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1 Introduction

Three-dimensional gauge theories have several features that are absent in their four-

dimensional counterparts, such as the non-trivial dynamics of abelian gauge groups, the

presence of Chern-Simons couplings and interesting effects of real masses and Fayet-

Iliopoulos parameters. The moduli spaces of supersymmetric theories have rich structures

and provide insights into the strongly coupled dynamics [1–4]. The interesting structure is

largely due to the role of ’t Hooft monopole operators [5], which can be realised as follows

in the weakly coupled regions of the moduli space, where the gauge group is spontaneously

broken to its Cartan subgroup. For each Cartan element of the gauge group, one can du-

alise the abelian gauge field into a periodic scalar, whose exponentiation is a well-defined

local field. The insertion of the latter as a local operator at a spacetime point modifies the

boundary conditions of fields in the path integral and introduces a magnetic flux on any

two-sphere surrounding that point. Moreover, as was pointed out in [6–8], the definition

of a monopole operator by a singular boundary condition also holds at the origin of the

moduli space, where the coupling becomes infinite. This approach bypasses the dualisation

of nonabelian gauge fields and hence allows for several exact calculations, including the

enhancement of the global symmetry at infinite coupling [9–11] and the quantum moduli

space of three-dimensional supersymmetric gauge theories [12–19].

A systematic method to study the moduli space and the chiral ring is to compute the

Hilbert series, a generating function that counts bosonic gauge invariant chiral operators

that are annihilated by two supercharges Qα of a 4-supercharges superalgebra. For three

dimensional gauge theories with N = 4 supersymmetry, the Hilbert series can be used

to study the Higgs and Coulomb branches as well as the corresponding chiral rings [12–

16, 19–21]. For the Higgs branch, which is protected against quantum corrections, the

Hilbert series can be evaluated using the Molien formula involving an integral of a rational
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function (see e.g. [20]). For the Coulomb branch, which receives quantum corrections, the

Hilbert series can be computed exactly using the “monopole formula” [12]. The latter

counts N = 2 chiral monopole operators dressed by the adjoint chiral multiplet that arises

in the decomposition of the N = 4 vector multiplet into N = 2 multiplets. It is worth

emphasising that the Coulomb branch chiral ring relations that involve monopole operators

are purely quantum relations that do not follow from a superpotential.

There has also been a recent progress in the computation of Hilbert series for CP-

invariant three-dimensional N = 2 gauge theories, which have vectorlike matter and no

Chern-Simons interactions [17, 18]. In this case, the Hilbert series counts monopole opera-

tors dressed by gauge invariants of a residual gauge theory of massless fields in the monopole

background. The Hilbert series provides information about the quantum moduli space,

without relying on the effective superpotential as in the traditional semi-classical analysis.

The main goal of this paper is to generalise the previous results to general three-

dimensional N ≥ 2 supersymmetric gauge theories with generic matter and Chern-Simons

interactions. Several insights on the low energy dynamics and dualities of such theories can

be gained using the Hilbert series. Worldvolume theories of M2-branes probing Calabi-Yau

fourfold singularities are also of our interest. The Hilbert series of the geometric branch

of their moduli space leads to a deeper understanding of the connection between the field

theory and corresponding Calabi-Yau singularity.

The paper is organised as follows. In section 2, several aspects of the dynamics of

N = 2 abelian theories are discussed along with the Hilbert series. We provide a general

prescription for computing the Hilbert series for N = 2 gauge theories in the presence of

background charges and Chern-Simons couplings. Several examples, including the Dorey-

Tong theories [22] and N = 2 mirror symmetry, are presented in detail. Subsequently, we

move on to discuss the Hilbert series for N = 2 nonabelian gauge theories in section 3.

We then apply this to the ABJM theory [23] and its variants in section 4. In section 5,

we explore N = 3 gauge theories that are obtained from N = 4 theories by turning on

Chern-Simons couplings. The discussion includes N = 3 necklace Chern-Simons quivers

that can be realised as the worldvolume theories of M2-branes probing a product of two

ALE singularities. For certain special values of the Chern-Simons level, such theories are

dual to N = 4 Kronheimer-Nakajima quivers [24] via an SL(2,Z) transformation [9, 25].

In section 6, we focus on the geometric branch of the worldvolume of a single M2-brane

probing a Calabi-Yau fourfold singularity. The discussion encompasses large classes

of theories with quantum corrected chiral ring, including flavoured toric quiver gauge

theories [26–28] as well as the worldvolume theories of M2-branes probing the cones over

Y p,q(CP2) [29, 30] and V 5,2 [31, 32].

2 Hilbert series of abelian 3d N = 2 gauge theories

To introduce our formalism, let us first consider the class of 3d N = 2 abelian gauge theo-

ries. Since the gauge group is abelian, there are no nonperturbative effects that may correct

the semiclassical analysis. We will often assume that the superpotential vanishes to keep
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the presentation simpler. We will comment on the inclusion of a nontrivial superpotential

in subsection 2.3.

Abelian 3d N = 2 gauge theories are defined by the following data: a matter content,

specifying the chiral multiplets Xa (a = 1, . . . , N) in the theory; abelian gauge, flavor

and topological symmetry groups G = U(1)r, F and GJ = U(1)r, to which we associate

dynamical, background and background abelian vector multiplets respectively; a U(1)R
R-symmetry, with no associated background multiplet since we work in flat space; mixed

Chern-Simons (CS) interactions involving the gauge and global symmetries; and a super-

potential, that we will take to vanish in most of this section. Real scalars in the background

abelian vector multiplets for the flavor symmetry group define real mass parameters for

the matter fields, whereas real scalars in the background abelian vector multiplets for the

topological symmetry group define Fayet-Iliopoulos parameters.

We wish to compute the Hilbert series, a generating function that counts gauge invari-

ant chiral operators of the theory:

H(t, z, x̂) = TrH

(
tR
∏
i

zJii
∏
î

x̂
Q̂î
î

)
, (2.1)

where H is the vector space of gauge invariant chiral operators. R, Ji and Q̂î are the

R-charge, topological charges for the (abelian) topological symmetry group GJ and flavor

charges for the maximal torus of the continuous flavor symmetry group U(1)N−r. t, zi
and x̂î are the corresponding fugacities. In the next subsection we will generalize the

standard notion of Hilbert series (2.1) to include certain background charges associated

to the global symmetry group.

The gauge invariant chiral operators of the theory are ’t Hooft monopole operators

dressed by matter fields. The insertion of a bare chiral monopole operator Vm is defined

by imposing a Dirac singularity for gauge field configurations in the path integral, so

that 1
2π

∫
F = m over a 2-sphere surrounding the insertion point, along with a singularity

σ ∼ m
2r for the real scalar σ in the vector multiplet to ensure that the Bogomol’nyi equation

required by supersymmetry is obeyed [7, 8]. m = (m1, . . . ,mr) is the magnetic charge of

the monopole operator, which by Dirac quantization belongs to the integer lattice Zr if the

gauge group is U(1)r.

Monopole operators are charged under the topological symmetry group GJ = U(1)r.

For each U(1) factor in the gauge group with gauge connection Ai, there is a topological

symmetry U(1)Ji with conserved current Ji = 1
2π ∗dAi. The topological charges of monopole

operators in the abelian gauge theory therefore coincide with the magnetic charges

Ji[Vm] ≡ J(m) = mi . (2.2)

Chern-Simons (CS) couplings
kij
4π

∫
Ai∧dAj + . . . , where the ellipses denote supersym-

metric completion, induce classical electric charges for monopole operators

Qclass
i [Vm] ≡ Qclass

i (m) = −
∑
j

kijmj , (2.3)
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where Qi is the electric charge under the ith U(1) gauge factor. Similarly, mixed global-

gauge Chern-Simons couplings induce classical global charges

Q̂class
î

[Vm] ≡ Q̂class
î

(m) = −
∑
j

k̂ijmj ,

Rclass[Vm] ≡ Rclass(m) = −
∑
j

kRjmj .
(2.4)

Note that the topological charges (2.2) may be interpreted as coming from mixed

topological-gauge CS couplings with levels kJii = −1.

Due to the spectral asymmetry of the Dirac operator in the monopole background,

the global and gauge charges of bare monopole operators Vm acquire quantum corrections

from all the fermions in the theory that are charged under the monopole background. In

an abelian gauge theory the quantum corrections are only due to fermions in matter chiral

multiplets Xa, a = 1, . . . , N . The quantum correction to the gauge or global charges

QA[Vm] ≡ QA(m) of the monopole operator is [7, 29, 33]

Qquant
A [Vm] ≡ Qquant

A (m) = −1

2

N∑
a=1

QA[ψa]

∣∣∣∣∑
i

Qaimi

∣∣∣∣ , (2.5)

where the sum runs over all fermion matter fields ψa in the theory, Qai = Qi[ψ
a] = Qi[X

a]

are the gauge electric charges of the fermions, whereas QA stand for any gauge or global

charge, including the R-charge, for which R[ψa] = R[Xa]− 1 ≡ ra − 1 and

Rquant[Vm] ≡ Rquant(m) = −1

2

N∑
a=1

(ra − 1)

∣∣∣∣∑
i

Qaimi

∣∣∣∣ . (2.6)

Topological charges do not receive quantum corrections since matter fields are not charged

under the topological symmetry.

Adding the classical and quantum contributions, the total charges of monopole oper-

ators take the general form

QA[Vm] ≡ QA(m) = Qclass
A (m) +Qquant

A (m) = −
∑
j

keff
Aj(m)mj , (2.7)

in terms of the quantum corrected effective Chern-Simons couplings

keff
Aj(m) = kAj +

1

2

∑
a

QaAQ
a
j sign

(∑
i

Qaimi

)
. (2.8)

Even though keff
Aj(m) is ill-defined when

∑
iQ

a
imi = 0 for some a, the charge QA(m) is

well-defined.

To compute the Hilbert series (2.1), we decompose the vector space of chiral operators

H = ⊕mHm in vector spaces of chiral operators of fixed magnetic charge. There is a

unique bare chiral monopole operator Vm defined in terms of the vector multiplet for each

magnetic charge m [7], but it can be dressed by nonnegative powers of matter fields which

– 4 –



J
H
E
P
1
0
(
2
0
1
6
)
0
4
6

are massless in the monopole background to form gauge invariants. These are all the matter

fields Xα such that
∑

iQ
α
i mi = 0: we call them the residual matter fields in the magnetic

sector of charge m. (See section 2 of [17] for a detailed introduction to the formalism.)

Assuming for simplicity that there is no superpotential, powers of the residual matter fields

are counted by the generating function1

PE

[∑
α

trα
∏
i

x
Qαi
i

∏
î

x̂
Q̂α
î

î

]
≡ 1∏

α

(
1− trα

∏
i x

Qαi
i

∏
î x̂

Q̂α
î

î

) , (2.9)

where we introduced fugacities xi for the U(1)r gauge group in addition to t for the U(1)R
symmetry and x̂î for the flavor symmetry.

Taking all these facts into account, we conclude that in the absence of a superpotential,

the Hilbert series that counts gauge invariant dressed chiral monopole operators of a U(1)r

gauge theory takes the general form:

H(t, z, x̂) =
∑
m∈Zr

tR(m)
r∏
i=1

zmii

N−r∏
î=1

x̂
Q̂î(m)

î
·

·
r∏
i=1

(∮
dxi

2πixi
x
Qi(m)
i

)
PE

[ N∑
a=1

δ∑
iQ

a
imi,0

tra
∏
i

x
Qai
i

∏
î

x̂
Q̂a
î

î

]
.

(2.10)

Let us explain the ingredients. xi and mi are fugacities and magnetic charges for the U(1)r

gauge group. The sum over magnetic charges m and the integral over xi imposes U(1)r

gauge invariance. Bare monopole operators Vm are weighted by their global charges R(m),

Ji(m) = mi and Q̂î(m), and by their gauge charges Qi(m). They are dressed by nonnega-

tive powers of the residual matter fields, counted by the plethystic exponential in the second

line (with the Kronecker delta functions enforcing the masslessness condition). Finally, the

dressed monopole operators are made gauge invariant by averaging over the gauge group.

It is important to note that the supersymmetry condition σ ∼ m
2r , where r is the dis-

tance from the insertion point, relates the real scalar σ that enters in the semiclassical

analysis of the moduli space to the integer magnetic charge m that defines the monopole

operator Vm.2 As a result, our Hilbert series formalism is closely related to the old semi-

classical analysis of the moduli space [1, 2, 22] (see also the more recent [4]), but with the

added benefit of providing a general formula to count gauge invariant chiral operators.

1The plethystic exponential (PE) of a multi-variate function f(x1, . . . , xn) is defined as

PE [f(x1, . . . , xn)] = exp

(
∞∑
p=1

1

p
f(xp1, . . . , x

p
n)

)
.

2On the moduli space where σ takes expectation value giving mass to the matter fields, the monopole

operator is obtained by dualizing the abelian vector multiplet to a chiral multiplet with periodic imaginary

part, and exponentiating the latter [1]: Vm = exp
[
−m

(∫ σ dx
2g2(x)

+ iτ
)]

, where g(σ) is the effective Yang-

Mills coupling that includes one-loop corrections from integrated out massive matter fields, and τ is the

periodic dual photon defined by ∗F = g2(σ)
2π

dτ .

– 5 –
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Geometrically, the Hilbert series (2.10) counts holomorphic functions on the moduli

space of supersymmetric vacua of the gauge theory in the absence of Fayet-Iliopoulos and

real mass parameters. This is the moduli space of the infrared SCFT at the endpoint of an

RG flow starting from an ultraviolet Maxwell-Chern-Simons theory, and has the structure

of a cone by dilatation invariance. For generic abelian theories, the moduli space of the

CFT is rather poor and often it only consists of the origin. Correspondingly, the only chiral

gauge invariant counted by the Hilbert series is the identity operator. We will consider

non-generic theories, such as M2-brane theories, that flow to CFT’s with interesting conical

moduli spaces parametrized by dressed monopole operators in sections 4, 5 and 6.

2.1 The Hilbert series with background magnetic charges

Abelian N = 2 gauge theories can also have interesting moduli spaces, including compact

branches, when real masses and Fayet-Iliopoulos (FI) parameters are turned on [1, 2,

22]. Real masses and FI parameters can be regarded as real scalars in background vector

multiplets for the flavor and topological symmetry groups. In light of the correspondence

between real scalars in vector multiplets and magnetic charges of monopole operators, in

order to study the moduli spaces of vacua of gauge theories perturbed by real masses and

FI parameters it is natural to consider a generalization of the Hilbert series (2.1) and (2.10)

where we include background monopole operators for the global non-R symmetry group.

These are defined by inserting supersymmetric Dirac monopole singularities for background

vector multiplets associated to the flavor or topological symmetry. We will refer to their

magnetic charges as background magnetic charges in the following.

Denoting by −Bi the background magnetic charges for the topological symmetries and

by m̂î the background magnetic charges for the flavor symmetries, the Hilbert series with

background magnetic charges is

H(t, z, x̂;B, m̂) = TrHB,m̂

(
tR
∏
i

zJii
∏
î

x̂
Q̂î
î

)
, (2.11)

where HB,m̂ denotes the vector space of gauge invariant chiral dressed monopole operators

with fixed background magnetic charges Bi and m̂î. Decomposing HB,m̂ = ⊕mHm;B,m̂ in

terms of magnetic sectors of the dynamical gauge group, the Hilbert series with background

magnetic charges takes a similar form to (2.10), namely

H(t, z, x̂;B, m̂) =
∑
m∈Zr

tR(m,m̂,B)
N−r∏
î=1

x̂
Q̂î(m,m̂,B)

î

r∏
i=1

(
zmii

∮
dxi

2πixi
x
Qi(m,m̂,B)
i

)

× PE

[ N∑
a=1

δ∑
iQ

a
imi+

∑
î Q̂

a
î
m̂î,0

tra
∏
i

x
Qai
i

∏
î

x̂
Q̂a
î

î

]
.

(2.12)

The differences with (2.10) are in the delta function inside the PE, that determines the

residual matter fields in the monopole background, and in the charges of monopole opera-

tors, that are affected by the background charges as follows:

QA(m, m̂,B) = −
∑
C

keff
AC(M)MC = −

∑
C

kACMC −
1

2

∑
a

QA[ψa]|ma
eff(M)| . (2.13)
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Here indices A,C label global or gauge U(1), as in (2.7)(2.8), QA are electric charges and

MA magnetic charges, namely Mi = mi for gauge U(1) groups, Mî = m̂î for flavor U(1)

groups, MJi = −Bi for topological U(1) groups and MR = 0 for U(1)R. Note the last

minus sign and recall that kiJi = −1. This implies that −Bi contribute bare background

electric charges for the gauge groups. Finally we introduced the effective mass

ma
eff(m, m̂) =

∑
i

Qaimi +
∑
î

Q̂a
î
m̂î (2.14)

of the ath matter chiral multiplet, which is a function of the magnetic charges, in analogy

with the effective real mass in the semiclassical analysis of the moduli space. We also

recall that For U(1) symmetries with integer charges, bare Chern-Simons levels obey the

quantization law

kAB +
1

2

∑
a

QaAQ
a
B ∈ Z (2.15)

that ensures that the effective CS levels

keff
AB(m, m̂) = kAB +

1

2

∑
a

QaAQ
a
B sign(ma

eff(m, m̂)) (2.16)

are integer when they are well-defined.

To be precise, the discussion in this subsection needs to be corrected to account for

the possibility of torsion in the magnetic charges of the flavor symmetry. To understand

this subtle issue, in the next subsections we take a detour towards a more systematic

definition of the Hilbert series with background magnetic charges. We will start from the

ungauged theory in the presence of general background charges for its flavor symmetry,

and then explain how to gauge an abelian subgroup of its flavor symmetry. A more careful

analysis of Dirac quantization will show how torsion magnetic charges mΓ arise. Readers

not interested in these technical details might skip to the examples of subsection 2.5 in a

first reading, and also neglect torsion magnetic charges in section 2.6.

2.2 The ungauged theory

The ungauged theory consists of N chiral multiplets Xa, a = 1, . . . , N , with charges

Fb[X
a] = δab (b = 1, . . . , N) under a U(1)N flavor symmetry and R[Xa] = ra under the

R-symmetry. We couple the flavor symmetry to N abelian background vector multiplets

U b. We call µb ∈ Z the associated magnetic charges and ub the associated U(1)-valued

fugacities. We also introduce a fugacity t for the U(1)R symmetry, but no background

magnetic charge. The theory has flavor-flavor CS levels kab, flavor-R CS levels kaR, and

R-R CS levels kRR, which satisfy the quantization law (2.15) provided charges are integer.3

The bare Chern-Simons couplings induce electric charges for monopole operators, given

by Qclass
A [Vm] = −

∑
B kABmB. Thus the weight in the Hilbert series from the classical

charges of a monopole operator is∏
A

w
−
∑
B kABmB

A ≡ t−
∑
b kRbµb

∏
a

u
−
∑
b kabµb

a , (2.17)

3The quantization law for a general R-symmetry can be obtained by mixing a fiducial U(1) R-symmetry

with integer charges with (possibly broken) abelian non-R symmetries.
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where we set wR = t, mR = 0 for the R-symmetry, and wa = ua, ma = µa for the flavor

symmetries.

In the monopole background for the flavor symmetry, the chiral multiplet Xa has

“mass” µa.
4 If µa = 0, Xa is a residual matter field, a modulus of the monopole con-

figuration that can be used to dress the background BPS monopole operator. Powers of

Xa are counted in the Hilbert series by PE[traua]. If instead µa 6= 0, Xa is massive and

induces a one-loop correction to the charges of the monopole operator, or equivalently to

the effective Chern-Simons levels, leading to a weight (tra−1ua)
− 1

2
|µa|. In summary, matter

chiral multiplets contribute to the Hilbert series a factor∏
a

(tra−1ua)
− 1

2
|µa| PE[δµa,0 t

raua] . (2.18)

Altogether, the Hilbert series of the ungauged theory, in the presence of background

magnetic charges µa, reads

Hug(t, ua;µa) = t−
∑
b kRbµb

∏
a

u
−
∑
b kabµb

a

∏
a

(tra−1ua)
− 1

2
|µa| PE[δµa,0 t

raua] =

≡ t−
∑
b k

eff
Rb(µ)µb

∏
a

u
−
∑
b k

eff
ab (µ)µb

a PE[δµa,0 t
raua] ,

(2.19)

where the effective Chern-Simons levels are

keff
AB(µ) = kAB +

1

2

∑
a

QaAQ
a
B sign(µa) . (2.20)

2.3 The superpotential

So far we have assumed for simplicity that the theory has no superpotential. Then

the contribution to the Hilbert series of the massless matter fields in (2.18) reads

PE[
∑

a δµa,0t
raua] = PE[

∑
α t

rαuα], which counts elements of the graded ring of poly-

nomials C[Xα] in the massless fields Xα, which have µα = 0.

If the superpotential W (X) does not vanish, there are two changes. First of all, the

global symmetry F × U(1)R is broken to a subgroup. This enforces constraints on the

fugacities and magnetic charges: the weight associated to a superpotential term is (t′)2,

where t′ is a fugacity for a preserved U(1)R symmetry, and the magnetic charge (or “mass”)

associated to the superpotential term is 0.

Secondly, we must impose the F -term relations induced by the superpotential. The

F -term of a field of mass µ has mass −µ and vanishes when all massive fields are set to zero.

We are thus left with a residual theory Tµ of massless matter fields Xα (such that µα = 0),

with a residual superpotential Wµ(Xα) = W (X)|Xa=0 if µa 6=0 that is obtained by setting all

massive fields to zero in the original superpotential. The contribution of the residual matter

fields to the whole Hilbert series is the Hilbert series of the ring C[Xα]/〈∂αWµ〉 and takes the

form PE[
∑

α t
rαuα]N(t, u), where N(t, u) is a polynomial that enforces F -term equations.

If the F -term equations are independent — that is, if there are no higher syzygies —, then

N takes the simple factorized form N(t, u) =
∏
α(1 − t2−rαu−1

α ) = PE[−
∑

α t
2−rαu−1

α ],

otherwise it can be computed for instance using software such as Macaulay2 [34].

4We slightly abuse terminology: as we explained, the effective real mass in the background of a chiral

monopole operator is µa/(2r).
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2.4 Gauging

In the rest of this section we will consider abelian gauge theories without superpotential. We

gauge a U(1)r subgroup of the flavor symmetry U(1)N of the ungauged theory, introducing

r dynamical abelian vector multiplets V i, i = 1, . . . , r.5

The matter fields carry integer charges Qi[X
a] = Qai under the gauge group. If

spanZ{Qi} 6= spanR{Qi} ∩ Zr, there is an ambiguity in the definition of the gauge group.

Following [35], we define the gauge group by the lattice of its allowed electric charges,

rather than the electric charges of matter fields that are actually present in the theory. In

our case, by G = U(1)r we mean that the allowed electric charge lattice is Zr. By Dirac

quantization, the magnetic charge lattice is the dual Zr. We denote by xi and mi the

fugacities and magnetic charges for the U(1)r gauge group.

The flavor group is F = U(1)N/U(1)r, where U(1)r acts on the fields with charges

Q. The integer kernel Q̂ = (Q̂a
î
) of the charge matrix Q defines the charge matrix for a

U(1)N−r flavor symmetry. (Note that a common subgroup of U(1)r × U(1)N−r might not

act on the matter fields.) We denote by x̂î and m̂î the fugacities and magnetic charges for

the U(1)N−r flavor symmetry. If Γ = ZN/spanZ(Qi, Q̂î) is nontrivial, the flavor magnetic

charges of the matter fields include a further torsion term mΓ ∈ Γ.

The gauging of U(1)r in U(1)N is then achieved in the Hilbert series by replacing

ua 7→ xeff
a =

r∏
i=1

x
Qai
i

N−r∏
î=1

x̂
Q̂a
î

î
,

µa 7→ ma
eff =

∑
i

Qaimi +
∑
î

Q̂a
î
m̂î +ma

Γ ≡
∑
i

Qaimi + m̂a

(2.21)

in (2.19), and Fourier transforming over the U(1)r gauge group associated to xi, mi:

H(t, x̂, z; m̂,mΓ, B) =
∑
m∈Zr

r∏
i=1

(
zmii

∮
dxi

2πixi
x−Bii

)
Hug(t, xeff

a ;ma
eff) , (2.22)

where the integral is over the unit torus. The integral over x restricts the counting of chiral

operators to gauge invariants (in the presence of a background monopole operator for the

global symmetry); the sum over m takes into account the dynamical monopole operators

for the gauge group.

zi and −Bi in (2.22) are fugacities and magnetic charges for the GJ = U(1)r topological

symmetry group, whose conserved currents are the Hodge duals of the gauge field strengths.

We will follow a common abuse of terminology and refer to Bi as “baryonic charges” [36].

They are discrete counterparts of the FI parameters ξi, which insert background electric

charges −Bi for the U(1) gauge factors.

The equations of motion for the dynamical vector multiplets in the Chern-Simons

theory give Gauss constraints kijFj + kiĵF̂ĵ + F
(J)
i = 2π ∗ Ji (along with supersymmetric

partners), where Fj , F̂ĵ and F
(J)
i are field strengths for the gauge, flavor and topological

symmetries, whereas Ji are conserved currents for the gauge symmetries, that involve the

5The gauge group may include a finite group, but we postpone its discussion to section 2.6.
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matter fields. These equations of motion impose linear relations among the conserved

currents for the topological symmetries associated to the gauge and global symmetry

groups and the conserved currents for the gauge symmetry. In our formalism, we introduce

independent fugacities and magnetic charges for the gauge and global symmetries, without

enforcing these constraints. The constraints are implemented by the Fourier transform

over the gauge group.

The gauging of a U(1) factor as in (2.22), which involves a mixed Chern-Simons cou-

pling at level −1 between the gauge U(1) and its topological U(1), plays a prominent role in

understanding abelian mirror symmetry as a functional Fourier transform [37] and defines

the action of the S element of SL(2,Z) on the space of field theories with a U(1) global

non-R symmetry [38]. We will elaborate on this SL(2,Z) action at the level of the Hilbert

series in appendix B.

Note that the final formula (2.22) for the Hilbert series of the abelian gauge theory

without superpotential may be written as

H =
∑
m∈Zr

r∏
i=1

(
zmii

∮
dxi

2πixi
x
−Beff

i
i

)∏
a

x̂−B̂
eff
a

a · t−Beff
R PE

∑
a

δmaeff ,0
tra
∏̂

i
x
Qai
i

∏
î

x̂
Q̂a
î

î


(2.23)

in terms of the effective masses of the chiral fields ma
eff introduced in (2.21) and of effective

baryonic charges

Beff
i = Bi +

∑
j

keff
ij mj +

∑
ĵ

keff
iĵ
m̂ĵ +

∑
b

keff
ib m

b
Γ ≡ −Qi(m, m̂,mΓ, B)

B̂eff
î

=
∑
j

keff
îj
mj +

∑
ĵ

keff
îĵ
m̂ĵ +

∑
b

keff
îb
mb

Γ ≡ −Q̂î(m, m̂,mΓ, B)

Beff
R =

∑
j

keff
Rjmj +

∑
ĵ

keff
Rĵ
m̂ĵ +

∑
b

keff
Rbm

b
Γ ≡ −R(m, m̂,mΓ, B) ,

(2.24)

which are equal and opposite to the quantum corrected charges of the monopole operator

of magnetic charges m, m̂, mΓ and B.

The effective Chern-Simons levels keff
AB take the form (2.8) with the “effective mass”

(2.21). The bare CS levels involving the U(1)r gauge group read

kij =
∑
a,b

kabQ
a
iQ

b
j , kiĵ =

∑
a,b

kabQ
a
i Q̂

b
ĵ
, kRj =

∑
b

kRbQ
b
j . (2.25)

Similar formulas hold for mixed CS levels involving global symmetries only.

As we anticipated, the formula (2.22) or (2.23) for the Hilbert series that counts chiral

operators is closely related to the semiclassical analysis of the vacuum moduli space based

on the 1-loop corrected scalar potential (see section 2 of [22]), through the correspondence

between integer magnetic charges m and real scalars σ in vector multiplets that is required

for the supersymmetry of monopole operators. In particular, the dynamical magnetic

charges mi corresponds to the dynamical real scalars σi for the gauge symmetry; the

background magnetic charges m̂î for the flavor symmetry corresponds to background scalars
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(or real mass parameters) σ̂î; the “effective mass” ma
eff =

∑
iQ

a
im

i +
∑

î Q̂
a
î
m̂î + ma

Γ

correspond to the effective real mass µaeff =
∑

iQ
a
i σi +

∑
î Q̂

a
î
σ̂î of the matter field Xa;

the background magnetic charges Bi for the topological symmetries correspond to the bare

FI parameters ξi; the effective baryonic charges Beff
A in (2.24) correspond to effective FI

parameters ξeff
A . Note that the torsion element mΓ has no continuous counterpart.

The insertion of δmaeff ,0
inside the plethystic exponentials in (2.23) corresponds to set-

ting to zero the mass terms
∑

a |µaeffX
a|2 in the scalar potential: Xa can take expectation

value only if µaeff = 0. The integral over the gauge group in the presence of effective baryonic

charges Beff
i corresponds to imposing the D-term constraint with the effective FI parame-

ters
∑

aQ
a
i |Xa|2 = ξeff

i and modding out by the gauge group. If there is a superpotential,

the insertion of the numerator N(t, x, x̂) discussed in section 2.3 corresponds to imposing

the F -term constraints of the residual theory of massless fields.

2.5 Examples

In this section we provide a few examples of Hilbert series of 3d N = 2 abelian gauge

theories. We begin with theories without Chern-Simons interactions, partially discussed

in [13, 17], emphasizing here the role of background magnetic charges. Then we move on

to discuss Chern-Simons theories. In the next subsection we will discuss in detail a large

class of abelian Chern-Simons theories studied in [3, 22].

2.5.1 3d N = 2 SQED with vectorlike flavors

Our first example is 3d N = 2 SQED theory with N flavors of charge 1 matter fields Qa and

charge −1 fields Q̃a. The standard Hilbert series without background magnetic charges was

computed in [17]. Here we turn on background magnetic charges for the vectorlike part of

the flavor group, but not for the axial part of the flavor symmetry (nor the topological sym-

metry), so that no Chern-Simons terms are generated. We denote by n1, . . . , nN the back-

ground flavor magnetic charges, so that ma
eff = ±(m− na), with + sign for Qa and − sign

for Q̃a. (A common shift of the na can be undone by a shift of m.) The Hilbert series reads

H(t, z, y;n) =
∑
m∈Z

zm
N∏
a=1

(t1−ry−1
a )|m−na|

∮
dx

2πix
PE

[ N∑
a=1

δm,nat
rya

(
x

ua
+
ua
x

)]
(2.26)

where ua and ya are fugacities for the vector and axial part of the flavor group.

In the following we consider for simplicity the case n1 > n2 > · · · > nN , corresponding

to N different real masses.6 The sum over m in (2.26) separates in N +1 regions according

to the signs of m − na. The Hilbert series with background magnetic charges is easily

6Cases where some of the background charges are equal can be discussed by a mixture of the analysis

of this section and that of [17].
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computed to be

H(t, z, y;n) = zN
N∏
a=1

(t1−ry−1
a )na−nN PE

[
z−1t(1−r)N

1∏
a ya

]
+

+
N−1∑
h=1

znh+1
∏
a

(t1−ry−1
a )|nh+1−na|

nh+1−nh∑
l=0

z t(1−r)(N−2h)

∏
a≤h

ya∏
a>h

ya


l

+ zn1
∏
a

(t1−ry−1
a )n1−na PE

[
z t(1−r)N

1∏
a ya

]
+

+

N∑
b=1

znb
∏
a

(t1−ry−1
a )|nb−na|

(
PE[(tryb)

2]− 2
)
.

(2.27)

This result reproduces the structure of the moduli space found in [1, 2], namely that of a

one-dimensional Coulomb branch which is split into N + 1 components by the intersection

with N one-dimensional Higgs branches, as we now explain.

The Coulomb branch is parametrized by monopole operators Vm;n, where m and n

denote the dynamical and background magnetic charges. The contributions in the first and

third line of (2.27) correspond to the two noncompact components of the Coulomb branch,

which algebraically are two copies of the complex plane C. The operators parametrizing

these components are Vm=nN−p;n = Vm=nN ;nY
p
N and Vm=n1+p;n = Vm=n1;nX

p
1 with p ≥

0. YN and X1 generate the two C factors. The second line corresponds to the N − 1

compact components of the Coulomb branch, each of which is algebraically a P1. Each

term in the sum corresponds to a P1 component, and the chiral operators are Vm=nh+1+l;n =

Vm=nh+1;nX
l
h+1 = Vm=nh;nY

nh+1−nh−l
h with 0 ≤ l ≤ nh+1−nh. The count of these operators

in the Hilbert series gives the character of an SU(2) representation [nh+1−nh] of dimension

nh+1−nh+1, up to an overall weight. Xh+1 and Yh, subject to Xh+1Yh = 1, can be viewed

as coordinates for the two patches of P1, and the monopole operators with nh+1 ≤ m ≤ nh
are holomorphic sections of the line bundle OP1(nh+1 − nh).

Finally, the terms involving plethystic exponentials in the last line of (2.27) count

the chiral operators taking expectation values in the N components of the Higgs branch:

Vm=na;n(Q̃aQa)
p = Vm=na;n(Ma

a )p, p ≥ 0. The monopole operator Vm=na;n determines

the origin of the Higgs branch component on the Coulomb branch, while the mesons

Ma
a = Q̃aQa generate the Higgs branch component, which algebraically is C. The

subtraction of 2 in the last line of (2.27) ensures that the operators Vm=na;n, corresponding

to the points at the intersections of two Coulomb and one Higgs branch component,

are counted once. This structure implies that Ma
aXa = Ma

aYa = XaYa = 0 for all a, in

addition to Xa+1Ya = 1, reproducing the findings of [2].

It is also possible to include complex masses, treating them as spurions. A superpoten-

tial term Wh = mhQ̃
hQh has the effect of lifting the h-th component of the Higgs branch,

parametrized by Mh
h , in the last line of (2.27). It then follows that XhYh = mh, where

the complex mass mh, viewed as a spurion, carries the fugacity weight t2(1−r)y−2
h . This is

interpreted as the merger of two P1’s into a single one.
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Finaly, if a baryonic charge B is introduced (i.e a background magnetic charge −B for

the topological symmetry, corresponding to an FI parameter ξ), leading to the insertion

of x−B in the integrand of (2.26), the Coulomb branch is lifted and one is left with N

one-dimensional Higgs branch components, with Hilbert series

H(t, z, y, u;n,B) =
N∑
b=1

znb
∏
a

(t1−ry−1
a )|nb−na| · (tryb)|B|u−Ba PE[(tryb)

2] . (2.28)

2.5.2 Coulomb branch of 3d N = 4 SQED

A similar analysis can be performed for the Coulomb branch of 3d N = 4 SQED with

N flavors of charge 1 hypermultiplets. The N = 4 Coulomb branch is parametrized by

monopole operators and the neutral chiral multiplet Φ belongs to the N = 4 vector multi-

plet. When the hypermultiplets are massless, the Coulomb branch of 3d N = 4 SQED is

C2/ZN [39]. The Hilbert series was computed in [12] to be

H(t = τ2, z) =
1

1− τ2

∑
m∈Z

zmτN |m| = PE[τ2 + (z + z−1)τN − τ2N ] . (2.29)

2.29 is indeed the Hilbert series of C2/ZN : the generators are Φ, V+ ≡ V+1 and V− ≡ V−1,

which are subject to the relation V+V− = ΦN .

When the hypermultiplets have N distinct real masses, the Coulomb branch is the

resolution of the C2/ZN singularity. The Hilbert series of the Coulomb branch with back-

ground magnetic charges is [13]

H(τ2, z;n) =
1

1− τ2

∑
m∈Z

zmτ
∑N
a=1 |m−na| =

= PE[τ2]

(
znN τ

∑
a(na−nN ) PE

[
z−1τN

]
+ zn1τ

∑
a(n1−na) PE

[
zτN

]
+

+

N−1∑
h=1

znh+1τ
∑
a |nh+1−na|

nh+1−nh∑
l=0

(
zτN−2h

)l
−

N∑
b=1

znbτ
∑
a |nb−na|

)
.

(2.30)

The neutral field Φ parametrizes a complex plane, whereas monopole operators parametrize

a cylinder pinched at N points. As in the previous subsection, we can define Xa and Ya
as in the previous subsection: Vm=na+p;n = Vm=na;nX

p
a for 0 ≤ p ≤ na−1 − na, and

Vm=na−q;n = Vm=na;nY
q
a for 0 ≤ q ≤ na − na+1. Their weights in the Hilbert series are

zτN−2a+2 for Xa and z−1τN−2a for Ya. They are now subject to the relations XaYa = Φ

for all a, in agreement with the fact that the effective theory near the locus where a single

flavor is massless is SQED with 1 flavor, as well as Xa+1Ya = 1.

Altogether, we have recovered the description of the resolution of C2/ZN as a smooth

variety covered by N patches parametrized by (Xa, Ya), a = 1, . . . , N , with covering maps

(Xa, Ya) 7→


V+ = Xa

aY
a−1
a

V− = XN−a
a Y N−a+1

a

Φ = XaYa

(2.31)
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and transitions given by

XaYa = Xa+1Ya+1 , Xa+1Ya = 1 . (2.32)

(See for instance appendix B of [29].)

2.5.3 U(1)k pure Chern-Simons theory

We now move on to Chern-Simons theories, starting with the pure abelian theory with no

charged matter. The Hilbert series of the pureN = 2 U(1) Chern-Simons theory at level k is

H(t, z;B) =
∑
m∈Z

zm
∮

dx

2πix
x−B−km =

∑
m∈Z

zmδB+km,0 =

{
z−B/k , B ∈ kZ
0 , B /∈ kZ

. (2.33)

The Hilbert series counts gauge invariant monopole operators of dynamical magnetic

charge m and background magnetic charge B for the topological symmetry. Gauge invari-

ance requires B ∈ kZ and determines m = −B/k. This is a consequence of the equation

of motion for the dynamical gauge field k ∗ F + ∗FJ = 0, where F and FJ are respectively

dynamical and background field strengths for the gauge and the topological symmetry.

The fact that the Hilbert series is non-vanishing only when B ∈ kZ is related to the fact

that the dynamical monopole operators for the gauge group have electric charges which

are multiples of k and break the U(1) gauge group down to a residual Zk when taking

expectation value. In the semiclassical analysis of the moduli space, one has the D-term

equation kσ + ξ = 0, which is related by supersymmetry to the aforementioned equation

of motion for the gauge field. The U(1) gauge transformation eiα shifts the dual photon τ

as τ → τ + kα, so that the monopole operator Vm ∝ e−imτ has electric charge −km.

2.5.4 U(1)−1/2 with a charge 1 chiral and the free chiral

Let us consider a free chiral of flavor charge 1 and R-charge 1. We take the global Chern-

Simons levels to be kFF = 1
2 and kRF = 1. The Hilbert series reads

Hchiral(t, u;µ) = (t2u)−
1
2
µu−

1
2
|µ| PE[δµ,0 tu] =


(tu)−µ , µ > 0

PE[tu] , µ = 0

t−µ , µ < 0

, (2.34)

where u and µ are the fugacity and background magnetic charge for the flavor symmetry.

When the background flavor magnetic charge vanishes (µ = 0) the chiral operators counted

by the Hilbert series are powers of the free chiral. When µ 6= 0, the matter field is massive

and the Hilbert series counts the background monopole operator for the flavor symmetry.

It is easy to show by direct evaluation that

(t2u)−
1
2
µu−

1
2
|µ| PE[δµ,0 tu] =

∑
ν∈Z

uν
∮

dv

2πiv
vµ(t2v)

1
2
νv−

1
2
|ν| PE[δν,0 tv] . (2.35)

The left-hand side is the Hilbert series (2.34) of the free chiral of R-charge 1 and flavor

charge 1 with kFF = 1
2 and kRR = 1. The right-hand side is the Hilbert series of a
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U(1)−1/2 Chern-Simons theory with a charge 1 chiral of R-charge 1, and Chern-Simons

levels kgg = −1
2 and kRg = −1, where g stands for the gauge U(1). The magnetic charge µ

for the flavor symmetry of the free chiral maps to the baryonic charge of the dual theory

(i.e. minus the magnetic charge for the topological symmetry); the fugacity u for the flavor

symmetry of the chiral maps to the fugacity for the topological symmetry of the dual U(1)

theory. The free chiral maps to the monopole operator V+ ≡ V+1 of the gauge theory.

We will see in section 2.6 that the identity (2.35), which encodes the duality between

a free chiral and a U(1)−1/2 theory with a charge 1 chiral and maps a flavor symmetry

to a topological symmetry, lies at the basis of mirror symmetry for 3d N = 2 abelian

Chern-Simons theories.

2.5.5 U(1)0 gauge theory with two charge 1 chirals

As a final example, let us consider a U(1) gauge theory with two matter fields X1, X2 of

charge 1 and R-charge 1, and vanishing bare Chern-Simons couplings. The flavor sym-

metry is SU(2) = SO(3), to which we associate a fugacity y. For the sake of presentation

in this section, we avoid the notation with the torsion element and instead introduce

background magnetic charges n1 = n/2 and n2 = −n/2, with n ∈ Z, so that the effective

masses of the matter fields are m1
eff = m + n/2, m1

eff = m − n/2. Dirac quantization

requires that m ∈ Z + n/2. Odd n corresponds to having a nontrivial torsion element. It

follows that the baryonic charge B ∈ Z + n/2 too, therefore we will set B = B̂ − n/2 in

the following. The Hilbert series reads

H(t, y, z;n, B̂) =
∑

m∈Z+n
2

zm
∮

dx

2πix
x−B̂+n

2 (x/y)−
1
2
|m−n

2
| (xy)−

1
2
|m+n

2
| ·

· PE[δm,n
2
tx/y + δm,−n

2
txy] .

(2.36)

We evaluate (2.36) for n ≥ 0 by adding up the cases m > n
2 , m = n

2 > 0, |m| < n
2 ,

m = −n
2 < 0 and m < −n

2 , and finally m = 0 if n = 0. The n ≤ 0 case can be obtained

noting that H(t, y, z;n, B̂) = H(t, 1/y, z;−n, B̂ − n), that is inverting y and changing sign

to n keeping z and B = B̂ − n/2 fixed. This corresponds to permuting the two flavors.

The result is

H(t, y, z;n, B̂) =



(z/y)
n
2
−B̂ y−B̂ + inverse B̂ < 0 ∧ n > B̂

χ[n]((z/y)1/2) B̂ = 0 ∧ n ≥ 0

tB̂
(

(z/y)
n
2 y−B̂ + inverse

)
B̂ > 0 ∧ n > 0

tB̂χ
[B̂]

(y) B̂ ≥ 0 ∧ n = 0

tB̂−n
(

(zy)−
n
2 yB̂−n + inverse

)
B̂ > n ∧ n < 0

χ[−n]((zy)1/2) B̂ = n ≤ 0 ,

(2.37)

where χ[m](x) =
∑m

h=0 x
−m+2h is the character of the (m + 1)-dimensional (spin m/2)

representation of SU(2).

The right-hand side of (2.37) has the following interpretation. We denote a monopole

operator Vm;n,B by its dynamical magnetic charge m for the gauge U(1) and background
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magnetic charges n and B for the flavor and topological symmetry. Then the first line of

(2.37) counts two gauge invariant monopole operators Vm=±B;n,B, corresponding to two

isolated Coulomb vacua. The second line counts n+ 1 gauge invariant monopole operators

Vm=−n/2+j;n,B=−n/2, j = 0, 1, . . . , n, that reconstruct an SU(2) character and parametrize

a P1 Coulomb branch. The third line counts the two gauge invariants Vm=−n/2;n,BX
B+n/2
1

and Vm=+n/2;n,BX
B+n/2
2 , where X1,2 are the matter fields, corresponding to two isolated

Higgs vacua. The fourth line counts the B + 1 gauge invariants Vm=0;n=0,BX
j
1X

B−j
2 ,

j = 0, 1, . . . , B, that reconstruct an SU(2) character and parametrize a P1 Higgs branch.

The fifth line counts two gauge invariants Vm=n/2;n,BX
B−n/2
1 and Vm=−n/2;n,BX

B−n/2
2 , cor-

responding to two isolated Higgs vacua. The sixth line counts the gauge invariant monopole

operators Vm=n/2+j;n,B=n/2, j = 0, 1, . . . ,−n, corresponding to a P1 Coulomb branch. The

common case of the second, fourth and sixth line, that is B̂ = n = 0, simply counts the

identity operator, corresponding to a moduli space consisting of the origin only.

Our results are consistent with the semiclassical analysis of [22]. The phase diagram

of the theory, encoded in the different lines of (2.37), has a natural interpretation in terms

of a type IIB realization of the field theory in terms of a D3-brane interval suspended

between two webs of five-branes [40]. One such realization was discussed in appendix A

of [22], and involves a D3-brane suspended between the following five-brane webs along a

direction orthogonal to the two planes:

D5 = (1,0) 5-brane

(1,1) 5-brane

NS5 = (0,1) 5-brane and

NS5′ = (0,1) 5′-brane

(2.38)

Unprimed and primed five-brane systems are rotated with respect to one another, so that

they intersect when the D3-brane interval collapses to a point.

As stressed in [27], the same field theory can be also realized using

D5 = (1,0) 5-brane

(1,1) 5-brane

NS5 = (0,1) 5-brane

and
D5 = (1,0) 5-brane

(1,1) 5-brane

NS5 = (0,1) 5-brane

(2.39)

The advantage of this second brane configuration is to manifest the self-triality of the

theory, that is realized by the subgroup of the SL(2,Z) S-duality of type IIB string theory

that interchanges (1, 0), (0, 1) and (1, 1) five-branes. The magnetic charges n and B (or

rather the difference of the bare real masses of the matter fields and the FI parameter)

are geometrized as the displacement of the two five-brane junctions in the vertical and

horizontal directions.
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The brane configurations corresponding to each line of (2.37) are as follows. Here the

black dot and line denote the (toric base of the) moduli space of vacua, which coresponds

to the allowed positions of the D3-brane.

Line of (2.37) The 1st config. The 2nd config. Comment

1st line
•

•

•

•

Two isolated
Coulomb vacua

2nd line P1 Coulomb branch

3rd line •
•

•
•

Two isolated
Higgs vacua

4th line •

P1 Higgs branch
(manifest in the 2nd config.)

5th line •
•

•
•

Two isolated
Higgs vacua

6th line P1 Coulomb branch

In the first brane configuration, the 5th and 6th line are simply obtained from the 3rd and

2nd line by permuting the two half-D5 branes.

The common degenerate case of the second, fourth and sixth line, namely

• or • , (2.40)

corresponds to the single vacuum at the origin for the CFT.

2.6 Dorey-Tong theories and mirror symmetry

A class of 3d N = 2 abelian Chern-Simons theories which have interesting toric moduli

spaces and enjoy mirror symmetries that swap Coulomb and Higgs branches of dual pairs

was studied by Dorey and Tong in [22] (see also [3, 41]). These abelian N = 2 theories can

be obtained from abelian N = 4 theories by gauging a U(1) subgroup of the SU(2)×SU(2)

R-symmetry of the latter [3]. N = 2 mirror symmetry then follows from N = 4 mirror

symmetry.
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Due to the R-gauging, the Chern-Simons levels of the N = 2 theories are such that

nontrivial Coulomb branches exist for vanishing FI parameters. In this section we discuss

the maximal dimensional Coulomb and Higgs branches of such theories and the equality

of the moduli spaces of vacua of mirror pairs from the point of view of their Hilbert series.

The matter content consists of N chiral multiplets Xa, which we all take to have R-

charge 1 (other R-charge assignment may be obtained by mixing with other symmetries).

The bare flavor-flavor Chern-Simons levels of the ungauged theory are taken to be kab =
1
2δab, so that the effective levels of the ungauged theory keff

aa = 1
2(1 + sign(µa)) vanish for

µa < 0. We also take kRa = 1 for all a. We then gauge a U(1)r subgroup of the flavor

symmetry, under which the matter fields have charges Qai , i = 1, . . . , r, as in section 2.4.

The Chern-Simons levels involving the gauge group (2.25) then read

kij =
∑
a

1

2
QaiQ

a
j , kiĵ =

∑
a

1

2
Qai Q̂

a
ĵ
, kib =

1

2
Qbi . kiR =

∑
b

Qbi , (2.41)

Similar formulae hold for the flavor U(1)N−r group with charge matrix Q̂a
î
.

Following the prescription of section 2.4, the Hilbert series can be written as

H(t, x̂, z; m̂,mΓ, B) =

=
∑

(mi)∈Zr

r∏
i=1

(
zmii

∮
dxi

2πixi
x−Bii

) N∏
a=1

(
t2xeff

a (x, x̂)
)− 1

2
maeff(m,m̂,mΓ)

·
N∏
a=1

xeff
a (x, x̂)−

1
2
|maeff(m,m̂,mΓ)| PE

[∑
a

δmaeff(m,m̂,mΓ),0 tx
eff
a (x, x̂)

]
,

(2.42)

with xeff
a and ma

eff as defined in (2.21).

Note that since xeff
a depends on xi only through

∏
i x

Qai
i and ma

eff are integer, the

electric charges of both monopole operators for the gauge symmetry and matter fields are

in spanZ(Qa), that is they take the form
∑

aQ
a
i la where la are some integers. Since the

background monopole operator for the topological symmetry carries electric charge −B,

the Hilbert series, that counts gauge invariant dressed monopole operators, vanishes unless

B ∈ spanZ(Qa), that is Bi = −
∑

aQ
a
i n̂

a, with (n̂a) ∈ ZN .7 We will only consider baryonic

charges of this form in the following.

Rather than discussing the evaluation of the Hilbert series as a function of the back-

ground magnetic charges, which reflects the dependence of the moduli space of vacua on

the real masses and FI parameters, we focus in the following on the highest dimensional

Coulomb and Higgs branch operators that arise for special choices.

2.6.1 Coulomb branch

In the interior of the maximal (i.e. r-) dimensional Coulomb branch, all matter fields vanish

whereas the real scalars in the r dynamical vector multiplets are moduli. The maximal

dimensional Coulomb branch exists when all the effective FI parameters for the gauge

7The minus sign is for later convenience. The n̂a can be taken of the form n̂a =
∑
aQ

a
i n̂i + naΓ, with

(ni) ∈ Zr and nΓ ∈ Γ, since terms proportional to Q̂a
î

do not change Bi.
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symmetries vanish, so that all the vector multiplets are massless. The chiral operators

that parametrize this Coulomb branch are undressed monopole operators. In our operator

language, the effective baryonic charges for the gauge symmetry have to vanish to ensure

that these undressed monopole operators are gauge invariant. The vanishing of the effective

Chern-Simons couplings keff
ij requires ma

eff = m̂a+
∑

iQ
a
imi ≤ 0 for all a = 1, . . . , N , where

m̂a ≡
∑

î Q̂
a
î
m̂î+m

a
Γ. The mixed gauge-flavor effective Chern-Simons also vanish, therefore

requiring Bi = 0 for all i = 1, . . . , r ensures that the corresponding monopole operators are

gauge invariant. Therefore, defining

∇Z(−m̂a) =

{
(mi) ∈ Zr |

∑
i

Qaimi ≤ −m̂a ∀a = 1, . . . , N

}
, (2.43)

the Hilbert series of the Coulomb branch is

HC(t, zi; m̂
a) =

∑
(mi)∈∇Z(−m̂)

t−
∑
a(m̂a+

∑
iQ

a
imi)

∏
i

zmii . (2.44)

Note that in the semiclassical analysis of the moduli space [22], calling the bare real

masses of the matter fields σ̂a ≡
∑

î Q̂
a
î
m̂î, the Coulomb branch is a toric Tr fibration over

the base

∇R(−σ̂) =

{
σ ∈ Rr |

∑
i

Qai σ
i ≤ −σ̂a ∀a = 1, . . . , N

}
. (2.45)

Its discretization (2.43) determines the gauge invariant monopole operators of the theory,

in the presence of background magnetic charges m̂a for the flavor symmetry.

As an example, let us consider a U(1)2 gauge theory with 3 chirals. The charge matrix

for the gauge and flavor symmetries are

Q =

(
1 −1 0

0 1 −1

)
, Q̂ =

(
1 1 1

)
, (2.46)

and the torsion in the flavor magnetic charges is Γ ∼= Z3 generated by mΓ,1 = (1, 0, 0), so

that (m̂a) = (m̂1̂ + α, m̂1̂, m̂1̂), with α = 0, 1, 2. Then, introducing a fugacity map and

multiplying the Coulomb branch Hilbert series by an appropriate prefactor to bring the

result to a more suggestive form, we find

2∏
i=1

y
−(m̂i−m̂i+1)
i HC

(
t, z1 =

y2

y2
1

, z2 =
y1

y2
2

; m̂a

)
= t−

∑
a m̂

a

[
−
∑
a

m̂a, 0

]
y1,y2

, (2.47)

where [n, 0]y is a shorthand for the character of the representation [n, 0] of SU(3), with

[1, 0]y = y1 + y2

y1
+ 1

y2
. This result suggests that the U(1)2 topological symmetry enhances

to SU(3) and reflects the fact that the Coulomb branch is a P2 of Kähler class proportional

to −
∑

a σ̂
a [3].
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2.6.2 Higgs branch

On the maximal (N−r) dimensional Higgs branch, the matter fields take expectation value

whereas scalars in the gauge vector multiplets do not. In terms of magnetic charges, we

set m̂a = 0 for the flavor symmetries, and will focus on mi = 0. Then all the matter fields

are massless and the Higgs branch is given by the quotient CN//ξ U(1)r, where the U(1)r

gauge group acts with charges Qai and the quotient is done at levels ξi, which translate

into baryonic charges Bi in our discussion of operators. Imposing the constraint on the

baryonic charges that is necessary for the Hilbert series not to vanish, the Hilbert series of

the Higgs branch reads

HH(t, x̂î;Bi = −
∑
a

Qai n̂
a) =

r∏
i=1

(∮
dxi

2πixi
x
∑
aQ

a
i n̂a

i

)
PE

∑
a

t
∏
i

x
Qai
i

∏
î

x̂
Q̂a
î

î

 =

=
∑

(la)∈ZN≥0

(∏
i

δ−
∑
aQ

a
i n̂
a,
∑
aQ

a
i l
a

)∏
a

(
t
∏
î

x̂
Q̂a
î

î

)la
, (2.48)

where we expanded the PE in geometric series and integrated over the gauge group to

reach the second line. The delta functions require that la = −n̂a −
∑N−r

î=1
Q̂a
î
nî, where nî

are integers. The la are nonnegative provided (nî) belong to

∆Z(−n̂a) =

(nî) ∈ ZN−r |
∑
î

Q̂a
î
nî ≤ −n̂

a ∀a = 1, . . . , N

 . (2.49)

The Higgs branch Hilbert series is therefore

HH(t, x̂î;Bi = −
∑
a

Qai n̂
a) =

∑
(nî)∈∆Z(−n̂a)

∏
a

(
t
∏
î

x̂
Q̂a
î

î

)−(n̂a+
∑
î Q̂

a
î
nî)

, (2.50)

counting gauge invariant operators of the form Vmi=0;Bi=
∑
aQ

a
i l
a

∏
aX

la
a , where Vmi=0;Bi

is a background monopole operator for the topological symmetry and the matter fields

appear with nonnegative powers la as required by holomorphy.

In the standard analysis of the moduli space, the D-term equations
∑

aQ
a
i |Xa|2 =

ξi = −
∑

aQ
a
i ν̂

a are solved by |Xa|2 = −(ν̂a +
∑

î Q̂
a
î
ν̂i) provided (ν̂i)

N−r
î=1

belongs to

∆R(−ν̂a) =

(ν̂i) ∈ RN−r |
∑
î

Q̂a
î
ν̂i ≤ −ν̂

a ∀a = 1, . . . , N

 . (2.51)

This is the base of a toric fibration, the fibers of which are parametrized by the phases of Xa

modulo gauge equivalence. Once again, the discretization (2.49) of the base (2.51) controls

the gauge invariant operators that parametrize the Higgs branch. Note that if B 6= 0, as

is required for instance to have a compact Higgs branch, the gauge invariant operators

involve a background monopole operator for the topological symmetry, that cancels the

electric charges of the matter fields.
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As an example, let us consider again the U(1)2 gauge theory with 3 chirals of charge

matrices (2.46). Computing (2.50), we obtain the Higgs branch Hilbert series

HH(t, x̂1̂;B1 = n̂2 − n̂1, B2 = n̂3 − n̂2) = (tx̂1̂)
∑
a(max(n̂b)−n̂a) PE[(tx̂1̂)3] , (2.52)

that counts gauge invariant operators of the form

Vmi=0;Bi=n̂i+1−n̂i

3∏
a=1

(Xa)max(n̂b)−n̂a(X1X2X3)p , p ∈ Z≥0 , (2.53)

which parametrize a C Higgs branch.

2.6.3 Mirror symmetry

The abelian N = 2 Chern-Simons theories of [22] enjoy a mirror symmetry that relates

a gauge theory with charge matrix Q to a gauge theory with charge matrix Q̂, where Q̂

is given by the integer kernel of Q [3, 22, 41].8 In this section we show how to relate

the Hilbert series of mirror theories by applying to all chiral multiplets the basic duality

discussed in section 2.5.4 between a free chiral with global Chern-Simons couplings and a

U(1) Chern-Simons theory with one chiral and appropriate gauge Chern-Simons couplings.

We start with the ungauged theory of N chirals with background flavor and R Chern-

Simons couplings, and apply to each chiral the basic duality (2.35):∏
a

(t2ua)
− 1

2
µau
− 1

2
|µa|

a PE[δµa,0 tua] =

=
∏
a

∑
νa∈Z

uν
a

a

∮
dva

2πiva
vµ

a

a (t2va)
1
2
νav
− 1

2
|νa|

a PE[δνa,0 tva] .
(2.54)

The mirror of theory A consisting of N free chirals is then theory B, a U(1)N Chern-Simons

theory with N chirals.

To obtain more general mirror pairs, we gauge a U(1)r subgroup with charge matrix Q

of the U(1)N flavor symmetry of theory A, which corresponds to the topological symmetry

of theory B. Gauging is achieved by substituting (2.21) and Fourier transforming the U(1)r

gauge group (2.22) in both sides of (2.54). On the left-hand side, we obtain the Hilbert

series of theory A, a U(1)r Chern-Simons theory with N chiral multiplets and charge matrix

Q. To identify theory B on the right-hand side, we perform the integration over xi and

the summation over mi, which lead to the delta functions∑
mi∈Z

(
zi
∏
a

v
Qai
a

)mi
= 2πiδ

(
zi
∏
a

v
Qai
a − 1

)
(2.55)∮

dxi
2πixi

x−Bii x
∑
aQ

a
i ν
a

i = δBi,
∑
aQ

a
i ν
a . (2.56)

The delta functions determine the dual gauge group as follows. Defining the map

Q : U(1)N → U(1)r

va 7→
∏
a

v
Qai
a ,

(2.57)

8As we will see, the dual gauge group might include a discrete factor.
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the dual gauge group is the abelian group Ĝ = kerQ = U(1)N−r ×ΓQ, where the U(1)N−r

continuous factor has charge matrix Q̂, and there might also be a finite abelian multiplica-

tive group ΓQ. Indeed, the delta function (2.55) imposes

va = Va(z)εa
∏
î

y
Q̂a
î

î
, (2.58)

where (ŷi) are U(1)N−r fugacities, Va(z) is a particular solution of the inhomogeneous

equation, i.e.
∏
a Va(z)Q

a
i = z−1

i , and the discrete (εa) ∈ ΓQ satisfy
∏
a ε

Qai
a = 1 for all i.

Note that, at this stage, ΓQ is distinct from the torsion group Γ that was introduced

in section 2.4. In particular ΓQ depends on Q only, whereas Γ depends on both Q and

Q̂. However, using a discrete subgroup of the U(1)N−r freedom, one can further impose∏
a Va(z)

Q̂a
î = 1 and similarly

∏
a ε

Q̂a
î

a = 1 for all î, so that (εa) subject to both Q and Q̂

constraints now belong to the multiplicative finite abelian group associated to the torsion

Γ that we defined in section 2.4. Then we might say that the gauge group of theory B

is U(1)N−r × Γ, even though a common subgroup of U(1)N−r and Γ does not act on the

matter fields. At any rate, once the delta function is imposed, the gauge group average

reduces to an integration over y and a summation over the allowed values of ε.

As a simple example, if N = r = 1 with Q = (q), then the dual gauge group is

kerQ = {e2πin/q, n = 0, 1, . . . , q − 1} = Zq = ΓQ = Γ. An example where ΓQ and Γ

differ is N = 2, r = 1, with Q = (1, 1). Then Q̂ = (1,−1) and Γ = Z2. The dual group

is kerQ = U(1) with charge matrix Q̂ = (1,−1), so v1 = yz1/2 and v2 = y−1z1/2 where y

is the fugacity of the dual U(1) group. Here ΓQ = {1}, whereas Γ = Z2 = {±1} acts in

the same way as a Z2 subgroup of the U(1) group with charge matrix Q̂. We are free to

average over U(1)N−r × Γ: this has the same effect as averaging over Ĝ = U(1)N−r × ΓQ.

As for the magnetic charges, recalling that Bi = −
∑

aQ
a
i n̂

a with n̂a ∈ Z is required

in order for the Hilbert series not to vanish (see also footnote 7), the delta function (2.56)

imposes

νa = −

n̂a +
∑
î

Q̂a
î
nî

 = −

∑
î

Q̂a
î
nî +

∑
i

Qai n̂i + naΓ

 ≡ −naeff , (2.59)

and one is left with a sum over magnetic charges (nî) ∈ ZN−r.
In conclusion, slightly overparametrizing the gauge group by a discrete factor that does

not act on the dual matter fields, the Hilbert series of theory B reads

HB =
∏
ĵ

x̂
−
∑
a Q̂

a
ĵ
naΓ

ĵ

∏
a

Va(z)m
a
Γ ·

·
∑

(nî)∈ZN−r

∏
î

ẑ
nî
î

1

|Γ|
∑
ε∈Γ

∏
a

εm̂
a

a

∏
î

(∮
dŷi

2πiŷi
y
−B̂î
î

)

·
∏
a

(
t2yeff

a

)− 1
2
naeff
∏
a

(
yeff
a

)− 1
2
|naeff | · PE

[∑
a

δnaeff ,0
tyeff
a

]
,

(2.60)
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in terms of dual fugacities and charges

ẑ̂i =
∏
ĵ

x̂
−
∑
a Q̂

a
ĵ
Qa
î

ĵ
, B̂î = −

∑
a

Q̂a
î

∑
ĵ

Q̂a
ĵ
m̂ĵ +ma

Γ

 ≡ −∑
a

Q̂a
î
m̂a

yeff
a = Va(z)εa

∏
î

y
Q̂a
î

î
, naeff =

∑
î

Q̂a
î
nî +

∑
i

Qai n̂i + naΓ .

(2.61)

The Hilbert series (2.60) of theory B takes a similar form to the Hilbert series (2.42) of

theory A that it is equal to. The only differences in form are an extra average over a finite

gauge group and the prefactors in the first line which are due to torsion.

It is straightforward to check by direct computation as in sections 2.6.1 and 2.6.2 that

the Hilbert series of the Coulomb (Higgs) branch of theory B equals the Hilbert series of

the Higgs (Coulomb) branch of theory A.

3 Hilbert series of nonabelian 3d N = 2 gauge theories

The Hilbert series formalism introduced in the previous section can be also applied to

nonabelian N = 2 gauge theories, with some modifications.

We first discuss the modifications due to classical and perturbative effects. For

each simple factor G of rank r in the gauge group, one can introduce a Chern-Simons

interaction k
4π

∫
Tr(AdA+ 2

3A
3 + . . . ), where the ellipses denote superpartners. Fixing the

normalization, this bare Chern-Simons term leads to the following factor in the integrand

of the Hilbert series:

∏
α

(xα)−
k

2h∨ α(m) =
∏
α

( r∏
i=1

x
〈α,α∨i 〉
i

)− k
2h∨ α(m)

=
∏
α>0

( r∏
i=1

x
〈α,α∨i 〉
i

)− k
h∨ α(m)

. (3.1)

Here the product is over roots α, x are gauge fugacities, h∨ is the dual Coxeter number

of the simple gauge group factor G and m is the magnetic charge, which is a weight of

the Langlands or GNO dual G∨ of the gauge group [42], modulo Weyl reflections. In the

second expression we have written xα =
∏
i x
〈α,α∨i 〉
i in the basis of fundamental weights,

which are dual to the coroots α∨i . The third expression is in terms of positive roots only.

For example, for an SU(2) gauge group we have (x2)−
k
2

2m = x−2km, where the magnetic

charge m is integer and nonnegative. (For SO(3) gauge group the same expression holds

but m is half-integer.) For SU(N) gauge group, we have
∏N−1
i=1 x

−kCijmj
i with mi ∈ Z≥0.

In the presence of dynamical magnetic charges m for the gauge symmetry, the gauge

group G is broken to a residual gauge group Hm of rank r like G, given by the commutant of

the magnetic charge m in G. The W -bosons supermultiplets with α(m) 6= 0 are integrated

out, and their gauginos lead to a shift of the R-charge of monopole operators

Rquant
gauge(m) = −

∑
α>0

|α(m)| . (3.2)
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Grouping this with the Haar measure, the W -boson supermultiplets contribute to the

Hilbert series the factor ∏
α>0

(
t−|α(m)|(1− xα)δα(m),0

)
. (3.3)

The Kronecker delta function reduces the Haar measure of G to that of Hm.

Matter fields transforming in a representation R of the gauge group and R̂ of the flavor

symmetry group acquire an effective mass

mρ,ρ̂
eff = ρ(m) + ρ̂(m̂) , (3.4)

where ρ and ρ̂ are weights of the gauge and flavor symmetry representations, in the presence

of dynamical and background magnetic charges m and m̂. Note that we are making the by

now common abuse of terminology of referring to the magnetic charges as masses, in view

of the BPS condition σ ∼ m/(2r). To be precise, the effective real mass of the component

Xρ,ρ̂ of the matter field X with weights ρ, ρ̂ are due to the potential term∑
ρ∈R
ρ̂∈R̂

|(ρ(σ) + ρ̂(σ̂))Xρ,ρ̂|2 . (3.5)

Matter fields with mρ,ρ̂
eff = 0 in a monopole background are residual matter fields and

define a residual theory Tm,m̂. They can take VEV and contribute a plethystic exponential

to the Hilbert series. Matter fields with mρ,ρ̂
eff 6= 0 in a monopole background are massive

and are integrated out, leading to a quantum correction of the charges of monopole opera-

tors. Summarizing, matter fields of R-charge r transforming in the representation (R, R̂)

contribute to the Hilbert series

∏
ρ∈R
ρ̂∈R̂

(
tr−1xρx̂ρ̂

)− 1
2
|ρ(m)+ρ̂(m̂)|

PE[δρ(m)+ρ̂(m̂),0t
rxρx̂ρ̂] . (3.6)

The product is over weights ρ of the representation R of the gauge symmetry, and

xρ =
∏
i x

ρi
i =

∏
i x
〈ρ,α∨i 〉
i using the basis of fundamental weights (similarly for the fla-

vor symmetry). The first factor in (3.6) can be interpreted as a shift of the Chern-Simons

levels, as in the abelian case.

In particular, when matter fields in a representation R of the gauge group G acquire

a large real mass m̂R associated to the flavor symmetry and are integrated out, they lead

to a shift of the bare Chern-Simons level k for the gauge group G. In the Hilbert series,

this is due to the factor∏
ρ∈R

(xρ)−
1
2
|ρ(m)+m̂R| −−−−−−→

m̂R→±∞

∏
ρ∈R

(xρ)−
1
2

sign(m̂R)(ρ(m)+m̂R) . (3.7)

The bare Chern-Simons level k in (3.1) then receives the 1-loop shift

k → k +
1

2

∑
R

sign(m̂R)TR , (3.8)
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where TR is twice the Dynkin index of the matter field representation R, that is the

quadratic Casimir normalized so that Tad = 2h∨ for the adjoint representation. (For

instance, Tad = 2N and Tfund = 1 for SU(N).)

Finally, as in [17] we need to take into account nonperturbative corrections that may

lift perturbative vacua. Instantons can induce a superpotential that lifts partially or totally

a semiclassical Coulomb branch that exists if the effective Chern-Simons couplings vanish

for simple gauge group factors. In addition, isolated semiclassical vacua of supersymmetric

Chern-Simons theories can also be lifted: for instance, pure N = 2 SU(N)k Chern-Simons

theories break supersymmetry for k < N . The net effect of these nonperturbative effects on

the Hilbert series is to reduce the magnetic charge lattice from a Weyl chamber of the weight

lattice of the dual group, ΓG∨/WG, to a sublattice Γq, that we dub the quantum sublattice.

In the next subsections we will analyze a few examples, incorporating nonperturbative

corrections in our Hilbert series formalism. The general analysis of these nonperturbative

corrections is an interesting open problem that we leave for future work.

3.1 SU(2) theories with doublets

In this subsection we compute the Hilbert series of certain SU(2) gauge theories whose

moduli spaces were first discussed in [3]. Interesting phenomena such as nonperturbative

superpotentials and quantum deformed moduli spaces will appear.

We begin by discussing the SU(2) Yang-Mills theory with Nf = 1 fundamental flavor,

that is nf = 2Nf = 2 doublets Q1 and Q2. The theory has a U(1)A × SU(2)F flavor

symmetry. If the flavors are massless, instantons cannot generate a superpotential due to

an excess of fermionic zero modes [1, 2]: the semiclassical Coulomb branch is not lifted,

and we sum over all magnetic charges m ∈ Z≥0 for monopole operators Vm. The nontrivial

charges of monopole operators are

R[Vm] = −2rm , A[Vm] = −2m, (3.9)

where r is the R-charge of the flavors. The effective masses of matter fields are ±m for the

two components of each doublet, therefore the residual theory is SU(2) with two doublets

if m = 0, and a pure U(1) theory if m > 0. Adding up the two contributions, we obtain

the Hilbert series

H(t, y, u) =

∮
dx

2πix
(1− x2) PE[try(x+ x−1)(u+ u−1)] +

∞∑
m=1

(try)−2m =

= PE[(try)2] + PE[(try)−2]− 1 =
∑
n∈Z

(try)n = 2πiδ((try)2 − 1) ,

(3.10)

which does not depend on the SU(2)F fugacity u. The first PE in (3.10) counts nonnegative

powers of the meson M = M12 = εijQ
i
1Q

j
2, where i and j are SU(2) gauge indices. The

second PE counts monopole operators Vm = (V1)m ≡ Y m, with m ≥ 0. 1 is subtracted

in order not to overcount the identity operator. The two geometric series have different

regions of convergence, but we can add them formally to obtain the final expression in

terms of a delta function. The structure of the Hilbert series (3.10) shows that the moduli
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space is generated by the meson M and the monopole operator Y , subject to the relation

YM = c, with c a constant. By the standard lore that what is not forbidden is compulsory,

we assume that c does not vanish, therefore it can be rescaled to 1, leading to YM = 1.

The moduli space is thus algebraically a cylinder C∗, obtained by merging the Coulomb

and mesonic branch quantum-mechanically [2].9

Next, we turn on real masses, or in our language background magnetic charges, for the

U(2)F ∼= U(1)A × SU(2)F flavor symmetry. We are interested in the case where the real

masses are −µ and +M , with M ≥ µ ≥ 0. We denote the background magnetic charges

as −n and +N , with N ≥ n ≥ 0. The charge of monopole operators under the Cartan of

the SU(2) gauge symmetry is

Q[Vm;−n,N ] = −1

2
(|m− n| − | −m− n|+ |m+N | − | −m+N |) =

=


0 0 ≤ m ≤ n
−(m− n) n ≤ m ≤ N
−(N − n) N ≤ m

.
(3.11)

The dependence of the electric charge on m for n ≤ m ≤ N signals the presence of an

effective Chern-Simons coupling at level 1.

The electric charges (3.11) indicate the existence of a semiclassical Coulomb branch,

parametrized by monopole operators of dynamical magnetic charges 0 ≤ m ≤ n if n 6= N ,

and m ≥ 0 if n = N . However, a superpotential is dynamically generated in the one

instanton sector, lifting the semiclassical Coulomb branch 0 ≤ σ ≤ µ [3]. This is because

in the one instanton background the gauginos provide exactly two fermionic zero modes as

required to generate a superpotential, but each quark Qa of real mass µa provides an extra

fermionic zero mode for σ ≥ |µa| that does not allow the superpotential to be generated.

Restricting correspondingly the sum over magnetic charges to m ∈ Γq = Z≥n, the

Hilbert series of the SU(2)0 theory with 2 doublets and background magnetic charges

n1 = −n, n2 = N for the U(2) flavor symmetry is

H(t, y1, y2;−n,N) =

∞∑
m=n

∮
dx

2πix
(1− x2)δ2m,0t−2m·

·
2∏

a=1

∏
sa=±1

(tr−1xsaya)
− 1

2
|sam+na| PE[δsam+na,0t

rxsaya]
∣∣∣n1=−n
n2=N

(3.12)

where ya are U(2) flavor fugacities. For 0 ≤ n < N the Hilbert series (3.12)

H(t, y1, y2;−n,N) = t−2n(tr−1y1)−n(tr−1y2)−N (3.13)

counts the bare monopole operator Vm=n;−n,N , which is made gauge invariant by averaging

over the Weyl group, and corresponds to an isolated Coulomb vacuum. For 0 < n = N the

9This is the same structure as the moduli space of the pure U(1)0 theory, where the Hilbert series is

H(z) =
∑
m∈Z z

m = 2πiδ(z − 1). The moduli space consists of a Coulomb branch which is a cylinder,

algebraically generated by the monopole operators V± ≡ V±1 subject to V+V− = 1.

– 26 –



J
H
E
P
1
0
(
2
0
1
6
)
0
4
6

Hilbert series is

H(t, y1, y2;−n,N) =

= (t2ry1y2)−n
∮

dx

2πix
PE[tr(xy1 + x−1y2)] +

∞∑
m=n+1

(t2ry1y2)−m =

= (t2ry1y2)−n
∑
h∈Z

(t2ry1y2)h = (t2ry1y2)−n · 2πiδ(t2ry1y2 − 1) .

(3.14)

This result has the following interpretation. The prefactor (t2ry1y2)−n corresponding to

h = 0 counts the bare monopole operator Vm=n;−n,n, made gauge invariant by averaging

over the Weyl group. A term with h > 0 counts the bare monopole operator dressed by

the h-th power of the abelian meson Q1
1Q

2
2, and then made gauge invariant. A term with

h < 0 counts the bare monopole operator Vm=n−h;−n;n, made gauge invariant. The form

of the Hilbert series (3.14) implies that, up to coefficients, these gauge invariant operators

take the form Vm=n;−n,nMh for h ≥ 0 and Vm=n;−n,nY−h for h ≤ 0, with MY = 1. The

moduli space is a cylinder arising from a quantum merger of a mesonic branch (generated

by M) and a Coulomb branch (generated by Y), like for n = 0 (in that case M = M and

Y = Y ). The result deduced from the computation of the Hilbert series (3.14) is in exact

agreement with the analysis of [3].

Incidentally, we note that the decoupling of matter fields with large real mass can

be easily understood. Consider for instance the limit N → +∞ in (3.12). The massive

doublet contributes the factor x−m(tr−1y2)N , due to radiative Chern-Simons terms. In

particular, a Chern-Simons interaction at level k = 1/2 is generated for the SU(2) gauge

group, according to (3.7). The Hilbert series of the SU(2)1/2 Chern-Simons theory with a

single doublet is then obtained as

H ′(t, y2;−n) = lim
N→+∞

(tr−1y2)NH(t, y1, y2;−n,N) = (tr+1y1)−n . (3.15)

Finally, let us briefly discuss as in [3] the addition of a vectorlike pair of doublets

with equal and opposite real masses ñ1 = ñ and ñ2 = −ñ, with 0 ≤ ñ ≤ n. The effective

masses of the components of the two doublets are therefore ±(±m+ñ). The addition of this

vectorlike pair of doublet matter fields has a few interesting consequences: the R-charges of

monopole operators are changed, a new mesonic branch opens up on top of m = ñ, and most

importantly the quantum sublattice is now Γq = Z≥ñ. Therefore the Coulomb branch is

parametrized by monopole operators of magnetic charge ñ ≤ m ≤ n. Adding the vectorlike

pair of doublets to the SU(2)1/2 theory with 1 doublet discussed above, the Hilbert series is

H(t, y1, ỹ1, ỹ2;−n, ñ,−ñ) =

= t−2ñ(tr−1y1)−n(t2(r−1)ỹ1ỹ2)−ñ
∮

dx

2πix
PE[tr(x−1ỹ1 + xỹ2)]+

+
n∑

m=ñ

t−2m(tr−1y1)−n(t2(r−1)ỹ1ỹ2)−m − t−2ñ(tr−1y1)−n(t2(r−1)ỹ1ỹ2)−ñ =

= (t3r−1y1ỹ1ỹ2)−n PE[t2rỹ1ỹ2] .

(3.16)
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The result shows how the Higgs branch C (corresponding to the second line of (3.16)),

and the Coulomb branch P1 (corresponding to the first entry in the third line), which

semiclassically intersect at a point (hence the negative term in the third line), merge into

a single branch C (the fourth line) due to a quantum deformation. Once again, the Hilbert

series is consistent with the analysis of [3].

3.2 The duality appetizer

We now analyze from the point of view of the Hilbert series the duality appetizer of [43]:

an SU(2)1 Chern-Simons theory with an adjoint Φ, dual to a free chiral X = Tr(Φ2) plus

a topological sector. While the Hilbert series is not sensitive to topological vacua, which

arise when the theory is defined on a Riemann surface [4], it captures related information

through discrete torsion. For that purpose, it will be useful to distinguish the theories

with gauge group SU(2) and SO(3). Crucial in our analysis will be the input that pure

N = 2 SU(2)1 Chern-Simons theory breaks supersymmetry, whereas SU(2)3 does not

(similarly for SO(3)).

Let us first consider SO(3)1 Chern-Simons theory with an adjoint Φ of R-charge 1 and

flavor charge 1, and background Chern-Simons levels kFF = 1/2, kRF = 0. Since the dual

group of SO(3) is SU(2), the magnetic charge is m ∈ 1
2Z≥0, corresponding to half-integer

spin m. (This is to be contrasted with G = SU(2), in which case m ∈ Z≥0.) Monopole

operators of half-odd m are charged under the topological symmetry Z2 = Z(SU(2)). We

introduce a fugacity ε such that ε2 = 1 for the topological symmetry, and weigh the sum

over the magnetic charge lattice by ε2m. We also introduce a fugacity y and an integer

background magnetic charge n for the U(1) flavor symmetry that rotates Φ. The Hilbert

series of the SO(3)1 theory is given by

HSO(3)(t, y, ε;n) =
∑

m∈Γq(n)

ε2my−
1
2
n

∮
dx

2πix
x−2m

(
1− x2

)δ2m,0 t−2m·

·
(
x2y
)− 1

2
|2m+n|

y−
1
2
|n| (x−2y

)− 1
2
|−2m+n| ·

· PE[δ2m+n,0tx
2y + δn,0ty + δ−2m+n,0tx

−2y] ,

(3.17)

where the sum is over the quantum sublattice Γq(n) of 1
2Z≥0, which we now determine.

Since the effective theory obtained by integrating out massive fields has always a nonva-

nishing effective Chern-Simons level, there is no semiclassical Coulomb branch therefore we

need not worry about instanton corrections. (The power of x in the integrand of (3.17) is a

piecewise linear function which is nowhere locally constant.) We need to take into account

supersymmetry breaking, however. If m 6= 0, the residual gauge group is U(1), and super-

symmetry is preserved regardless of the value of the effective CS level. If m = 0 instead, the

residual gauge group is SU(2), and supersymmetry is broken if |keff(m = 0, n)| < 2 when

there is no residual matter [44]. Since keff(m = 0, n) = 1 + 2 sign(n) in our theory, there is

no supersymmetric vacuum corresponding to m = 0 and n < 0, whereas a supersymmetric

vacuum at the origin exists for n ≥ 0. Thus the quantum sublattice is

Γq(n) =

{
1
2Z>0 , n < 0
1
2Z≥0 , n ≥ 0

. (3.18)

– 28 –



J
H
E
P
1
0
(
2
0
1
6
)
0
4
6

Evaluating (3.17) using (3.18), we find the Hilbert series

HSO(3)(t, y, ε;n) =


(t2y2)n , n < 0

PE[t2y2] , n = 0

y−2n , n > 0

= tn(ty2)−
1
2
|2n| PE[δ2n,0t

2y2] (3.19)

which equals the Hilbert series of a free chiral field X of R-charge and flavor charge 2,

to be identified as X = Tr(Φ2), with global Chern-Simons couplings at levels kRF = −1,

kFF = 0. We note that the result (3.19) does not depend on the Z2 fugacity ε, provided

the magnetic charge n for the flavor symmetry is an integer, as we assumed to have integer

flavor charges for gauge variant operators.10

Next, we move to the SU(2)1 theory with an adjoint. The magnetic charge m is

now an integer rather than a half-integer, but we can turn on a torsion magnetic charge

mΓ ∈ {0, 1}, by replacing m→ m+ 1
2mΓ in all formulae. Hence trivial (nontrivial) torsion

in the SU(2) case corresponds to m integer (half-odd) in the SO(3) case. The Hilbert series

of the SU(2) theory is obtained by projecting the Hilbert series of the SO(3) theory (3.17)

to even or odd Z2 sectors:

HSU(2)(t, y;n;mΓ) =
1

2

∑
ε=±1

εmΓHSO(3)(t, y, ε;n) =

=

{
HSO(3)(t, y, 1;n) , mΓ = 0

0 , mΓ = 1
.

(3.20)

This result can be explained on the dual free chiral side by a topological sector given by a

pure U(1)2/Z2 CS theory, whose Hilbert series is

Htop(σ;mΓ) =
∑

m∈Z≥0

σm
∮

du

2πiu
u−2m−mΓ =

{
1 , mΓ = 0

0 , mΓ = 1
, (3.21)

where mΓ is a Z2 baryonic charge, or background magnetic charge for a Z2 topological

symmetry with fugacity σ.

3.3 U(N) theories with fundamentals and antifundamentals

We close this section by computing the Hilbert series of U(N)k Chern-Simons theories with

Nf fundamental and Na antifundamental flavors, setting all background magnetic charges

to zero for simplicity. The gauge Chern-Simons level k satisfies k+ 1
2(Nf−Na) ∈ Z due to a

parity anomaly. Here we only consider theories whose Seiberg dual group has nonnegative

rank, so that supersymmetry is unbroken. We refer to [45] for details of the duality and a

review of this class of theories.

10If the integrality of flavor charges is only required for gauge invariants, then n ∈ 1
2
Z is allowed and the

result gets multiplied by the sign εn−|n|. The result of (3.20) would then be modified too.
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We first compute the mesonic Hilbert series of U(N) with Nf fundamentals and Na

antifundamentals, setting the R-charges of squarks to 1 for simplicity:

Hmes
N,Nf ,Na

(t, y, u, v) =

N∏
i=1

∮
dxi

2πixi

∏
i<j

(
1− xi

xj

)
PE

[
ty

( Nf∑
a=1

xi
ua

+

Na∑
ã=1

vã
xi

)]
=

=
∞∑

n1,...,nN=0

[0Nf−N , nN , . . . , n1;n1, . . . , nN , 0
Na−N ]u,v(ty)

∑
j jnj ,

(3.22)

where y is a U(1)A fugacity, u and v are SU(Nf ) and SU(Na) flavor fugacities, subject

to
∏
a ua =

∏
ã vã = 1, and we denoted characters of the flavor symmetry group by the

Dynkin labels of the representation. The mesonic chiral ring is generated by the Na ×Nf

meson matrix M ã
a = Q̃ãiQ

i
a of rank at most N . We note that the mesonic moduli space is

a Calabi-Yau cone only when Nf = Na.

In addition to the mesons counted in (3.22), there are gauge invariant chiral dressed

monopole operators if a Coulomb branch exists, that is if k+ = 0 or k− = 0, where

k± = k ± 1

2
(Nf −Na) (3.23)

are the effective Chern-Simons levels. The case where both k+ and k− vanish (that is

k = 0 and Nf = Na) was studied in [17], therefore we focus here on the remaining cases,

where at most one of k+ and k− vanish. The complex dimension of this Coulomb branch

is 1 rather than N , due to an instanton generated superpotential that lifts the remaining

N − 1 directions. (See [17] for a detailed discussion of these effects in the case k = 0 and

Nf = Na.) Taking into account the perturbative effects due to Chern-Simons couplings and

the nonperturbative effects due to instantons, the quantum sublattice Γq corresponding to

the unlifted Coulomb branch is

Γq = {(m1, 0, . . . , 0,mN ) ∈ ZN | k+m1 = 0 ∧ k−mN = 0 } . (3.24)

Adding up the mesonic contribution and the contribution of dressed monopole opera-

tors, the full Hilbert series of the U(N)k theory with Nf fundamentals and Na antifunda-

mentals (with k 6= 0 or Nf 6= Na) is then

HN,Nf ,Na(t, y, u, v, z) = Hmes
N,Nf ,Na

(t, y, u, v)+

+

(
δk+,0

∞∑
m=1

am+ + δk−,0

∞∑
−m=1

a−m−

)
Hmes
N−1,Nf ,Na

(t, y, u, v) ,
(3.25)

where the sums in the second line count monopole operators V m
+ ≡ V(m,0N−1) and V −m− ≡

V(0N−1,m), dressed by mesons of a residual U(N − 1) theory with Nf fundamentals and Na

antifundamentals. We denoted by

a± = z±1t−(N−1)y∓kgA−
1
2

(Nf+Na) (3.26)

the fugacity weights of V±. kgA is the mixed Chern-Simons level between the central gauge

U(1) and the axial U(1)A symmetry, which is quantized to ensure the exponents of y in

(3.26) are integer.
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We conclude from this analysis that the chiral ring of the theory is generated by the

Na × Nf meson matrix M , of rank at most N , and possibly by bare monopole operators

V+ or V− (if k+ or k− vanish), subject to the extra relations that the rank of V±M is at

most N − 1. Note that, as in [17], we reached this conclusion with no need of postulating

a singular dynamical generated superpotential.

4 ABJM and its variants

In this section we consider the variants of the ABJM theory [23, 46, 47] with gauge group

U(N1)k1 ×U(N2)k2 , bifundamental fields described by the quiver

U(N1)k1 U(N2)k2
A1,2

B1,2

(4.1)

and superpotential

W = tr(A1B1A2B2 −A1B2A2B1) . (4.2)

There is a global symmetry SU(2)×SU(2)×U(1)R under which the fields Ai and Bi trans-

form as (2,1)1/2 and (1,2)1/2, respectively. There is also a topological symmetry U(1)M
corresponding to the diagonal abelian factor in the gauge group under which matter fields

are neutral. The topological symmetry for the other abelian factor acts trivially. When

k1 = −k2 the theory hasN = 6 supersymmetry but it useful to discuss it in N = 2 notation.

We can write the Hilbert series for the ABJM theory using the formalism discussed

in section 3, with some simplifications. First, in ABJM there are no nonperturbative

corrections and there is no corresponding lifting of the Coulomb branch. Secondly, we set

to zero all the background charges. With these simplifications, the Hilbert series takes the

form of a sum over monopole operators Vm,m̃, where m and m̃ are the magnetic charges

of U(N1) and U(N2), respectively, dressed by fields in the residual matter theory Tm,m̃.

The gauge charge of the monopole Vm,m̃ is

−B(m, m̃) = −(k1m, k2m̃) = −(Beff
i,1(m), Beff

i,2(m̃)) , (4.3)

and therefore it should be dressed by residual matter field with electric charge B(m, m̃).

Notice that B(m, m̃) gives an homomorphism from the magnetic lattice to the center of

the residual group Hm,m̃. Therefore, the electric charges of the matter fields live in the

abelian part of Hm,m̃ and can be interpreted as baryonic charges for the residual theory

Tm,m̃, as discussed in details in the examples below. Compared with section 3, we have the

complication that the residual theory Tm,m̃ has a non-trivial superpotential. This implies

that, sometimes, we will need to use Macaulay2 [34] to evaluate the Hilbert series of Tm,m̃.

In what follows, it is convenient to rescale the fugacity associated with the supercon-

formal R-charge (or scaling dimension) t → t2. In this way the fields Ai and Bi, with

dimension 1/2, are weighted by a factor of t. The monopole Vm,m̃ is then weighted by a
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factor t2R(m;m̃), where R(m; m̃) is its R-charge, which can be computed by combining the

contributions (2.6) and (3.2) and reads

R(m; m̃) =

N1∑
a=1

N2∑
b=1

|ma − m̃b| −
∑

1≤a<b≤N1

|ma −mb| −
∑

1≤a<b≤N2

|m̃a − m̃b| . (4.4)

4.1 The ABJM theory: k1 = −k2 = k and N1 = N2 = N

It is well known from its brane realization that the moduli space of the ABJM theory is

SymN (C4/Zk). We now recover this result in our formalism. The case N = 1 offers no

surprise and it is well known. The case N > 1 is strongly connected with a conjecture

made in [36].

4.1.1 The Hilbert series for N = 1

For N = 1 the gauge theory is U(1)k×U(1)−k. The R-charge of a bare monopole operator

with magnetic fluxes (m, m̃) is

R(m, m̃) = |m− m̃| (4.5)

and its U(1)×U(1) gauge charge is

(−km, km̃) . (4.6)

The gauge group is unbroken by the magnetic fluxes, being Abelian. We can dress the

monopole with residual bifundamental fields which remain massless:

mA1,2 = A1,2m̃ , B1,2m̃ = mB1,2 . (4.7)

For m̃ 6= m these equations cannot be satisfied and we cannot construct any gauge invariant,

since no fields can compensate the gauge charge of the monopole. For m̃ = m, on the other

hand, the bare monopole operator can be dressed by bifundamental fields. The residual

theory is the conifold quiver with gauge group U(1) × U(1). Notice that the R-charge of

the bare monopole operator vanishes for m̃ = m.

Let us introduce some notations that will be useful in the following. Given the conifold

quiver [48]

U(r) U(r)
A1,2

B1,2

(4.8)

with gauge group U(r)×U(r), no Chern-Simons level, and superpotential (4.2), we denote

with

gr(t, x, y;B) (4.9)

the generating function for operators with charge (B,−B) under the U(1) × U(1) center

of the gauge group. gr(t, x, y;B) can be interpreted as the generating function for the

SU(r)×SU(r) conifold theory in a sector with baryonic charges (B,−B) and, for this reason,
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we call it a baryonic generating function.11 As discussed in section 2.1, gr(t, x, y;B) can be

also interpreted as the Hilbert series for the U(r)×U(r) conifold theory with background

magnetic charges (−B,B) for the topological symmetry U(1)×U(1). We call x and y the

fugacities for the SU(2)× SU(2) global symmetry.

The Hilbert series for N = 1 is then given by

HN=1,k(t, x, y, z) =

∞∑
m=−∞

g1(t, x, y; km)zm (4.10)

where z is a fugacity for the topological symmetry U(1)M . Since at rank one there is no

superpotential, the baryonic generating function g1(t;x, y;B) can be evaluated using the

Molien formula

g1(t, x, y;B) =

∮
|b|=1

db

2πibB+1
PE
[
(x+ x−1)bt+ (y + y−1)b−1t

]
. (4.11)

Note that the unrefined expression for g1 is given by

g1(t, x = 1, y = 1;B) =
t|B|(1 + |B|+ t2 − |B|t2)

(1− t2)3
. (4.12)

We can easily re-interpret this formula in terms of operators. Consider B > 0. The generic

operator in the U(1)×U(1) conifold theory with baryonic charge (B,−B) is

Ai1 · · ·Ain+B Bj1 · · ·Bjn (4.13)

for arbitrary n ≥ 0. There are (n + B + 1)(n + 1) such inequivalent operators and the

corresponding Hilbert series is

∞∑
n=0

(n+B + 1)(n+ 1)t2n+B (4.14)

which resums to (4.12). Restoring x and y replaces the dimensions (n+B + 1)(n+ 1) by

characters of the representations [n + B;n] of SU(2)x × SU(2)y [36]. The case B < 0 is

obtained by exchanging the role of Ai and Bi.

It is easy to show that HN=1,k is the Hilbert series of C4/Zk. Firstly, from (4.10) and

the expression of g1 in terms of SU(2) characters one finds that the Hilbert series of the

moduli space of the abelian ABJM theory at level 1 is given by

HN=1,k=1(t, x, y, z) =
1

(1− tzx)(1− tz/x)(1− tz−1y)(1− tz−1/y)
, (4.15)

that is the Hilbert series of C4. Then one uses the identity

1

k

k−1∑
i=0

ωimk =

{
1 , m ∈ kZ
0 , m /∈ kZ

(4.16)

11Ai and Bi are normalized to carry baryonic charges (1,−1) and (−1, 1) respectively.
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to show that

HN=1,k(t, x, y, z) =
∑
m′∈Z

g1(t, x, y; km′)zm
′

=
∑
m∈Z

g1(t, x, y;m)zm/k
1

k

k−1∑
i=0

ωimk

=
1

k

k−1∑
i=0

HN=1,k=1(t, x, y, z1/kωik) .

(4.17)

Since the average in the last expression realizes the Zk quotient, we see that HN=1,k is the

Hilbert series of C4/Zk, as expected.

The chiral ring is generated by the mesons xij = AiBj and the dressed monopole

operators ui1...ik = TAi1 . . . Aik , vj1...jk = T̃Bj1 . . . Bjk . The ideal of chiral ring relations is

generated by the conifold relation x11x22 = x12x21 involving the mesons, and the relations

ui1...ikvj1...jk =
∏k
a=1 xiaja involving the monopole operators, which follow from T T̃ = 1.

4.1.2 The Hilbert series for N = 2

Let m = (m1,m2) and m̃ = (m̃1, m̃2) be the magnetic charges for U(2)k and U(2)−k
respectively. The R-charge of the monopole operator is

R(m; m̃) =
2∑

a,b=1

|ma − m̃b| − |m1 −m2| − |m̃1 − m̃2| . (4.18)

We can dress the monopole with matter fields according to our general prescription

HN=2,k(t, x, y, z)=
∑

m1≥m2

∑
m̃1≥m̃2

t2R(m;m̃)z
1
2

∑2
i=1(mi+m̃j)gT(m,m̃)

(t, x, y;B(m, m̃)) (4.19)

where the dressing factor is the baryonic generating function for the residual theory T(m,m̃)

which has gauge group H(m,m̃) equal to the commutant of (m, m̃) inside U(2) × U(2)

and fields consisting of the subset of the original matter fields X = {AI , Bi} that satisfy

ρX(m, m̃)◦X = 0. The baryonic charges for the abelian factors are given by the embedding

B(m, m̃) = (km , −k m̃) into H(m,m̃). We introduced fugacities x and y for the SU(2)×
SU(2) global symmetry and z for the topological symmetry.

The commuting conditions

ma(A1,2)ab = (A1,2)abm̃b (4.20)

m̃a(B1,2)ab = (B1,2)abmb (4.21)

imply that the matter fields can take VEV only if some eigenvalues of m and m̃ are paired.

We will show in the next section that because a diagonal gauge U(1) does not act on the

matter fields, gauge invariants can only be constructed if m̃ = m.

There are then two possible cases to be considered:

1. (m; m̃) = (m,m;m,m), with m ∈ Z. The residual gauge symmetry is U(2) × U(2)

and

R(m; m̃) = 0 . (4.22)
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The gauge charge of the monopole operator under the abelian factors is specified by

the embedding

(−km,−km; km, km) , (4.23)

and selects the sector of baryonic charge (2km,−2km) in the U(2) × U(2) theory.

The Hilbert series for this case is thus equal to

H
(1)
N=2,k(t, x, y) =

∞∑
m=−∞

g2(t, x, y; 2km)z2m . (4.24)

The expression for g2(t;x, y;B) has been computed in [36]. An explicit expression is

(for simplicity, we set the fugacities x and y to unity)

g2(t, x = 1, y = 1;B)

=

∮
|b|=1

db

2πibB+1

b2t8 + t8

b2
− 3b2t6 − 3t6

b2
+ 4t8 − 3t6 + t4 + t2 + 1

(1− t2)3
(

1− t2

b2

)3
(1− b2t2)3

(4.25)

where the integrand is given by (3.47) of [36] with t1 = tb and t2 = tb−1. The

integrand is the Hilbert series of the SU(2) × SU(2) Klebanov-Witten theory [48].

It is obtained by first finding the Hilbert series for the space of solutions of the F -

term equations for the superpotential (4.2) using the software Macaulay2 [34], and

averaging it over the nonabelian gauge group SU(2)×SU(2). Since the Hilbert series

of the SU(2)× SU(2) theory only depends on b2, the baryonic generating function g2

vanishes unless B ∈ 2Z.

As noticed in [36], g2(t, x, y; 2B) is the 2nd symmetric power of the baryonic gener-

ating function for the abelian gauge groups with a fixed B:

g2(t, x, y; 2B) = Sym2 (g1(t, x, y;B))

=
1

2

[
g1(t, x, y;B)2 + g1(t2, x2, y2;B)

]
.

(4.26)

2. (m; m̃) = (m1,m2;m1,m2) with m1 6= m2. The residual gauge symmetry is U(1)2×
U(1)2 and

R(m; m̃) = 0 . (4.27)

The gauge charge of the monopole operator under the abelian factors is

(−km1,−km2; km1, km2) . (4.28)

The Hilbert series for this case is therefore

H
(2)
N=2,k(t, x, y, z) =

∑
m1>m2

g1(t, x, y; km1)g1(t;x, y; km2)zm1+m2 (4.29)

where g1(t, x, y;B) is given by (4.11) and the summand is the baryonic generating

function when the gauge group is broken to U(1)2 ×U(1)2.
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The Hilbert series of the moduli space of the U(2)k × U(2)−k ABJM theory is the sum of

the two contributions above:

HN=2,k(t, x, y, z) = H
(1)
N=2,k(t, x, y, z) +H

(2)
N=2,k(t, x, y, z) . (4.30)

We find that HN=2,k(t, x, y, z) is in fact the Hilbert series of the 2nd symmetric product

of C4/Zk. The N = 2 case has an SU(4) symmetry [49] which can be made manifest in the

expression of the Hilbert series by using the fugacity map

y1 = xz, y2 = z2, y3 = yz , (4.31)

where y1, y2 and y3 are SU(4) fugacities. We provide examples for low k below.

Examples. For k = 1, we have

Hk=1(t,y) = H[Sym2(C4)](t; ,y)

=
1

2

(
PE[(y1 + y2y

−1
1 + y3y

−1
2 + y−1

3 )t]2

+ PE[(y2
1 + y2

2y
−2
1 + y2

3y
−2
2 + y−2

3 ))t2]
)

= PE[[1, 0, 0]t+ [2, 0, 0]t2 − [0, 2, 0]t4 + . . .] ,

Hk=1(t,y = 1) = 1 + 4t+ 20t2 + 60t3 + 170t4 + 396t5 + 868t6 + . . . .

(4.32)

For k = 2, we have

Hk=2(t,y) = H[Sym2(C4/Z2)](t,y)

=
1

2

(
H[C4/Z2](t,y)2 +H[C4/Z2](t2,y2)

)
,

(4.33)

where

H[C4/Z2](t,y) =
1

2

(
PE[(y1 + y2y

−1
1 + y3y

−1
2 + y−1

3 )t] + (t→ −t)
)
. (4.34)

Explicitly, the first few terms are given by

Hk=2(t,y) = PE[[2, 0, 0]t2 + [4, 0, 0]t4 − ([2, 2, 0] + [0, 0, 2])t6+

+ ([1, 2, 1] + [1, 0, 1]− [0, 4, 0]− [4, 2, 0])t8 + . . .] ,

Hk=2(t,y = 1) = 1 + 10t2 + 90t4 + 434t6 + 1635t8 + 4876t10 + . . . .

(4.35)

4.1.3 The Hilbert series for N = 2 — half ABJM

The previous computation relied on the use of a computer software in order to take into

accounts the F -term constraints and becomes more and more involved if not impossible to

perform for larger values of N . We can make an analytic computation in the case where we

set A2 = B2 = 0 and we count only operators involving the fields A1 and B1. Following [36],

we call this sub-branch of the theory half-ABJM.

Since the global symmetry SU(2) × SU(2) is broken by our choice A2 = B2 = 0, we

set x = y = 1. The F -term equations following from the superpotential (4.2) are trivial

– 36 –



J
H
E
P
1
0
(
2
0
1
6
)
0
4
6

for A2 = B2 = 0 and the fields A1 and B1 are unconstrained. The baryonic generating

functions gr(t, B) can then be explicitly computed using a Molien integral from the Hilbert

series freely generated by A1 and B1. We have

g
ABJM/2
1 (t;B) =

∮
|b|=1

db

2πibB+1
PE
[
(b+ b−1)t

]
=

t|B|

1− t2
, (4.36)

which can be easily interpreted as counting the operators An+B
1 Bn

1 for B > 0 and An1B
n−B
1

for B < 0. Moreover

g
ABJM/2
2 (t; 2B) =

∮
|b|=1

db

2πib2B+1

∮
|z1|=1

dz1

2πiz1
(1− z2

1)

∮
|z2|=1

dz2

2πiz2
(1− z2

2)

× PE
[
(b+ b−1)(z1 + z−1

1 )(z2 + z−1
2 )t

]
=

t2|B|

(1− t2)(1− t4)
,

(4.37)

where z1, z2 are fugacities for the gauge group SU(2) × SU(2) and b is the fugacity for

the (non-decoupled) U(1) gauge symmetry. The result can be understood for B > 0 as

counting the operator (detA1)B dressed by powers of trA1B1 and trA1B1A1B1 without

constraints. The result for B < 0 is obtained by exchanging A1 and B1.

Notice that indeed g
ABJM/2
2 (t; 2B) is the 2nd symmetric power of g

ABJM/2
1 (t;B):

g
ABJM/2
2 (t; 2B) =

1

2

[
g

ABJM/2
1 (t;B)2 + g

ABJM/2
1 (t2;B)

]
. (4.38)

The N = 1 Hilbert series for half-ABJM is

HN=1,k(t, z) =

∞∑
m=−∞

g1(t; km)zm =
1− t2k

(1− t2)(1− tkz)(1− tk/z)
, (4.39)

which is indeed the Hilbert series for C2/Zk. The generators are u = TAk1, v = T̃Bk
1 and

w = A1B1, subject to the relation uv = wk.

The N = 2 Hilbert series for half-ABJM is given by two contributions

HN=2,k(t, z) = H
(1)
N=2,k(t, z) +H

(2)
N=2,k(t, z) =

=
∞∑

m=−∞
g2(t; 2km)z2m +

∑
m1>m2

g1(t; km1)g1(t; km2)zm1+m2 .
(4.40)

An explicit computation shows that it is the 2nd symmetric power of HN=1,k(t, z):

HN=2,k(t, z) =
1

2

[
HN=1,k(t, z)2 +HN=1,k(t

2, z2)
]
. (4.41)

4.1.4 The Hilbert series for arbitrary N

Let m = (m1,m2, · · · ) and m̃ = (m̃1, m̃2, · · · ) be the magnetic charges for U(N)k and

U(N)−k respectively. The R-charge of a bare monopole operator is

R(m; m̃) =
N∑

a,b=1

|ma − m̃b| −
∑

1≤a<b≤N
|ma −mb| −

∑
1≤a<b≤N

|m̃a − m̃b| . (4.42)
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The monopole operators can be dressed with matter fields according to our general

prescription

HN,k(t, x, y, z) =
∑

m1≥m2≥···

∑
m̃1≥m̃2≥···

t2R(m;m̃)z
1
2

∑N
i=1(mi+m̃j)gT(m,m̃)

(t, x, y;B(m, m̃))

(4.43)

where the dressing factor is the baryonic generating function for the residual theory T(m,m̃)

which has gauge group H(m,m̃) equal to the commutant of (m, m̃) inside U(N) × U(N)

and fields consisting of the subset of the original matter fields that satisfy ρ(m, m̃) = 0.

The baryonic charges for the abelian factors are given by the embedding B(m, m̃) =

(km , −k m̃) into H(m,m̃). We introduced fugacities x and y for the SU(2)× SU(2) global

symmetry and z for the topological symmetry.

The condition ρX(m, m̃) ◦X = 0 for the fields X ∈ {Ai, Bi} becomes

ma(A1,2)ab = (A1,2)abm̃b (4.44)

m̃a(B1,2)ab = (B1,2)abmb (4.45)

which implies (A1,2)ab = (B1,2)ab = 0 if ma 6= m̃b. Since we need to turn on the bifunda-

mentals A and B to form gauge invariants, we see that the fluxes in m and m̃ must be

paired: each integer flux m in m should correspond to an equal flux in m̃ . If the number

m appears in m and m̃ with multiplicity r and r̃, respectively, the reduced theory T(m,m̃)

contains a subquiver isomorphic to the conifold quiver

U(r) U(r̃)
A1,2

B1,2

(4.46)

of which we need to compute the generating function in the sector of baryonic charges

(krm,−kr̃m). Since the overall U(1) in this sub-quiver is decoupled and no field is charged

under it, the baryonic generating function is nonvanishing only for r̃ = r. Since the fluxes

in m and m̃ are paired and have the same multiplicity we conclude that the sum in (4.43)

is restricted to m = m̃.

The Hilbert series (4.43) drastically simplifies for m = m̃ since the R-charge (4.42)

of a monopole operator vanishes, R(m;m) = 0. By denoting ri with
∑

i ri = N the

multiplicities of equal fluxes in m = m̃, the residual theory T(m,m) has gauge group∏
i U(ri)

2 and it is a collection of conifold quivers (4.46) with equal ranks.

More explicitly, a flux of the form

m = m̃ = (mr1 = mr1 = · · · = mr1︸ ︷︷ ︸
r1

,mr2 = mr2 = · · · = mr2︸ ︷︷ ︸
r2

, · · · ) (4.47)

contributes to the Hilbert series (4.43) the factor

z
∑
α rαmrα

∏
α

grα(t, x, y; krαmrα) (4.48)
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where, following the previous notations, we denoted with

gr(t, x, y;B) (4.49)

the generating function of the conifold quiver (4.8) in the sector with baryonic charge

(B,−B).

The crucial ingredient now is the observation made in [36] that, for the conifold the-

ory, the baryonic generating function gr(t, x, y; rB) is the r-fold symmetric product of

g1(t, x, y;B):

gr(t, x, y; rB) = Symr(g1(t, x, y;B)) , (4.50)

where Symrf(t1, t2, . . . , tn) is the coefficient of νr in a power series expansion of

PE [νf(t1, t2, . . . , tn)] = exp

 ∞∑
p=1

1

p
νpf(tp1, t

p
2, . . . , t

p
n)

 . (4.51)

This observation follows from a brane construction and has been tested for small values of

r. It stands as a conjecture for large r.12

The fact that the baryonic functions are symmetric products of the abelian ones im-

plies that the Hilbert series for ABJM with ranks N is the N -fold symmetric product of

the ABJM theory with N = 1. Indeed, the Hilbert series is obtained by summing the

contributions (4.48) for m1 ≥ m2 ≥ · · · ≥ mN . When all the fluxes mi are different, we

are just counting the symmetric products of the states encoded in the abelian baryonic

functions g1(t; kmi). When some of the fluxes are equal, say for example m1 = m2 = m,

we insert the contribution g2(t; 2km) which again counts the symmetric product of the

states in two copies of the abelian function g1(t; km). We thus have

HN,k(t, x, y, z) = SymN

( ∞∑
m=−∞

zmg1(t, x, y; km)

)
= SymN (H1,k(t, x, y, z)) . (4.52)

A more detailed proof is provided in appendix A.

4.2 Fractional branes and arbitrary Chern-Simons levels

The theory (4.1) with arbitrary ranks and Chern-Simons couplings has N = 2 supersym-

metry. The Hilbert series is given by

HN1,N2,k1,k2(t, x, y, z) =
∑

m1≥m2≥···

∑
m̃1≥m̃2≥···

t2R(m;m̃)z
1
2

(
∑N1
i=1 mi+

∑N2
i=1 m̃j)·

· gT(m,m̃)
(t, x, y;B(m, m̃))

(4.53)

where B(m, m̃) = (k1m , k2 m̃) and the R-charge of a bare monopole operator is

R(m; m̃) =

N1∑
a=1

N2∑
b=1

|ma − m̃b| −
∑

1≤a<b≤N1

|ma −mb| −
∑

1≤a<b≤N2

|m̃a − m̃b| . (4.54)

12For half-ABJM it is easy to show that g
ABJM/2
r (t; rB) = tr|B|∏r

i=1(1−t2i) = Symr
(
t|B|

1−t2

)
.
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The condition ρ(m, m̃) = 0 can be again solved only if the fluxes in m and m̃ are paired.

If the number m appears in m and m̃ with multiplicity r and r̃, respectively, the residual

theory T(m,m̃) contains a subquiver isomorphic to (4.46), of which we need to compute the

generating function is the sector of baryonic charges (k1rm, k2r̃m). Since the overall U(1)

in this sub-quiver is decoupled and no field is charged under it, the baryonic generating

function is non-vanishing only for

k1r + k2r̃ = 0 . (4.55)

This conclusion applies for m 6= 0, so that the baryonic charge is non-vanishing; if m = 0

we compute instead the mesonic Hilbert series and no condition on the ranks arises. The

previous discussion implies that

k1

∑
i

mi + k2

∑
i

m̃i = 0 . (4.56)

We present two simple examples.

4.2.1 The ABJ theory: k1 = −k2 = k and N1 6= N2

The ABJ theory obtained by adding fractional branes and thus considering theories with

quiver (4.1), k1 = −k2 = k and different ranks. It is well known that the theory is still

N = 6 and the moduli space is the same of ABJM. We consider first the simple case of the

U(1)−k × U(2)+k theory and unrefine the Hilbert series to simplify formulae, and discuss

the general case at the end of the subsection.

Let m and (n1, n2) be the monopole fluxes for U(1)−k and U(2)+k respectively. The

R-charge of the monopole operator is

R(m;n1, n2) = |m− n1|+ |m− n2| − |n1 − n2| . (4.57)

Given (4.56) and the fact that fluxes must be paired, we must have

−m+ n1 + n2 = 0 , n1 = m or n2 = m . (4.58)

There are two cases to consider:

1. The gauge group U(2)k is unbroken. In this case, n1 = n2. Thus, we have

m = n1 = n2 = 0 . (4.59)

Hence, the R-charge of the monopole operator is R(m;n1, n2) = 0. The gauge charges

of the monopole operator is (km;−kn1,−kn2) = (0; 0, 0). The baryonic generating

function can be computed using Macaulay2, which yields

g(1)(t;B) =

∮
|z1|=1

dz1

2πiz1

∮
|z2|=1

dz2

2πiz2
(1− z2

2)

∮
|b|=1

db

2πibB+1
×

× 1(
1− t

bz1z2

)2 (
1− btz1

z2

)2 (
1− tz2

bz1

)2
(1− btz1z2)2

×
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×
[
1− t3

(
2bz2z1 +

2bz1

z2
+

2z2

bz1
+

2

bz2z1

)
+ t4

(
2z2

2 +
2

z2
2

+ 9

)
− t5

(
2bz2z1 +

2bz1

z2
+

2z2

bz1
+

2

bz2z1

)
+ t6

(
b2z2

1 +
1

b2z2
1

)]
(4.60)

=
1 + t2

(1− t2)3
, (4.61)

independent of B. Thus, the contribution of this case to the Hilbert series is

H
(1)
N=1,k(t) = g(1)(t; 0) =

1 + t2

(1− t2)3
. (4.62)

2. The gauge group U(2)k is broken to U(1)2. In this case, n1 6= n2. We take

(m;n1, n2) = (m;m, 0) , m 6= 0 . (4.63)

The R-charge of the monopole operator is R(m;m, 0) = 0 and the gauge charges are

(km;−km, 0). The baryonic generating function in this case is

g(2)(t;B1, B2) =

∮
|z1|=1

dz1

2πizB1+1
1

∮
|z2|=1

dz2

2πizB2+1
2

PE
[
2(z1z

−1
2 + z2z

−1
1 )t

]
=
t|B2|

(
1 + t2 − t2 |B2|+ |B2|

)
(1− t2)3 . (4.64)

Thus, the contribution of this case to the Hilbert series is

H
(2)
k (t) =

∑
m∈Z−{0}

g(2)(t; km,−km) . (4.65)

The Hilbert series is the sum of the two contributions:

HABJ
k (t) = H

(1)
k (t) +H

(2)
k (t)

= H[C4/Zk] =
1

k

k−1∑
m=0

1

(1− ωmk t)2(1− ω−mk t)2
, ωk = e2πi/k , (4.66)

and indeed reproduces the Hilbert series for the ABJM theory U(1)k ×U(1)−k.

The general case of the U(N1)k × U(N2)−k theory can be discussed along similar

lines. As we recalled in section 4.1.4 and saw explicitly in the previous example, the

baryonic generating function of the conifold theory vanishes unless the ranks of the two

gauge groups are equal. If N1 6= N2, the magnetic charges for the unbalanced rank

|N1 − N2| must vanish. The Hilbert series is then the same as for ABJM with ranks

N = min(N1, N2), corresponding to N regular M2-branes. In addition, |N2 −N1| ≤ |k| is

needed to preserve SUSY for the U(|N1−N2|)±k subquiver of vanishing magnetic charges,

corresponding to fractional M2-branes.
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4.2.2 The case k1 6= −k2
The case k1 + k2 6= 0 is truly N = 2 and the moduli space is not hyperkähler anymore.

The case with equal ranks is not so interesting. Consider for example U(1)k1×U(1)k2 with

k1 6= −k2. Condition (4.56) implies m = m̃ = 0 and the Hilbert series is the same as the

Hilbert series of the conifold, of complex dimension three.13

The first interesting case is U(1)2×U(2)−1. Let m and (n1, n2) be the monopole fluxes

for U(1)2 and U(2)−1 respectively. The R-charge of the monopole operator is

R(m;n1, n2) = |m− n1|+ |m− n2| − |n1 − n2| . (4.67)

The condition (4.56) and the fact that fluxes must be paired leaves us with the only

possibility (m;m,m) for the flux.

We can understand what to expect about the moduli space by analyzing the solutions

of the F -terms. By writing the fields as two by two matrices

Aia = (Ai)1,a , Bai = (Bi)a,1 a = 1, 2 , i = 1, 2 , (4.68)

the F -term conditions can be derived from the superpotential W = detA detB. There are

three branches:

1. detA = detB = 0. Only the flux (0; 0, 0) contributes. We can form the four meson

gauge invariants encoded in the matrix M = AB. They satisfy detM = 0 and we

have the Hilbert series

H(I)(t) =
1− t2

(1− t)4
. (4.69)

2. B = 0 and A 6= 0. The flux (m;m,m) can be dressed with fields in the sector of

baryonic charge (2m,−2m) of the residual U(1)×U(2) theory. Such fields exist only

for m ≥ 0 and are given by

detAm = ((A1)11(A2)12 − (A2)11(A1)12)m , (4.70)

which are gauge invariant under SU(2) and have charge (2m,−2m) under the abelian

factors. Since the R-charge of the monopole (4.67) is 0 we find

H(II)(t) =

∞∑
m=0

t2|m| =
1

1− t2
. (4.71)

The existence of these operators is related to the fact that the BPS equations in a

monopole background with unbroken group U(n1)×U(n2)

AiA
†
i = k1σ1n1×n1 , A†iAi = k2σ1n2×n2 (4.72)

can be solved by rectangular matrices when n2 = n1+1 and k1/k2 = (n1+1)/n1. The

corresponding gauge invariant operators can be interpreted as baryons in the conifold

theory with unequal ranks [52, 53] and have a simple geometric characterization in

terms of harmonic oscillators (see for example [54]).

13In general, for all the models which can be obtained using tilings [50, 51], the Hilbert series for N branes

and k1 6= −k2 is the N -fold symmetric product of the Calabi-Yau threefold associated with the tiling.
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3. A = 0 and B 6= 0. This case is obtained from the previous one by interchanging Ai
and Bi:

H(III)(t) =
∞∑
m=0

t2|m| =
1

1− t2
. (4.73)

5 N = 3 Chern-Simons theories

N = 3 theories can be obtained by adding Chern-Simons couplings to N = 4 theories. They

have the same multiplets as N = 4 theories, in particular the vector multiplet contains a

triplet of real scalars σ. In a BPS monopole configuration, the matter fields X must satisfy

the BPS equations

D(X) = − k

2π
σ

σ ◦X = 0 ,
(5.1)

where in the first equation D is the triplet of D-terms, in the second equation σ acts

on the matter fields X in the appropriate representation, and we wrote for simplicity the

equations for a single gauge group G with Chern-Simons coupling k.

We work, as usual, by selecting an N = 2 subalgebra under which σ splits into a real

scalar σ and a complex scalar Φ, and D into a real D-term D and a complex F -term F .

In a BPS monopole configuration, σ is identified as before with the magnetic flux m. The

real equations in (5.1) tell us as before that we can dress the monopole with matter fields

satisfiying m ◦X = 0 and with baryonic charge specified by km. The complex equations

in (5.1) can be derived from the superpotential

W = tr Q̃ΦQ+
1

2
kΦ2 (5.2)

where (Q, Q̃) is the chiral multiplet matter content of a hypermultiplet and the traces in

the previous expression are taken in the appropriate representation.

For particular values of the Chern-simons couplings, the F -term equations can be

solved with nonvanishing adjoint fields and we can have the analogue of N = 4 Coulomb

branches. There are also mixed Coulomb-Higgs branches, as we will see.

5.1 General results on the affine An−1 quiver with CS levels

An interesting example is the N = 3 An−1 quiver with a Chern-Simons level associated

with each node. This quiver is depicted in (5.3).

U(N1)k1

U(N2)k2

U(N3)k3U(N4)k4

U(N5)k5

U(Nn)kn

(5.3)
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These theories represent M2 branes probing hypertoric hyperKähler cones over 3-

Sasakian manifolds [55] and we expect a branch isomorphic to the symmetric product

of the hyperKähler cone. It was argued in [56, 57] that for some specific values of the

Chern-Simons couplings the theories are actually N = 4 in the IR. In some specific cases

we can explicitly map them to an N = 4 theory via mirror symmetry.

For some specific values of the Chern-Simons couplings, the moduli space has an inter-

esting structure of branches. We list here a series of general results that can be obtained

using the monopole formula. Some explicit examples of computations are given in ap-

pendix C for the A2 quiver.

Example 1: two non-zero CS levels with opposite signs. Let us first take each

gauge group to be U(N) and the CS levels associated with a pair of adjacent nodes to be

k and −k, while those associated with other nodes are zero. For definiteness, we take

N1 = N2 = . . . = Nn = N ,

k1 = −k2 = k 6= 0 , ki = 0 for i 6= 1, 2 .
(5.4)

The theory corresponds to M2 branes probing (quotients of) C2 × C2/Zn−1. It has 2

interesting branches of the moduli space:

1. When the vacuum expectation values (VEVs) of all bifundamental hypermultiplets

are non-zero, the moduli space is SymN [(C2×C2/Zn−1)/Zk], where the action of the

Zk orbifold is described below. This is a direct generalization of the result for ABJM,

which is recovered for n = 2, and describes M2 branes which can be separated in a

BPS way on (C2 × C2/Zn−1)/Zk.

Let the holomorphic coordinates of the first C2 factor be (z1, z2) and the second C2

be (w1, w2). The Zn−1 orbifold acts on (w1, w2) as

Zn−1 : (w1, w2)→ (ωn−1w1, ω
−1
n−1w2) , ωn−1 = exp(2πi/(n− 1)) . (5.5)

Hence, the invariant quantities under this Zn−1 action is

wn−1
1 , w1w2 , wn−1

2 . (5.6)

The Zk orbifold acts on (z1, z2) and (wn−1
1 , w1w2, w

n−1
2 ) as

Zk : (z1, z2)→ (ωkz1, ω
−1
k z2) , ωk = exp(2πi/k)

(wn−1
1 , w1w2, w

n−1
2 )→ (ωkw

n−1
1 , w1w2, ω

−1
k wn−1

2 ) .
(5.7)

2. When the VEVs of the hypermultiplet between nodes 1 and 2 are non-zero and those

of the others are zero, the moduli space is identified to that of N SU(n−1) instantons

on C2/Zk with framing (n−1, 0, . . . , 0). This branch of the moduli space is isomorphic

to the Higgs branch of the N = 4 Kronheimer-Nakajima (KN) quiver [24] depicted
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in (5.8); see [19] for a review.

N

N

NN

N

N

n− 1

(k circular nodes)

(5.8)

Moreover, this branch of the moduli space is isomorphic to the Coulomb branch of

the mirror theory which is given by the N = 4 affine An−2 quiver with all gauge

groups being U(N) and with k flavours of fundamental hypermultiplet under one of

the gauge groups, as depicted in (5.9). The identification of the Coulomb branch of

(5.9) with the moduli space of SU(n − 1) instantons on C2/Zk is discussed in (2.7)

of [19] (see also [58, 59]) and will be reviewed in appendix D.

N

N

NN

N

N

k

(n− 1 circular nodes)

(5.9)

For k = 1 we can actually relate the quiver (5.3) with the parameters (5.4) to the

N = 4 quiver (5.9) using mirror symmetry. We use a brane construction. We start with

the brane configuration corresponding to (5.9). Such a system consists of

• N coincident D3-branes wrapping R1,2
0,1,2 × S1

6 (where the subscripts indicate the di-

rection in R10),

• n − 1 NS5-branes, wrapping R1,2
0,1,2 × R3

7,8,9, located at different positions along the

circular x6 direction, and

• k = 1 D5-branes, wrapping R1,2
0,1,2 × R3

3,4,5, located along the circular x6 direction

within one of the NS5-brane intervals.

We then perform SL(2,Z) action T T = −TST on this brane system, where T and S are the

generators of SL(2,Z) such that S2 = −1 and (ST )3 = 1. Under this action, the D5-brane

transform into the (1, 1) five-brane, whereas NS5-branes and D3-branes remain invariant

(see e.g. [9, 25]). The (1, 1) five-branes induce the CS levels 1 and −1 to a pair of the adja-

cent nodes in (5.3), while the other nodes have zero CS levels. The branches 1 and 2 that

we have found can be then re-interpreted as the Higgs and Coulomb branches of the N = 4

quiver (5.9). The quiver (5.9) can be in fact re-interpreted as describing N D2-branes prob-

ing a C2×C2/Zn−1 singularity. We know that its Higgs branch is the C2/Zn−1 singularity

and its Coulomb branch the moduli space of N SU(n−1) instantons on C2 [15, 39, 58–60].

Note that for k > 1 it is not possible to to obtain quiver (5.3) from (5.9) via an SL(2,Z)

action.
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Example 2: non-zero CS levels with alternating signs. We take the number of

circular nodes

n = 2m (5.10)

to be an even number and

N1 = N2 = . . . = Nn = N , (5.11)

ki = k for i odd , kj = −k for j even . (5.12)

The theory corresponds to M2 branes probing (quotients of ) (C2/Zm)2/Zk. It has 2

interesting branches of the moduli space:

1. When the VEVs of all bifundamental hypermultiplets are non-zero, the moduli space

is SymN [(C2/Zm)2/Zk], where Zk acts on the complex coordinates as

Zk : (zm−1
1 , z1z2, z

m−1
2 )→ (ωkz

m−1
1 , z1z2, ω

−1
k zm−1

2 )

(wm−1
1 , w1w2, w

m−1
2 )→ (ωkw

m−1
1 , w1w2, ω

−1
k wm−1

2 ) .
(5.13)

This branch describes N M2 branes which can be separated in a BPS way on

(C2/Zm)2/Zk.

2. When the VEVs of the bifundamental hypermultiplets vanish alternately, the moduli

space is isomorphic to the moduli space of N SU(m) instantons on C2/Zmk with fram-

ing (0k−1, 1, 0k−1, 1, . . . , 0k−1, 1), where 1’s are in the k-th, 2k-th, . . . , mk-th positions.

Note that this branch is identical to the Coulomb branch of the 3dN = 4 gauge theory

whose quiver is given by the affine Am−1 quiver with all gauge groups being U(N) and

with k flavours of fundamental hypermultiplets under each gauge group, as depicted in

(5.14). The identification of the Coulomb branch of this quiver with the moduli space

of SU(m) instantons on C2/Zmk is discussed in [19] (see a brief review in appendix D).

N

N

NN

N

N

k

k

kk

k

k

(m circular nodes)

(5.14)

For k = 1, theory (5.11) can be obtained by performing SL(2,Z) action T T to the

brane configuration of (5.14), as in [9, 25]. For k > 1, one cannot obtained the

former from the latter in this way.
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Example 3: a more general configuration. Let us now consider a more general

configuration by taking quiver (5.3) with

N1 = N2 = . . . = Nn = N , (5.15)

and p pairs of adjacent nodes with CS levels k and −k and q nodes with zero CS level.

The number of circular nodes n is then

n = 2p+ q . (5.16)

The previous two examples are special cases of this theory: example 1 corresponds to p = 1

and Example 2 corresponds to p = m and n = 2m.

An example of quivers of this type is depicted below. In this example, we have n = 6

and p = 2.

U(N)k

U(N)−k

U(N)0U(N)k

U(N)−k

U(Nn)0

This theory has 2 interesting branches of the moduli space:

1. When the VEVs of all bifundamental hypermultiplets are non-zero, the moduli space

is

SymN [(C2/Zp × C2/Zm)/Zk] = SymN [(C2/Zp × C2/Zn−p)/Zk] , (5.17)

where the second expression follows from the fact that m = p + q and n = 2p + q.

This branch of the moduli space in the case of N = 1 was studied in [57].14

2. When the VEVs of all bifundamental hypermultiplets between the nodes with CS

levels k and −k are non-zero and the others are zero, the moduli space is isomorphic

to the Coulomb branch of quiver (5.18), where the ranks `i (with i = 1, . . . ,m) of the

flavour symmetries can be obtained from the original theory as follows.

• Replace every node with zero CS levels in the original theory by a circular node

with zero flavour `i = 0.

• Replace every pair of adjacent nodes with non-zero CS levels (k,−k) by a circular

node attached to the flavour node with `i = k.

14Here p is the number of (1, k) five-branes and n− p is the number of NS5-branes.
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N

N

NN

N

N

`1

`2

`3`4

`5

`m

(m circular nodes)

(5.18)

According to (2.7) of [19] (see also appendix D), this branch of the moduli space can

be identified with

the moduli space of N SU(m) instantons on C2/Zkp

with framing (0`1−1, 1, 0`2−1, 1, . . . , 0`m−1, 1) and

m∑
i=1

`i = kp (5.19)

As before, for k = 1, the original theory can be obtained by applying T T action to

the brane configuration of (5.18), as in [9, 25]. For k > 1, one cannot obtained the

former from the latter in this way.

6 Geometric moduli spaces of abelian M2-brane theories

The formalism for computing Hilbert series of the moduli space of N ≥ 2 Chern-Simons

theories that we have introduced applies both to abelian and to nonabelian theories. In

this section however we focus our attention on the worldvolume theories of a single mobile

M2-brane probing a CY4 cone. We show how previously known results on the geometric

branch of the moduli space, that is the CY4 cone transverse to the M2-brane, can be neatly

reproduced in our formalism, and provide a counting of chiral operators in these theories.

In our formalism, the geometric branch of the moduli space is obtained when monopole

operators are only turned on for the diagonal U(1) factor in the U(1)G quiver and funda-

mental flavors, if present, do not take expectation value. We will see that the Hilbert series

of the geometric branch of the moduli space takes the general form

H =
∑

m∈Z≤0

a−m− g1(k−m) +
∑

m∈Z≥0

am+g1(k+m)− g1(0) , (6.1)

where the weights a± keep track of the global charges of the monopole operators T , T̃

of magnetic charge ±1 for the diagonal gauge U(1), and g1 is the baryonic Hilbert series

for the abelian quiver. The sum is restricted to baryonic charges lying along the rays

θ± ≡ ±k± defined by the effective gauge Chern-Simons levels

k±i = ki ±
1

2
(Fi −Ai) , (6.2)

where ki is the diagonal bare Chern-Simons level of the i-th gauge group, and Fi and Ai
are the number of fundamentals and antifundamentals for the i-th gauge group.
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This result is consistent with the analysis of section 4 of [30] and translates it into an

explicit counting formula, with no need of knowing the quantum F -term relation deter-

mining T T̃ in terms of the bifundamental fields of the quiver.

We also note that the argument of section 4.1.4 and appendix A, assuming the con-

jecture (4.50) of [36], shows that the geometric moduli space of the theory on a stack of

N mobile M2-branes is the N -th symmetric product of the geometric moduli space of the

theory on a single mobile M2-brane.

6.1 M2-brane theories without quantum corrections

Let us first consider an abelian
∏G
i=1 U(1)ki quiver Chern-Simons theory without funda-

mental flavors and with
∑

i ki = 0. Neglecting Chern-Simons interactions, the quiver gauge

theory with superpotential is the worldvolume theory on a D2-brane transverse to a CY3

cone, which is the dimensional reduction of the worldvolume theory on a D3-brane probing

the CY3 cone. Due to the higher dimensional origin, each node of the quiver has as many

incoming as outgoing arrows. As a result, the charges of monopole operators do not receive

quantum corrections.

We focus on the geometric branch of the moduli space, which in our formalism cor-

responds to having equal magnetic charges all gauge groups, mi = m for all i = 1, . . . , G.

If z is the fugacity of the topological symmetry associated to the overall U(1) and qi,

i = 1, . . . , G are fugacities for the gauge U(1) groups in the quiver, the Hilbert series

depends on z through

∑
m∈Z

zm
G∏
i=1

q−kimi = 2πiz · δ

(
G∏
i=1

qkii − z

)
. (6.3)

The equality follows from
∑

m∈Z e
imα = 2π

∑
n∈Z δ(α− 2πn), passing from the angle α to

the U(1) valued fugacity x = eiα to get
∑

m∈Z x
m = 2πiδ(x− 1), and setting x =

∏
i q
ki
i /z.

The delta function in the r.h.s. of (6.3) allows us to integrate over one of the G − 1

nontrivially acting U(1) gauge groups. (The overall U(1) does not act on the matter fields

and its Molien integral gives 1.) The effectively acting gauge group consists of linear

combinations of the G U(1) groups in the integer kernel of (1, 1, . . . , 1) and (k1, k2, . . . , kG).

Explicitly, defining k = gcd{ki} and qM =
∏
i q
ki/k
i , (6.3) becomes

2πizδ
(
qkM − z

)
= 2πiqM

1

k

k−1∑
n=0

δ(qM − ωnk z1/k) . (6.4)

The average in the r.h.s. shows that the gauge U(1)M associated to the fugacity qM ,

namely the linear combination of U(1) gauge groups parallel to the vector of Chern-Simons

couplings (k1, . . . , kG), is Higgsed to a residual Zk gauge symmetry on the geometric moduli

space where the charged monopole operator T or T̃ acquire vev. This reproduces the results

of [50, 61]. The CY3 cone moduli space of the D3-brane theory is the symplectic quotient

CY4//U(1)M of the CY4 cone moduli space of the M2-brane theory. Conversely, using

the l.h.s. of (6.3), the Hilbert series of the geometric moduli space of the 3d quiver Chern-

Simons theory (the CY4 cone) can be expressed as a sum of baryonic Hilbert series with
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baryonic charges Bi = kim of the associated 4d quiver theory (corresponding to partial

resolutions of the CY3 cone).

6.1.1 Example: N = 3 circular abelian Chern-Simons quivers

As an application, let us consider N = 3 circular
∏G
i=1 U(1)ki Chern-Simons quivers as

depicted in (6.5). These can be engineered in type IIB brane by a D3-brane wrapping a

circle and intersecting G (1, pi)5-branes, with ki = pi − pi−1 [44].

U(1)k1

U(1)k2

U(1)k3U(1)k4

U(1)k5

U(1)kG

(6.5)

The geometric moduli spaces of these theories are hypertoric hyperKähler cones of quater-

nionic dimension 2, given by hyperKähler quotients of HG by an abelian group N = ker(β),

where [55]

β : U(1)G → U(1)2 β =

(
1 1 . . . 1

p1 p2 . . . pG

)
. (6.6)

We now show this from the point of view of the Hilbert series, starting from the Hilbert

series of the hyperKähler quotient

H(t,X, Y ) =

(
G∏
i=1

∮
dxi

2πixi

)
PE

[
−Gt2 + t

G∑
i=1

(xi + x−1
i )

]
·

· 2πiXδ

(
G∏
i=1

xi −X

)
· 2πiY δ

(
G∏
i=1

xpii − Y

)
· PE[2t2] .

(6.7)

The first line would be the Hilbert series for the hyperKähler quotient by the whole U(1)G

group. The delta functions and the PEs in the second line reduce the group in the quotient

from U(1)G to N = ker(β). X and Y are fugacities for the two triholomorphic symmetries

of the hyperKähler cone.
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Let us change integration variables from (x1, . . . , xG) to (q1, . . . , qG−1, u), with xi =

u1/Gqiq
−1
i+1. Being the Hilbert series independent of qG, we can average over it to obtain

H(t,X, Y ) = PE[−(G− 2)t2]

(
G∏
i=1

∮
dqi

2πiqi

)∮
du

2πiu
2πiXδ(u−X)·

· 2πiY δ

(
u

1
G

∑
i pi

G∏
i=1

qkii − Y

)
· PE

[
t
G∑
i=1

(
u

1
G
qi
qi+1

+ u−
1
G
qi+1

qi

)]
= PE[−(G− 2)t2]·

·
∑
m∈Z

zm

(
G∏
i=1

∮
dqi

2πiqi
q−kimi

)
PE

[
t
G∑
i=1

(
X

1
G
qi
qi+1

+X−
1
G
qi+1

qi

)]
,

(6.8)

where we defined Y = X
∑
i pi/Gz. The result is nothing but the Hilbert series of the

geometric moduli space of the Abelian quiver Chern-Simons theory. This can be seen as

follows. The superpotential of the theory is W =
∑

i φi(AiBi−Bi−1Ai−1) +
∑

i
ki
2 φ

2
i . The

F -term equations for A and B are solved on the geometric branch by φi = φ ∀i = 1, . . . , G.

The F -term equations for φi then read kiφ = Bi−1Ai−1 − AiBi. The F -term for the

U(1) parallel to the vector of Chern-Simons level determines φ = 1
‖k‖2

∑
i(ki+1 − ki)AiBi,

leaving us with Ai and Bi subject to G − 2 independent F -term (or complex moment

map) equations. Together with the Chern-Simons interactions at levels ki, this precisely

reproduces the structure of the final expression in (6.8).

6.2 M2-brane theories with quantum corrected chiral ring

Let us now add flavors to the theories considered above, along the lines of [62, 63] for

N = 3 theories and [26, 28] for N = 2 theories. (We will consider M2-brane theories with

quantum corrections but no flavors in section 6.2.3.) We add pairs of fundamental and

antifundamental flavors (pa, qa), attached to possibly different nodes of the quiver, with

superpotential interactions ∆Wa = paMa(X)qa. The effective complex masses Ma(X) are

polynomials of the bifundamental fields X, given by linear combinations of open paths in

the quiver. Due to the extra matter fields, the charges of monopole operators T and T̃

acquire one-loop corrections. The quantum correction of the charge of a monopole operator

Vm of magnetic charge (m;m; . . . ;m) (so that T = V1 and T̃ = V−1) under a U(1) global

or gauge symmetry is [26, 28]

Qquant[Vm] = −|m|
2

∑
a

(Q[ψpa ] +Q[ψqa ]) , (6.9)

where the sum runs over fermions of the chiral multiplets of fundamental and antifunda-

mental flavors. In particular, the one-loop correction to the R-charge is

Rquant[Vm] = −|m|
2

∑
a

(R[pa] +R[qa]− 2) =
|m|
2

∑
a

R[Ma(X)] (6.10)

and the one-loop correction to the charge under the i-th gauge U(1) in the quiver is

Qquant
i [Vm] = −|m|

2

∑
a

(Qi[pa] +Qi[qa]) = −|m|
2

(Fi −Ai) =
|m|
2

∑
a

Qi[Ma(X)] , (6.11)
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where Fi (Ai) is the number of (anti)fundamental flavors of the i-th gauge group. Similar

formulas hold for all other global symmetries, that we suppress in the following discussion.

Let u = zt2R[T ]
∏
i q
−k+

i
i ≡ a+

∏
i q
−k+

i
i and v = z−1t2R[T̃ ]

∏
i q
k−i
i ≡ a−

∏
i q
k−i
i be the

fugacity weights associated to T and T̃ respectively. Here R[T ], R[T̃ ] are the R-charges

of the monopole operators, that we can take to equal the 1-loop correction Rquant[V±1]

in (6.10), choosing vanishing classical R-charges for the monopole operators.15 k±i =

ki± 1
2(Fi−Ai) are the effective Chern-Simons levels for positive/negative values of the real

scalar σ in the diagonal U(1) gauge group. Brought inside the Molien integrals, the sum

over magnetic fluxes leads to16

∑
m≤0

v−m +
∑
m≥0

um − 1 =
1

1− v
+

1

1− u
− 1 =

1− uv
(1− u)(1− v)

. (6.12)

The first expression is the sum over magnetic charges m ∈ Z, split into m ≤ 0 and m ≥ 0,

with 1 subtracted not to overcount m = 0. The second expression resums the two geometric

series, both of which converge for small |t| provided R[T ], R[T̃ ] > 0. The final expression

shows that summing over all monopole operators for the diagonal U(1) gauge group is

equivalent to adding to the classical analysis of the F -flat moduli space two new fields T ,

T̃ subject to a quantum F -term relation that determines their product. The existence of

such a quantum F -term relation, along with Vm = Tm and V−m = T̃m for m > 0, is tied to

the existence of a single bare BPS monopole operator for each magnetic charge m, which

is a crucial input in the formula for the Hilbert series. Taking into account the charges

of T and T̃ and the vanishing of the circle parametrized by the dual photon when flavors

are massless, one can conclude, consistently with the proposals of [26, 28, 63], that the

quantum F -term relation is

T T̃ =
∏
a

Ma(X) . (6.13)

15The classical R-charges of monopole operators are due to bare mixed R-gauge Chern-Simons terms and

are opposite for T and T̃ . We set them to zero here by appropriately mixing the R-symmetry with the

topological symmetry.
16Note that 1−uv

(1−u)(1−v)
→ 2πiδ(u− 1) as v → u−1, reproducing

∑
m u

m = 2πiδ(u− 1). This can be seen

setting u = ax, v = a/x with |a| < 1, integrating against a test function f(x) and taking a→ 1.
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6.2.1 N = 3 circular abelian Chern-Simons quivers with flavors

Let us endow the N = 3 circular
∏G
i=1 U(1)ki Chern-Simons quiver (6.5) with F flavors of

fundamental hypermultiplets, as depicted below.

U(1)k1

U(1)k2

U(1)k3
U(1)k4

U(1)k5

U(1)G

f1

f2

f3f4

f5

fG

F = f1 + f2 + · · ·+ fG

(6.14)

In the type IIB engineering, we are adding F D5-branes to the original brane configuration.

The precise partition of the F flavors among the G gauge groups does not affect the

geometric moduli space, which is a hyperKähler quotient of HG+1 by an abelian group

N = ker(β), where now [63]

β : U(1)G+1 → U(1)2 β =

(
1 1 . . . 1 0

p1 p2 . . . pG F

)
. (6.15)

We can recover this result with the Hilbert series, starting from the hyperKähler quo-

tient description

H(t,X, Y ) =

(
G∏
i=1

∮
dxi

2πixi

)
PE

[
t

G∑
i=1

(xi + x−1
i )−Gt2

]
· 2πiXδ

(
G∏
i=1

xi −X

)

×
∮

dy

2πiy
PE[t(y + y−1)− t2] · 2πiY δ

(
yF

G∏
i=1

xpii − Y

)
· PE[2t2] .

(6.16)

The y integral can be computed using the delta function,

∮
dy

2πiy
PE[t(y + y−1)− t2] · 2πiY δ

(
yF

G∏
i=1

xpii − Y

)
= (6.17)

=
1

F

F−1∑
n=0

PE[t(ωnF b
1
F + ω−nF b−

1
F )− t2] = PE[tF (b+ b−1)− t2F ] =

∑
m∈Z

tF |m|bm ,

where we set b = Y/
∏G
i=1 x

pi
i and used the expression for the Hilbert series of C2/ZF as a

Coulomb branch [12] in the last equality. Setting Y = X
∑
i pi/Gz and changing integration

variables as in section 6.1.1, we obtain the Hilbert series of the geometric moduli space of
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the flavored circular quiver:

H(t,X, z) = PE[−(G− 2)t2]
∑
m∈Z

zmtF |m|·

·

(
G∏
i=1

∮
dqi

2πiqi
q−kimi

)
PE

[
t

G∑
i=1

(
X

1
G
qi
qi+1

+X−
1
G
qi+1

qi

)]
.

(6.18)

As an example, the unrefined Hilbert series of the geometric moduli space of the

flavored ABJM theory of [62, 63], engineered by a D3-brane intersecting an NS5-brane, a

(1, k)5-brane and F D5-branes along a circle, is

H(t) =
1 + t2 + 2ktF+k − 2ktF+k+2 − t2F+2k − t2F+2k+2

(1− t)3(1 + t)3 (1− tF+k)
2 (6.19)

and the volume of the triSasakian base M7 of the cone, in agreement with [64], is

Vol(M7)/Vol(S7) = lim
t→1

(1− t)4H(t) =
F + 2k

2(F + k)2
. (6.20)

Let us further specialize to the case k = F = 1 discussed in detail in [63]: the geometric

moduli space is the cone over N0,1,0, which is nothing but the reduced moduli space of one

SU(3) instanton. We can compute the Hilbert series, with w = X1/2 an SU(2) fugacity

and z the fugacity of the topological U(1). Setting w = x1x
−1/2
2 and z = x

3/2
2 , the refined

Hilbert series is

H(t, x1, x2) = PE[([1, 1]− 2)t2] · (1 + 2t2 + (2− [1, 1])t4 + 2t6 + t8) =

=

∞∑
n=0

[n, n]t2n ,
(6.21)

where [n, n] is a shorthand for the character of the representation [n, n] of SU(3), expressed

in terms of SU(3) fugacities x1, x2 [65]. The Hilbert series (6.21) manifests the enhancement

of the SU(2) × U(1) global symmetry to SU(3), not only at the level of scalar partners of

conserved currents that correspond to the term [1, 1]t2, but for the entire spectrum of

chiral operators. The generators are the 4 mesons Mij = AiBj and the 4 dressed monopole

operators ui = TAi, vj = T̃Bj , which altogether form the adjoint representation of SU(3).
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6.2.2 Toric flavored ABJM theories

An interesting and rich class of N = 2 theories with quantum corrected chiral rings is

provided by the toric flavored abelian ABJM models of [26, 27].

U(1)+k U(1)−k

h1

h2

h̃1

h̃2

B2

A1

B1

A2

q̃1 p̃1

q̃2 p̃2

q1p1

q2p2

(6.22)

These are U(1)k × U(1)−k Chern-Simons quiver gauge theories, specified by the quiver

diagram depicted above and the superpotential

W = A1B1A2B2 −A1B2A2B1+

+

h1∑
i=1

pi1A1q1,i +

h2∑
i=1

pi2A2q2i +

h̃1∑
i=1

p̃i1B1q̃1,i +

h̃2∑
i=1

p̃i2B2q̃2i .
(6.23)

The coupling to flavors generically breaks the mesonic SU(2)× SU(2) to its maximal torus

U(1)×U(1), to which we associate fugacities x and y.

The quantization condition for gauge Chern-Simons levels is

k± ≡ k ∓ 1

2
(h1 + h2 − h̃1 − h̃2) ∈ Z . (6.24)

Similarly, mixed Chern-Simons couplings kx, ky between the mesonic U(1) symmetries and

the diagonal gauge U(1) are subject to the quantization conditions

k±x ≡ kx ∓
1

2
(h1 − h2) ∈ Z

k±y ≡ ky ∓
1

2
(h̃1 − h̃2) ∈ Z .

(6.25)

We assign equal R-charges 1/2 to all bifundamentals and set to zero the classical R-charges

of monopole operators.

The Hilbert series of the geometric moduli space is given by

H(t, x, y, z) =
∑

m∈Z≥0

am+g1(k+m) +
∑

m∈Z≤0

a−m− g1(k−m)− g1(0) , (6.26)
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where a± = z±1x∓k
±
x y∓k

±
y t

1
2

(h1+h2+h̃1+h̃2) keep track of the charges of the monopole oper-

ators T , T̃ , and g1 is the baryonic Hilbert series for the abelian conifold quiver,

g1(B) = PE[[1; 1]t2]t|B| ·

{
[B; 0]− t2[B − 1; 1] + t4[B − 2; 0] , B ≥ 0

[0; |B|]− t2[1; |B| − 1] + t4[0; |B| − 2] , B ≤ 0
. (6.27)

Here [m;n] ≡ [m]x[n]y, where [m]x = xm+1−x−(m+1)

x−x−1 is the character of the (n + 1)-

dimensional representation of SU(2).

The terms in (6.26) can be computed using∑
m≥0

amg1(Km) = PE[[1; 1]t2 + atK(xK + x−K)]·

· (1− t4 + atK([K − 2; 0]− t2[K − 1; 1] + t4[K; 0]))

(6.28)

for K ≥ 0. The result for K ≤ 0 is obtained replacing (K,x, y) ↔ (−K, y, x). Finally,

g1(0) = PE[[1; 1]t2 − t4].

Let us briefly consider a couple of examples discussed in [26, 27]. For k = h1 = h2 = 0,

h̃1 = h̃2 = 1, the geometric moduli space is the Calabi-Yau cone over Q1,1,1. Choosing

kx = ky = 0 and setting x = α, y = γβ and z = γ/β, the Hilbert series is

H =

∞∑
n=0

[n;n;n]α,β,γt
2n −−−−−→

α,β,γ→1

1 + 4t2 + t4

(1− t2)4
, (6.29)

which manifests an SU(2)3 symmetry and reproduces the Hilbert series of the cone over

Q1,1,1, in agreement with (A.7) of [51]. We will discuss the field theory counterparts of

resolutions of the cone in appendix F.

For k = 3
2 , h1 = 1, h2 = h̃1 = h̃2 = 0, the geometric moduli space is the Calabi-Yau

cone over Y 1,2(CP2). Setting kx = 1
2 and ky = 0, the Hilbert series is

H = PE[t2x−1(y + y−1) + t5/2x(y2 + y−2)z−1 + t3/2z(x+ x−1)]·

· (1 + t2x(y + y−1) + t5/2xz−1 − t7/2(y + y−1)z − t4(y + y−1)2+

− t9/2(y + y−1)z−1 + t11/2x−1z + t6x−1(y + y−1) + t8) .

(6.30)

The plethystic logarithm17 of the Hilbert series

PL[H] = t2(x+ x−1)[1]y + t3/2z(x+ x−1) + t5/2z−1x[2]y+

− t7/2z[1]y − t4(1 + (x2 + 1)[2]y)− t9/2z−1(x2 + 1)[1]y − t5z−2x2 + . . .
(6.31)

suggests that there are 8 generators Mij = AiBj , ui = TAi, vj1j2 = vj2j1 = T̃Bj1Bj2
subject to 14 independent relations, as proposed in [26], that can be summarized as

εi1i2Mi1jui2 = 0, detM = 0, uivj1j2 = Mij1M1j2 , εjj1Mijvj1j2 = 0, det v = 0. (6.32)

17The plethystic logarithm of a multi-variate function f(x1, . . . , xn) such that f(0, . . . , 0) = 1 is

PL[f(x1, . . . , xn)] =

∞∑
k=1

1

k
µ(k) log f(xk1 , . . . , x

k
n) .
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We checked using Macaulay2 that (6.30) is indeed the Hilbert series of this quotient ring.

The superconformal R-symmetry can also be determined from the Hilbert series by volume

minimization [66]: it is obtained by the fugacity map x = ta, y = 1 and z = t1/2, with

a =
1

3
(5− 23c−1/3 + c1/3) , c = 24

√
78− 181 . (6.33)

The Hilbert series from geometry

We will now show how the field theory monopole formula (6.26) for the abelian toric

flavored ABJM theories can be obtained geometrically by appropriately rewriting the

Hilbert series of the toric CY4 cones. We use the Kähler quotient description of the toric

variety, viewed as the vacuum moduli space of an abelian gauged linear sigma model

(GLSM). (We provide an alternative computation that starts directly from the toric data

in appendix E.) The trick is to gauge and ungauge the U(1)M symmetry of the CY4 cone

that was used in [26] to reduce M-theory on the CY4 to type IIA on the conifold fibered

over R, with D6-branes and RR 2-form flux.

The CY4 cones in this class have toric diagrams consisting of four columns of points,18

with coordinates an1+i1 = (0, 0, n1 + i1), bñ1+ĩ1
= (1, 0, ñ1 + ĩ1), cn2+i2 = (1, 1, n2 + i2),

dñ2+ĩ2
= (0, 1, ñ2+ĩ2), where i1 = 0, . . . , h1 and similarly for the other columns. The CY4 is

the vacuum moduli space of a GLSM with h1+h2+h̃1+h̃2 U(1) gauge factors. To obtain the

field theory formula (6.26), it is convenient to gauge and ungauge the U(1)M symmetry that

corresponds to the vertical direction in the toric diagram. Projecting the 3d toric diagram

of the CY4 vertically (forgetting the last coordinate), we obtain the 2d toric diagram of

the conifold, made of 4 points with coordinates a = (0, 0), b = (1, 0), c = (1, 1), d = (0, 1).

Up to mixing with the genuine gauge symmetries of the GLSM, we can take the charges

of this ‘vertical’ U(1)M to be ±1 for the GLSM fields corresponding to two consecutive

toric points in a column, e.g. −1 for an1 , +1 for an1+1, and 0 for all other GLSM fields.

Denoting by ζ the fugacity of this extra U(1), its gauging and ungauging is achieved by

writing f(ζ) =
∑

m∈Z ζ
m
∮

du
2πuu

−mf(u). If we focus on GLSM fields belonging to the a

column (other columns are treated similarly) and drop subscripts, the resulting GLSM has

gauge fugacities, charge matrix and baryonic charges

an an+1 an+2 an+3 . . . an+h−1 an+h

q n+ 1 −n 0 0 . . . 0 0 0

u1 −1 1 0 0 . . . 0 0 m

u2 0 −1 1 0 . . . 0 0 m

u3 0 0 −1 1 . . . 0 0 m
...

...
...

...
...

. . .
...

...
...

uh 0 0 0 0 . . . −1 1 m

(6.34)

18The columns of toric points can be replaced by their bottom and top points if the C2/Zh fibers over the

toric divisors of the conifold are not resolved. Even though we do not consider these resolutions in this sec-

tion, we keep all the toric points since the associated GLSM fields are useful to describe monopole operators.

– 57 –



J
H
E
P
1
0
(
2
0
1
6
)
0
4
6

The common baryonic charge m will eventually be summed over. The integrals over the

fugacities u1, . . . , uh at fixed m can be evaluated, giving

Ia(m) ≡
h∏
j=1

(∮
duj

2πiu1+m
j

)
PE

[
αn

1

u1
+ αn+1

u1

u2
+ αn+2

u2

u3
+ · · ·+ αn+h

1

uh

]

=PE

[ h∏
j=0

αn+j

]( h∏
j=0

αjn+j

) |m|+m
2
( h∏
j=0

αh−jn+j

) |m|−m
2

≡PE[α]α
|m|+m

2
+ α

|m|−m
2

− .

(6.35)

Here αn+j are monomials in the fugacities q, t, x and y keeping track of the charges of an+j .

We take αn = (tx)
1

h+1 qn+1, αn+1 = (tx)
1

h+1 q−n and αn+j = (tx)
1

h+1 for j = 2, . . . , h,19 so

that

α = txq , α+ = (tx)
h
2 q−n , α− = (tx)

h
2 qn+h . (6.36)

Restoring subscripts, the integral (6.35) is then

Ia(m) = PE[txq] q
−
(
n1+

h1
2

)
m

(txq)
h1
2
|m| . (6.37)

Taking into account all the four columns, integrating over the remaining gauge fugacity

q corresponding to the conifold GLSM of charges (1,−1, 1,−1) for a, b, c, d, and summing

over m, the Hilbert series of the CY4 cone can be written as

Hgeom(t, x, y, ζ) =
∑
m∈Z

∮
dq

2πiq
PE
[
tq(x+ x−1) + tq−1(y + y−1)

]
·

·
(
ζq−(n1+n2−ñ1−ñ2)

)m (
qh1+h2−h̃1−h̃2th1+h2+h̃1+h̃2xh1−h2yh̃1−h̃2

) |m|
2

.

(6.38)

Using the dictionary between toric data and field theory data [26]

k = n1 + n2 − ñ1 − ñ2 +
1

2
(h1 + h2 − h̃1 − h̃2) (6.39)

and making the identification ζ = zx−kxy−ky , we see that the geometric formula (6.38) for

the Hilbert series reproduces precisely the field theory formula (6.26). The first factor in the

second line of (6.38) corresponds to the classical contribution of Chern-Simons interactions,

the second factor corresponds to the quantum corrections.

Note that, as proposed in [26], the bare monopole operators T = V1 and T̃ = V−1 can

be expressed in terms of the GLSM fields of the CY4 cone as

T =

h1∏
j1=0

aj1n1+j1

h̃1∏
j̃1=0

bj̃1
ñ1+j̃1

h2∏
j2=0

cj2n2+j2

h̃2∏
j̃2=0

dj̃2
ñ2+j̃2

T̃ =

h1∏
j1=0

ah1−j1
n1+j1

h̃1∏
j̃1=0

bh̃1−j̃1
ñ1+j̃1

h2∏
j2=0

ch2−j2
n2+j2

h̃2∏
j̃2=0

dh̃2−j̃2
ñ2+j̃2

(6.40)

19Different assignments of global charges are obtained by redefining ζ.

– 58 –



J
H
E
P
1
0
(
2
0
1
6
)
0
4
6

and are therefore counted in the Hilbert series (6.38) with the weights

w[T ] = ζα+β+γ+δ+ = zt
1
2

(h1+h2+h̃1+h̃2)x−k
+
x y−k

+
y q−k

+

w[T̃ ] = ζ−1α−β−γ−δ− = z−1t
1
2

(h1+h2+h̃1+h̃2)xk
−
x yk

−
y qk

−
.

(6.41)

Similarly, for the bifundamentals A1,2, B1,2 we have

A1 = a =

h1∏
j1=0

an1+j1 A2 = c =

h2∏
j2=0

cn2+j2

B1 = b =

h̃1∏
j̃1=0

bñ1+j̃1
B2 = d =

h̃2∏
j̃2=0

dñ2+j̃2
.

(6.42)

and the weights
w[A1] = α = txq w[A2] = γ = tx−1q

w[B1] = β = tyq−1 w[B2] = γ = ty−1q−1 .
(6.43)

The quantum F -term relation T T̃ = Ah1
1 Ah2

2 Bh̃1
1 Bh̃2

2 of [26], which is consistent with these

identifications, arises in the Hilbert series from the sum over m, as in (6.12).

6.2.3 M2-brane theories from wrapped D6-branes: Y p,q(CP2)

Another large class of M2-brane theories with quantum corrected chiral rings arises when

the reduction to type IIA leads to D6-branes wrapping exceptional divisors in a CY3

cone [29, 30], rather then noncompact 4-cycles as was the case for the flavored quiver

gauge theories discussed in the previous section. To show how our methods can be applied

to these theories as well, we consider here the worldvolume theory of a single mobile

regular M2-brane probing the cone over Y p,q(CP2) [67–69], initially in the absence of

fractional M2-branes.

The theory was obtained in [29] by reducing M-theory on the cone over Y p,q(CP2) to

type IIA string theory on a resolved C3/Z3 foliated over R, with Ramond-Ramond 2-form

flux and p anti-D6-branes wrapping the exceptional CP2 in the singular C3/Z3 leaf over

the origin of R. The quiver is the one for regular branes probing C3/Z3, but the presence

of the anti-D6-branes and the RR flux changes the gauge groups and Chern-Simons levels

to U(1)0 ×U(1 + p) 3
2
p−q ×U(1 + p)− 3

2
p+q, see the figure below.20

Y1,2,3

Z1,2,3

X1,2,3

• = U(1)0

• = U(1 + p) 3
2
p−q

• = U(1 + p)− 3
2
p+q

(6.44)

20This is actually the quiver for p + 1 regular D2-branes and p wrapped anti-D6-branes: p 2-branes are

stuck at the singularity and only one of them is free to explore the transverse geometry [29].
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The superpotential W = εabc tr(XaYbZc) preserves an SU(3) mesonic symmetry.

The cancellation of parity anomalies requires mixed Chern-Simons couplings between

the abelian factors of the gauge group, which escaped the stringy derivation of [29]. Like

in section 6 of [29], we will choose the mixed Chern-Simons couplings in such a way that

they do not affect the charges of diagonal monopole operators, and therefore the geometric

branch of the moduli space.

We will compute the Hilbert series of the geometric branch of the moduli space, on

which only monopole operators of magnetic charge (m;m, 0p;m, 0p), m ∈ Z, the first

component of Xa, Yb and the 11 entry of Zc acquire expectation values [29]. We choose to

assign non-democratic R-charges R[X] = R[Y ] = 3
4 and R[Z] = 1

2 , to ensure the R-charges

of unit charge monopole operators are positive:21

R[T ] = R[T̃ ] = p− 3

2
pR[Z] =

1

4
p . (6.45)

The charges of monopole operators under the active U(1)3 gauge group of the geometric

branch are

Q[T ] = −(k+
1 , k

+
2 , k

+
3 ) = (0,−3p+ q, 3p− q) (6.46)

Q[T̃ ] = (k−1 , k
−
2 , k

−
3 ) = (0,−q, q) . (6.47)

The constraint 0 ≤ q ≤ 3p on this class of geometries implies that ±k±2 = ∓k±3 ≥ 0. (In

the limiting cases q = 0, 3p, the CY4 cones are orbifolds of flat space [69] .)

The Hilbert series of the F -flat moduli space of the abelian quiver for C3/Z3 with a

democratic R-charge assignment is [49]

g(t;x, y) =

∞∑
n=0

[0, n;n, 0]x,yt
4
3
n (6.48)

where x1, x2 are fugacities for an SU(3) under which (X,Y, Z) transform in the [0, 1] repre-

sentation, whereas y1 and y2 are fugacities for the SU(3) respected by the superpotential,

under which each of Xa, Ya and Za is a triplet. Our non-democratic R-charge assignment

is obtained by replacing x1 → t−1/6x1, x2 → t−1/3x2 in (6.48). The fugacities counting the

bare monopole operators T and T̃ are

u = zt
p
2

(
q2

q3

)−3p+q

= zt
p
2x−3p+q

2 , v = z−1t
p
2

(
q2

q3

)−q
= z−1t

p
2x−q2 , (6.49)

where q1, q2, q3 are fugacities for the U(1)3 gauge group of the residual abelian quiver gauge

theory on the geometric branch. The overall U(1) is decoupled and the relative U(1)’s are

identified with the Cartan of SU(3)x according to x1 = q1/q3, x2 = q2/q3.

Performing the sum over magnetic charges as in (6.12), the Hilbert series of the geo-

metric moduli space is given by the formula

H(t, y1, y2, z) =

∮
dx1

2πix1

∮
dx2

2πix2

∞∑
n=0

[0, n;n, 0]x,yt
4
3
n

∣∣∣∣x1→t−1/6x1

x2→t−1/3x2

·

· PE[zt
p
2x−3p+q

2 + z−1t
p
2x−q2 − t

px−3p
2 ] .

(6.50)

21Assigning R-charge 2/3 to all bifundamentals leads to zero R-charge for monopole operators.
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We first perform the x1 integral, picking the residues at x1 = t3/2y1, x1 = t3/2y2/y1 and

x1 = t3/2/y2, then the x2 integral, picking minus the residues at x2 = t−1/y1, x2 = t−1y1/y2

and x2 = t−1y2. The result is

H =
y3

1y2(
y2

1 − y2

)
(y1y2 − 1)

PE[t4y3
1 + zt

p
2

+3p−qy3p−q
1 + z−1t

p
2

+qyq1 − t
4py3p

1 ]

+ ( (y1, y2)→ (1/y2, 1/y1) ) + ( (y1, y2)→ (y2/y1, 1/y1) ) ,

(6.51)

where the sum over the three terms leads to symmetrization. Since(
yn1

y3
1y2(

y2
1 − y2

)
(y1y2 − 1)

)
+ ( (y1, y2)→ (1/y2, 1/y1) ) +

+ ( (y1, y2)→ (y2/y1, 1/y1) ) = [n, 0]y1,y2 ,

(6.52)

we find that the SU(3) highest weight generating function [70] for the Hilbert series of the

geometric moduli space takes the very simple form

HWG(t; z;µ1, µ2) = PE[t4µ3
1 + zt

p
2

+3p−qµ3p−q
1 + z−1t

p
2

+qµq1 − t
4pµ3p

1 ] , (6.53)

where µ1, µ2 are highest weight fugacities for SU(3). The Hilbert series is obtained by

Taylor expanding (6.53) in t and replacing µn1
1 µn2

2 7→ [n1, n2]y1,y2 . Note that only sym-

metric powers [n, 0] of the fundamental representation appear. The democratic R-charge

assignment can be restored by the fugacity map z → zt
p
2
− q

3 , giving

HWGdem(t; z;µ1, µ2) = PE[(t
4
3µ1)3 + z(t

4
3µ1)3p−q + z−1(t

4
3µ1)q − (t

4
3µ1)3p] . (6.54)

This result agrees with the Hilbert series of the cone over Y p,q(CP2) computed from

the toric description. (6.53)–(6.54) hold even when p, q are not coprime.

An interesting example is for p = 2, q = 3, in which case the Sasaki-Einstein 7-fold is

known as M1,1,1 or M3,2. Setting z = w2, we see that the topological symmetry enhances

to SU(2) and the Hilbert series of the geometric moduli space

H(t; y1, y2, w) =

∞∑
n=0

[3n, 0; 2n]y1,y2;wt
4n (6.55)

reproduces the Hilbert series of C(M1,1,1) computed in [51] using a theory with different

Chern-Simons levels (that was argued in [29] to correspond to regular and fractional M2-

branes), as well as the Kaluza-Klein spectrum obtained in [71].

A general argument

Following the logic of [29, 30], it is possible to reformulate the computation of the Hilbert

series of the geometric moduli space in a general way that also holds in the presence of

fractional M2-branes. We still focus on a single mobile M2-brane. (The generalization to

multiple mobile M2-branes goes along the lines of appendix A.)

Let us first recall that, in the language of [30], the quiver for D-branes transverse to

C3/Z3 has three open string Kähler chambers in Fayet-Iliopoulos parameter space: chamber
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X corresponding to −ξ3 ≡ ξ1 + ξ2 ≥ 0 and ξ1 ≥ 0; chamber Y corresponding to −ξ1 ≥ 0

and ξ2 ≥ 0; chamber Z corresponding to −ξ2 ≥ 0 and ξ3 = −ξ1 − ξ2 ≥ 0. If there are

no fractional M2-branes as considered so far, the effective FI parameters for positive and

negative σ of the theory on the mobile M2-brane lie on the wall between chambers X and Y.

The three chambers can be seen using the baryonic Hilbert series as follows. Replacing

irreducible representations of the SU(3) symmetry that acts on indices a, b, c by their

highest weight states, the Hilbert series of the master space becomes

∞∑
n=0

[0, n]x1,x2τ
n = PE [τ [0, 1]x1,x2 ] = PE

[
τ

(
x2 +

x1

x2
+

1

x1

)]
(6.56)

where τ = t4/3µ1, using democratic R-charges. Letting B = (B1, B2, B3) with B1 + B2 +

B3 = 0 be the vector of baryonic charges, the baryonic Hilbert series is

HWG[g1(B)] =

∮
dx1

2πix1+B1
1

∮
dx2

2πix1+B2
2

PE [τ [0, 1]x1,x2 ] = PE[τ3]τχ(B) , (6.57)

where

χ(B) =


B1 −B3 , −B3 ≥ 0 ∧B1 ≥ 0⇔ B ∈ X

B2 −B1 , −B1 ≥ 0 ∧B2 ≥ 0⇔ B ∈ Y

B3 −B2 , −B2 ≥ 0 ∧B3 ≥ 0⇔ B ∈ Z

(6.58)

is the Chern class of the line bundle O(χ(B)) on CP2 of which g1(B) counts holomorphic

sections. Translating quiver data to geometric data, the baryonic charge B is mapped to

χ(B); the map depends on which chamber (X, Y or Z) B belongs to.

Given a theory for regular and fractional M2-branes at the cone over Y p,q(CP2) (see

section 5 of [29]), we compute the 3-vectors θ± ≡ ±k± = ±(k±1 , k
±
2 , k

±
3 ), where k±i are

the effective Chern-Simons levels of the i-th gauge group of the worldvolume theory on a

mobile M2-brane. The sum over magnetic charges then becomes a sum over θ−Z≥0∪θ+Z≥0

in the lattice of baryonic charges, giving the Hilbert series

H =
∞∑
n=0

zng1(θ+n) +
∞∑
n=0

z−ng1(θ−n)− g1(0) . (6.59)

Here we used the fact that monopole operators of charge (m, 0N1−1;m, 0N2−1;m, 0N3−1)

have vanishing R-charge if all bifundamentals have R-charge 2/3, for all N1, N2, N3.

Using (6.57), the highest weight generating function for the Hilbert series is then

HWG(t, z;µ1, µ2) = PE[τ3]
(

PE[zτχ(θ+)] + PE[z−1τχ(θ−)]− 1
)

= PE[τ3 + zτχ(θ+) + z−1τχ(θ−) − τχ(θ+)+χ(θ−)] , τ = t4/3µ1 .
(6.60)

For all the quiver gauge theories on a regular M2-brane in the presence of any number

of fractional M2-branes in [29], it is straightforward to derive that χ(θ+) = 3p − q and

χ(θ−) = q. Thus (6.60) becomes (6.54). Note that while θ± depend on the torsion flux
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sourced by the fractional M2-branes,22 χ(θ±) only depend on the purely geometric data p

and q of the CY4 cone.

6.2.4 The cone over V 5,2

In this subsection we study the field theories on M2-branes probing the cone over V 5,2, a ho-

mogenous Sasaki-Einstein 7-manifold that can be described as a coset V 5,2 = SO(5)/SO(3).

The supergravity solution thus possesses an SO(5) × U(1)R isometry [71]. There are two

known gauge theories corresponding to this geometry: one with classical chiral ring, pro-

posed by Martelli and Sparks (MS model henceforth) [31], the other with quantum cor-

rected chiral ring, proposed by Jafferis (J model) [32]. We will see that the total moduli

spaces of the two abelian theories agree assuming that the superpotential of the J model

is appropriately modified.

The MS model

The quiver diagram of the MS model is

U(N)+k U(N)−k

A1,2

B1,2

φ1 φ2

(6.61)

and the superpotential is

W = Tr
[
s(φ3

1 + φ3
2) + φ1(A1B1 +A2B2) + φ2(B1A1 +B2A2)

]
. (6.62)

We set the coupling s to unity in the following, by a rescaling of chiral superfields.

The case of N = 1. Let us focus on the moduli space of this theory for N = 1. Using

the primary decomposition of Macaulay2, we see that the F -flat moduli space has two

branches:
(I) {3φ2

2 +A1B1 +A2B2 = 0, φ1 + φ2 = 0} ,
(II) {A1 = A2 = B1 = B2 = φ2

1 = φ2
2 = 0} .

(6.63)

After introducing bare monopole operators and modding out by the complexified gauge

group, branch I in (6.63) corresponds to the cone over V 5,2/Zk, in agreement with the

discussion in [31]. The Hilbert series of this branch is

H
(I)
MS(t, x, y) =

∑
m∈Z

ymg
(I)
1 (km) , (6.64)

22The pair of chambers to which θ± belong determine windows in the lattice that defines the torsion

cohomology of Y p,q(CP2) [29]. In particular, (θ+, θ−) ∈ (X,X) in window [0, 0] of [29]; (θ+, θ−) ∈ (X,Z)

in window [1, 0]; and (θ+, θ−) ∈ (X,Y) in window [−1, 0].
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where g
(I)
1 is the baryonic Hilbert series for the abelian quiver

g
(I)
1 (B) =

∮
dz

2πizB+1
PE
[
{1 + (x+ x−1)(z + z−1)}t− t2

]
, (6.65)

x is a fugacity for the SU(2) flavour symmetry, y is a fugacity for the topological symmetry

U(1)M , and t keeps track of the R-charge in units of 2/3.

For k = 1, we have

H
(I)
MS;k=1(t, x, y) = PE

[
χ

SO(5)
[1,0] (a)t− t2

]
(6.66)

where the character of the vector representation of SO(5) is

χ
SO(5)
[1,0] (a) = 1 + a1 + a2 + a−1

1 + a−1
2 , a1 = xy, a2 = xy−1 . (6.67)

Explicitly, the generators of the chiral ring that transform under the vector representation

of SO(5) are

φ2 = −φ1 , u1 = A1T , u2 = A2T, v1 = B1T̃ , v2 = B2T̃ . (6.68)

where T and T̃ are the monopole operators carrying magnetic fluxes (1, 1) and (−1,−1)

under the U(1)×U(1) gauge group.23 They are subject to the relation

3φ2
2 + u1v1 + u2v2 = 0 , (6.69)

which follows from T T̃ = 1 and the classical F -terms.

For k > 1, the Zk quotient breaks SO(5) to SO(4) ∼= SU(2)×SU(2). The Hilbert series

can be written as

H
(I)
MS(t, x, y) =

1

k

k−1∑
p=0

PE[{1 + ωpk(a1 + a−1
1 ) + ω−pk (a2 + a−1

2 )}t− t2]

=
1

k

k−1∑
p=0

PE[{1 + ωpkχ
SU(2)
[1] (a1) + ω−pk χ

SU(2)
[1] (a2)}t− t2] , (6.70)

where ωk = exp(2πi/k).

The total moduli space. It is also interesting to discuss the total moduli space, which

includes the second branch. Looking at the F -flat moduli space in (6.63), we see that

the second branch provides two more gauge invariant operators: φ1 + φ2 at order t and

(φ1 + φ2)2 = −(φ1 − φ2)2 at order t2.

The baryonic generating function is

gtot
1 (B) = g

(I)
1 (B) + δB,0(t+ t2) (6.71)

as can be checked using Macaulay2. The Hilbert series of the total moduli space is

Htot
MS(t, x, y) =

∑
m∈Z

ymgtot
1 (km) = H

(I)
MS(t, x, y) + t+ t2 . (6.72)

The corresponding unrefined Hilbert series is

Htot
MS,k=1(t;x = y = 1) = 1 + 6t+ 15t2 + 30t3 + 55t4 + 91t5 + 140t6 + . . . . (6.73)

23T and T̃ carry electric charges (−1, 1), (1,−1) and R-charges 0, 0 respectively.
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The J model

This theory can be derived by reducing M-theory to type IIA along a different U(1)

isometry of V 5,2, this time with a fixed locus that leads to D6-branes [32]. We introduce

a Zh quotient along this circle direction. The theory is a flavored version of N = 8 SYM,

with quiver diagram

N hφ1,2,3

q

q̃

(6.74)

In [32] the superpotential was argued to be

W = Tr

φ3 [φ1, φ2] +

h∑
j=1

qj q̃
j
(
φ2

1 + φ2
2 + φ2

3

) . (6.75)

In these variables not all Cartan elements of the SO(5) isometry of V 5,2 are manifest, as

we shall see below. We amend this by introducing the following variables,24

X1 =
1√
2

(φ1 + iφ2) , X2 =
1√
2

(φ1 − iφ2) , X3 = iφ3 , (6.76)

in terms of which the superpotential is

W = Tr

X3[X1, X2] +

h∑
j=1

qj q̃
j(X1X2 +X2X1 −X2

3 )

 . (6.77)

We will see below that an extra superpotential term consistent with the symmetry

should be added to reproduce the total moduli space of the MS theory.

The case of N = 1. Let us focus on the moduli space of this theory for N = 1. Using

the primary decomposition of Macaulay2, we see that the F -flat moduli space has three

branches:

(I) {q = q̃ = 0} ,
(II) {q = 2X1X2 −X2

3 = 0} or {q̃ = 2X1X2 −X2
3 = 0} ,

(III) {X1 = X2 = X3 = 0} .
(6.78)

Branch I leads to the geometric branch of the moduli space, once monopole operators

are included. The Hilbert series of this branch is given by

H
(I)
J (t, x, y) =

∑
m∈Z

ymth|m| PE
[
(1 + x+ x−1)t

]
, (6.79)

24N.M. would like to thank Seyed Morteza Hosseini for a related discussion on this model in the context

of the large N limit.
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where x1/2 is a fugacity for the SU(2) flavour symmetry that rotates X1, X2, X3 as a

triplet, y is a fugacity for the topological symmetry, and t keeps track of the R-charge in

units of 2/3.

For h = 1, we obtain

H
(I)
J;h=1(t, x, y) = PE

[
(1 + x+ x−1 + y + y−1)t− t2

]
. (6.80)

This is in agreement with (6.66), identifying a1 = x and a2 = y. Explicitly, the generators

of the chiral ring in the vector representation of SO(5) are

X1 , X2 , X3 , V+ , V− , (6.81)

where V± are the monopole operators of magnetic charge ±1.25 Note that had we used

φ1,2,3 instead of the variables X1,2,3 defined in (6.76), we would not have been able to make

the Cartan variable x in (6.80) manifest. The generators are subject to the relation

V+V− = 2X1X2 −X2
3 . (6.82)

The operator map between the MS model and the J model is as follows:

u1 ↔
√

2X1 , v1 ↔
√

2X2 , u2 ↔ iV+ , v2 ↔ iV− , φ2 ↔ i
√

3X3 . (6.83)

Under this map, (6.69) and (6.82) are transformed into each other as expected.

The Zh quotient for h > 1 breaks SO(5) to SO(3) × SO(2). The Hilbert series can be

written as

H
(I)
J (t;x, y) = PE

[
tχ

SU(2)
[2] (x1/2) + th(y + y−1)− t2h

]
, (6.84)

and the chiral ring of the geometric branch is generated by (6.81) subject to

V+V− = (2X1X2 −X2
3 )h . (6.85)

The total moduli space. Let us discuss the total moduli space without focusing on a

particular branch. In order to match this with that of the MS model at k = 1, we need to

modify the superpotential (6.77) by adding an extra term cubic in the flavor meson, that

is allowed by the U(1)R × SO(3)×U(1)M symmetry:

W = Tr
[
X3[X1, X2] + qq̃(X1X2 +X2X1 −X2

3 ) + (qq̃)3
]
. (6.86)

We focus again on the abelian N = 1 theory. The new term does not affect the

geometric branch, on which q = q̃ = 0. A branch where only one of q, q̃ vanishes does not

lead to gauge invariant operators involving the quarks, and is therefore a sub-branch of the

geometric branch. Finally, we have the branch where q, q̃ and therefore M = qq̃ take vev.

On this branch the monopole operators vanish and the F -term equations imply that MXi =

0 and M3 = 0. Therefore the only new operators are M and M2, which add t+ t2 to the

Hilbert series of the geometric branch (6.80). (We checked this conclusion by doing primary

decomposition with Macaulay2.) This result agrees with (6.72) found in the dual MS model.

25V± are gauge invariant and carry R-charge 2/3.
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Note that were the (qq̃)3 superpotential term absent, all powers Mn would be allowed

and the extra flavor mesonic branch would be C, corresponding to branch (III) in (6.78).

This result would agree with a modification of the MS model where the superpotential of

the abelian theory is taken to be

W = (φ1 + φ2)

(
3

4
(φ1 − φ2)2 +A1B1 +A2B2

)
. (6.87)

Such a modification was proposed in [72], where it was argued that the further su-

perpotential term 1
4(φ1 + φ2)3, that is needed to obtain (6.62) with s = 1, flows to

zero at low energies. With this superpotential, the branch (II) of (6.63) is modified to

A1 = A2 = B1 = B2 = φ1 − φ2 = 0 with φ1 + φ2 unconstrained, in agreement with the

result for the J model.
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A Multiple membranes and symmetric products

In this appendix, following a similar reasoning in [73], we show in detail that the Hilbert

series of the moduli space of the ABJM theory of rank N and level k (the theory on N

M2-branes probing C4/Zk) is the N -th symmetric product of the Hilbert series of ABJM

of rank N = 1 and level k (the theory on 1 M2-brane probing C4/Zk). We shall prove that

∞∑
N=0

HN,k(t, x, y, z)νN = PE

[
ν
∑
m∈Z

zmg1(t, x, y; km)

]
, (A.1)

assuming the validity of the conjecture (4.50) of [36] according to which the baryonic

generating function gr(t, x, y; rB) is the r-fold symmetric product of g1(t, x, y;B). The

proof immediately generalizes to the worldvolume theories on membranes probing the other

singularities considered in this paper.

We start from HN,k, which is given by a sum over integers m1 ≥ m2 ≥ · · · ≥ mN

in a Weyl chamber of U(N), as shown in section 4.1.4. (These are magnetic weights for

the diagonal U(N) factor of the gauge group.) It is convenient to change parametrization
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from m1 ≥ m2 ≥ · · · ≥ mN in ZN/SN to (m; r0, r1, . . . ) ∈ Z × Z∞≥0, where m = rN and

rα = #{i|mi −mN = α}. By definition r0 6= 0 and
∑

α rα = N , so there are finitely many

non-vanishing rα at fixed N . In the latter parametrization, the Hilbert series for the N

M2-brane theory reads

HN,k(t, x, y, z) =
∑
m∈Z

∞∑
r0=1

r1,r2,···=0∑
α rα=N

z
∑
α rα(m+α)

∏
α

grα(t, x, y; krα(m+ α)) , (A.2)

therefore the l.h.s. of (A.1) can be written as

∞∑
N=0

HN,k(t, x, y, z)νN = 1 +
∑
m∈Z

∞∑
r0=1

r1,r2,···=0

∞∏
α=0

grα(t, x, y; krα(m+ α))zrα(m+α)νrα

= 1 +
∑
m∈Z

∞∏
α=0

∞∑
rα=δα,0

grα(t, x, y; krα(m+ α))zrα(m+α)νrα .

(A.3)

The conjecture (4.50) implies that

∞∑
rα=0

grα(t, x, y; krα(m+ α))zrα(m+α)νrα = PE[ν g1(t, x, y; k(m+ α))zm+α] , (A.4)

from which we obtain

∞∑
N=0

HN,k(t, x, y, z)νN = 1 +
∑
m∈Z

( ∞∏
α=0

PE[ν g1(t, x, y; k(m+ α))zm+α]

−
∞∏
α=1

PE[ν g1(t, x, y; k(m+ α))zm+α]

)
.

(A.5)

We split the sum over m into m ≥ 0 and m < 0. The first sum is

∞∑
m=0

( ∞∏
α=m

PE[ν g1(t, x, y; kα)zα]−
∞∏

α=m+1

PE[ν g1(t, x, y; kα)zα]

)
=

=

∞∑
m=0

( ∞∏
α=m

PE[ν g1(t, x, y; kα)zα]− 1

)
−
∞∑
m=0

( ∞∏
α=m+1

PE[ν g1(t, x, y; kα)zα]− 1

)

=
∞∏
α=0

PE[ν g1(t, x, y; kα)zα]− 1 = PE

[
ν
∞∑
α=0

g1(t, x, y; kα)zα

]
− 1 , (A.6)

where in the second line we subtracted and added 1 so that the two sums converge.
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By similar manipulations, the sum over m < 0 is

∑
m<0

( ∞∏
α=m

PE[ν g1(t, x, y; kα)zα]−
∞∏

α=m+1

PE[ν g1(t, x, y; kα)zα]

)
=

=
∞∏
α=0

PE[ν g1(t, x, y; kα)zα]·

·
∞∑
m=1

( m∏
α=1

PE[ν g1(t, x, y;−kα)z−α]−
m−1∏
α=1

PE[ν g1(t, x, y;−kα)z−α]

)
=

= PE[ν

∞∑
α=0

g1(t, x, y; kα)zα]

(
PE

[
ν

∞∑
α=1

g1(t, x, y;−kα)z−α

]
− 1

)
.

(A.7)

Adding up the various contributions to the r.h.s. , (A.5) becomes

∞∑
N=0

HN,k(t, x, y, z)νN = PE

[
ν
∑
α∈Z

g1(t, x, y; kα)zα

]
= PE[ν H1,k(t, x, y, z)] , (A.8)

which shows that

HN,k(t, x, y, z) = SymN (H1,k(t, x, y, z)) . (A.9)

B SL(2,Z) action on theories with an Abelian symmetry

In this appendix we discuss the SL(2,Z) action on three-dimensional N = 2 theories with

a U(1) symmetry [38]. Let x and m be the fugacity and magnetic charge for the U(1) sym-

metry, and f(x;m) be the Hilbert series of the moduli space of the N = 2 theory with the

U(1) symmetry. Fugacities and magnetic charges for other symmetries are spectators of this

SL(2,Z) action and will be suppressed in this appendix. The SL(2,Z) group is generated by

S and T , subject to S2 = −1 and (ST )3 = 1. The action of −1 on a theory with a U(1) sym-

metry is meant to produce the same theory, but with the sign of the U(1) charges reversed.

The action of T is to introduce a Chern-Simons interaction at level 1 for the U(1)

global symmetry, therefore

(T ◦ f)(x;m) = f(x;m)x−m . (B.1)

The action of S is to couple the background gauge field for the original U(1) symmetry

to a new U(1) background gauge field via a mixed Chern-Simons term at level 1, and to

gauge the original U(1) symmetry [37, 38]. On the Hilbert series,

(S ◦ f)(x′;m′) =
∑
m∈Z

∮
dx

2πix
f(x;m)x−m

′
x′−m . (B.2)

The new U(1) symmetry can be thought of as the topological symmetry of the gauged

U(1). In our standard notation, x′ = 1/z and m′ = B.

– 69 –



J
H
E
P
1
0
(
2
0
1
6
)
0
4
6

Let us check the relations among SL(2,Z) generators. For S2 we find

(S2 ◦ f)(x′′;m′′) =
∑

m,m′∈Z

∮
dx

2πix

∮
dx′

2πix′
f(x;m)x−m

′
x′−m−m

′′
x′′−m

′
=

=
∑
m′∈Z

∮
dx

2πix
f(x;−m′′)(xx′′)−m′ = f(1/x′′;−m′′) ,

(B.3)

where the last equality can be derived using f(x;m) =
∑

n∈Z fn(m)xn. We see that indeed

S2 returns the Hilbert series of the same theory, but with the sign of U(1) charges reversed,

that is, S2 = −1. Similarly

((ST )3 ◦ f)(x′′′;m′′′) =
∑

m,m′,m′′

∮
dx

2πix

∮
dx′

2πix′

∮
dx′′

2πix′′
f(x;m)x−m−m

′
x′−m−m

′−m′′ ·

· x′′−m′−m′′−m′′′x′′′−m′′ =
∑
m′′

∮
dx

2πix
f(x;m′′′)(x/x′′′)m

′′
= f(x′′′;m′′′) , (B.4)

shows that (ST )3 = 1.

C N = 3 Ak affine quivers

Affine A1 quiver: U(N)k ×U(N)−k

Let us consider the gauge theory given by the affine Dynkin diagram of A1 with gauge

group U(N)k ×U(N)−k.

U(N)k U(N)−k (C.1)

In 3d N = 2 notation, this can be written as

U(N)k U(N)−kQ̃1

Q1

Q2

Q̃2

φ1 φ2
(C.2)

with the superpotential

W = tr(Q1φ2Q̃1 − Q̃1φ1Q1 +Q2φ1Q̃2 − Q̃2φ2Q2) +
1

2
k tr(φ2

1)− 1

2
k tr(φ2

2) . (C.3)

Integrating out the adjoints, we obtain the ABJM theory with Ai = (Q1, Q̃2) and Bi =

(Q2, Q̃1). We already discussed this case at length in section 4.
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Affine A2 quiver: U(N)k ×U(N)−k ×U(N)0

In 3d N = 2 notation, the quiver can be drawn as

U(N)−k

U(N)k

U(N)0

Q1

Q̃1

Q̃2

Q2

Q3Q̃3

φ1

φ2

φ3

(C.4)

with the superpotential

W =

3∑
i=1

tr(Qiφi+1Q̃i − Q̃i−1φi−1Qi−1) +
1

2
k tr(φ2

1)− 1

2
k tr(φ2

2) , φi+3 ≡ φi . (C.5)

Integrating out the massive adjoints, one is left with the quiver for branes probing the

Suspended Pinch Point Calabi-Yau threefold singularity [74].

The case of N = 1

The R-charge of monopole operator is

R(m1,m2,m3) =
1

2
(|m1 −m2|+ |m2 −m3|+ |m1 −m3|) . (C.6)

The sum of the triplet of D-terms in (5.1), or equivalently the decoupling of the overall

U(1), imply that

m1 = m2 , φ1 = φ2 . (C.7)

Branch I: Qi, Q̃i 6= 0 (i = 1, 2, 3) — (C2 × (C2/Z2))/Zk. On this branch,

φ1 = φ2 = φ3 =
1

k
(Q1Q̃1 −Q2Q̃2) , Q̃2Q2 = Q3Q̃3 . (C.8)

From (5.1) we also have m1 = m2 = m3 ≡ m. Thus, the R-charge of the monopole operator

is R(m,m,m) = 0, and the gauge charge is (−km, km, 0).

Notice that the pattern of identifications of the fluxes m corresponds to the pattern

of identifications of the VEVs of the φ. This is a general fact that we will see again in the

following examples and it is a consequence of N = 3 supersymmetry.

Therefore, the Hilbert series is

H
(I)
N=1,k(t, x1, x2, x3, z) =

∞∑
m=−∞

g
(I)
1 (t, x1, x2, x3; km)zm , (C.9)
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where g
(I)
1 (t, x1, x2, x3;B) is the baryonic generating function

g
(I)
1 (t;x1, x2, x3;B) =

∮
dq1

2πiqB+1
1

∮
dq2

2πiq−B+1
2

∮
dq3

2πiq3

× PE
[
− t2 + (q1q

−1
2 x1 + q2q

−1
1 x−1

1 + q2q
−1
3 x2+

+ q3q
−1
2 x−1

2 + q3q
−1
1 x3 + q1q

−1
3 x−1

3 )t
]
,

(C.10)

where x1, x2, x3 are flavour fugacities corresponding to each edge of the quiver, using an

overparametrization. Computing the integrals, we find that for k = 1

H
(I)
N=1,k=1(t;x, y, z) = PE

[
(zx+ z−1x−1)t

]
PE
[
(1 + zy + z−1y−1)t2 − t4

]
= H[C2](t; zx)H[C2/Z2](t; zy) ,

(C.11)

where x = x1 and y = (x2x3)−1. The arguments of the PE are interpreted as follows. First

we see the C2 generators: z1 = TQ1 and z2 = T̃ Q̃1, where T ≡ V(1;1;1) and T̃ ≡ V(−1;−1;−1).

Then we see the C2/Z2 generators: w = Q2Q̃2 = Q3Q̃3, u = TQ̃2Q̃3 and v = T̃Q2Q3,

subject to the relation uv = w2 corresponding to the negative term.

For higher k, the manipulation (4.17) shows that the moduli space is a Zk quotient of

the moduli space for k = 1, with the Zk charge equal to the U(1)M charge:

H
(I)
N=1,k(t;x, y, z) =

1

k

k−1∑
n=0

H
(I)
N=1,k(t;x, y, z

1/kωnk ) = H
[
(C2 × (C2/Z2))/Zk

]
. (C.12)

In this section we used the N = 3 description for the quiver, which only manifests

a U(1)2 non-R symmetry (one mesonic and one topological symmetry), with associated

fugacities x and y. Integrating out the massive adjoints and making field redefinitions, it is

possible to reach a toric N = 2 description, which has a U(1)3 non-R symmetry manifest

(including the topological U(1)M ). One can then introduce an extra mesonic fugacity w, to

find that t→ w−1t for the C2 factor and t→ wt for the C2/Z2 factor in the above formulae.

Branch II: Q1, Q̃1 6= 0 and Qi, Q̃i = 0 (i = 2, 3) — (C2/Zk) × (C2/Z2). This

branch corresponds to one SU(2) instanton on C2/Zk with framing (2, 0 . . . , 0), or the

Coulomb branch of the Kronheimer-Nakajima (KN) quiver (1) = (1) − [k]. Explicitly, we

have

φ1 = φ2 =
1

k
Q1Q̃1 6= 0, Qi, Q̃i = 0 (i = 2, 3) . (C.13)

We also have m1 = m2 ≡ m. The R-charge of the monopole operator is

R(m,m,m3) = |m−m3| , (C.14)

and the gauge charge of the monopole operator is (−km, km, 0).

Therefore, the Hilbert series is

H
(II)
N=1,k(t, x, v, w) =

∑
m∈Z

∑
m3∈Z

t2|m−m3|vmwm3
g

(II)
1 (t, x; km)

1− t2
, (C.15)

– 72 –



J
H
E
P
1
0
(
2
0
1
6
)
0
4
6

where (1 − t2)−1 is the contribution of φn3 operators, x = x1 is the flavour fugacity

introduced above, v is the fugacity for the topological symmetry of the 12 subquiver, w

is the fugacity for the topological symmetry of gauge group 3,26 and g
(II)
1 (t, x;B) is the

baryonic generating function

g
(II)
1 (t, x;B) =

∮
dq1

2πiqB+1
1

∮
dq2

2πiq−B+1
2

PE
[
(xq1q

−1
2 + x−1q2q

−1
1 )t

]
=
t|B|xB

1− t2
.

(C.16)

The Hilbert series for k = 1 is therefore

H
(II)
N=1,k=1(t, x, v, w) = PE

[(
vwx+ v−1w−1x−1

)
t
]

PE
[
χ

SU(2)
[2] (w1/2)t2 − t4

]
= H[C2](t, vwx) H[C2/Z2](t, w) ,

(C.17)

where χ
SU(2)
[2] (z) = z2 + 1 + z−2 is the character of the triplet of SU(2). The generators of

C2 are V(1;1;1)Q1, V−(1;1;1)Q̃1; the generators of C2/Z2 are φ3 and V±(0;0;1), subject to the

relation V(0;0;1)V−(0;0;1) = φ2
3. For k > 1,

H
(II)
N=1,k(t, x, v, w) =

1

k

k−1∑
n=0

H
(II)
N=1,k=1(t, x, v1/kωnk , w) =

= PE
[
t2 +

(
vwkxk + v−1w−kx−k

)
tk − t2k

]
PE
[
χ

SU(2)
[2] (w1/2)t2 − t4

]
= H[C2/Zk](t, vwkxk) H[C2/Z2](t, w) ,

(C.18)

and the generators of C2/Zk are c = Q1Q̃1, a = TQk1, b = T̃ Q̃k1, subject to ab = ck.

The case of N = 2

The R-charge of the monopole operator is

R(m(1);m(2);m(3)) =
1

2

∑
1≤i<j≤3

∑
a,b=1,2

|m(i)
a −m

(j)
b | −

3∑
i=1

|m(i)
1 −m

(i)
2 | . (C.19)

Branch I: Qi, Q̃i 6= 0 (i = 1, 2, 3) — Sym2((C2×C2/Z2)/Zk). There are two cases

to consider.

1. (m(1);m(2);m(3)) = (m,m;m,m;m,m), with m ∈ Z. The gauge charge of the

monopole operator is

(−km,−km; 0, 0, km, km) . (C.20)

The residual gauge symmetry is U(2) ×U(2)×U(2) and

R(m(1);m(2);m(3)) = 0 . (C.21)

26The fugacity z for the topological U(1)M is related to v, w by z = vw.
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The Hilbert series for this case is therefore

H
(1)
N=2,k(t) =

∞∑
m=−∞

g
(1)
2 (t; km) . (C.22)

Here g
(1)
2 (t;B) is the baryonic generating function when the gauge group U(2) ×

U(2)×U(2) is preserved:

g
(1)
2 (t;B) =

(
3∏
i=1

∮
dzi

2πizi
(1− zi)2

)∮
dq1

2πiqB+1
1

∮
dq2

2πiq2

∮
dq3

2πiq−B+1
3

×

×F [(t; z1, z2, z3, q1, q2, q3) , (C.23)

where the function F [(t; z1, z2, z3, q1, q2, q3), with zi fugacities for the SU(2) gauge

groups and qi fugacities for the U(1) gauge factors, can be computed using Macaulay2.

Since the full result is too long to be reported here, we present only the first few terms:

F [(t, z1, z2, z3, q1, q2, q3)

= PE

[
t

( ∑
1≤i<j≤3

(qiq
−1
j + qjq

−1
i )χ

SU(2)
[1] (zi)χ

SU(2)
[1] (zj)

)

− t2
(

1 + χ
SU(2)
[2] (z1) + χ

SU(2)
[2] (z2) + χ

SU(2)
[2] (z3)

)
+O(t4)

]
.

(C.24)

Using (C.23) and (C.10), one can indeed check that

g
(1)
2 (t; 2B) =

1

2

[
g

(1)
1 (t;B)2 + g

(1)
1 (t2;B)

]
, (C.25)

where g
(1)
1 (t;B) is given by (C.10).

2. (m(1);m(2);m(3)) = (m1,m2;m1,m2;m1,m2), with m1 6= m2. The gauge charge of

the monopole operator is

(−km1,−km2; 0, 0, km1, km2) . (C.26)

The residual gauge symmetry is U(1)2 ×U(1)2 ×U(1)2 and

R(m(1);m(2);m(3)) = 0 . (C.27)

The Hilbert series for this case is therefore

H
(2)
N=2,k(t) =

∞∑
m1>m2>−∞

g
(2)
2 (t; km1, km2), (C.28)

where g
(2)
2 (t;B1, B2) is the baryonic generating function when the gauge group is

broken to U(1)2 ×U(1)2 ×U(1)2.

g
(2)
2 (t;B1, B2) = g

(I)
1 (t;B1)g

(I)
1 (t;B2) , (C.29)

where g
(I)
1 (t;B) is given by (C.10).

We can explicitly compute

H
(I)
N=2,k(t) = H

(1)
N=2,k(t) +H

(2)
N=2,k(t) = H[Sym2((C2 × C2/Z2)/Zk)](t) . (C.30)
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Branch II: Q3, Q̃3 6= 0 and Qi, Q̃i = 0 (i = 1, 2). This branch corresponds to two

SU(2) instanton on C2/Zk with framing (2, 0 . . . , 0), or, equivalently, the Coulomb branch

of the KN quiver (2) = (2) − [k]. There are two cases to be considered:

1. (m(1);m(2);m(3)) = (m,m;n1, n2;m,m). The gauge charges for the monopole oper-

ators is (−km,−km; 0, 0; km, km). The Hilbert series is therefore

H
(1)
N=2,k(t) =

∑
n1≥n2>−∞

∞∑
m=−∞

t−2|n1−n2|+4(|n1−m|+|n2−m|)×

× gABJM/2
2 (t; 2km)PU(2)(n1, n2) , (C.31)

where g
ABJM/2
2 is given by (4.37) and PU(2)(n1, n2) is the generating functions for the

Casimirs under the residual gauge symmetry of U(2).

2. (m(1);m(2);m(3)) = (m1,m2;n1, n2;m1,m2), with m1 > m2 and n1 ≥ n2. The gauge

charges for the monopole operators is (−km1,−km2; 0, 0; km1, km2). The Hilbert

series is therefore

H
(2)
N=2,k(t)=

∑
n1≥n2>−∞

∑
m1>m2>−∞

t2Rg
ABJM/2
1 (t; km1)g

ABJM/2
1 (t; km2)PU(2)(n1, n2) ,

(C.32)

where the R-charge of the monopole operator is

R = |m1 −m2|+ |m1 − n1|+ |m2 − n1|+ |m1 − n2|+ |m2 − n2| − |n1 − n2| , (C.33)

and g
ABJM/2
1 is given by (4.36)

The Hilbert series is the sum of the two contributions:

H
(II)
N=2;k(t) = H

(1)
N=2,k(t) +H

(2)
N=2,k(t) . (C.34)

Examples. For k = 1, we obtain

H
(1)
N=2,k(t) = 1 + 6t2 + 24t4 + 73t6 + . . . ,

H
(2)
N=2,k(t) = 2t+ 3t2 + 22t3 + 31t4 + 116t5 + 169t6 + . . . ,

H
(II)
N=2;k(t) = 1 + 2t+ 9t2 + 22t3 + 55t4 + 116t5 + 242t6 + . . .

=
1 + t+ 3t2 + 6t3 + 8t4 + 6t5 + 8t6 + 6t7 + 3t8 + t9 + t10

(1− t)8(1 + t)4(1 + t+ t2)3

= H
[
2 SU(2) instantons on C2

]
. (C.35)

For k = 2, we obtain

H
(1)
N=2,k(t) = 1 + 4t2 + 16t4 + 43t6 + . . . ,

H
(2)
N=2,k(t) = 2t2 + 19t4 + 88t6 + . . . ,

H
(II)
N=2;k(t) = 1 + 6t2 + 35t4 + 131t6 + . . .

=
1 + 2t2 + 13t4 + 15t6 + 28t8 + 15t10 + 13t12 + 2t14 + t16

(1− t)8(1 + t)8(1 + t2)4

= H
[
2 SU(2) instantons on C2/Z2 with framing (2, 0)

]
. (C.36)
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Affine A2 quiver: U(N)+1 ×U(N)+2 ×U(N)−3

For generic ki the quiver is truly N = 3. The A-type quiver with generic ki correspond to

the theory of M2-branes at a CY3 [55] and, in the absence of quotient singularities that

can give rise to other branches, we expect the existence of a single branch. We verify it

below in the case of N = 1.

In 3d N = 2 notation, the quiver can be written as

U(N)+2

U(N)+1

U(N)−3

Q1

Q̃1

Q̃2

Q2

Q3Q̃3

φ1

φ2

φ3

(C.37)

with the superpotential

W =

3∑
i=1

tr(Qiφi+1Q̃i − Q̃iφiQi) +
1

2
tr(φ2

1) + tr(φ2
1)− 3

2
tr(φ2

3) , φ4 = φ1 . (C.38)

The R-charge of a monopole operator is

R(m1,m2,m3) =
1

2
(|m1 −m2|+ |m2 −m3|+ |m3 −m1|) , (C.39)

with the following condition from the D-terms:

m1 + 2m2 − 3m3 = 0 . (C.40)

There is just one branch, Qi, Q̃i 6= 0 (i = 1, 2, 3) which corresponds to the cone over

U(1)\U(3)/U(1) [55]. On this branch,

φ1 = φ2 = φ3 =
1

3
(Q2Q̃2 −Q3Q̃3) , −3Q1Q̃1 +Q2Q̃2 + 2Q3Q̃3 = 0 . (C.41)

The second equality is in fact contained in (2.30) of [55].

We also have m1 = m2 = m3 ≡ m. Thus, the R-charge of the monopole operator

is R(m,m,m) = 0, and the gauge charge of the monopole operator is (−m,−2m, 3m).

Therefore, the Hilbert series is

H
(I)
N=1,k(t) =

∞∑
m=−∞

g
(I)
1 (t; km) , (C.42)

where g
(I)
1 (t, b) is the baryonic generating function

g
(I)
1 (t; b) =

∮
dq1

2πiqb+1
1

∮
dq2

2πiq2b+1
2

∮
dq3

2πiq−3b+1
3

× PE
[
−t2 + (q1q

−1
2 + q2q

−1
1 + q2q

−1
3 + q3q

−1
2 + q1q

−1
3 + q3q

−1
1 )t

]
.

=
t3|b|

(
1 + t+ t2 − t|b|+1 − t2|b|+1

)
(1− t)3(1 + t)(1 + t+ t2)

.

(C.43)
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For k = 1, we have

H
(I)
N=1,k=1(t) =

1 + t2 + 3t3 + 4t4 + 4t5 + 4t6 + 3t7 + t8 + t10

(1− t)4(1 + t)2(1 + t2)(1 + t+ t2)(1 + t+ t2 + t3 + t4)

= 1 + 2t2 + 4t3 + 7t4 + 10t5 + 16t6 + . . . .

(C.44)

For k = 2, we have

H
(I)
N=1,k=2(t) =

1

(1− t)4(1 + t)2(1 + 3t2 + 6t4 + 9t6 + 11t8 + 11t10 + 9t12 + 6t14 + 3t16 + t18)
×

×
(
1−2t+4t2−4t3+5t4−4t5+7t6−4t7+8t8−4t9+8t10−4t11+palindrome+t20

)
= 1 + 2t2 + 2t3 + 3t4 + 4t5 + 8t6 + . . . . (C.45)

Observe that the numerators of the above Hilbert series are palindromic. This implies that

the moduli space is Calabi-Yau [49, 75, 76], as expected (in fact it is even hyperKähler by

N = 3 supersymmetry).

Affine A2 quiver: U(2)k ×U(1)0 ×U(2)−k

This is an A2 quiver with fractional branes. We expect to recover the same moduli space

as of the A2 quiver with equal ranks for N = 1 (see section C) and we show here that this

is indeed the case.

In 3d N = 2 notation, the quiver can be written as

U(1)0

U(2)+k

U(2)−k

Q1

Q̃1

Q̃2

Q2

Q3Q̃3

φ1

φ2

φ3

(C.46)

with the superpotential

W =
3∑
i=1

tr(Qiφi+1Q̃i − Q̃iφiQi) +
1

2
k tr(φ2

1)− 1

2
k tr(φ2

3) , φ4 = φ1 . (C.47)

The R-charge of the monopole operator is

R(m(1);m(2);m(3)) =
1

2

 ∑
a,b=1,2

|m(1)
a −m

(3)
b |+

2∑
a=1

|m(1)
a −m(2)|+

2∑
a=1

|m(3)
a −m(2)|


− |m(1)

1 −m
(1)
2 | − |m

(3)
1 −m

(3)
2 | . (C.48)
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Branch I: Qi, Q̃i 6= 0 (i = 1, 2, 3) — (C2 × C2/Z2)/Zk. The D-terms imply that

m(2) = m
(i)
1 or m

(i)
2 , i = 1, 3 , (C.49)

m
(1)
1 +m

(1)
2 = m

(3)
1 +m

(3)
2 . (C.50)

There are two cases to consider:

1. Case 1: (m
(1)
1 ,m

(1)
2 ;m(2);m

(3)
1 ,m

(3)
2 ) = (m,m;m;m,m).

The R-charge of the monopole operator is R(m(1);m(2);m(3)) = 0. The baryonic

generating function is given by

g(1)(t;B) =

(
3∏
i=1

∮
dzi
zi

(1− zi)2

∮
dbi

bB+1
i

)∮
dz2

z2
×

×F [(t, z1, z2, z3, b1, b3) ,

(C.51)

where the function F [(t, z1, z2, z3, b1, b3) can be computed using Macaulay2. Since

the full result is too long to be reported here, we present only the first few terms:

F [(t, z1, z2, z3, b1, b3)

= PE

[
t

( ∑
i=1,3

(biz
−1
2 + b−1

i z2)χ
SU(2)
[1] (zi) + (b1b

−1
3 + b−1

1 b3)χ
SU(2)
[1] (z1)χ

SU(2)
[1] (z3)

)
− t2

(
1 + χ

SU(2)
[2] (z1) + χ

SU(2)
[2] (z3)

)
+ t4 + t5(2 + b21b

−2
3 + b−2

1 b23)

− t6
(

(b23b
−1
1 z−1

2 + b−2
3 b1z2)χ

SU(2)
[1] (z1) + (b21b

−1
3 z−1

2 + b−2
1 b3z2)χ

SU(2)
[1] (z3)

+ the same terms that appear at order t
)

+O(t7)

]
(C.52)

For reference, we present the unrefined Hilbert series of F [:

F [(t, {zi = 1}, {bj = 1}) =
(1 + t)(1 + 2t− t2)(1 + 3t+ 4t2)

(1− t)10
. (C.53)

Upon the evaluation of the integral in (C.51), we find that

g(1)(t;B) = PE[2t2 + 2t3 − t6]δB,0 . (C.54)

The Hilbert series for this case is

H
(1)
k (t) =

∑
m∈Z

g(1)(t; km) = PE[2t2 + 2t3 − t6] , (C.55)

independent of k.

2. Case 2: (m
(1)
1 ,m

(1)
2 ;m(2);m

(3)
1 ,m

(3)
2 ) = (m, 0;m;m, 0), m 6= 0.

In this case, each U(2) gauge group is broken to U(1)2. The R-charge of the monopole
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operator is R(m(1);m(2);m(3)) = 0. The baryonic generating function is given by

g(2)(t;B1, B3) =

∮
dz1

zB1+1
1

∮
dz2

z2

∮
dz3

zB3+1
3

PE

[(
(z1 + z−1

1 )(z3 + z−1
3 )

+ z1z
−1
2 + z2z

−1
1 + z2z

−1
3 + z3z

−1
2

)
t− 2t2

]
,

(C.56)

The Hilbert series in this case is

H
(2)
k (t) =

∑
m 6=0

g(2)(t; km,−km) . (C.57)

For example, for k = 1, we have

H
(2)
k=1(t) = 2t+ 4t2 + 8t3 + 16t4 + 24t5 + 38t6 + . . . (C.58)

and for k = 2

H
(2)
k=2(t) = 2t2 + 2t3 + 8t4 + 8t5 + 18t6 + . . . . (C.59)

The Hilbert series of this branch is the sum of the two contributions:

H
(I)
k (t) = H

(1)
k (t) +H

(2)
k (t) = H[(C2 × C2/Z2)/Zk] , (C.60)

equal to (C.12).

Branch II: Q3, Q̃3 6= 0 and Qi, Q̃i = 0 (i = 1, 2). This branch is the Coulomb

branch of the KN quiver (1) = (2) − [k]. The D-terms imply that

m
(1)
1 +m

(1)
2 = m

(3)
1 +m

(3)
2 . (C.61)

There are two cases to consider:

1. Case 1: (m
(1)
1 ,m

(1)
2 ;m(2);m

(3)
1 ,m

(3)
2 ) = (m,m;n;m,m).

The R-charge of the monopole operator is

R(m(1);m(2);m(3)) = 2|m− n| . (C.62)

The gauge charges of the monopole operator is (−km,−km; 0; km, km). The baryonic

generating function is the same as for the half-ABJM theory (4.37):

g
ABJM/2
2 (t;B) =

(−1)−|B|[1 + (−1)|B|]t|B|

2(1− t2)2(1 + t2)
. (C.63)

Thus, the Hilbert series for this case is

H
(1)
k (t) =

∑
m,n∈Z

t4|m−n|g
ABJM/2
2 (t; 2km)PU(1)(n) (C.64)
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2. Case 2: (m
(1)
1 ,m

(1)
2 ;m(2);m

(3)
1 ,m

(3)
2 ) = (m1,m2;n;m1,m2), m1 6= m2.

The R-charge of the monopole operator is

R(m(1);m(2);m(3)) = |m1 − n|+ |m2 − n| − |m1 −m2| . (C.65)

The gauge charges of the monopole operator is (−km1,−km2; 0; km1; km2). The

baryonic generating function for this case is the same as for half-ABJM:

g
ABJM/2
1 (t;B1)g

ABJM/2
1 (t;B2) =

t|B1|+|B2|

(1− t2)2
. (C.66)

Thus, the Hilbert series for this case is

H
(2)
k (t) =

∑
m1 6=m2∈Z

∑
n∈Z

t2
∑2
i=1 |mi−n|−2|m1−m2|

∏
i=1,2

g
ABJM/2
1 (t; kmi)PU(1)(n) . (C.67)

The Hilbert series is the sum of the two contributions:

H
(II)
k (t) = H

(1)
k (t) +H

(2)
k (t) . (C.68)

Examples. For k = 1, we have

H
(II)
k=1(t) = PE[4t+ 3t2 − t4]

= H[C2 × C2/Z2]

= H[Coulomb branch of (1) = (2)− [1]] .

(C.69)

For k = 2, we have

H
(II)
k=2(t) = 1 + 6t2 + 29t4 + 89t6 + 236t8 + 521t10 + . . .

= H[Coulomb branch of (1) = (2) − [2]] .
(C.70)

D The moduli space of instantons on C2/Zn

In this appendix we give a brief summary of 3d N = 4 gauge theories whose Higgs or

Coulomb branch describes the moduli space of SU(N) instantons on C2/Zn. The reader

can find more details in [19].

The instanton configuration is specified by the monodromies of the SU(N) gauge field

at infinity and at the origin of C2/Zn [77]. With these data specified, the moduli space of

such instantons are described by the Higgs branch of a 3d N = 4 gauge theory specified by

the flavoured affine An−1 quiver diagram. This is also known as the Kronheimer-Nakajima

(KN) quiver [24]:

κ1

κ2

κ3κ4

κ5

κn

N1

N2

N3N4

N5

Nn

(n circular nodes)

(D.1)
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with

N = N1 +N2 + . . .+Nn . (D.2)

This theory can be realised as the low energy theory on the worldvolume of D3-branes in

the following configuration [78]:

κ1

•
N1

κ2 • N2

κ3

•
N3

κ4

•
N4

κ5•N5
(D.3)

where each blue line denotes D3-branes along R1,2
0,1,2×S1

6 , with κi (i = 1, . . . , n) denoting the

number of D3-brane segments in the i-th interval; red lines denote NS5-brane along R1,2
0,1,2×

R3
7,8,9, located at different positions along the S1

6 direction; and black dots with the label

Ni denote Ni D5-branes along R1,2
0,1,2×R3

3,4,5, located in the i-th interval of the S1
6 direction.

From the quiver (D.1), the information about the gauge field at infinity U∞ and the

gauge field at the origin U0 can be obtained as follows [77]. The number of eigenvalues

of U∞ equal to e2πi`/n (for ` = 1, . . . , n) is N`. Indeed, N` is also equal to the number of

D5-branes with linking number `. The number of eigenvalues of U0 that equal e2πi`/n is

β` = N` + κ`+1 + κ`−1 − 2κ` , ` = 1, . . . , n , (D.4)

which is the difference between the linking numbers of the (` + 1)-th and the `-th NS5-

branes. From now on and in the main text, we refer to the partition (N1, . . . , Nn) of N as

the framing of the SU(N) instantons on C2/Zn. Note the cyclicity of the framing.

For simplicity, let us take

κ1 = κ2 = . . . = κn = κ . (D.5)

and use the terminology that κ is the instanton number. In this case, the monodromies

U0 and U∞ have the same eigenvalues. Therefore, it is enough to specify the instanton

configuration just by the framing, say (N1, . . . , Nn). In which case, the monodromy breaks

SU(N) into residual symmetry S(U(N1)×U(N2)× · · · × U(Nn)).

Let us now focus on the Coulomb branch of the KN quiver (D.1). It describes

the moduli space of κ SU(n) instantons on C2/ZN
with framing (0N1−1, 1, 0N2−1, 1, . . . , 0Nn−1, 1).

(D.6)

This can be seen by considering the Higgs branch of the quiver obtained by performing an

S-duality on the configuration (D.3), under which the NS5-branes and the D5-branes are

exchanged [78]. Indeed, one observes that the roles of the gauge group and the orbifold

type get exchanged under mirror symmetry [58–60].
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If Ni > 0 for all i = 1, 2, . . . , n, then SU(n) is broken to its maximal abelian subgroup

U(1)n−1. On the other hand, if some Ni vanishes, certain nonabelian symmetries are

restored. There are some interesting special cases to consider:

• If one of the Ni’s is equal to one and the other Ni’s are zero, the Coulomb branch

of (D.1) can be identified with the moduli space of κ SU(n) instantons on C2, in

agreement with [15].

• If one of the Ni’s is equal to N and the other Ni’s are zero, the symmetry of the

Coulomb branch is U(1)× SU(n) for N ≥ 3 and SU(2)× SU(n) for N = 1, 2.

If in addition we set κ = 1, the Coulomb branch of (D.1) is isomorphic to

C2/ZN ×NSU(n) , (D.7)

where NSU(n) is the reduced moduli space of one SU(n) instanton on C2, which is the

minimal nilpotent orbit of SU(n) [65, 79–82]. The moduli space (D.7) was pointed

out in (2.69) of [83].

E Hilbert series of toric CY4 cones from toric data

In this appendix we write a universal formula for the Hilbert series of toric CY4 cones

based on the toric data. Let {vs = (1, xs, ys, zs) ∈ Z4} be the toric fan of the CY4, {ps}
a set of associated complex variables, and T 2, X, Y , Z fugacities for the toric symmetries

corresponding to the four axes of Z4. Then the Hilbert series of the toric CY4 cone may

be computed as

Hgeom(T,X, Y, Z) =
∏
s

[∮
dps

2πips
PE[ps]

]
· 2πiT 2δ

(∏
s

ps − T 2

)

· 2πiXδ

(∏
s

pxss −X

)
· 2πiY δ

(∏
s

pyss − Y

)
· 2πiZδ

(∏
s

pzss − Z

)
.

(E.1)

Expanding the delta function involving Z as in 6.3, the integral at fixed m counts

holomorphic sections of a line bundle on CY3 = CY4//U(1)M , where U(1)M corresponds

to the z axis. To be more explicit, let us regroup the ps variables according to their (x, y)

coordinates: tr,zr , where r labels the (x, y) coordinates and zr is the z coordinate of the

column of points in the fan. Then we can write the delta function involving Z as

2πiZδ

(∏
s

pzss − Z

)
= 2πiZδ

(∏
r

∏
zr

tzrr,zr − Z

)
=
∑
m

(
Z
∏
r

∏
zr

t−zrr,zr

)m
, (E.2)

while the arguments of the other delta functions only involve tr ≡
∏
r tr,zr . Then, if we

focus on a column labelled by r, we have to compute the integral

∏
zr

[∮
dtr,zr

2πitr,zr
t−zrmr,zr

]
PE

[∑
zr

tr,zr

]
f

(∏
zr

tr,zr

)
=

∮
dtr

2πitr
t−min(zrm)
r PE[tr]f(tr), (E.3)
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where the values of zr in the minimum correspond to the z coordinates of the points in

the column. The exponent of tr is −mmin(zr) if m ≥ 0, and −mmax(zr) if m ≤ 0.27 The

Hilbert series of the CY4 cone can then be written as

Hgeom(T,X, Y, Z) =
∑
m

Zm
∏
r

[∮
dtr

2πitr
t−min(zrm)
r PE[tr]

]
·

· 2πiT 2δ

(∏
r

tr − T 2

)
· 2πiXδ

(∏
r

txrr −X

)
· 2πiY δ

(∏
r

tyrr − Y

)
,

(E.4)

a sum of characters counting holomorphic sections of the line bundles (or rather sheaves)

O(
∑

r min(zrm)Dr) [66, 84] over the CY3 = CY4//U(1)M . Here Dr is the toric divisor cor-

responding to the r-th point of the toric diagram of the CY3, associated to the fugacity tr.

As a first example, let us consider the toric CY4 cones that are geometric mod-

uli spaces of the abelian flavored ABJM theories studied in section 6.2.2. In this case,

{tr} = {a, b, c, d} and {za} = {n1, n1 + 1, . . . , n1 + h1}, {zb} = {ñ1, . . . , ñ1 + h̃1},
{zc} = {n2, . . . , n2 + h2}, {zd} = {ñ2, . . . , ñ2 + h̃2}. Setting T 1/2 = t, X = t2x−1y

and Y = t2x−1y−1, the delta functions in (E.4) are solved by a = txq, b = tyq−1, c = tx−1q

and d = ty−1q−1. The fugacity q corresponds to the U(1) gauge group of the GLSM for

the conifold (the CY3 cone that is obtained as the Kähler quotient of the CY4 by U(1)M )

and is to be integrated over. Setting also `i ≡ ni + hi
2 , ˜̀i ≡ ñi + h̃i

2 , (E.4) reduces to

Hgeom(t, x, y, Z) =
∑
m

Zm
∮

dq

2πiq
PE[tq(x+ x−1) + tq−1(y + y−1)]

· (txq)−`1m+
h1
2
|m|(tyq−1)−

˜̀
1m+

h̃1
2
|m|(tx−1q)−`2m+

h2
2
|m|(ty−1q−1)−

˜̀
2m+

h̃2
2
|m| .

(E.5)

Identifying

Z ≡ ζ(tx)`1(ty)
˜̀
1(tx−1)`2(ty−1)`2 = zt`1+`2+˜̀1+˜̀2x−kx+`1−`2y−ky+˜̀1−˜̀2 , (E.6)

(E.5) agrees with (6.38), that we obtained directly from the GLSM description. In par-

ticular, choosing the mixed gauge-mesonic Chern-Simons levels to be kx = `1 − `2 and

ky = ˜̀
1− ˜̀2, one has Z = zt`1+`2+˜̀1+˜̀2 . The power of t can also be eliminated if appropri-

ate mixed R-gauge Chern-Simons couplings are introduced.

As a second example, let us consider the cone over Y p,q(CP2) studied in section 6.2.3.

In this the toric diagram of the CY3 = C3/Z3 consists of four points {tr} = {t0, t1, t2, t3}
with coordinates (0, 0), (1, 0), (0, 1) and (−1,−1). The z-coordinates of points of the toric

diagram of C(Y p,q(CP2)) are {z0} = {0, 1, . . . , p}, {z1} = {z2} = {0} and {z3} = {q}
respectively. Then formula (E.4) reads

Hgeom(T,X, Y, Z) =
∑
m

Zm
∮

dt0
2πit0

t
−min(pm)
0

∮
dt1

2πit1

∮
dt2

2πit2

∮
dt3

2πit1+qm
3

× PE

[∑
r

tr

]
2πiT 2δ

(∏
r

tr − T 2

)
· 2πiXδ(t1/t3 −X) · 2πiY δ(t2/t3 − Y ) .

(E.7)

27An interesting generalization is to count holomorphic sections of line bundles over the CY4. In that

case, an extra factor of t
−nzr
r,zr is inserted in the l.h.s. of (E.3), and the exponent of tr in the r.h.s. becomes

−min(zrm+ nzr ).
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Setting X = y−2
1 y2, Y = y−1

1 y−1
2 , Z = zT

2
3x1 and t3 = T

2
3
−εuy1, we obtain

Hgeom =
∑
m∈Z

zm
∮

du

2πiu
PE
[
T

2
3
−εu[1, 0]y + T 3εu−3

]
u−qm+3 min(pm,0) , (E.8)

where [1, 0]y = y1 + y−1
1 y2 + y−1

2 is the character of the triplet of SU(3). We inserted the

ε dependence, mixing the R-symmetry with the gauge symmetry of the GLSM, to have

positive powers of T . We will send ε→ 0+ after expanding the PE. Since

g(B) ≡ lim
ε→0+

∮
du

2πiu1+B
PE
[
T

2
3
−εu[1, 0]y + T 3εu−3

]
=

∞∑
l=0

T
2
3

(3l+B)[3l +B, 0]y (E.9)

if B ≥ 0, we have that

HWG

[ ∞∑
m=0

vmg(hm)

]
= PE[τ3 + vτh] , τ = T

2
3µ1 , (E.10)

where µ1, µ2 are highest weight fugacities for SU(3)y. Then (E.8) leads to

HWG[Hgeom] = PE[τ3 + zτ q + z−1τ3p−q − τ3p] , (E.11)

which agrees with the field theory result (6.60), up to relabelling q ↔ 3p− q.

F Flavored ABJM theory for C(Q1,1,1) and resolutions

In this appendix we further study the Hilbert series of the geometric moduli space of the

flavored ABJM theory for a single M2-brane probing C(Q1,1,1) [26]. We turn on background

magnetic charges for the topological symmetry and the flavor symmetry and match them

to the “baryonic charges” corresponding to resolutions of the cone.28

We turn on magnetic charge −B for the topological U(1), and magnetic charges µ1, µ2

for the flavor symmetry. Since the latter is really U(1)2/U(1), we can set min(µ1, µ2) = 0

by shifting the magnetic charge m of the diagonal gauge U(1). Having turned on the

flavor magnetic charges, we need to specify the values of some mixed Chern-Simons cou-

plings required to cancel parity anomalies: we choose kg1Fi = −kg2Fi = −1
2 for the mixed

gauge-flavor couplings, and kyF1 = −kyF2 = 1
2 for the mixed coupling between the flavor

symmetries and the mesonic symmetry that acts on B1,2 and hence on the flavors. Then

the Hilbert series of the geometric moduli space of the abelian theory is

H(B,µ1, µ2) = z−
µ1+µ2

2 y
µ1−µ2

2

∑
m∈Z

zmt
1
2

(|m−µ1|+|m−µ2|)y
1
2

(|m−µ1|−|m−µ2|−µ1+µ2)·

· g1

(
B +

1

2
(|m− µ1|+ |m− µ2| − µ1 − µ2)

)
.

(F.1)

28For simplicity we set to zero the background magnetic charges for the mesonic symmetries.
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t1 r2 s2 t3 r4 s4

1 1 1 1 1 1

0 1 1 1 0 0

0 0 0 1 1 1

0 −1 0 0 0 1

t1 r2 s2 t3 r4 s4

U(1)1 −1 1 0 −1 0 1 N1

U(1)2 −1 0 1 −1 1 0 N2

Table 1. Toric data and GLSM charges for the cone over Q1,1,1.

We omitted the implicit dependence on fugacities where possible to avoid clutter. Here

g1(Beff(m)) of (6.27) is a function of the effective baryonic charge

Beff(m) = B +
1

2
(|m− µ1|+ |m− µ2| − µ1 − µ2)

= B +


m− µ1 − µ2 , max(µ1, µ2) ≤ m
−min(µ1, µ2) , min(µ1, µ2) ≤ m ≤ max(µ1, µ2)

−m, m ≤ min(µ1, µ2)

(F.2)

as well as of t, x, y. We inserted the prefactor z−
µ1+µ2

2 y
µ1−µ2

2 in (F.1) to compensate

our asymmetric choice min(µ1, µ2) = 0 and make the Hilbert series (F.1) invariant under

common shifts of B, µ1 and µ2. Similarly, Beff(m) is invariant under common shifts of m,

B, µ1 and µ2.

Setting x = α, y = βγ, z = γ/β and defining the generating function

f(mα,mβ ,mγ) := tmα+ 1
2

(mβ+mγ)
∞∑
n=0

t2n[n+mα;n+mβ ;n+mγ ]α,β,γ , (F.3)

a straightforward though tedious computation reveals that the Hilbert series is

H(B,µ1, µ2) = f(B −min(B,µi), µ1 −min(B,µi), µ2 −min(B,µi))

=


f(0, µ1 −B,µ2 −B) , µ1 −B ≥ 0 ∧ µ2 −B ≥ 0

f(B, 0, µ2) , B ≥ 0 ∧ µ2 ≥ µ1 = 0

f(B,µ1, 0) , B ≥ 0 ∧ µ1 ≥ µ2 = 0

.
(F.4)

In the rest of this section we will reproduce this result from a geometric viewpoint. The

cone over Q1,1,1 is a toric variety: its toric data and the charge matrix of the U(1)2 GLSM

of which it is the vacuum moduli space are given in table 1. Introducing fugacities w1, w2

and baryonic charges N1, N2 for the U(1)2 gauge symmetry of the GLSM, and fugacities

t, α, β, γ for the U(1)R × SU(2)3 toric global symmetry, we have the Hilbert series

Hgeom(N1, N2) =

∮
dw1

2πiw1
w−N1

1

∮
dw2

2πiw2
w−N2

2

× PE[t(α+ α−1)w−1
1 w−1

2 + t1/2(β + β−1)w1 + t1/2(γ + γ−1)w2]

(F.5)
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where the powers of t have been chosen conveniently. This is computed to be

Hgeom(N1, N2) =


f(0, N1, N2) , N1 ≥ 0 ∧N2 ≥ 0

f(−N1, 0, N2 −N1) , −N1 ≥ 0 ∧N2 −N1 ≥ 0

f(−N2, N1 −N2, 0) , −N2 ≥ 0 ∧N1 −N2 ≥ 0 .

(F.6)

We therefore see that the field theory computation (F.4) matches the geometric computa-

tion (F.6) upon the identification Ni = µi −B.

It is also possible to directly reproduce the monopole formula (F.1) geometrically,

using the fact that the conifold C is a Kähler quotient of the cone over Q1,1,1, that is

C = C(Q1,1,1//U(1)M . To do so, we consider the equivalent toric GLSM of charges

t1 r2 s2 t3 r4 s4

w −1 1 0 −1 0 1 N1 = µ1 −B
u1 0 1 −1 0 0 0 N1 −N2 −M = µ1 −m
u2 0 0 0 0 −1 1 M = m− µ2

(F.7)

where we have included in the last line the charges under the U(1)M symmetry that was

used in the construction of [26] to reduce M-theory on the cone over Q1,1,1 to type IIA on the

conifold fibered over R. The first two lines of charges correspond to genuine gauge symme-

tries of the GLSM for C(Q1,1,1), and the fugacities w and u1 will be integrated over. Instead

we gauge and ungauge the global U(1)M symmetry, integrating over the fugacity u2 and

summing over the charge M , or equivalently m. Doing so, we can write the Hilbert series as

Hgeom =
∑
m∈Z

∮
dw

2πiw
wB−µ1

∮
du1

2πiu1
u
−(µ1−m)
1

∮
du2

2πiu2
u
−(m−µ2)
2

× PE

[
t
α

w
+ t

1
2βwu1 + t

1
2
γ

u1
+ t

1

αw
+ t

1
2

1

γu2
+ t

1
2
wu2

β

]
.

(F.8)

Using repeatedly the identity∮
du

2πiu1+N
PE

[
au+

b

u

]
= PE[ab] aNΘ(N)b−NΘ(−N) = PE[ab] a

|N|+N
2 b

|N|−N
2 , (F.9)

where Θ(x) denotes the Heaviside step function and we assumed that |a|, |b| < 1 to Taylor

expand, we can perform the integrals over u1 and u2 in (F.8) and obtain

Hgeom =
∑
m∈Z

t
1
2

(|m−µ1|+|m−µ2|) (γβ−1
)m−µ1+µ2

2 (βγ)
1
2

(|m−µ1|−|m−µ2|)·

·
∮

dw

2πiw
wB+ 1

2

∑
i(−µi+|m−µi|) PE

[
tw−1(α+ α−1) + tw(βγ + (βγ)−1)

]
.

(F.10)

Setting x = α, y = βγ and z = γβ−1, the second line is the baryonic Hilbert series of the

conifold theory with the effective baryonic charge (F.2), hence (F.10) precisely reproduces

the field theory monopole formula (F.1). The U(1)M symmetry maps to the topological

symmetry of the field theory, and the sum over its background electric charges M becomes

the sum over the topological charges m of monopole operators.
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JHEP 05 (2008) 099 [arXiv:0803.4257] [INSPIRE].

– 90 –

http://dx.doi.org/10.1143/PTP.120.509
https://arxiv.org/abs/0806.3727
http://inspirehep.net/search?p=find+EPRINT+arXiv:0806.3727
http://dx.doi.org/10.1016/S0550-3213(97)00125-9
https://arxiv.org/abs/hep-th/9611063
http://inspirehep.net/search?p=find+EPRINT+hep-th/9611063
http://dx.doi.org/10.1016/S0550-3213(97)00061-8
https://arxiv.org/abs/hep-th/9611201
http://inspirehep.net/search?p=find+EPRINT+hep-th/9611201
http://dx.doi.org/10.1007/JHEP10(2013)086
https://arxiv.org/abs/1301.1731
http://inspirehep.net/search?p=find+EPRINT+arXiv:1301.1731
http://dx.doi.org/10.1103/PhysRevD.78.126005
https://arxiv.org/abs/0808.0912
http://inspirehep.net/search?p=find+EPRINT+arXiv:0808.0912
http://dx.doi.org/10.1088/1126-6708/2009/04/129
https://arxiv.org/abs/0903.1730
http://inspirehep.net/search?p=find+EPRINT+arXiv:0903.1730
http://dx.doi.org/10.1007/JHEP11(2012)015
http://dx.doi.org/10.1007/JHEP11(2012)015
https://arxiv.org/abs/0903.2175
http://inspirehep.net/search?p=find+EPRINT+arXiv:0903.2175
http://dx.doi.org/10.1088/1126-6708/2007/03/012
http://dx.doi.org/10.1088/1126-6708/2007/03/012
https://arxiv.org/abs/hep-th/0605214
http://inspirehep.net/search?p=find+EPRINT+hep-th/0605214
http://dx.doi.org/10.1007/JHEP06(2010)100
https://arxiv.org/abs/1005.3026
http://inspirehep.net/search?p=find+EPRINT+arXiv:1005.3026
http://dx.doi.org/10.1007/s00220-006-0087-0
https://arxiv.org/abs/hep-th/0503183
http://inspirehep.net/search?p=find+EPRINT+hep-th/0503183
http://dx.doi.org/10.4310/ATMP.2004.v8.n6.a3
https://arxiv.org/abs/hep-th/0403038
http://inspirehep.net/search?p=find+EPRINT+hep-th/0403038
https://arxiv.org/abs/hep-th/0411194
http://inspirehep.net/search?p=find+EPRINT+hep-th/0411194
http://dx.doi.org/10.1088/1126-6708/2008/11/016
https://arxiv.org/abs/0808.0904
http://inspirehep.net/search?p=find+EPRINT+arXiv:0808.0904
http://dx.doi.org/10.1007/JHEP10(2014)152
http://dx.doi.org/10.1007/JHEP10(2014)152
https://arxiv.org/abs/1408.4690
http://inspirehep.net/search?p=find+EPRINT+arXiv:1408.4690
http://dx.doi.org/10.1016/S0550-3213(00)00098-5
https://arxiv.org/abs/hep-th/9907219
http://inspirehep.net/search?p=find+EPRINT+hep-th/9907219
http://dx.doi.org/10.1007/JHEP05(2016)103
https://arxiv.org/abs/1511.07552
http://inspirehep.net/search?p=find+EPRINT+arXiv:1511.07552
https://arxiv.org/abs/1503.03676
http://inspirehep.net/search?p=find+EPRINT+arXiv:1503.03676
https://arxiv.org/abs/hep-th/9810201
http://inspirehep.net/search?p=find+EPRINT+hep-th/9810201
http://dx.doi.org/10.1088/1126-6708/2008/05/099
https://arxiv.org/abs/0803.4257
http://inspirehep.net/search?p=find+EPRINT+arXiv:0803.4257


J
H
E
P
1
0
(
2
0
1
6
)
0
4
6

[76] A. Hanany and N. Mekareeya, Counting gauge invariant operators in SQCD with classical

gauge groups, JHEP 10 (2008) 012 [arXiv:0805.3728] [INSPIRE].

[77] E. Witten, Branes, instantons, and Taub-NUT spaces, JHEP 06 (2009) 067

[arXiv:0902.0948] [INSPIRE].

[78] A. Hanany and E. Witten, Type IIB superstrings, BPS monopoles and three-dimensional

gauge dynamics, Nucl. Phys. B 492 (1997) 152 [hep-th/9611230] [INSPIRE].

[79] P.B. Kronheimer, Instantons and the geometry of the nilpotent variety, J. Diff. Geom. 32

(1990) 473 [INSPIRE].

[80] R. Brylinski, Instantons and Kähler geometry of nilpotent orbits, NATO Adv. Sci. Inst. Ser.

C 514 (1998) 85 [math/9811032] [INSPIRE].

[81] P. Kobak and A. Swann, The hyper-Kähler geometry associated to Wolf spaces, Boll. Unione

Mat. Ital. B 4 (2001) 587 [math/0001025].

[82] D. Gaiotto, A. Neitzke and Y. Tachikawa, Argyres-Seiberg duality and the Higgs branch,

Commun. Math. Phys. 294 (2010) 389 [arXiv:0810.4541] [INSPIRE].
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