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1 Introduction

The computation of quantum fluctuations in AdS spacetimes is of great interest due to

their role in the AdSd+1/CFTd correspondence [2–15] and their relationship to the micro-

scopic structure of extremal black holes [16–19]. The leading quantum correction to the

entropy of an extremal black hole is evaluated via the functional determinant or one loop

effective action.

One well-studied method for computing these one loop determinants is the heat ker-

nel [20]. The heat kernel can be expanded at large mass for any spacetime (and many

operators) in terms of a set of local curvature scalars. However, in order to compute the

full one loop determinant, we need to know the spectra of all fluctuating fields present,

as well as their eigenfunctions. This method is well-established but becomes unwieldy for
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high numbers of fields or non-minimal couplings, because those cases involve complicated

diagonalization of the mass matrices. Simplifications can be made if the group theory

structure of the field content is well-understood [21, 22]. Recently, [23–25] worked towards

streamlining the calculation of determinants relying on the on-shell spectrum but still using

the heat kernel method.

In [2], Denef, Hartnoll, and Sachdev developed a fundamentally different approach for

calculating the one loop determinant, by studying it in the complex mass plane. Instead of

computing the partition function Z(∆) for a given mass set by the conformal dimension ∆,

they treat Z(∆) as a function on the complex ∆ plane. If Z(∆) is a meromorphic function

in the complex ∆ plane - which we will see is a reasonable assumption for our purposes -

one can determine the function from the location and multiplicities of its poles and zeros,

up to a polynomial function of ∆. We fix the polynomial part by studying the large mass

behavior of Z(∆) via the local curvature expansion of the heat kernel method.

In [1], we used this quasinormal mode method to compute partition functions for

scalars in even dimensional AdS2n spaces. In this note, we apply this method to massive

fields with spin half, spin one, and spin two in the context of AdS2.1 We connect the modes

responsible for the poles or zeroes in the one loop determinant to finite representations of

SO(2, 1). This connection further simplifies calculation of the one loop determinant.

In section 2 we review the quasinormal mode method of Denef, Hartnoll, and Sachdev

(hereafter DHS) [2] and the results of [1] for massive scalars in AdS2. In section 3, we

compute the modes responsible for partition function poles of the massive scalar field via

finite representations of SO(2, 1), efficiently reproducing the modes previously found in [1].

In section 4, we extend this algebraic method to effortlessly compute the relevant spin

half (Dirac spinor) modes and reproduce known results in the literature. In section 5, we

discuss how to use the algebraic method to generalize the computations to spin one and

two in AdS2. Along the way, we also discuss generalizations of the spin zero and spin half

(Dirac spinor) in higher even-dimensional AdS2n, with details given in appendix A.

2 Computing zero modes

In this section we review the DHS method [2] for computing one loop determinants and

partition functions. We will focus on a complex scalar field in AdS2 (with AdS length `A)

as a guiding example, following the computation in [1].

The central idea of the DHS method is to consider the one loop determinant as a func-

tion of a mass parameter, and then continue that mass parameter to the complex plane.

Considering the determinant as a function of a complex mass parameter allows us to use

the power of complex analysis, in particular Weierstrass’s factorization theorem. This the-

orem states that any meromorphic function on the complex plane can be determined from

its zeroes and poles.2 We are specifically interested in computing one loop determinants,

1For applications of the quasinormal mode method to odd-dimensional AdS, we refer the readers to [26,

27] in the case of AdS3.
2More precisely, we mean the meromorphic extension of Weierstrass’s factorization theorem. Addi-

tionally, as detailed below, the poles and zeros only determine a meromorphic function up to one overall

function, which itself cannot have any zeros or poles (that is, up to one entire function).
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whose zeroes and poles in the complex mass plane can be found from the kinetic opera-

tor’s spectrum. Hence Weierstrass’s theorem provides a shortcut for calculating one loop

determinants, provided we assume they are meromorphic.

Let us consider the example of the complex scalar field in AdS2. At one

loop, its partition function is proportional to the inverse determinant of the massive

Klein-Gordon operator,

Z(∆) =

∫
Dφe−

∫
φ∗[−∇2+`−2

A ∆(∆−1)]φ ∝ 1

det[−∇2 + `−2
A ∆(∆− 1)]

. (2.1)

The conformal dimension ∆ can be expressed in terms of the mass m of the complex scalar

via ∆(∆− 1) = (m`A)2, or equivalently,

∆ =
1

2
+

√
1

4
+m2`2A. (2.2)

Since the boundary conditions in AdS spaces are usually defined in terms of the conformal

dimension ∆, we will continue this parameter (rather than m) to the complex plane.

By inspection of eq. (2.1) we see that the partition function Z is a function of ∆ with

no zeroes and with poles located at ∆ = ∆?, where ∆? is a particular value of the conformal

dimension for which there exists a φ? satisfying

[−∇2 + `−2
A ∆?(∆? − 1)]φ? = 0. (2.3)

That is, φ? is a zero mode of the Klein-Gordon operator with mass set by the conformal

dimension ∆?. In order for ∆? to indicate a pole in Z(∆), its associated solution φ? must

be single-valued and contain only the “normalizable” behavior at the conformal boundary

of AdS2. In global coordinates

ds2 = `2A(dη2 + sinh2 ηdθ2), θ ∼ θ + 2π, η ≥ 0, (2.4)

the boundary and single-valued conditions on the solutions φ? become

φ? → (sinh η)−∆ when η →∞, (2.5)

φ?(θ) = φ?(θ + 2π). (2.6)

For AdS2, the explicit solutions φ? are given in [1]:

φhl = eilθ(i sinh η)|l|F
[
h+ |l|, |l|+ 1− h; |l|+ 1;− sinh2

(η
2

)]
,

h ∈ Z≤0, l ∈ Z, |l| ≤ −h. (2.7)

These φ? solve eq. (2.3) under the boundary conditions (2.5), with ∆? = h.

There are −2h + 1 solutions φ? for each value of h = ∆?, we denote this degeneracy

by Dh. The partition function Z(∆) is then given by

Z(∆) = ePol(∆)
∏
h

1

(∆− h)Dh
. (2.8)
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Here h is an index labelling the distinct poles ∆? = h of Z(∆), with the product running

over all nonpositive integers h ∈ Z≤0. Pol(∆) is an as-yet undetermined function; it must

be polynomial in ∆ since it cannot contribute any new poles or zeros to Z(∆).

Rather than continue to work with an infinite product, we take the logarithm of Z(∆):

logZ(∆) = Pol(∆)−
∑
h

Dh log(∆− h), (2.9)

= Pol(∆) + 2ζ ′(−1,∆)− (2∆− 1)ζ ′(0,∆). (2.10)

where in the second line we have treated the infinite sum via zeta function regular-

ization.3 ζ(s, x) is the Hurwitz zeta function, found by the analytic continuation of

ζ(s, x) =
∑∞

k=0(x+ k)−s, and ζ ′(s, x) = ∂sζ(s, x).

The only undetermined part of the partition function Z(∆) at this point is the poly-

nomial Pol(∆). This polynomial encodes the behavior of Z(∆) at large ∆, which can be

computed from a large mass heat kernel expansion, where ∆ and m are related by (2.2).

The heat kernel expansion of Z(∆) at large m (and thus large ∆) for a generic spacetime

of dimension d+ 1 is given by [20],

logZ(∆) =

d+1∑
k=0

ak

∫ ∞
0

dt

t
t
k−(d+1)

2 e−tm
2

+O(m−1) + constant. (2.11)

The coefficients ak encode information about the operator in the one loop determinant as

well as the manifold geometry and background fields; they are given by combinations of

curvature invariants such as R,Rµν , etc.4 In our current example, with d+ 1 = 2 and the

Klein-Gordon operator, the nonzero coefficients are5

a0 =
1

(4π)
Tr

∫
AdS2

√
gd2x, a2 =

1

(4π)
Tr

∫
AdS2

√
gd2x

R

6
. (2.12)

The integrals over the manifold yield factors of the regularized volume of AdS2, since

R = − 2
`2A

is a constant. The trace in the definition of the ak sums over the Lorentz index

structure of the fields, which is trivial for a scalar. With these coefficients, and using the

regulated VolAdS2 = −2π`2A, the heat kernel expansion for a scalar in AdS2 is

logZ(∆) = −
`2A
2

∫ ∞
ε

dt

(
1

t2
− 1

3t`2A

)
e−tm

2
+O(m−1) + constant. (2.13)

Evaluating this integral with cutoff ε = e−γΛ−2 determines the large mass, or large ∆,

behavior of Z(∆). As shown explicitly in [1], requiring eq. (2.10) to match this large ∆

behavior fixes Pol(∆):

Pol(∆) = [−1 + log(`AΛ)]∆(∆− 1) +
1

3
log(`AΛ)− 1

4
. (2.14)

3Pol(∆) is sufficient to account for any zeta function regularization ambiguities in the cases we study;

we expect this behavior to be generic.
4In the presence of a background gauge field the ak would also have insertions of the field strength Fµν .
5For an even dimensional spacetime with no boundary contribution all the odd k coefficients are zero.
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And we now have an expression for the partition function at any ∆:

logZ(∆) = 2ζ ′(−1,∆)−(2∆−1)ζ ′(0,∆)+[−1+log(`AΛ)]∆(∆−1)+
1

3
log(`AΛ)−1

4
. (2.15)

It is important to note that we only needed the large mass expansion (2.11), instead of the

full heat kernel.

In summary, we have outlined in this section the zero-mode or DHS method [2]

for computing partition functions. We have also reviewed the specific case of the AdS2

scalar partition function, as computed in [1] for the broader case of AdS2n, by following

the prescription:

• Find all zero modes φ? as well as their conformal dimensions ∆? and degeneracies D?.

• Use zeta function regularization to write the logarithm of the partition function.

• Match the asymptotic behavior of Z(∆) with that of the heat kernel curvature ex-

pansion to find Pol(∆).

The evaluation of one loop determinants for other fields follows the prescription out-

lined here for the scalar field.

3 An algebraic approach to scalar zero modes

In [1], we found the modes φ? that solve (2.3) by explicitly solving the equation of motion

and finding values of ∆? for which φ? had the desired boundary behavior. In this section,

we will show that these same modes can be produced from studying the highest weight

representations for the SO(2, 1) isometry group of AdS2, even though these representations

will not be unitary under the L2 norm. We then explain how to generalize this algebraic

method to higher dimensional AdS2n.

3.1 The SL(2, R) algebra

We will find it useful to consider the SL(2, R) algebra which is isomorphic to the isometry

group SO(2, 1) of AdS2. The algebra is generated by L0, L±1, and satisfies the commutation

relations

[L0, L±] = ∓L±, [L+, L−] = 2L0, (3.1)

where we have abbreviated L±1 = L±. The quadratic Casimir for this algebra is L2
0−L0−

L−L+. States with well-defined conformal dimension ∆ are also eigenstates of the Casimir,

with eigenvalue ∆(∆− 1).

Since we want to find the specific values ∆? at which (2.3) has a solution φ?, we

consider states with a well-defined ∆. Since these are Casimir eigenstates, we use ∆ to

label the representations we study. A particular state can be specified by its L0 eigenvalue

`0 combined with ∆. Note L± act as lowering/raising operators on the eigenvalue `0.

Additionally, since the quasinormal mode method will only work when the degeneracy of

the states φ? is finite, we will insist that the representations have finite length.
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If a representation labelled by ∆ has finite length, then it must have a highest weight

state satisfying

L0 |h〉 = h |h〉 , (3.2)

L+ |h〉 = 0,

where h here labels both the L0 eigenvalue and the value of ∆. Since we want a finite length

representation, we also require (L−)p+1 |h〉 = 0, (L−)p |h〉 6= 0, where p+ 1 is the length of

the representation, and p ∈ Z≥0. We can then use the commutator algebra to deduce

[L+, L
p+1
− ] |h〉 = L+L

p+1
− |h〉 = (p+ 2h)(p+ 1)Lp− |h〉 (3.3)

⇒ h = −p/2. (3.4)

In other words, 2h must be a non-positive integer, and the dimension of the representation

with highest weight state |h〉 is given by p+ 1 = 2(−h) + 1.

We will also need expressions for the symmetry generators in specific coordinates.

These are the Killing vectors of AdS2. We present these as vectors; the generators them-

selves are Lie derivatives acting in these directions. For the coordinates in eq. (2.4), we have

L0 = cos θ∂η − coth η sin θ∂θ, (3.5)

L± = i sin θ∂η + i (coth η cos θ ∓ 1) ∂θ. (3.6)

In Poincaré coordinates, with metric

ds2 =
dt2 + dz2

z2
, (3.7)

they are

L0 = t∂t + z∂z, (3.8)

L− = (t2 − z2)∂t + 2zt∂z, (3.9)

L+ = ∂t. (3.10)

The Killing vectors Lµi ∂µ (with i = 0,+,−) act on a scalar through their Lie derivatives,

i.e. they act on a scalar function φ as LLiφ = Lµi ∂µφ. For notational simplicity, we denote

this action as Liφ.

3.2 The scalar finite representations on AdS2

In order to study which values of h and thus ∆? are actually exhibited in the scalar case, we

use Poincaré coordinates. A highest weight state must solve eq. (3.2); for a scalar function

φh(t, z) of weight h these become

L+φh = ∂tφh = 0 (3.11)

L0φh = t∂tφh + z∂zφh = hφh. (3.12)

Solving these equations we find

φh = zh, (3.13)

– 6 –
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where we have ignored overall normalization since it is irrelevant for our analysis. Con-

sider now

Lp+1
− φh = 0, Lp−φh 6= 0 , (3.14)

where p+1 is the length of the representation, and p ∈ Z≥0. Since Lp−φh is an eigenfunction

of L0 with eigenvalue h+ p, it must be of the form

Lp−φh = const× F (t/z)zh+p (3.15)

for some function F . Solving Lp+1
− φh = 0 gives F (x) = (1 + x2)h+p, which means

Lp−φh = const×

[
1 +

(
t

z

)2
]h+p

zh+p . (3.16)

The fact that φh is highest weight implies that Lp+1
+ Lp−φh ∝ L+φh = 0. Remembering that

Lµ+∂µ = ∂t, this condition reduces to

∂p+1
t

[
1 +

(
t

z

)2
]p/2

= 0 . (3.17)

where we have used the fact that h = −p/2 (with 2h a non-positive integer) from eq. (3.4).

If p is a non-negative even integer, this equality is trivial since (1 + t2)p/2 is a polynomial

of degree p, and is thus annihilated by a p + 1 derivative. If p is instead a positive odd

integer, then (1 + t2)p/2 is some positive integer power of
√

1 + t2 and is not annihilated

by any positive number of t-derivatives. Thus, p must be a non-negative even integer, so

h = −p/2 must be a non-positive integer. In short, we find that on AdS2, the finite scalar

representations consist of

φh, L−φh, L
2
−φh, . . . , L

−2h
− φh, (3.18)

where h ∈ Z≤0. Since these are the zero modes, with ∆? = h and degeneracy Dh = −2h+1,

we have the same locations and degeneracies for the poles in eq. (2.8). Consequently, this

algebraic method recovers the same answer for the partition function of the AdS2 scalar as

found previously in [1].

3.3 Matching these scalar states to those from [1]

In the previous section, we did not impose boundary conditions on the functional form of

the scalar states. Instead, we simply insisted that the states in which we are interested

should be in finite representations labelled by a fixed value of ∆. These restrictions resulted

in the same number of states for each ∆ as we found via boundary conditions in [1], shown

here in eq. (2.7).

We now show that these two sets of states are related to each other via linear combi-

nation; consequently, the algebraic conditions do also impose the boundary conditions in

eq. (2.5). The lowest case, when h = 0, is actually quite trivial; both functions are just

constants and thus equivalent up to overall normalization.

– 7 –
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The next case, case h = −1, requires a bit more work. In terms of the φhl defined in

eq. (2.7), the highest weight state φ−1 becomes

φ−1 = φ−1,−1 − 2iφ−1,0 + φ−1,1. (3.19)

This can be checked two ways: first, via the (complicated) coordinate transformation

between (2.4) and (3.7), and secondly by checking that the linear combination on the right

hand side is a highest weight state, using the explicit expressions for L0, L± in (3.5), (3.6).

More generally, the highest weight state is proportional to

φh ∝
l=−h∑
l=h

(−h)!

(−2i)|l||l|!(−h− |l|)!
φh,l. (3.20)

Similarly, the descendants of these highest weight states can also be written as linear

combinations of the φh,l. We can find the exact linear combination by noticing that L−−L+

is an eigenoperator for φh,l:

(L− − L+)φh,l = 2i∂θφh,l = −2lφh,l. (3.21)

It is additionally useful to recall that L+φh = 0, and L0φh = hφh. Using these facts, we

can write explicit expressions for Lk−φh as linear combinations of the φh,l, and each linear

combination is unique; however the general expressions are not particularly illuminating

so we do not reproduce them here.

Instead, we now move on to discuss the boundary conditions. Since the highest weight

states and their descendants can all be written as linear combinations of the φh,l from [1],

they inherit their boundary conditions, namely smoothness at η = 0, periodicity in θ, and

the falloff condition eq. (2.5). In fact, the highest weight condition L+φh = 0 together with

the finite representation condition L−2h+1
− φh = 0 impose both smooth regular behavior at

the center of Euclidean AdS and the boundary condition at infinity.

We can use this fact to write the falloff condition eq. (2.5) in a coordinate invariant

manner. States can always be labelled by the eigenvalues of a complete set of commuting

operators; in AdS2, we can choose the Casimir with eigenvalue ∆(∆−1) and L0 with eigen-

value `0. The boundary conditions can then be rewritten as these eigenvalues satisfying

|`0| ≤ |∆|. (3.22)

If we choose instead (L− − L+)/2 and the Casimir as the set of commuting operators, as

in Eq. (3.21), we similarly find |l| ≤ |h|. We are interested in representations such that

all states in the representation obey the condition; this is equivalent to saying that the

representations are of finite length.

3.4 Generalization to higher dimensional AdS2n

In [1] for AdS2n, the zero modes were obtained to be

∆? = −p, p = 0, 1, 2, . . . (3.23)

– 8 –
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with degeneracy

D(p) =
2p+ d

d

(
p+ d− 1

d− 1

)
, (3.24)

where d + 1 = 2n. The algebraic method of finding finite dimensional representation of

SO(d + 1, 1), for 2n = d + 1, is most efficiently phrased in terms of finding the zero-

eigenvalues of the inner-product matrix at each level. This calculation, though fairly

straightforward, is extremely tedious at higher-levels. In appendix A.1, we have diago-

nalized the inner-product matrix for the case of AdS4 and AdS6 to find these finite repre-

sentations for the first few levels. The results agree with eq. (3.23)–(3.24). In this algebraic

method, no explicit expressions of the zero modes are needed, in contrast to the original

computations in ref. [1].

4 Spin 1
2

zero modes

In this section we compute the spin half finite representations in analogy with the the scalar

case. We start with a spin half (Dirac spinor) highest weight state |h〉 and construct all

of the states in the finite representations by repeated action with L−. The action of the

SL(2,R) operators L0, L± on spinors is achieved via Lie derivatives along the directions of

those operators; i.e., if the vector V = V µ∂µ is an infinitesimal generator of the SL(2,R)

algebra, the Lie derivative along the direction of V acting on a spinor is the infinitesimal

representation of the SL(2,R) algebra acting on the spinor representation.

4.1 Lie derivatives and spinors

The definition of a Lie derivative acting on a spinor along a Killing vector V = V µ∂µ is [28]

LV ψ = V µ∇µψ −
1

8
(∇µVν −∇νVµ)γµγνψ . (4.1)

Highest weight states are eigenstates of LL0 that are annihilated by LL+ , so the highest

weight spinors ψ must solve

LL0ψ = hψ , (4.2)

LL+ψ = 0. (4.3)

We work in Poincaré coordinates as in eq. (3.7) and choose the gamma matrices γâ =

{γ t̂, γ ẑ}, where hatted indices refer to frame indices, to be

γ t̂ = σ1 =

[
0 1

1 0

]
, (4.4)

γ ẑ = −σ2 =

[
0 i

−i 0

]
. (4.5)

The SL(2,R) generators in Poincaré coordinates are given in eq. (3.8)–(3.10). The expres-

sion in eq. (4.1) for the Lie derivative of a Killing vector V µ∂µ acting on a spinor ψ can

– 9 –
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now be explicitly written as:

LV ψ =

(
V t

(
∂t −

iσ3

2z

)
+ V z∂z +

i

4
(∂tVz − ∂zVt)z2σ3

)
ψ. (4.6)

At this point it is already clear why Poincaré coordinates are advantageous: for V = L+,

we have V t = 1, Vt = 1
z2

and V z = Vz = 0, such that the differential equation LL+ψ = 0,

is simply

∂tψ = 0. (4.7)

Moreover, the action of LLi on a two component spinor ψ with upper component φ1 and

lower component φ2 is

Liψ = LLi

[
φ1

φ2

]
. (4.8)

In Poincaré coordinates, the action of the SL(2,R) generators L0, L± on ψ becomes

L0ψ =

[
L0φ1

L0φ2

]
, L+ψ =

[
L+φ1

L+φ2

]
, L−ψ =

[
(L− + iz)φ1

(L− − iz)φ2

]
. (4.9)

Since L0 and L+ act independently on the top and bottom components of the spinor, the

problem of finding spin half highest weight states is quite similar to the problem of finding

scalar highest weight states.

As one acts repeatedly with L− to find all states in a finite representation there is

a departure from the scalar case due to the extra terms in the expression of LL−ψ. We

will see that this departure manifests itself mainly in the number of states in the finite

representations, which is to be expected for a representation with a different spin.

4.2 Finite representations

We consider a highest weight state ψh such that

L0ψh = hψh,

L+ψh = 0.

The condition L+ψh = 0 requires both components of ψh to be independent of time,

L+ψh =

[
∂tφ1

∂tφ2

]
= 0. (4.10)

The condition L0ψh = hψh requires ψh to be of the form

ψh = zh

[
c1

c2

]
, (4.11)

where c1, c2 are constants. As shown in eq. (3.4), these conditions together with the

commutation relations require h = −p/2, for p ∈ Z≥0. We find the same result since

by definition the Lie derivatives satisfy the same commutation relations; however, we now
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show that the functional form of the spinor modes imposes further restrictions on the values

that h can take.

The state L−
pψh is an eigenstate of L0 with eigenvalue h + p, so L−

pψh must be of

the form

L−
pψh = zh+p

[
c1G(t/z)

c2G
∗(t/z)

]
, (4.12)

where G(t/z), G∗(t/z) are functions of the combination t/z. We can solve the condition

L−
p+1ψh = 0 to find

G(t/z) = [1 + (t/z)2]
p−1
2 [1 + i(t/z)], (4.13)

and G∗(t/z) must be its complex conjugate.

The state L+
p+1L−

pψh vanishes, since L+ψh = 0. Thus, we find

(∂t)
p+1

(
[1± i(t/z)][1 + (t/z)2]

p−1
2

)
= 0. (4.14)

For clarity let us analyze the real and imaginary parts separately:

(∂t)
p+1

(
[1 + (t/z)2]

p−1
2

)
= 0, (4.15)

(∂t)
p+1

(
(t/z)[1 + (t/z)2]

p−1
2

)
= 0. (4.16)

In order to be killed by p+1 derivatives, the function of t must to be a polynomial of degree

p or lower. If p is even, [1+(t/z)2]
p−1
2 is not polynomial and in fact is not killed by (∂t)

p+1.

Hence p must be an odd number, in which case [1 + (t/z)2]
p−1
2 and (t/z)[1 + (t/z)2]

p−1
2 are

polynomial with degrees p− 1 and p respectively.

We already knew from the commutation relations that 2h must be a nonpositive inte-

ger; we have now shown that the functional form of the spinor modes additionally requires

that 2h is odd, or h = −p− 1/2 for for p ∈ Z≥0.

If we consider each chirality separately, then for a given p, we have 2(−h)+1 = 2(p+1)

states:

ψh, L−ψh, L−
2ψh, . . . , L−

2p+1ψh, (4.17)

with L0 eigenvalues ranging from h = −1/2 − p to −h = 1/2 + p. The states with L0

eigenvalues greater than −h are annihilated in analogy with the scalar case; the principal

difference with respect to the spin zero representations is the number of states.

4.3 Sum over modes

In this section, we consider the partition function for a Dirac fermion. We take the spin half

modes found previously (4.17) and sum over them by adapting the formula (2.9). In the

derivation of (2.9) we remarked that the partition function had only poles (see eq. (2.1)).

This time we are computing a fermionic determinant,

Z ∝ det[ /∇−m], (4.18)

so the modes we computed correspond to zeros in the spin half partition function, and

there are no poles. Here m is again a function of ∆, given by m = ∆− 1
2 .
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Following the logic we used for the scalar field, we use Weierstrass’s factorization

theorem to write

Z(∆) = ePol(∆)
∏
h

(∆− h)Dh . (4.19)

The states we found are at −h = −∆? = p+ 1
2 , p = 0, 1, 2, . . ., with degeneracies 4(p+ 1),

where 2(p+1) modes are coming from each chirality. However, only one chirality should be

accounted to match the spinor representations of the conformal group [29–31]. We insert

those values in (4.19) and take the log,

logZ = Pol(∆) +
∞∑
p=0

(2p+ 2) log

(
∆ + p+

1

2

)
, (4.20)

= Pol(∆)− 2ζ ′
(
− 1,∆ +

1

2

)
+ (2∆− 1)ζ ′

(
0,∆ +

1

2

)
,

where we have again used the Hurwitz zeta function to regularize the sum. We now proceed

to find the asymptotics of logZ and evaluate Pol(∆). First we rewrite logZ in terms of

the mass m = ∆− 1
2 and expand around large m,

logZ = Pol(m)− 3

2
m2 +

1

2
m2 logm2 − 1

12
log(m2)− 1

120m2
−O(m−5). (4.21)

To compute Pol(m) we match our expression for large m with the heat kernel curvature

expansion of a free spin-half field in AdS2 [20],

logZ = − 1

4π

∫
H2

√
g

(∫ ∞
e−γΛ−2

dt

t2
e−tm

2 − R

12

∫ ∞
e−γΛ−2

dt

t
e−tm

2

)
+O(m−1) (4.22)

= − 1

4π

∫
H2

√
g

(
eγΛ2 −m2 +m2 log

(
m2

Λ2

)
+
R

12
log

(
m2

Λ2

))
+O(m−1) +O(m/Λ)

The relevant Seeley-DeWitt coefficients are a0 = 1 and a2 = − R
12 . We introduced the cutoff

e−γΛ−2, where Λ is a quantity with dimensions of mass, and γ is the Euler-Mascheroni

constant. The overall minus sign is due to the fact that we are computing a fermionic

determinant.

The Ricci scalar of AdS2 with unit radius is R = −2 and the regularized AdS2 volume

is −2π. We drop the m-independent term and insert the values for R and the volume of

AdS2 into the heat kernel expansion, obtaining

logZ = −1

2
m2 +

1

2
m2 log

(
m2

Λ2

)
− 1

12
log

(
m2

Λ2

)
+O(m−1) +O(m/Λ). (4.23)

We match expressions (4.21) and (4.23) and find Pol(m) ,

Pol(m) = m2 − 1

2
m2 log(Λ2) +

1

12
log(Λ2), (4.24)

=

(
∆− 1

2

)2

− 1

2

(
∆− 1

2

)2

log(Λ2) +
1

12
log(Λ2).
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In the last step we rewrote Pol in terms of the conformal dimension ∆. Now that we found

Pol, we insert its expression in the formula for the partition function (4.20) completing

our computation,

logZ =

(
∆− 1

2

)2

− 1

2

(
∆− 1

2

)2

log(Λ2)

+
1

12
log(Λ2)− 2ζ ′

(
− 1,∆ +

1

2

)
+ (2∆− 1)ζ ′

(
0,∆ +

1

2

)
. (4.25)

This is the partition function of a free Dirac fermion in AdS2.

We close this section providing a explicit check with results previously computed by

other methods. In [17], Banerjee, Gupta, and Sen compute the heat kernel density for a

free Dirac fermion on AdS2; their result is

K(t) = − 1

2πt

(
1 +

1

6
t− 1

60
t2 +O(t3)

)
. (4.26)

We integrate each term of the heat kernel (4.26) after inserting the mass factor e−tm
2
,

logZ =
VolAdS2

2

∫ ∞
ε

dt

t
K(t)e−tm

2
, (4.27)

where the factor of the regularized volume of AdS2 arises because ref. [17] computes a heat

kernel density K(t). Expanding around small ε, the result is

logZ = −VolAdS2

4π

(
1

ε
−m2 +m2γ +

1

6
(−γ − log(m2ε))

+m2 log(m2ε)− 1

60m2
+O(m−4)

)
(4.28)

= −1

2
m2 − 1

12
log

(
m2

Λ2

)
+

1

2
m2 log

(
m2

Λ2

)
− 1

120m2
+O(m−4) +O(Λ−2). (4.29)

In the second step we have set ε = e−γΛ−2 as in our computation. Comparison of (4.29)

with (4.21) shows that the logarithmic terms agree. Moreover, insertion of the polynomial

terms (4.24) in (4.21) yields agreement between the polynomial terms computed by [17]

as well.

In conclusion, the partition function (4.25) we computed agrees in the large mass limit

with the previous results of [17].

4.4 Generalization to AdS4

Similarly to the scalar case (as discussed in 3.4), the algebraic method of finding finite

dimensional spinor representations of SO(d + 1, 1) involves finding the zero-eigenvalues of

the inner-product matrix at each level for a spinor highest weight representation. We have

diagonalized the inner-product matrix for the case of AdS4 to find these finite represen-

tations up to a few levels. The details are provided in appendix A.2. The result can be

summarized as

h = −1

2
− p, p = 0, 1, 2 . . . (4.30)
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with degeneracy for each p given by6

D(p) =
2

3
(p+ 1)(p+ 2)(p+ 3). (4.31)

In fact, we can use these results alone to recover the logarithmic portion of the spinor one

loop effective action in the existing literature. We first use eq. (2.9) with −h = −∆? = p+ 1
2 ,

p = 0, 1, 2, . . . and degeneracies D(p) = 2
3(p+ 1)(p+ 2)(p+ 3) to find

logZ = Pol(∆) +
2

3

∞∑
p=0

(p+ 1)(p+ 2)(p+ 3) log

(
∆ + p+

1

2

)
, (4.32)

= Pol(∆)− 2

3

[
ζ ′
(
−3,∆ +

1

2

)
+ 3 (2−∆) ζ ′

(
−2,∆ +

1

2

)
(4.33)

+
(
3∆2 − 12∆ + 11

)
ζ ′
(
−1,∆ +

1

2

)
− (∆− 1)(∆− 2)(∆− 3)ζ ′

(
0,∆ +

1

2

)]
.

In the large mass expansion, using ∆ = 2 + m and expanding around large m gives

logZ = Pol(m)− 25

72
m4 +

1

2
m2 +

1

24

(
2m4 − 4m2 +

11

15

)
log(m2) +O(m−2) , (4.34)

which reproduces the logm2 terms in ref. [32] upon regularizing the volume of AdS4

to be (4π2)/3.

5 Massive spin-one and spin-two finite representations

In this section, we will show that finite representations for spin-one and spin-two fields on

AdS2 are directly related to the scalar finite representations on AdS2.

The spin one and spin two fields we consider are massive, since the quasinormal mode

method relies on treating the partition function as a function of a complex mass parameter.

Accordingly, the fields we consider have no gauge symmetry; in order to apply these results

to the massless case, we would need to perform gauge-fixing and separately treat the

contributions of the associated ghosts on their own.

To start, let us take φh to be a scalar highest weight mode, i.e. L0φh = hφh and

L+φh = 0, with representation length Dh. We will consider spin one and spin two separately

in the following subsections.

5.1 Spin one

Let A ≡ Aµdxµ be a one-form. In differential form notation, for an arbitrary vector ξµ∂µ,

the Lie derivative acts on φh and a one-form A by the usual rule:

Lξφh = iξdφh, LξA = d(iξA) + iξdA, (5.1)

where iξ is the interior product/contraction.

6Furthermore, just as for the computations of the AdS2 spinor, we have found the zero mode spinor

eigenfunctions satisfying appropriate boundary conditions and checked that, indeed, we reproduced the

AdS4 spinor finite representations with the correct degeneracy.
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Next, define the one-form

Ah ≡ dφh . (5.2)

Then

LL0Ah = d[LL0φh] = hAh, LL+Ah = d[LL+φh] = 0 , (5.3)

i.e. Ah is an highest weight spin one field. Furthermore, since

LLk−Ah = d(LLk−φh) (5.4)

if φh is the scalar highest weight state for a finite representation with dimension Dh, then

Ah is a spin-one highest weight state for a finite representation with the same dimension Dh.

On the other hand, consider

(Ãh)µ ≡ εµν∇νφh , (5.5)

then since

Lξ(Ãh)µ = εµ
νLξ(Ah)ν (5.6)

we have that

LL0(Ãh)µ = h(Ãh)µ, LL+(Ãh)µ = 0, (5.7)

as well as

LLk−(Ãh)µ = εµ
νLLk−(Ah)ν = εµ

νd
(
LLk−φh

)
, (5.8)

which implies that if φh is the scalar highest weight state of a finite representation with

dimension Dh, then (Ãh)µ is a spin-one highest weight state of a finite representation with

the same dimension Dh.

So far, we have exhibited two set of modes for each h, i.e. Ah and (Ãh). If they are

independent modes, then due to the fact that the highest weight conditions and the finite

representation conditions are two-component (note that we are in AdS2) first-order differ-

ential equations, we have obtained the most general solutions by taking linear combinations

of these two independent solutions c1(Ah)µ + c2(Ãh)µ. Indeed, for h 6= 0, Ah and (Ãh) are

independent. For h = 0, however, recall from eq. (3.13) that φh = constant, and hence

Ah = Ãh = 0, which means that these are not the non-trivial highest weight modes that

we are after. Furthermore, for h = 0, one can explicitly use the AdS2 Killing vectors to

show that it is impossible to have a finite highest weight representation.

Thus the zero modes of a massive spin one field on AdS2 are the same as that of the

scalar, but we have twice the degeneracy together with the restriction that h 6= 0. For

massive spin one fields in two dimensions, the relation between conformal dimension ∆

and mass m is as in the scalar case: m2 = ∆(∆− 1). Note that the non-existence of h = 0

zero modes implies that the one-loop determinant of a massive spin-one is twice that of

the scalar one, up to an extra term which corrects for the fact that h = 0 zero modes are

not present in the massive spin-one case. Explicitly, this extra term gives exactly a log ∆

contribution in the one-loop determinant of a real massive vector field.

On the other hand, from ref. [17], in computing the logarithm of partition function for

a real massless spin-one field using the heat kernel method, one observes that there is a
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subtlety coming from extra square-integrable “zero-eigenvalue” modes. This effect accounts

for the difference between the vector heat kernel and twice the scalar heat kernel. In fact,

from the heat kernel of the massless case, one can easily compute the massive spin-one

one-loop determinant. The correction from the zero-eigenvalues modes translates into a

log ∆ term which is exactly the same as the contribution h = 0 zero modes we mentioned

in the previous paragraph.7

It is interesting that although the two methods reproduce the same subtle correc-

tions, the origin of this term in our method has to do with removing some modes from

the scalar case (much like the S2 zero-eigenvalue mode’s removal which is discussed

around eq. 3.1.10 of ref. [17]), whereas in ref. [17] this term comes from additional square

integrable zero-eigenvalues.

5.2 Spin two

Similarly to the strategy in the spin one case, since a symmetric two-tensor hµν has 3

independent components in AdS2 and the highest weight conditions are first order, it is

sufficient to show that there are 3 independent solutions, each of which is in one-to-one

correspondence with the scalar highest weight.

First, consider h 6= 0 and let Ah as well as (Ãh) be the two highest-weight spin-one

fields considered in the previous subsection. Then the two spin-two highest-weight modes

can be obtained from the following form of hµν :

hµν = LAhgµν or hµν = LÃhgµν (5.9)

where gµν is the AdS2 metric. A short computation shows that

LL0hµν = L[L0,Ah]gµν = hLAhgµν = hhµν

LL+hµν = L[L+,Ah]gµν = 0

LLk−hµν = L[Lk−,Ah]gµν , (5.10)

where we have used LL0gµν = 0 and the fact that LL0Ah = hAh. Similar results hold for

Ãh. This shows that these highest weight spin-two modes are in one-to-one correspondence

with the spin one highest weight (which in turn is in bijection with two copies of the scalar

highest weight). Furthermore, we can explicitly check that they are two independent spin-

one highest weight modes, so we get two independent spin-two highest weight modes here,

each with degeneracy Dh.

Finally the third highest-weight mode comes from considering

hµν = φhgµν . (5.11)

By Leibniz’s rule and the fact that LL0gµν = LL+gµν = LL−gµν = 0, we obtain

LL0hµν = gµνLL0φh = hhµν ,

LL+hµν = gµνLL+φh = 0,

LLk−hµν = gµνLLk−φh . (5.12)

7We thank the referee for pointing out this subtle effect which enabled us to do a more careful analysis

on the non-existence of the h = 0 spin-one zero mode.
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Thus, this spin-two highest weight solution is in one-to-one correspondence with the

scalar modes.

For h = 0, the mode proportional to the metric (i.e. φhgµν) still exists while the modes

LAhgµν and LÃhgµν vanish and thus they are not non-trivial zero modes. One can in fact

demonstrate that for h = 0 the only finite-dimensional representation is given by the φhgµν
mode using explicitly the highest-weight equations on AdS2.

In short, for h 6= 0 we have exhibited three independent highest-weight spin-two modes,

and they all come from scalar highest-weight modes. For h = 0, however, we only have

one highest-weight mode. Similar to the spin-one case in the previous section, this implies

that the log of partition function of a massive spin-two is given by three times the scalar

one up to a log mass-squared correction. It would be interesting to compare this to the

difference between the spin-two heat kernel and the scalar one, which possibly originates

from zero-eigenvalue square-integrable modes, similar to the phenomenon observed for the

spin-one case in ref. [17].
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A Finite representations of SO(d + 1, 1)

Let us study a Euclidean CFTd on Rd with coordinates xµ for d = 2n − 1. The d-

dimensional Euclidean conformal group is generated by the dilatation D, translations Pµ,

special conformal transformations Kµ and the SO(d)-rotation subalgebra Mµν .8 They

satisfy the algebra

[D,Pµ] = Pµ, [D,Kµ] = −Kµ, [Kµ, Pν ] = 2 (δµνD − iMµν) ,

[Mµν , Pρ] = i(δµρPν − δνρPµ), [Mµν ,Kρ] = i(δµρKν − δνρKµ),

[Mµν ,Mρσ] = i(δµρMνσ + δνσMµρ − δµσMνρ − δνρMµσ), (A.1)

with the rest of the commutators being zero. In radial quantization, the hermitian conju-

gate † acts as

Mµν = M †µν , Pµ = K†µ, D† = D. (A.2)

Using this algebra, we will study finite representations for a scalar highest weight state as

well as a (Dirac) spinor highest weight state.

8For d = 1, we have that D = L0, K = L+ and P = L−.
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A.1 Scalar

Consider the highest weight representations of the conformal group with the highest weight

scalar state |h〉 satisfying

D |h〉 = h |h〉 , Mµν |h〉 = Kµ |h〉 = 0. (A.3)

Descendants of the form Pµ1 . . . Pµk |h〉 generate a complete set of states with D = h + k.

We call these state level k descendants of |h〉. At generic values of h, no finite-dimensional

representations exist. However, at special (non-unitary) values of h, one might encounter

a highest weight state (or null state). This means that we should quotient out (or set to

zero within this representation) those null states and their descendants, which results in a

finite representation. This representation is called a short/finite representation. We aim

to study these representations.

To do so, one turns to the computation of the inner-product matrix at each level. As

an illustrative example, we shall first first work out the case for d = 1 and then go on to

the case of d = 3 and d = 5.

A.1.1 d = 1

For d = 1, we only have one raising operator P ≡ P1 and one lowering operator K ≡ K1

and there are no Mµν ’s. The inner-product at level k is given by

M(k) ≡ 〈h|KkP k |h〉 = [2(h+ k − 1) + 2(h+ k − 2) + . . .+ 2h]M(k − 1)

=

k−1∑
p=0

2(h+ p)M(k − 1) , (A.4)

implying that

M(k) =
Γ(k + 1)Γ(2h+ k)

Γ(2h)
. (A.5)

We see that for h = −p/2, p = 0, 1, 2, . . ., the states up to and including level p have non-

zero norm whereas M(k) = 0 for k > p. Thus, we have a finite representation whenever

h = −p/2 with dimension (p+ 1) = 2(−h) + 1 .

A.1.2 d = 3 and d = 5

For d > 1, this inner-product is not diagonal, so we have to diagonalize the inner-product

matrix at level k

M(k)µ1...µk,ν1...νk ≡ 〈h|Kµ1Kµ2 . . .KµkPνk . . . Pν2Pν1 |h〉 . (A.6)

At low levels, one can calculate this rather straightforwardly. For example

M(1)µ1,ν1 ≡ 〈h|Kµ1Pν1 |h〉 = 2hδµ1ν1 (A.7)

M(2)µ1µ2,ν1ν2 ≡ 〈h|Kµ1Kµ2Pν2Pν1 |h〉 = 4h(h+ 1)(δµ2ν2δµ1ν1 + δµ2ν1δν1µ1)− 4hδµ1µ2δν1ν2

where we have normalized 〈h|h〉 = 1. Inner-product matrices of higher level can be obtained

straightforwardly with longer expressions in terms of products of delta functions. The
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explicit expressions are long and not enlightening. We diagonalize them using Mathematica

for dimension d = 3 and d = 5 with levels up to level 4, and get the following eigenvalues:9

• For d = 3:

k Eigenvalues Multiplicity

0 1 1

1 h 3

2 h(h− 1
2) 1

h(h+ 1) 5

3 h(h+ 1)(h− 1
2) 3

h(h+ 1)(h+ 2) 7

4 h(h+ 1)(h− 1
2)(h+ 1

2) 1

h(h+ 1)(h+ 2)(h− 1
2) 5

h(h+ 1)(h+ 2)(h+ 3) 9

(A.8)

• For d = 5:

k Eigenvalues Multiplicity

0 1 1

1 h 5

2 h(h− 3
2) 1

h(h+ 1) 14

3 h(h+ 1)(h− 3
2) 5

h(h+ 1)(h+ 2) 30

4 h(h+ 1)(h− 1
2)(h+ 1

2) 1

h(h+ 1)(h+ 2)(h− 1
2) 5

h(h+ 1)(h+ 2)(h+ 3) 9

(A.9)

With these data, we observe that for h being a non-positive integer, the representation

is shortened to be finite dimensional. Here are the list of such non-positive h’s and their

dimensions:

• For d = 3:

−h Dimension

0 1

1 1 + 3 + 1 = 5

2 1 + 3 + 6 + 3 + 1 = 14

(A.10)

9We are not displaying the zero eigenvalues due to antisymmetric states (for example, at level 2, (PiPj−
PjPi) |h〉 = 0) since they are irrelevant. Furthermore, we have dropped any overall h-independent prefactor.

– 19 –



J
H
E
P
1
0
(
2
0
1
6
)
0
6
0

The pattern seems to be that for h = −p, the dimension is

1 + 3 + 6 + 10 + . . .+ (p+ 1)(p+ 2)/2 + . . .+ 10 + 6 + 3 + 1

=
(p+ 1)(p+ 2)

2
+ 2

p∑
q=0

(q + 1)(q + 2)/2 =
(p+ 1)(p+ 2)(2p+ 3)

6

=
2p+ d

d

(
p+ d− 1

d− 1

)∣∣∣∣
d=3

. (A.11)

• For d = 5:

−h Dimension

0 1

1 1 + 5 + 1 = 7

2 1 + 5 + 15 + 5 + 1 = 27

(A.12)

The pattern seems to be that for h = −p, the dimension is

2p+ d

d

(
p+ d− 1

d− 1

)∣∣∣∣
d=5

. (A.13)

In summary, we have obtained some evidence suggesting that for a general AdSd+1, the

finite representation with a scalar highest weight h is given by h = −p, p = 0, 1, 2, . . . with

dimension of the representation given by

2p+ d

d

(
p+ d− 1

d− 1

)
. (A.14)

These values of h (and the dimension of their representations) coincide with the zero modes

obtained in [1]. It will be interesting to relate the results in this section (or the zero-modes)

to the rational representations of conformal blocks [33–35].

A.2 Spinor

Consider the highest weight representation of the conformal group with the highest

weight spinor state |h, a〉 (with a being an index in the spinor representation of the

SO(2n)) satisfying

D |h, a〉 = h |h, a〉 , Kµ |h, a〉 = 0, Mµν |h, a〉 = −
2n∑
b=1

(Σµν)ab |h, b〉 , 〈h, a|h, b〉 = δab ,

(A.15)

where

Σµν = − i
4

[γµ, γν ] (A.16)

and the γµ’s form representation of the Clifford algebra

{γµ, γν} = 2δµν . (A.17)
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We follow the conventions in Chapter 3.1 of [36] for Euclidean γµ. The convention for Σµν

is such that it satisfies the same algebra as Mµν in eq. (A.1).

In particular, for d = 3 (or n = 1), we have 2-component spinors and 2 × 2 gamma

matrices chosen as

γ1 = σ1 =

(
0 1

1 0

)

γ2 = σ2 =

(
0 −i
i 0

)

γ3 = σ3 =

(
1 0

0 −1

)
, (A.18)

where σi’s are the Pauli matrices. The rest of the structures (e.g. how to build descendants

and etc) are the same as in the scalar case, except we now have to keep track of the

degeneracy in the a index. In principle, we could perform the analysis for any n. However,

due to the time-consuming nature of such analysis at higher dimensions and higher levels,

here we shall only deal with the case of AdS4 (i.e. d = 3 or n = 1).

A.2.1 d = 3

At level zero, there are two states (since 2n = 2). At level one, since there are three Pµ’s

but there is a spinor degeneracy of 2, there are 2 × 3 = 6 states. Similar counting gives

degeneracy at a general level k. Up to level four, the eigenvalues of the inner-product

matrix are:
k Eigenvalues Multiplicity

0 1 2

1 h− 1 2

h+ 1
2 4

2 (h+ 1
2)(h− 1) 6

(h+ 1
2)(h+ 3

2) 6

3 (h+ 1
2)h(h− 1) 2

(h+ 1
2)(h+ 3

2)(h+ 5
2) 8

(h+ 1
2)(h+ 3

2)(h− 1) 10

4 (h+ 1
2)(h+ 3

2)h(h− 1) 6

(h+ 1
2)(h+ 3

2)(h+ 5
2)(h+ 7

2) 10

(h+ 1
2)(h+ 3

2)(h+ 5
2)(h− 1) 14

(A.19)

So for special values of h where the representation is shortened and finite, the degeneracy is:

−h Dimension

1
2 2 + 2 = 2× (1 + 1) = 4

3
2 2 + 2 + 4 + 6 + 2 = 2× (1 + 3 + 3 + 1) = 16

5
2 2 + 2 + 4 + 6 + 6 + 2 + 10 + 6 + 2 = 2× (1 + 3 + 6 + 6 + 3 + 1) = 40

(A.20)
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These results suggest the pattern that finite representations occur whenever

h = −1

2
− p (A.21)

with the degeneracy of

D(p) = 22 ×
[
1 + 3 + 6 + 10 + . . .+

1

2
(p+ 1)(p+ 2)

]
=

2

3
(p+ 1)(p+ 2)(p+ 3) . (A.22)
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