieve

slow-roll along θ one would require a careful fine tuning of the fluxes, which will be

hard to do as they are integers.

3. Finally, we also explored slow-roll conditions on the orbifold convergence region.

This exploration is motivated by our findings that the flat directions on the previous

cases seem to extend for larger values of rC , going outside the conifold convergence

region with boundary at rC = 1. In figure 13 we show the density plots of ε on six

different planes of the moduli space in the orbifold convergence region, for the same

flux configuration as in figure 12. For this configuration there is a saddle point inside

the orbifold convergence region. However there are no Minkowski nor dS vacua.

Note that the distance between critical points of the complex structure moduli space

is finite. Therefore the displacements of the canonical field for r, φr, are bounded

in MPl units. We show this in figure 14 where we plot the evolution of the locally

normalised canonical fields φr and φθ vs. the moduli r and θ for the conifold and the

orbifold convergence regions.

4 Conclusions

We explored the moduli space of no-scale type IIB orientifold flux compactification on the

mirror quintic Calabi-Yau 3-fold. For the complex structure modulus, we solved the Picard-

Fuchs equations in four convergence regions: the orbifold, the conifold, the large complex

structure points patches and in a regular point patch. This allowed us to have exact

expressions for the periods in the whole complex structure moduli space. The solutions

to the PF equations have been previously studied in the literature [37, 51], and we have

11By locally here we mean that the values of the other moduli are frozen when defining the canonical field

for a single modulus. For example for small field displacements δr, δθ, δt1, δt2 around the point r0, θ0, t1,0
and t2,0 the canonical fields are given by ∂µφt1 = ∂µ

t1
2t02

+ O(δt1, δt2), ∂µφt2 = ∂µ
t2
2t02

+ O(δt1, δt2) ∂µφr =

∂µ(
√
K0
zz̄r) +O(δr, δθ), ∂µφθ = ∂µ(

√
K0
zz̄r0θ) +O(δr, δθ).
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Figure 7. Scalar potential vs. θ and the rest of the moduli fixed at their vev’s for a configuration

with non-zero fluxes F1 = H1 = 1, F4 = H2 = −10, F2 = F3 = 0, H3 = H4 = 1 and a Minkowski

vacuum. The values for the rest of the moduli are: t1 = −6.28, t2 = 16, θ0 = −12, r0 = 0.4. The

figures show the scalar potential approximations to order 1, 4, 200 in z from left to right and up to

down. The last plot indicates the difference between order 200 and the order one calculation. The

θ asymmetry arises due to the odd powers of θ multiplying oscillatory functions appearing in the

potential. Here again V0 = α′2/(2κ210gs) and the fluxes are given in string units.

Figure 8. The value of ε vs. the order in the periods’ series expansion. The fluxes are the same

that in figure 9. The values of the moduli for each case are given above the figures. This shows

that ε’s convergence is slow as we increase the order in the series expansion. The values of ε can

differ in a 92% from the order 20 to the order 100. Convergence is achieved: the value of ε at order

80 differs from the order 100 by 6 × 10−4%.

extended this study in the present work by computing them to all orders in the series

required to achieve convergence.

Using these solutions we explored the four dimensional moduli space composed of the

complex structure modulus z and the axio-dilaton τ . We searched for Minkowski vacua,
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Figure 9. ε density plot for the flux configuration F1 = H1 = H3 = H4 = 1, F4 = H2 = −10,

F2 = F3 = 0. The CS modulus is in the conifold patch zC = reiθ and evaluations are performed to

order 200 in the period series expansion ΠC . The projections on the different planes are made by

fixing the values of the moduli at t1 = −6.28, t2 = 16, r = 0.4, θ = −12, respectively. The smaller

values of ε in this region turned out be of order ε ∼ 0.05. In this region we also find η < 1. A sample

η eigenvalue is η100 ∼ −0.07 for the point r = 0.37, t1, θ as before and t2 = 9, corresponding to

the eigenvector ∼ (0.12, 0.004, 0.99, 0.09), which indicates that the r direction is the dominant one

along the inflationary direction. For the canonically normalized fields, the displacements in Planck

units on the represented region are of order ∆φr ∼ 0.1MPl, ∆φθ ∼ 0.3MPl, ∆φt2 ∼ 0.79MPl,

∆φt1 ∼ 0.78MPl.

vacua with hierarchies and regions with small multi-field slow-roll inflationary parame-

ters ε, η (defined in eq. (3.19)). We gave special attention to the periods in the conifold

convergence region, where we compared vacua obtained using the series expansion to an ar-
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Figure 10. Density plot for ε for a configuration of non-zero fluxes F1 = 2, F2 = 2, F3 = 1,

F4 = 3, H1 = 4, H2 = 4, H3 = 2 and H4 = 1. The CS modulus is in the conifold patch

zC = reiθ and evaluations are performed to order 200 in the period series expansion ΠC . The

projections on the different planes are made by fixing the values of the moduli at r = 0.52, t1 = 1.73,

θ = −0.496, t2 = 1.295 respectively. For this configuration, there is a dS vacuum approximately

at r = 0.63, t1 = 1.55, θ = −0.03, t2 = 1.25. The smallest values of ε in these regions are ε ∼ 0.03.

A sample η eigenvalue is η50 = −0.011, the subindex denotes that η is computed at order 50,

corresponding to the eigenvector ηmin ∼ (0.67,−0.71,−0.096,−0.22), giving as the preferential

inflationary directions along t1 and t2. For the canonically normalized fields the displacements in

Planck units, in the represented region, are of order ∆φr ∼ 0.124MPl, ∆φθ ∼ 0.58MPl, ∆φt2 ∼
0.69MPl, ∆φt1 ∼ 0.65MPl.

bitrary order approximation with those obtained using an approximation near the conifold

point. We found that Minkowski vacua are in general absent in the fundamental domain

of θ = arg(z), while vacua appear generically when monodromies around the conifold are

taken [38, 39]. We pointed out the importance of considering higher order terms in the

periods’ series expansion in z to ensure the existence of the vacua. Specifically, we found

that some Minkowski vacua appearing at leading order near the conifold, disappear when

higher order terms in z are considered. These fake vacua turn out to be an effect of the

approximation, and by careful analysis in a different patch (in the vicinity of the orbifold,

LCS, or a regular point) they can be discarded.

We also found that for Minkowski vacua very close to the conifold point with the CS

stabilised at |z0| � 1 and with F1, H3, H4 being the only non-zero fluxes, hierarchies in

the physical scales exist for large values of H3
H4

, in agreement with [1]. The vev of the

axio-dilaton τ0 is fixed for given values of F1, H4 while |z0| decreases according to the value

for H3, increasing the spacetime and compactification scales’ hierarchy. For these flux
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Figure 11. ε density plot on the six different planes for a configuration of non-zero fluxes F1 = 1,

F3 = 10, H1 = 3, H3 = 2, H4 = 1. The CS modulus is in the conifold patch zC = reiθ and

evaluations are performed to order 200 in the period series expansion ΠC . The planes are defined

by setting two of the fields to r0 = 0.8, t1,0 = 2.98, θ0 = 1.44, t2,0 = 2.55 respectively, at this point

ε ∼ 0.08. For the canonically normalized fields the displacements in Planck units of the represented

region are of order ∆φr ∼ 0.045MPl, ∆φθ ∼ 0.065MPl, ∆φt2 ∼ 0.8MPl, ∆φt1 ∼ 0.44MPl. There

is a minimum η eigenvalue η100 = −0.025 at the point r = r0, θ = θ0, t1 = t1,0, t2 = t2,0 with

eigenvector ∼ (−0.98, 0.15,−0.15, 0.04) which signals t1 as the dominant contribution along the

inflationary direction on that point.

configurations in section 3.1 we find an extra term in the expression for the CS value at

the minimum z0, that changes the hierarchy by an order of magnitude. The exact vacua

differ from the approximated ones, but converge to them when H3
H4

is increased.

In addition we studied general flux configurations, similar to those previously studied

in [2] with the near conifold approximation (z0 � 1). We review their formula for z0

and observe that F3 can also be tuned to achieve a small value for |z0| while keeping τ0

constant. This provides a way of obtaining vacua with hierarchies between the 4D and

6D scales different from the ones in [1]. Again it occurs that the actual vacua differ from

the vacua obtained using the near-the-conifold approximation (z0 � 1), but in the limit

of highly negative F3 they converge to the approximated ones. In general it holds that

for a generic flux configuration ensuring that |z0| � 1 with z0 in (3.17), the exact and

approximated vacua match.

For all flux configurations with a Minkowski vacuum, we did not find slow-roll infla-

tionary regions of the scalar potential. Numerically we observed, through multiple searches,

that having both, a vacuum solution near the conifold and inflation regions, seems to be

incompatible. This was done by optimising a near conifold vacuum |z0| < 1 and ε < 1
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Figure 12. ε density plots on the six planes of two variables for a configuration of non-zero fluxes

F1 = 2, F3 = 6, H1 = 4, H3 = 2, H4 = 2. The CS modulus is in the conifold patch zC = reiθ and

evaluations are performed to order 200 in the period series expansion ΠC . At r = 0.79, t1 = 1.01,

θ = 1.18, t2 = 1.84 we have ε ∼ 0.417, there are smaller values of ε in the orbifold convergence

region. A sample η eigenvalue inside the ε < 1 region is η100 = −0.06 at r = 0.18, t1 = 0.75 and

θ = 1.18, t2 = 1.84. The η eigenvector −(0.8, 0.6, 0.1, 0.01) shows that at this point, the inflationary

direction is mostly along t1 and t2. For the canonically normalized fields the displacements in Planck

units of the represented region are of order ∆φr ∼ 0.055MPl, ∆φθ ∼ 0.046MPl, ∆φt2 ∼ 0.49MPl,

∆φt1 ∼ 0.41MPl.

constraints varying the fluxes and the moduli. No physical solution with g−1
s = Im(τ0) > 1

was found in the exploration. We further explored flux configurations with a Minkowski

vacuum not necessarily closed to the conifold, but within the conifold convergence region.

We looked for slow-roll regions along θ = arg(z) taking several monodromies w.r.t. the

θ ∈ [0, 2π) domain and keeping the rest of moduli fixed, but this search turned out to be

unsuccessful. The modulations along θ of the scalar potential are highly affected by the

power of z considered in the periods’ series expansions. We also found apparent flat regions

of θ, giving a small single field ε, but with an unstable radial direction.

We thus explored multi-field slow-roll regions, allowing all fields to evolve. The ex-

ploration was performed numerically, considering the multi-field ε parameter and varying

all the moduli and the fluxes to optimise a minimum value of ε. On the phase direction,

monodromies affect modulations of the potential, i.e. as θ grows the oscillations of V also

increase. This implies that the only possible region with a flat potential along the CS phase

lies at the bottom of the scalar potential, generically within a smaller than 2π region of θ.

We found flux configurations with inflationary regions going from the conifold to the

orbifold patch. In those regions the potential looks flat with small values of ε and small
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Figure 13. ε density plots on the six planes for the same flux configuration as in figure 12 in

the orbifold series convergence region. The CS modulus is in the orbifold patch zO = reiθ and

evaluations are performed to order 200 in the period series expansion ΠO. A sample minimum

η eigenvalue is -0.016, for the point t01 = 1.010, θ0 = 0.7178, t02 = 3.68 and r0 = 2000 with

eigenvector ∼ (0.8, 0.6,−0.00023, 0.3). There is a saddle of the potential at r = 1135.59, θ = −1.078,

t1 = 0.8071, t2 = 1.625, with eigenvector ∼ (0.036, 0.0355, 0.002,−0.999) giving that the unstable

direction is mostly θ. For the canonically normalized fields the displacements in Planck units of the

represented region are ∆φr ∼ 0.037MPl, ∆φθ ∼ 0.19MPl, ∆φt2 ∼ 0.49MPl, ∆φt1 ∼ 0.29MPl.

minimum eigenvalues of the η-parameter. In one of those cases a dS vacuum near the

inflationary region was found.12

This is interesting as it can serve as an explicit realization of the uplift mechanism

considered in [62] once we include stabilization of the Kähler moduli, which could be

addressed as in [45]. We computed the eigenvectors of η in the regions with slow-roll and

obtained that in general, the inflationary trajectory occurs along a combination of all the

moduli directions. That is, we did not find that axion monodromy inflation mostly along the

phase of z, θ is realised. However, it is important to stress that we only looked for regions

where the potential’s slow-roll parameters (3.19) are small. It is possible that studying the

more general slow-roll parameters for these type of bumpy potentials as recently considered

in [61], will give rise to successful inflation. Finally, we pointed out that the ε values in

certain patches can depend strongly on the approximation for the period series in z. Exact

values of the periods are required, since one might establish false conclusions from keeping

only leading terms in z.

We showed that the total displacement for the canonically normalised fields in the r

(r = rO, rC with rC = |zC | or rO = |zO|) region (with the rest of moduli fixed) from the

12In [38, 39] dS vacua in the CS and axio-dilaton moduli space in the mirror quintic were also found.
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Figure 14. Trajectories of the locally normalized fields for r and θ, φr and φθ respectively, in the

orbifold and conifold convergence regions. The displacement of the canonically normalized field φr
is always sub-Planckian, whereas the displacement of the canonically normalized field φθ can be

arbitrarily large.

conifold to the orbifold is finite and smaller than a Planck unit. Thus an small excursion in

Planck units of the r canonical field may include any patch of the CS moduli space. There-

fore any study performed with r bounded to a single convergence critical point region is

inexact for models of inflation in the CS moduli space. On the other hand, the displacement

along the canonically normalised θ direction can grow unconstrained (see figure 14).

Our results highlight the importance of considering the exact solutions for the CY peri-

ods to explore vacua and cosmological applications of the CS and dilaton moduli potential.

We have found that the vacua and slow-roll conditions depend crucially on the approxi-

mation considered. It is thus important in order to study phenomenological questions to

keep all necessary terms in the period expansion until convergence is achieved. Our find-

ings indicate that one needs to consider more general slow-roll inflationary solutions where

the potential can have bumpy features and give distinctive inflationary predictions as dis-

cussed recently in [61]. This can be studied at a first stage in the no-scale approximation

as considered here. However a more realistic scenario will have to take into account the

stabilization of the Kähler moduli, which is a step that needs to be taken next. In addition

the study of F-theory models with general axio-dilaton profile could offer new interesting

possibilities. As an advantage the Kähler moduli [63] together with the CS moduli [3]

can be incorporated in the effective action. CY 4-folds with more than one modulus are

required, and the analysis of periods in the whole CS moduli space [40] could be useful to

explore further the role of the monodromies in inflationary scenarios.
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A Transition matrices and periods on the symplectic basis

The transition matrices are computed by taking sample points lying at the intersections of

the orbifold-conifold and conifold-LCS regions. We denote with S the integral symplectic

basis (2.9). MX,S denotes the transition matrix from the coordinates X to the coordinates

S. X = C,M,O denotes the conifold (C), LCS (M) and orbifold (O) bases for the solutions

of the PF equations, πC (2.35), πM (2.37), and πO (2.36). We denote the periods expansions

around the conifold, the LCS and the orbifold points in the integral symplectic basis (2.9)

as ΠC , ΠM and ΠO respectively. The transition matrix from the solutions πM to the

basis (2.9) is given by

MM,S =


− i200

8π3 ζ(3) 50
24

1
2πi 0 1

(2πi)3

50
24 −11

2
1

2πi −
1

(2πi)2 0

1 0 0 0

0 1
2πi 0 0

 (A.1)

The change of basis matrix from the conifold basis πC to the integral symplectic basis

has six coefficients that can only be determined numerically, those are a, b, c, d, e and g [37].

In our calculations we have determined the elements of the matrix with 40 digits of precision

to be13

MC,S =


0 −

√
5

2π i 0 0

a− 11
2 ig b−

11
2 ih c−

11
2 ir 0

d e f −
√

5
(2πi)2

ig ih ir 0

 (A.2)

13The elements of MC,S given till order 20 are:

a = 6.1950162771495748881, b = 1.01660471670258207478, c = − 0.14088997944883090936,

d = 1.0707258684301558006, e = − 0.024707613804484718111, f = 0.0057845115995744470969,

g = 1.2935739845041086377, h = 0.15076669512354730097, r = − 0.027792180016865244887.
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The transition matrix MO,S between the orbifold basis and the integral symplectic basis

ΠO (2.9) satisfying ΠO = MO,SπO has an inverse

M−1
O,S =



− 16e
2πi
5 π4

(e
2πi
5 −1)Γ[ 1

5
]5
− 16e

2πi
5 π4

(e
2πi
5 −1)2Γ[ 1

5
]5

80e
2πi
5 (1−e

2πi
5 +e

4πi
5 )π4

(e
2πi
5 −1)4Γ[ 1

5
]5

−16e
2πi
5 (−3+8e

2πi
5 )π4

(e
2πi
5 −1)3Γ[ 1

5
]5

− 16e
4πi
5 π4

(e
4πi
5 −1)Γ[ 2

5
]5
− 16e

4πi
5 π4

(e
4πi
5 −1)2Γ[ 2

5
]5

80e
4πi
5 (1+e−

2πi
5 −e

4πi
5 )π4

(e
4πi
5 −1)4Γ[ 2

5
]5

−16e
4πi
5 (−3+8e

4πi
5 )π4

(e
4πi
5 −1)3Γ[ 2

5
]5

− 32e−
4πi
5 π4

(e
−4πi

5 −1)Γ[ 3
5

]5
− 32e−

4πi
5 π4

(e
−4πi

5 −1)2Γ[ 3
5

]5

160e−
4πi
5 (1+e

2πi
5 −e−

4πi
5 )π4

(e−
4πi
5 −1)4Γ[ 3

5
]5

−32e−
4πi
5 (−3+8e−

4πi
5 )π4

(e−
4πi
5 −1)3Γ[ 3

5
]5

− 96e−
2πi
5 π4

(e−
2πi
5 −1)Γ[ 4

5
]5
− 96e−

2πi
5 π4

(e−
2πi
5 −1)2Γ[ 4

5
]5

480e−
2πi
5 (1−e−

2πi
5 +e−

4πi
5 )π4

(e−
2πi
5 −1)4Γ[ 4

5
]5

−96e−
2πi
5 (−3+8e−

2πi
5 )π4

(e−
2πi
5 −1)3Γ[ 4

5
]5


(A.3)

The transition matrix given numerically reads

MO,S =

 0.587512i −0.171576i 0.011701i −0.000103i

1.462844− 2.338201i −0.038521 + 0.260823114i −0.002627− 0.017787i 0.000256 + 0.000409i

0.404320− 0.293756i −0.027874 + 0.085788i −0.001901− 0.005850i 0.000071 + 0.000051i

0.425127i −0.047422i 0.003234i −0.000074i


(A.4)

We give the first three order of the periods vs. zC on the integral symplectic basis. This

expression is obtained by acting with MC,S on πC in (2.35). The period vector ΠC =

(ΠC,1,ΠC,2,ΠC,3,ΠC,4) has components

ΠC,1 = −0.355881iz − 0.249117iz2 − 0.194548iz3 +O(z4), (A.5)

ΠC,2 = 6.19502− 7.11466i+ (1.0166− 0.829217i)z + (0.570733− 0.427595i)z2

+(0.401804− 0.287548i)z3 +O(z4),

ΠC,3 = 1.07073 + αz − 0.011511z2 − 0.006565z3

− ln z

2πi
(−2πiβz − 0.249117iz2 − 0.194548iz3) +O(z4),

ΠC,4 = 1.29357i+ 0.150767iz + 0.0777445iz2 + 0.0522815iz3 +O(z4).

Let us define here the coefficients as α = −0.024708 and β = 0.056640, these are employed

in section 3.1. Observe that the monodromy is explicit because Π3
C = −Π1

C ln z/(2πi) +

Q(z). The periods vs. zO on the integral symplectic basis are obtained by ΠO = MO,SπO
in (2.36). The period vector ΠO = (ΠO,1,ΠO,2,ΠO,3,ΠO,4) has components

ΠO,1 = 0.587512iz1/5 − 0.171576iz2/5 + 0.0117008iz3/5 +O(z4/5), (A.6)

ΠO,2 = (1.46284− 2.3382i)z1/5 − (0.0385212− 0.260823i)z2/5

−(0.002627 + 0.0177871i)z3/5 +O(z4/5),

ΠO,3 = (0.40432− 0.293756i)z1/5 − (0.0278742− 0.0857879i)z2/5

−(0.00190091 + 0.00585041i)z3/5 +O(z4/5),

ΠO,4 = 0.425127iz1/5 − 0.0474224iz2/5 + 0.00323402iz3/5 +O(z4/5).

The periods vs. zM on the integral symplectic basis are obtained by acting with MM,S on
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πM in (2.37). To obtain ΠM = (ΠM,1,ΠM,2,ΠM,3,ΠM,4) with

ΠM,1 = −25iζ(3)

π3
+

(
−2875i

4π3
− 9625i

2π
− 3000iζ(3)

π3

)
z

+

(
−16491875i

32π3
− 6751875i

8π
− 2835000iζ(3)

π3

)
z2

+ ln z

(
− 25

24π
i+

(
2875

8π3
− 125

π

)
iz +

(
21040875

32π3
− 118125

π

)
iz2

)
+

5i

16π3
ln z2(770z + 810225z2) +

i

48π3
ln z3

(
1 + 5!z +

10!

25
z2

)
+O(z3),

ΠM,2 =
25

12
+

(
250 +

2875

4π2
+

4235i

2π

)
z +

(
236250 +

21040875

16π2
+

8912475i

4π

)
z2, (A.7)

+ ln z

(
11i

4π
+ z

(
1925

2π2
+

330i

π

)
+ z2

(
4051125

4π2
+

311850i

π

))
+

5

8π2
ln z2

(
1 + 5!z +

10!

25
z2

)
+O(z3),

ΠM,3 = 1 + 5!z +
10!

25
z2 +O(z3),

ΠM,4 =
1

2πi
(770z + 810225z2)z +

ln z

2πi

(
1 + 5!z +

10!

25

)
z2 +O(z3).

B Hierarchies

Let us summarise the correction to the hierarchy formula of [1] using the notation of that

paper. The non-zero fluxes in their notation are M,K,K ′ which we denote as F1, H3, H4.

The four components of the periods are described on those coordinates as

Π(z) = (z, z′(z),G(z),G′(z)), (B.1)

while we note them as Πi. The third component of the period vector has in general the

properties [1]

G(z) =
z ln z

2πi
+ hol., G(0) 6= 0, ∂zG(z) =

ln z

2πi
+ δ1(z). (B.2)

Closed to the conifold when z → 0 we evaluate the following quantities

Π̄0ΣΠ0 = z̄′(0)G′(0)− Ḡ′(0)z′(0),

Π̄0Σ∂zΠ0 = Ḡ(0)− z̄′(0)∂zG′(0)− Ḡ′(0)∂zz
′(0),

τ0 =
M Ḡ(0)

K ′z̄′(0)
,

∂zK0 =
Π̄0Σ∂zΠ0

Π̄0ΣΠ0
,

W0 = MG(0)− τ0K
′z′(0).
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This will give a covariant derivate of W

DzW = M

(
ln z

2πi
+ δ1(0)

)
− τ0(K +K ′ż′(0)) + ∂zK0W0 +O(z), (B.3)

= M
ln z

2πi
− τ0K + b0 +O(z),

b0 = Mδ1(0)− τ0K
′ż′(0) + ∂zK0W0,

∆0 = b0/M = δ1(0)− Ḡ(0)

z̄′(0)
∂zz
′(0) + ∂zK0

(
G(0)− Ḡ(0)

z̄′(0)
z′(0)

)
.

This translates in that there is a hierarchy given by

z0 ∼ exp 2πi

(
τ0K

M
−∆0

)
, (B.4)

∼ exp 2πi

(
KḠ(0)

K ′z̄′(0)
−∆0

)
.

The previous formula adds a factor exp (−2πi∆0) w.r.t. to (3.18) in [1] this constitutes a

correction to the hierarchy between the 4D and 6D scales, which is independent of the fluxes.

C Effect of monodromies on the scalar potential

The existence of inflationary regions due to monodromies has been widely explored in the

last years. A logical strategy is to look for Minkowski vacua (especially in no-scale models

as in the present case) and move around the moduli vevs in order to find flat regions in

the potential. In section 3.3 we looked at the profile of the scalar potential in the complex

structure phase direction θ, while keeping all other moduli frozen at their vevs. We found

that the amplitude of oscillations in the scalar potential along θ increased as we encircled

the conifold. Here we present an alternative way of moving away from the Minkowski

minimum in z along the direction determined by DτW = 0, implying a transformation of

the axio-dilaton in the trajectory.

In the examples studied and presented in section 3.3, we saw that moving away from

the vacuum in the θ-direction, the scalar potential starts oscillating and the amplitude

of the oscillations are not constant as would be expected from an effective potential of

the form

V ∼ Λ sin

(
θ

f

)
. (C.1)

Here we present an analytical description of this feature. For this we study a displacement

in the direction defined by DτW = 0 while performing monodromies z → e2πinz, n ∈ Z
around the conifold. This is a good approximation for small values of gs and τ fixed at

its value at the Minkowski minimum. However we’ll see that far from the vacuum, gs
starts growing leading the potential to an unphysical region. Under n-monodromies the

superpotential W transforms as

W →W − nG1Π1 ≡W − ng, (C.2)
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and by keeping DτW = 0 after monodromies, the dilaton transforms as

τ0 → τ ′ =
τ0H̄ − nf̄
H̄ − nh̄

, (C.3)

where H = H†ΣΠ̄, f = F1Π1 and h = H1Π1. Observe that it is not possible to perform

a SL(2,Z) transformation of τ while keeping DτW = 0. i.e. the τ -transformation given

by (C.3) is not an SL(2,Z)-transformation.

The transformed superpotential, over a region on which DτW = 0, is given by

W → W (τ ′)− ng(τ ′)

= ω(n, Z̄0)

[
W (τ0, z0)− n

H̄

(
h̄F − f̄H + H̄ g(τ0)

) ]
≡ ω(W0 + δW ) (C.4)

where

ω(n, z̄0) =
H̄

H̄ − nh̄
, (C.5)

and F = F †ΣΠ. For each value of n, the values of W and the rest of terms (H ,F , h, f)

are fixed at the minimum point z0 and τ0. Now, notice that since DzW0 = 0 and DτW = 0

in τ = τ ′ we have that

V = eK (z0,τ ′(n)) |Dz(ωδW )|2z0 K
zz̄(z0, z̄0), (C.6)

from which we can read that the only contribution to the scalar potential comes from the

complex structure’s Kähler derivative. The final expression for V is

V =
igs(n)

2

1

Π†ΣΠ̄(z0)
|Dzξ|2z0 K

zz̄
0

∣∣∣∣ n

H̄0 − nh̄0

∣∣∣∣2 , (C.7)

where

ξ = 2i Im(fH̄ − hF̄ ), (C.8)

and
1

gs(n)
= Im

|H |2F̄H + n
(
H̄ 2Fh− f̄H |H |2

)
|H |2|H̄ − nh̄|2

. (C.9)

Notice the following:

1. For large n, gs tends to infinite (see also (C.3)), implying that our perturbative

analysis is only valid from n = 0 to some finite n. Actually for n satisfying

|H |4n2 +
[
−2|H |2 Re(H h̄) + Im(H̄ 2Fh−H 2H̄ f)

]
n

+ |H |2
[
|h|2 − Im(F̄H )

]
< 0, (C.10)

at z = z0, for which gs < 1.

2. From relation (C.3), it is straightforward to see that positive monodromies will lead

to a string coupling with the opposite sign with respect to that at the minimum.

Hence, if we start in a perturbative regime, for some positive n, we shall leave the

physical region. This however does not happen for negative monodromies.
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By substituting the value of gs(n) in V , we get

V =
n2C

A+Bn
(z0) (C.11)

with n negative and A, B and C functions valued at z0 given by

C(z0) =
i|H |2

Π†ΣΠ̄
|Dzξ|2z0 K

zz̄
0 ,

B(z0) = H̄ 2Fh− f̄H |H |2,

A(z0) = 2 Im(|H |2F̄H ). (C.12)

These values of the scalar potential at entire displacements of θ, show that for each shift

on the phase θ → θ+2π, the scalar potential increases its value. The analysis breaks down

as gs becomes larger than unity or the scalar potential becomes negative, showing that our

assumption on DτW = 0 cannot be kept on the whole physical moduli space. Between

each consecutive value of n the scalar potential oscillates with a minimum for some value

of θ in the interval
[
θ+ 2πn, θ+ 2π(n+ 1)

)
. This shows that for the given trajectory in the

moduli space, one expects an increase in the oscillations’ amplitude of the scalar potential.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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