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1 Introduction

A full definition of quantum gravity by starting with a Euclidean path integral for Einstein

gravity is beset with various problems [1, 2]. This is possibly not surprising because the

path integral over metrics is unlikely to be a full description of gravity if its UV completion

is something like string theory. Instead of worrying about the subtleties in defining the

path integral, what one tries instead is to interpret mostly only the physics around its

saddles. In other words, most of the physics of Euclidean quantum gravity is obtained

semi-classically. This semi-classical definition turns out to be quite rich and it has lead to

many insights about black hole thermodynamics [3] as well as holography [4].

This standard semi-classical definition of the gravitational path integral assumes that

the metric that is being integrated over satisfies a Dirichlet boundary condition at the

boundary of the spacetime manifold.1 To make the variational principle well-defined and

to obtain well-defined saddles with these boundary conditions, one has to then add a bound-

ary term to the Einstein action, and this is the Gibbons-Hawking-York (GHY) boundary

term [3, 6]. In this paper we will be interested in alternate definitions for the boundary

conditions of the gravitational path integral, with our specific focus being the recently

introduced Neumann gravity [7].

1There are further problems associated to infrared divergences that arise in flat space, but we will ignore

such issues when they are not important, or overcome them via suitable background subtraction. Or one

can imagine working in asymptotically AdS spaces where the AdS length scale acts as an infrared regulator.

In this case, we have to add further counter-terms. Some of this will be discussed in a companion paper [5].
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We will discuss the Neumann boundary condition in detail, for the gravity path inte-

gral. The saddles are well-defined under a variational principle that holds the canonical

conjugate of the boundary metric (namely the boundary2 stress tensor density) fixed. An

alternate to the GHY boundary term that can make such a Neumann action well-defined

was introduced in [7], and we will use that as our main tool. We will also work out a

Hamiltonian formulation for such a theory and use it to compute the entropy of black

holes and cosmological horizons. For this, we will put the discussion of boundary terms

in a somewhat unified footing. Changing the boundary term corresponds to changing the

ensemble, and we will see how the generalized Smarr formula and first law can be seen

using a background subtracted version of our Neumann path integral3 and comparing the

covariant and canonical results. We will also discuss the canonical ensemble of Gibbons-

Hawking and the microcanonical path integral of Brown and York [8, 9], to emphasize the

relation between various boundary terms.

We will work with pure gravity but it seems evident that our approach should generalize

straightforwardly when usual matter (i.e., scalar or gauge) fields are added, with their own

boundary conditions. In an accompanying paper, we will discuss the Neumann path integral

in AdS spaces [5].

2 Path integral for Neumann gravity

Our starting point is the schematically defined path integral for the gravitational action

with Neumann boundary conditions

ZN =

∫

Dg e−SN [g], (2.1)

where SN is the Einstein-Hilbert action with an appropriately constructed boundary term

so that the saddles are well-defined with Neumann boundary conditions. We will first

review a derivation of this action following [7]. See also [10–22] for discussions on various

boundary-related aspects of relevance to our problem.

We first consider the standard Dirichlet problem in D-dimensions which is given by

the Einstein-Hilbert action for the bulk and the Gibbons-Hawking-York boundary term.

The variation of this action can be written as4

δSD = δSEH + δSGHY =
1

2κ

∫

M
dDx

√−g(Gab + Λgab)δg
ab (2.2)

− 1

2κ

∫

∂M
dD−1y

√

|γ|ε
(

Θij −Θγij
)

δγij .

Here κ = 8πG, Gab is the Einstein tensor, γij = gabe
a
i e

b
j is the induced metric on the bound-

ary ∂M and eai = ∂xa

∂yi
is the coordinate transformation relating the boundary coordinates

yi to the bulk coordinates xa, and Θ = γijΘij is the trace of the extrinsic curvature. ε dis-

tinguishes the space-like and time-like hypersurfaces and takes values ε = ±1 for time-like

2sometimes also referred to as the quasi-local.
3We will only be working with flat space in the this paper.
4Our notations and conventions are that of [23].
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and space-like boundaries respectively. We also assume that the boundaries are not null.

The extrinsic curvature is defined as

Θij =
1

2
(∇anb +∇bna)e

a
i e

b
j , (2.3)

where na is the unit normal to the boundary. From the variation we find that the action

SD is stationary under arbitrary variations of the metric in the bulk provided we satisfy

the bulk equations of motion and the variations vanish on the boundary. We introduce the

canonical conjugate of the boundary metric as,

πij ≡ δSD

δγij
= −

√

|γ|
2κ

ε(Θij −Θγij), (2.4)

using which the variation (2.2) can be written in a suggestive manner

δSD =
1

2κ

∫

M
dDx

√−g(Gab + Λgab)δg
ab +

∫

∂M
dD−1y πijδγij . (2.5)

We have now expressed the variation of Dirichlet action in a form which is suitable for mov-

ing to Neumann problem. We take the view that a well-defined Neumann problem is one

where instead of holding the boundary metric, its canonical conjugate is held fixed (while

satisfying the bulk equations of motion). This boundary condition can be accomplished by

adding a term to the Dirichlet action whose form is suggested by (2.5) as follows

SN = SEH + SGHY −
∫

∂M
dD−1y πijγij . (2.6)

The variation of SN then yields,

δSN =
1

2κ

∫

M
dDx

√−g(Gab + Λgab)δg
ab −

∫

∂M
dD−1y δπijγij . (2.7)

In terms of the extrinsic curvature, the action now takes the form

SN =
1

2κ

∫

M
dDx

√−g(R− 2Λ) +
(4−D)

2κ

∫

∂M
dD−1y

√

|γ|εΘ. (2.8)

This is the Neumann action that we will use to give a semi-classical definition to the

Neumann path integral for gravity.

Before moving on to other things, we make one comment about how one can sew path

integrals together to build a new path integral in this picture. The Dirichlet path integral

for gravity enjoys the sewing property, wherein if we cut the spacetime manifold M into

two pieces M1 and M2 joined at a hypersurface Σ, then the total path integral can be

viewed as being “sewed” together from the two separate path integrals,

ZM
D =

∫

[dg0]Z
M1
D [g0]Z

M2
D [g0]. (2.9)

The crucial fact here is that the extrinsic curvature has a sign that is controlled by the

normal to the surface Σ, it occurs with compensating sign on the two Z pieces on the right
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hand side. It is for the same reason, similar construction holds for Neumann theory also

and the sewing property is satisfied.

ZM
N =

∫

[dπ0]Z
M1
N [π0]Z

M2
N [π0]. (2.10)

where the canonical conjugate is held fixed at Σ. It will be interesting to evaluate this

path integral explicitly in detail (perhaps in 2+1 dimensions where the Neumann action

translates into a pure Chern-Simons theory [7]) to see whether the boundary conditions

force the presence of our boundary term. Similar computations in lower dimensions and in

other contexts have been done in [24, 25].

3 Hamiltonian formulation of Neumann gravity

The Arnowitt-Deser-Misner (ADM) approach is a space+time split of the field variables in

gravity that is useful as a natural starting point for the Hamiltonian formulation of general

relativity. We wish to write down the Neumann action in this language, with applications

in later sections in mind.

We consider manifolds which are like box, i.e. cut-off at finite spatial distance so that

the boundary is time-like, denoted B. The spatial section of the boundary B is denoted B.

The covariant action is given by

SN =
1

2κ

∫

M
dDx

√−g((D)R− 2Λ) +
(4−D)

2κ

∫

B
dD−1y

√−γΘ, (3.1)

where Θ is the extrinsic curvature of B and γij is the induced metric. ADM approach

relies on foliating the D-dimensional spacetime (M, gαβ) by (D − 1)-dimensional spatial

hypersurface (Σt, hab), labelled by the time parameter t. The timelike unit normal to the

hypersurface Σt is denoted uα and satisfies, uαuα = −1. The spacetime metric can be

expressed as

ds2 ≡ gαβdx
αdxβ = −N2dt2 + hab(dy

a +Nadt)(dyb +N bdt), (3.2)

where N is the lapse function, Na is the shift vector and hab is the induced metric on the

hypersurface Σt. The induced metric γij can also be split as

ds2 ≡ γijdx
idxj = −N2dt2 + σAB(dθ

A +NAdt)(dθB +NBdt), (3.3)

where σAB is the induced metric on B. The space-like boundary which is at the initial time

ti and final time tf is ignored. The reason for this as follows. We can always choose to

work with a box where the hypersurfaces Σt and B are mutually orthogonal, i.e. uαrα = 0,

where rα is the radial outward pointing unit vector. This allows us to split the boundary

of the spacetime manifold into three parts ∂M = B ∪ Σti ∪ Σtf . Since we are ultimately

interested in horizon entropy calculations, where the (Wick rotated) time is periodically

identified (as we will explain), the surface contributions coming from Σti and Σtf plays no

role. The Ricci scalar of the bulk spacetime can be decomposed as

(D)R = (D−1)R+KabKab −K2 − 2∇α

(

uβ∇βu
α − uα∇βu

β
)

, (3.4)
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where Kab is the extrinsic curvature of Σt. Substituting the above expression into (3.1),

we obtain5

(2κ)SN =

∫

M
dDx

√−g
[

(D−1)R− 2Λ +KabKab −K2
]

(3.5)

−2

∫

B

(

uβ∇βu
α − uα∇βu

β
)

dΣα + (4−D)

∫

B
dD−1y

√−γΘ.

On the hypersurface B, the measure dΣa is given by dΣa = ra
√−γdD−1y. The surface

integral on B thus gives

− 2

∫

B

(

uβ∇βu
α − uα∇βu

β
)

dΣα = 2

∫

B
dD−1y

√−γuαuβ∇βrα, (3.6)

where we have used the fact that uαrα = 0. The action (3.5) now becomes

(2κ)SN =

∫

M
dDx

√−g
[

(D−1)R− 2Λ +KabKab −K2
]

(3.7)

+2

∫

B
dD−1y

√−γuαuβ∇βrα + (4−D)

∫

B
dD−1y

√−γΘ.

The two surface terms in the above expression can be rearranged as follows. From the

definition of extrinsic curvature [23], it follows that

Θ + uαuβ∇βrα = σAB(∇βrαe
α
Ae

β
B) = kABσ

AB ≡ k, (3.8)

where σAB is the induced metric on the boundary ∂Σt (see (3.3)), kAB = (∇βrα)e
α
Ae

β
B is

the extrinsic curvature of ∂Σt embedded in Σt. e
α
A ≡ ∂xα

∂θA
is the projector relating the bulk

coordinates6 xα to the ∂Σt coordinates θ
A.

Using the expression for determinants
√−g = N

√
h and

√−γ = N
√
σ, (3.7) can be

expressed as

(2κ)SN =

∫ tf

ti

dt

[
∫

Σt

dD−1y N
√
h
(

(D−1)R− 2Λ +KabKab −K2
)

(3.9)

+ 2

∫

B

dD−2θ N
√
σk + (2−D)

∫

∂Σt

dD−2θ N
√
σΘ

]

.

To obtain the action in terms of canonical variables, we have to introduce the conjugate

momentum for hab. This is given by

pab ≡ ∂

∂ḣab

(√−gLG

)

=

√
h

2κ
(Kab −Khab). (3.10)

The extrinsic curvature Θ can be be split into two pieces as

Θ = Θijγij = Θij(σij − uiujΘ
ij) = k − uiujΘ

ij = k +
ra∂aN

N
. (3.11)

5For an analogous discussion of Dirichlet problem in ADM decomposition, see [23].
6See eq. (3.2) for definition of xα.
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With this expressions for pab and Θ, the action can be written as

SN =

∫

M
dDx

(

pabḣab −NH −NaH
a
)

+

∫

B
dD−1y

√
σ

(

Nk

κ
− 2Narbpab√

h

)

(3.12)

+
(2−D)

2κ

∫

B
dD−1y N

√
σ

(

k +
ra∂aN

N

)

,

where H and Ha are the Hamiltonian and momentum constraints respectively, whose exact

expressions are given by

H =

√
h

2κ

(

KabKab −K2 − (D−2)R+ 2Λ
)

, (3.13)

Ha = −
√
h

κ
Db(K

ab −Khab).

The two boundary integrals can be now combined and expressed in terms of canonical

variables as

SN =

∫

M
dDx

(

pabḣab −NH −NaH
a
)

+

∫

B
dD−1y

√
σ

(

Nε

2
−Naja +

N

2
sabσab

)

, (3.14)

where
√
σε,

√
σja and N

√
σsab/2 are the momenta conjugate to N , Na and σab, respec-

tive [8]. They are defined as

ε =
k

κ
, ja =

2√
h
rbp

b
a (3.15)

sab =
1

κ

[

kab −
(

ra∂aN

N
+ k

)

σab

]

.

4 Neumann ensemble

We will view consistent boundary terms for Einstein-Hilbert action as definitions of thermo-

dynamic ensembles arising in Euclidean quantum gravity. In this spirit, we should be able

to reproduce the thermodynamics of horizons with our Neumann path integral/partition

function. To put things in perspective, we have reviewed the Brown-York and the stan-

dard Gibbons-Hawking (aka grand canonical) ensembles in the appendix. Our discussion

of Neumann ensemble is directly influenced by the Brown-York approach [8].

The basic idea that we have used to obtain the Gibbons-Hawking path integral from the

Brown-York path integral is the fact that in statistical mechanics, given the microcanonical

density of states, other thermodynamic potentials can be obtained by suitable Laplace

transforms. However, the Neumann ensemble is best thought of as a mixed ensemble. We

can see this as follows.

First, note that the variation of the action (3.14) with respect to the canonical vari-

ables gives

δSN = (eq. of motion) (4.1)

+

∫

B
dD−1y

[

δN(
√
σε/2)−Nδ(

√
σε/2)− δNa(

√
σja) + δ(N

√
σsab/2)σab

]

.
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The first two terms can be combined into δN(
√
σε/2) − Nδ(

√
σε/2) = N2δ

(√
σε

2N

)

. This

means that one can view the Neumann action and the associated partition function loosely7

as an ensemble in which
√
σε
N

, Na and N
√
σsab are held fixed. This should be contrasted to

the Brown-York and Gibbons-Hawking ensembles which are defined by (A.3) and (A.15)

respectively, see [8].

We noted before that in the covariant formalism, the Gibbons-Hawking action and

Neumann actions are related by a boundary Legendre transform. As reviewed in the

appendix, the Brown-York action is related to the Gibbons-Hawking action by a Legendre

transform in the canonical variables. Not surprisingly, one can check that the Neumann

action, (3.14), is not a Legendre transform of the Brown-York action, (A.1), in terms of

canonical variables. To see this, let us first note that [8]

δSBY

δ(
√
σε)

= −N,
δSBY

δ(
√
σja)

= Na,
δSBY

δσab
= −N

√
σsab

2
. (4.2)

The Neumann action, (3.14), can be now written as

SN = SBY −
∫

dD−1x

[

1

2

δSBY

δ(
√
σε)

(
√
σε) +

δSBY

δ(
√
σja)

(
√
σja) +

δSBY

δσab
σab

]

. (4.3)

The factor of 1/2 spoils the Legendre transform and is the reason why the variation of the

Neumann action, (4.1), has mixed terms proportional to variations of
√
σε as well as N .

So the Neumann ensemble is best thought of a mixed ensemble where there is dependence

both on N and
√
σε or equivalently, on temperature and energy density.

This means that a naive Laplace transform of the Brown-York partition function (aka

microcanonical density of states) of the form (say)

ZN 6=
∫

D(
√
σε)D(

√
σjaφ

a)D(σab)ν[ε, ja, σab] exp

[
∫

B

dD−2θ
√
σβ

(

ε

2
−ωjaφ

a+
1

2
µabσab

)]

,

(4.4)

cannot work: this is because if we integrate the right hand side over D(
√
σε) the right

hand side will purely be a function of temperature and will not have any dependence on ǫ,

which cannot be the case for the Neumann partition function. To get to the true Neumann

partition function, in principle one must identify the function of temperature and energy

that characterizes the ensemble and set it to a constant in the path integral via a delta

functional. For our purposes of showing the emergence of the correct Smarr formula and

first law, fortunately these subtleties will not be necessary.

For our purposes, we merely have to determine the complex saddles of

ZN =
∑

M

∫

D[H] exp(iSN ), (4.5)

which when we demand smoothness, forces the correct periodicity of the time circle. To-

gether with the addition of the horizon term (A.9) to ensure the right boundary condition

7Loosely, because we are not being careful about the boundary symplectic structure in making this

variable redefinition. Our discussion will not rely on this subtlety.
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at the “bolt” and a regularization scheme in the asymptotic region, this will make our

partition function well-defined and computable (in the saddle point approximation). The

regularization scheme will depend on the asymptotics of the geometry: in this paper we

will consider asymptotically flat situations and use a form of background subtraction, in

a companion paper we will consider the asymptotically AdS case and develop a version of

holographic renormalization.

Analogous to the Brown-York/Gibbons-Hawking cases, one can choose to think of the

black hole in the co-rotating frame. But we will see that this is not strictly necessary (in any

of the ensembles) when interpreted correctly, because the horizon piece in the action (A.9)

will get a contribution that automatically implements this as a sort of “datum subtraction”.

Also for stationary flat space (Kerr) black holes, we will find that the µab ≡ N
√
σsab

2 fall off

sufficiently fast that they don’t contribute in the discussion of the Smarr formula.

This Neumann ensemble for gravity, we will use in the next section to discuss horizon

thermodynamics. Before we proceed however, we make one comment. We will use notations

like β,M to denote quantities in the Neumann ensemble as well, even though they are,

strictly speaking, defined as thermodynamical quantities only in the GH/BY ensembles

respectively. However, both these objects are well-defined geometrically: β is fixed by the

periodicity of the time circle via smoothness of the “bolt” as we discussed. Also, since

N → 1 in asymptotically flat space,
√
σε/2N (which is what one holds fixed in Neumann),

→ √
σε/2. The integral of this quantity over dD−2θ is what we call M/2 (after suitable

background subtraction), and this is a well-defined geometric quantity in any saddle as

well. So we will express our Neumann thermodynamic relations in terms of them. This

philosophy should be compared to the discussion of how the time periodicity is fixed in

section IV (and thermodynamics in section VI) of [8]: the ensemble one starts with is

microcanonical, but β is a nonetheless useful quantity.

5 Horizon thermodynamics

In this section we will compute Neumann actions both covariantly and canonically (af-

ter doing an appropriate background subtraction). Equating the covariant and canonical

results to each other will reproduce the generalized Smarr formula. We will do this for

Schwarzschild black holes in all dimensions and the 4-dimensional Kerr black hole. This

should be contrasted with the Dirichlet case, as in [3], where the free energy obtained from

covariant on-shell action is equated to M − TS − ΩJ .

5.1 Schwarzschild in D dimensions

The appropriate background subtracted Neumann action in covariant form by analogy with

the Dirichlet case [3], is given by

SN =
1

2κ

∫

M
dDx

√−gR+
(4−D)

2κ

∫

B

√−γ(Θ−Θ0), (5.1)

– 8 –
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where Θ0 is the extrinsic curvature of the boundary embedded in Minkowski space. The

Schwarzschild metric in D dimensions is given by

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2dΩ2

(D−2), f(r) = 1− 2M

rD−3
, (5.2)

where M is the black hole mass parameter, related to the ADM mass of the black hole

as [26]

MADM =
(D − 2)SD−2M

8π
, (5.3)

where Sn = 2π(n+1)/2

Γ(n+1
2 )

is the area of the unit n-sphere. The horizon is at

rH = (2M)
1

D−3 , (5.4)

and the inverse temperature is given by

β =
4π

f ′(rH)
=

4π(2M)
1

D−3

(D − 3)
. (5.5)

The associated complex metric is given by the identification N = −iÑ and has periodically

identified time with periodicity β. We consider the boundary of the manifold to be at r = Rc

which shall be pushed to infinity eventually. For the Schwarzschild black hole, we have

Θ =

√

1− 2M
RD−3

c

(

(D − 2)RD−3
c − (D − 1)M

)

RD−2
c − 2MRc

, (5.6)

Θ0 =
D − 2

Rc
.

Evaluating the action over the complex metric and taking Rc → ∞ limit, we get

SN = −i
(D − 4)SD−2(2M)

D−2
D−3

8(D − 3)
. (5.7)

This is related to the Neumann free energy by

− βFN ≡ logZN ≈ iSN , (5.8)

which gives

F cov
N = −(D − 4)SD−2M

16π
= − (D − 4)

2(D − 2)
MADM . (5.9)

Now, the background subtracted Neumann action in ADM variables is given

SN =

∫

M
dDx

[

pabḣab −NH −NaHa

]

+

∫

H
dD−1x

√
σ

(

ra∂aN

κ
+

2Narbpab√
h

)

+

∫

B
dD−1x

√
σ

[

N

2
(ε− ε0)−Na(ja − ja 0) +

N

2
(sab − sab0 )σab

]

.

– 9 –
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Evaluating the action on the complex metric, the horizon integral gives a contribution

SH = −i
A

4
. (5.10)

The boundary integral evaluates to

SB = i

(

D − 2

D − 3

)

SD−2(2M)
D−2
D−3 . (5.11)

Using (5.8) the free energy takes the form

FN =
(D − 2)

16π
SD−2M − A

4β
, (5.12)

which is of the form

F canon
N =

1

2
MADM − TS. (5.13)

Equating F canon = F cov leads to the correct Smarr formula

D − 3

D − 2
MADM = TS. (5.14)

5.2 Kerr in 3+1 dimensions

The D = 4 Kerr metric in Boyer-Lindquist coordinates is given by

ds2 = ρ2
(

dr2

∆
+ dθ2

)

+
sin2 θ

ρ2
(

adt− (r2 + a2)dφ
)2

(5.15)

−∆

ρ2
(

dt− a sin2 θdφ
)2

,

where a = J
M

is the angular momentum parameter and ρ2 = r2 + a2 cos2 θ and ∆ =

r2+a2−2Mr. This is an asymptotically flat solution to the vacuum Einstein’s equation with

zero cosmological constant and describes the geometry of a rotating black hole. The horizon

is located at the largest positive root of ∆(rH) = 0 and is given by rH = M +
√
M2 − a2

and the angular velocity at the horizon is given by

ΩH =
a

r2H + a2
. (5.16)

Comparing the metric (5.15) with the ADM split metric, the lapse and shift functions can

be extracted as

N =

√

ρ2∆

(r2 + a2)2 − a2∆sin2 θ
, (5.17)

Nφ = − 2aMr

(r2 + a2)2 − a2∆sin2 θ
.

The Neumann action in covariant form in 4D is given by

SN =
1

2κ

∫

M
d4x

√−gR. (5.18)
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Since Kerr solution is Ricci flat, the on-shell action for the complex metric vanishes. Fur-

thermore, this leads to zero Neumann free energy

F cov
N = 0. (5.19)

The Neumann action in terms of the ADM variables in 4D is given

SN =

∫

M
d4x

[

pabḣab −NH −NaHa

]

+

∫

H
d3x

√
σ

(

ra∂aN

κ
+

2Narbpab√
h

)

+

∫

B
d3x

√
σ

[

N

2
(ε− ε0)−Naja +

N

2
(sab − sab0 )σab

]

.

Evaluating the action on the complex metric, the horizon integral gives a contribution

SH = −i
A

4
− iΩHaMβ. (5.20)

On the boundary, we have

sab − sab0 = −M2

2κ

(

1 0

0 1
sin2 θ

)

1

R5
c

+O(1/R6
c), (5.21)

and

σab =

(

ρ2 0

0 sin2 θ
ρ2

(

(r2 + a2)2 − a2∆sin2 θ
)

)

. (5.22)

Only the first term in the boundary integral contributes, while the other terms fall-off

rapidly when the boundary is pushed to infinity.

SB = i
M

2
β. (5.23)

The free energy is computed via (5.8) to be

F canon
N =

1

2
M − TS − ΩHJ. (5.24)

Setting this equal to F cov
N = 0 obtained above correctly reproduces the Smarr formula in

D = 4,
1

2
M = TS +ΩHJ. (5.25)

5.3 Cosmological horizons

A similar approach can also be applied to de-Sitter geometry, whose metric in the static

coordinates is given by ds2 = −
(

1− r2

α2

)

dt2 + dr2
(

1− r2

α2

) + r2dΩ2
(D−2). The crucial difference

between the de-Sitter and the black hole geometries considered previously is that the

relevant complexified section of the geometry does not have any boundaries. Therefore

all the contributions comes from the horizon term.8 As in the black hole case, regularity of

8We believe the action for de Sitter mentioned in eq. (3.15) of [3] has a numerical factor of 4 missing.

Our result matches the one quoted in [27, 28].
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the complexified de-Sitter at the horizon at r = α ≡
√

3/|Λ| (where Λ is the cosmological

constant), fixes the periodicity of the time coordinate to be P = 2πα. Finally, the on-shell

action evaluates to SdS = −2πi
κ

∫

dD−2θ
√
σ = −3πiΛ−1. Thus we find that the action

used to compute black hole density of states is also suitable for computing the entropy of

de-Sitter space. This is because in both the cases the crucial argument is the periodicity

of the time circle which relies on the fact that the horizon is a bifurcate Killing horizon

which is true in both cases.

5.4 First law

We will conclude this section by deriving the first law from Neumann path integral around

its saddles. We will work by analogy with the microcanonical discussion in [8]. The

variations of the Neumann action are given by (4.1), which when restricted around the

complex saddles takes the form

δSN = −i

∫

dD−1y

[

δÑ

(√
σε

2

)

− Ñδ

(√
σε

2

)

− δÑa
(√

σja
)

− δ

(

Ñ
√
σsab

2

)

σab

]

. (5.26)

Using the relation between free energy and on-shell action and noting that on the solutions

we consider, asymptotically at the boundary, the conditions

∫

dtÑ = β,

∫

dtÑφ = βΩ, (5.27)

holds,9 we get the functional form

δ(iSN ) = δ(−βFN ) (5.28)

=−
∫

B

dD−2θ

[

−δβ

(√
σε

2

)

+ βδ

(√
σε

2

)

+ δ(βω)(
√
σjaφ

a) + δ

(

β
√
σsab

2

)

σab

]

.

The above expression is of the form (see [8] for the definition of pressure p),

d(−βFN ) = −dβ
E

2
+

β

2
dE − d(βΩ)J − d(βp)V. (5.29)

Using the Hamiltonian form for the Neumann free energy that we obtained in the previous

sections,

FN =
E

2
− TS − ΩJ + pV, (5.30)

we get the familiar form of the first law

TdS = dE − ΩdJ + pdV. (5.31)

9N → 1 at the boundary, and so we treat β as the periodicity of the time circle, which is fixed by the

smoothness of the bolt at the horizon. Note also that our conventions for extrinsic curvature are opposite

to those in [8], so the charges are defined with an extra negative sign. See also the discussion at the end of

section 4, for the meaning assigned to β in the Neumann ensemble.
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A Boundary terms and thermodynamic ensembles

To give context for a thermodynamic ensemble interpretation of Neumann path integral,

we will discuss the canonical ensemble of Gibbons-Hawking and the microcanonical path

integral of Brown-York.10 The philosophy of the latter is essential for our purposes and

since this is not widely known we will review it here. Our discussion of the Gibbons-

Hawking ensemble will not follow [3]. Instead we will view it as a Laplace transform from

the Brown-York ensemble [8]. We will review that as well. Many of these results are

directly useful for the computations we do in the main body of the paper.

It is convenient to start with the Brown-York path integral [8] whose notations we

largely follow, except for the sign conventions for extrinsic curvature, for which we fol-

low [23]. We will first show how the Brown-York path integral for the gravitational field

can be used to compute the entropy, and then relate it to the (grand) canonical approach

of Gibbons-Hawking.

We will work with the ADM formulation to discuss the various ensembles. In this

language the microcanonical action of Brown-York takes the form [8]

SBY =

∫

M
dDx

(

pabḣab −NH −NaH
a
)

. (A.1)

This is just the bulk piece of the ADM action we wrote down in section 3. The claim is that

this action (i.e., with no ADM boundary terms) can be used to compute a (microcanonical)

density of states via the path integral expression

ν[ǫ, j, σ] =
∑

M

∫

D[H] exp(iSm). (A.2)

Here, the density of states is a functional of the boundary data

(ǫ, ja, σab), (A.3)

that were defined in section 3. In other words, the action (A.1) is chosen because its

variation vanishes when these quantities are held fixed at the boundary.

10In what follows we will refer to the latter as the Brown-York path integral, because the term “micro-

canonical” can give rise to confusion in an AdS/CFT context: fixing the total CFT energy is different from

fixing the energy density at the boundary of AdS.
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A crucial point in this construction is that the time direction needs to be periodically

identified, but the periodicity is arbitrary. The periodicity in time arises as a standard

consequence of the trace involved in the definition of the quantum density of states, see

e.g. [8, 29]. We will not discuss the origin of this construction in detail even though it is

straightforward.

The Lorentzian black-hole metrics have the boundary topology B = S(D−2) × I, but

to connect with the above-mentioned periodicity in time means that we need to consider a

manifold with boundary topology S(D−2) × S1. Following [8], there is a related “complex-

ified” Lorentzian black hole metric with periodically identified time which can be used for

entropy calculations. Even though the metric is not “real”, the motivation for introducing

it is that it can be used for steepest descents approximation to the functional integral by

distorting the N and Na contours in the complex plane.

A general Lorentzian black hole metric is of the form

ds2 = −N2dt2 + hab(dx
a +Nadt)(dxb +N bdt), (A.4)

and the accompanying complex metric is given by

ds2 = −(−iÑ)2dt2 + h̃ab(dx
a − iÑadt)(dxb − iÑ bdt). (A.5)

Thus the complex metric is related to the Lorentzian metric with the identification N =

−iÑ and Na = −iÑa. We assume that the black hole metric is stationary so that Ñ and

Ña are independent of time. Since Einstein’s equations are analytic differential equations,

if (A.4) is a solution, then so is (A.5). The locus of points Ñ = 0 describes a hypersurface

called “bolt” and the t = constant foliations degenerate at that point.11 If we choose

“corotating” spatial coordinates then Ña vanish on the horizon and thus near the bolt, the

metric takes the form

ds2 ≈ Ñ2dt2 + h̃abdx
adxb, (A.6)

and demanding the absence of conical singularities at the bolt gives the relation

ra∂aÑ =
2π

P
, (A.7)

where P is the periodicity of the time coordinate. The t = constant hypersurface has

the topology Σt = I × S(D−2) and the singularity can be interpreted as a puncture on Σt.

The bolt seals the spatial manifold but it needs an appropriate boundary condition to be

specified there.

The argument of [8, 30] is that no extra boundary piece be added at the horizon

other than what already arises from the Einstein-Hilbert term in the Hamiltonian form.

They argue that this is natural because in the Lorentzian section the horizon is smooth:

there exists a free-fall coordinate system (Kruskal, say) where the principle of equivalence

explicitly holds and there is no (coordinate) singularity. We will find that this boundary

condition indeed yields the right black hole thermodynamics in all the ensembles, including

11For Schwarzschild, this just becomes the usual cigar geometry where one demands regularity at the tip.
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Neumann. In any event, this yields the following Brown-York action for the black hole

geometry:

SBY =

∫

M
dDx

(

pabḣab −NH −NaH
a
)

+ Shorizon, (A.8)

where Shorizon is given by [8, 30]

Shorizon ≡
∫

H
dD−1y

√
σ

(

ra∂aN

κ
+

2raNbp
ab

√
h

)

. (A.9)

This action, just as the (A.1), has the property that the boundary data at B is specified

by fixed ε, ja and σab. In this section, we will assume that the boundary metric σab is

axi-symmetric.

Now we are ready to evaluate the action integral on the solution. Notice that the

bulk integral is identically zero by virtue of being a stationary metric and the fact that it

satisfies the Hamiltonian and momentum constraints. Thus the Brown-York action for the

black hole yields

SBH
BY = − i

κ

∫ P

0
dt

∫

dd−2θ
√
σra∂aÑ . (A.10)

Since we are working in the co-rotating frame (A.6), Na at the horizon is zero, the second

term in (A.9) doesn’t contribute. Therefore this discussion that reproduces the entropy

as in [8] is not really a strong check of the second piece in (A.9). However, we will see

that when we move on to other ensembles (both Gibbons-Hawking and Neumann), this

term will precisely reproduce the thermodynamics of black holes: one can view this as

a further piece of evidence that the horizon boundary condition suggested in [8, 30] is a

reasonable one. We will see that in the co-rotating frame, the contributions of some of

the thermodynamic quantities arise solely from the boundary, whereas in other frames it

is shared between the boundary and the horizon. In both cases, it happens in such a way

what the appropriate generalized Smarr formula holds.

Upon using the periodicity condition (A.7) the above expression for the entropy leads to

SBH
BY = −2πi

κ
AH = − i

4
AH . (A.11)

The advantage of this form is that since the functional integral (A.2) that is defined by

SBY has the interpretation as a microcanonical density of states. Therefore, from the

standard ideas of statistical mechanics, a saddle point argument yields the entropy of the

system to be

S[ε, ja, σab] ≈ iSBY . (A.12)

This gives the requisite relation between the entropy and the area of the horizon:

S[ε, ja, σab] ≈ iSBH
BY =

AH

4
. (A.13)

This is the Brown-York derivation of the microcanonical entropy, presented here with an

eye towards generalization to other ensembles, especially Neumann.
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We make one comment before moving on to the canonical ensemble. The time pe-

riodicity in the Brown-York approach arose because the microcanonical density of states

involves a trace over states. But instead of putting this periodicity in from the start,

one can also consider the Brown-York path integral (in Euclidean, or more precisely com-

plexified, space) without the periodicity as the starting point. If one demands that the

relevant saddles of this path integral are smooth spacetimes, then one again gets the time-

periodicity from the smoothness of the “bolt” as discussed above. This is the approach

we will adopt for other ensembles. The saddles of the Euclidean path integrals will always

fix a periodicity in imaginary time, irrespective of the boundary terms involved: this is

because the smoothness at the horizon is what fixes it.

Einstein Hilbert action with the GHY boundary term can be computed in the ADM

formulation to be12

Sg =

∫

M
dDx

(

pabḣab −NH −NaH
a
)

+

∫

B
dD−1y

√
σ(Nǫ−Naja). (A.14)

In the (grand) canonical ensemble, the boundary data is specified by fixing the potentials

at the boundary, for example, an axi-symmetric black hole is specified by its inverse tem-

perature β and (co-rotating) angular velocity ΩH . The various black hole quantities are

then to be thought of as functions of these potentials. One can think of this ensemble as

one where

(N, Na, σab) or equivalently (β, ω, σab), (A.15)

are held fixed; ω will be defined momentarily.

One can relate the Brown-York approach to the (grand) canonical approach of Gibbons-

Hawking as follows (see [8]). We define φa to be the axial Killing vector13 for the boundary

metric σab. The momentum density along this Killing direction is then given by
√
σjaφ

a.

The (grand) canonical partition function can be obtained from the microcanonical partition

function (A.2) via

Zg[β, βω, σ] =

∫

D[
√
σǫ]D[

√
σjaφ

a] ν[ǫ, j, σ] exp

[
∫

dD−2θ
√
σβ(ε− ωjaφ

a)

]

. (A.16)

The steepest descents of Zg is then given by the simultaneous solutions of

δS
δ(
√
σε)

= −β,
δS

δ(
√
σjaφa)

= βω. (A.17)

In the saddle point approximation, this yields

iSg ≈ lnZg ≈ S −
∫

dD−2θ
√
σβ(ǫ− ωjaφ

a). (A.18)

12We give it the subscript g for grand canonical instead of D for Dirichlet here to emphasize its role in

thermodynamics.
13The existence of such a Killing vector is implicit in the Gibbons-Hawking paper, and our goal is to

make connection with it.

– 16 –



J
H
E
P
1
0
(
2
0
1
6
)
0
4
3

Using the (A.2) one can write

Zg[β, βω, σ] =
∑

M

∫

D[H] exp(iSg), (A.19)

where the Sg is evaluated with
∫

dtN |B = −iβ,

∫

dtNφ|B = −iβω, (A.20)

where Nφ is the shift along the φa direction and B is the spatial slice of B on which we

have the metric σAB. So instead of
√
σε and

√
σja (which are to be thought of as conjugate

fields living in the phase space) being fixed at B, in the (grand) canonical picture we have

their potentials fixed at B.

Notice that for a stationary black holes we can assume that β is a constant on the

boundary.14 This is because stationary black holes have time-like Killing vector which gets

identified as the generator of U(1) isometry under the Wick rotation. Note also that as the

boundary B is taken to radial infinity, since N → 1 for stationary flat space black holes, β

is fixed by the periodicity of the time circle. This means that since we fixed this periodicity

in the Brown-York ensemble via the smoothness of the “bolt”, before doing our Laplace

transform, it will be the same as the P that we discussed in the previous subsection.

Similarly, ω is defined as the angular velocity measured by the so-called Zero Angular

Momentum Observers (ZAMOs) [8]. Note however, that asymptotically ω goes to zero, for

the Kerr black hole [23]. For a rotating black hole, as we saw in the previous subsection

when discussing the smoothness of the “bolt”, as well as for dynamical and thermody-

namical reasons [32, 33], it is more reasonable to think of the black hole in a box that is

co-rotating-with-the-horizon.15 In such a frame, the second equation above gets modified to
∫

dtNφ|B = iβ(ΩH − ω) → iβΩH , (A.21)

where the last step takes into account the fact that asymptotically ω is zero. ΩH is the

horizon angular velocity [23].

One can also obtain the grand canonical path integral directly by defining a Euclidean

path integral with (A.14) as the action. Since this is the approach we will take when defining

the Neumann partition function16 let us emphasize it. Demanding that the (complex)

14See however, Lewkowycz and Maldacena [31] who investigate situations where this assumption does not

hold. Indeed, the construction of this subsection as well as the entire spirit of this paper can be generalized

to non-constant fields at the boundary. The Gibbons-Hawking (aka standard grand canonical) ensemble is

a special case of the Lewkowycz-Maldacena ensemble.
15There are some problems here, related to the fact that a co-rotating frame becomes superluminal at a

finite radius, and therefore it is not really possible to define a fully consistent thermodynamics for rotating

black holes in flat space. A related observation is that there is no fully satisfactory Hartle-Hawking state for

the flat space Kerr black hole [34, 35]. But these problems are usually glossed over and a formal treatment

of thermodynamics is unaffected by them. Our discussion should be taken in that spirit, we will see in a

follow up paper [5] that for AdS black holes these problems have natural solutions.
16As we will explain in section 3, in terms of canonical variables, the Neumann boundary term is not

a simple Legendre transform like it was in covariant variables. So the transformation relating the two

ensembles is non-trivial, unlike in the transformation to Gibbons-Hawking from Brown-York. We will not

pursue this further here.
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saddles of the action are regular again fixes the periodicity of the time circle to be the inverse

Hawking temperature. After complexification we get the tilde versions of (A.20), (A.21)

as definitions of β and ω: note that N and Nφ are fixed at the boundary.

In the (grand) canonical ensemble then, it is natural to have the formula

−Sg

β
= M − TS − ΩHJ, (A.22)

which directly lead to useful relations like S = (β∂β − 1)Sg. We have defined T = 1/β.

Gibbons and Hawking motivate (A.22) by noting that the free energy associated to a grand

canonical partition function is defined by the right hand side of (A.22). Then they make

a saddle-point approximation to (A.19) to obtain the left hand side. At this stage, they

note that covariantly evaluating the left hand side of (A.22) on black hole solutions after

background subtraction leads to the generalized Smarr formula. This is how [3] relate the

classical general relativity of black holes with black hole thermodynamics.

But instead of taking the right hand side of (A.22) as a definition of the thermodynamic

potential like [3] does, one can instead look at it as an explicit evaluation of the action

in the canonical (aka ADM aka Hamiltonian) approach. This means that one can view

the emergence of the generalized Smarr formula from (A.22) as a result of comparing

the covariant and Hamiltonian ways of (saddle point) evaluating the Gibbons-Hawking

partition function (A.19).

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] S. Carlip, Quantum gravity in 2+1 dimensions, Cambridge University Press, Cambridge

U.K. (1998).

[2] C. Krishnan, Quantum Field Theory, Black Holes and Holography, arXiv:1011.5875

[INSPIRE].

[3] G.W. Gibbons and S.W. Hawking, Action Integrals and Partition Functions in Quantum

Gravity, Phys. Rev. D 15 (1977) 2752 [INSPIRE].

[4] E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253

[hep-th/9802150] [INSPIRE].

[5] C. Krishnan, A. Raju and P.N.B. Subramanian, A Dynamical Boundary for Anti-de Sitter

Space, arXiv:1609.06300 [INSPIRE].

[6] J.W. York Jr., Role of conformal three geometry in the dynamics of gravitation,

Phys. Rev. Lett. 28 (1972) 1082 [INSPIRE].

[7] C. Krishnan and A. Raju, A Neumann Boundary Term for Gravity, arXiv:1605.01603

[INSPIRE].

[8] J.D. Brown and J.W. York Jr., The Microcanonical functional integral. 1. The Gravitational

field, Phys. Rev. D 47 (1993) 1420 [gr-qc/9209014] [INSPIRE].

– 18 –

http://creativecommons.org/licenses/by/4.0/
https://arxiv.org/abs/1011.5875
http://inspirehep.net/search?p=find+EPRINT+arXiv:1011.5875
http://dx.doi.org/10.1103/PhysRevD.15.2752
http://inspirehep.net/search?p=find+J+%22Phys.Rev.,D15,2752%22
https://arxiv.org/abs/hep-th/9802150
http://inspirehep.net/search?p=find+EPRINT+hep-th/9802150
https://arxiv.org/abs/1609.06300
http://inspirehep.net/search?p=find+EPRINT+arXiv:1609.06300
http://dx.doi.org/10.1103/PhysRevLett.28.1082
http://inspirehep.net/search?p=find+J+%22Phys.Rev.Lett.,28,1082%22
https://arxiv.org/abs/1605.01603
http://inspirehep.net/search?p=find+EPRINT+arXiv:1605.01603
http://dx.doi.org/10.1103/PhysRevD.47.1420
https://arxiv.org/abs/gr-qc/9209014
http://inspirehep.net/search?p=find+EPRINT+gr-qc/9209014


J
H
E
P
1
0
(
2
0
1
6
)
0
4
3

[9] J.D. Brown and J.W. York Jr., Quasilocal energy and conserved charges derived from the

gravitational action, Phys. Rev. D 47 (1993) 1407 [gr-qc/9209012] [INSPIRE].
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