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ABSTRACT: We study three properties of a holographic superconductor related to conduc-
tivities, where momentum relaxation plays an important role. First, we find that there are
constraints between electric, thermoelectric and thermal conductivities. The constraints
are analytically derived by the Ward identities regarding diffeomorphism from field the-
ory perspective. We confirm them by numerically computing all two-point functions from
holographic perspective. Second, we investigate Homes’ law and Uemura’s law for various
high-temperature and conventional superconductors. They are empirical and (material
independent) universal relations between the superfluid density at zero temperature, the
transition temperature, and the electric DC conductivity right above the transition tem-
perature. In our model, it turns out that the Homes’ law does not hold but the Uemura’s
law holds at small momentum relaxation related to coherent metal regime. Third, we ex-
plicitly show that the DC electric conductivity is finite for a neutral scalar instability while
it is infinite for a complex scalar instability. This shows that the neutral scalar instability
has nothing to do with superconductivity as expected.
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1 Introduction

Holographic methods have provided novel and effective tools to study strongly correlated
systems [1-6] and they have been applied to many condensed matter problems. In par-
ticular, holographic understanding of high 7T, superconductor is one of the important is-
sues. The first holographic superconductor model was proposed by Hartnoll, Herzog, and
Horowitz (HHH)! [7, 8], and there have been extensive development of the model. For
reviews and references, we refer to [2, 3, 9, 10].

The HHH model is a translationally invariant system with finite charge density. There-
fore, it cannot relax momentum and exhibits an infinite electric DC conductivity even in
normal phase not only in superconducting phase. To construct more realistic superconduc-
tor models, some methods incorporating momentum relaxation were proposed. One way
of including momentum relaxation is to break translational invariance explicitly by im-
posing inhomogeneous (spatially modulated) boundary conditions on a bulk field [11-15].
Massive gravity models [16-22] give some gravitons mass terms, which breaks bulk diffeo-
morphism and translation invariance in the boundary field theory. Holographic Q-lattice

The HHH model is a class of Einstein-Maxwell-complex scalar action with negative cosmological con-
stant. It is based on the action (2.1) with 1); = 0. The holographic interpretation of this model is reviewed
in section 2.



models [23-27] take advantage of a global symmetry of the bulk theory. For example, a
global phase of a complex scalar plays a role of breaking translational invariance. Models
with massless scalar fields linear in spatial coordinate [28-38] utilize the shift symmetry.
Some models with a Bianchi VIIp symmetry are dual to helical lattices [39-41]. Based on
these models, holographic superconductor incorporating momentum relaxation have been
developed [42-51].

In this paper, we study the HHH holographic superconductor model with massless
scalar fields linear in spatial coordinate [46], where the strength of momentum relaxation
is identified with the proportionality constant to spatial coordinate. The property of the
normal phase of this model such as thermodynamics and transport coefficients were studied
in [28, 30-32, 52-54]. The superconducting phase was analysed in [45, 46]. In particular,
optical electric, thermoelectric and thermal conductivities of the model have been exten-
sively studied in [31, 46, 53, 54]. Building on them, we further investigate interesting
properties related to conductivities and momentum relaxation. There are three issues that
we want to address in this paper: (1) conductivities with a neutral scalar hair instability,
(2) Ward identities: constraints between conductivities, (3) Homes’ law and Uemura’s law.
We explain each issue in the following.

(1) In a holographic superconductor model of a Einstein-Maxwell-scalar action [8, 9], a
superconducting state is due to the formation of a complex scalar field, ®, with the
charge ¢ in a bulk spacetime below a critical temperature. It amounts to breaking
U(1) symmetry spontaneously by an expectation value of the charged operator. The
formation of the scalar hair & may be understood as the coupling of the charged scalar
to the charge of the black hole through the covariant derivative Dy ® = Vi ® —
iqAp®, which gives an effective mass of ® as m2z = m? — ¢%(¢"|A7. m?; may be
sufficiently negative near the horizon to destabilize the scalar field. Based on this
argument one may expect that when ¢ = 0 the instability would turn off. However, it
turns out that a Reissner-Nordstrom AdS black hole may still be unstable to forming
neutral scalar hair. This instability is not associated with superconductivity because
it does not break a U(1) symmetry, but at most breaks a Zs symmetry & — —®.
Therefore, in this system with a neutral scalar hair, it is natural to expect that DC
electric conductivity will be finite contrary to the case with a complex scalar hair
(superconductor). However, to our knowledge, this argument has not been explicitly
checked yet. In the HHH models without momentum relaxation, this question is not
well posed since electric conductivity is always infinite due to translation invariance.
In this paper, in a model with momentum relaxation, we show that DC electric
conductivity that derived from the neutral hairy black hole is indeed finite.

(2) Three transport coefficients, electric conductivity (o), thermoelectric conductivity(«)
and thermal conductivity(%), are identified by the retarded two-point functions of
two operators, electric current(.JJ) and heat current(@). See (4.55) for explicit ex-
pressions. It was shown, in normal phase without momentum relaxation, there are
two constraints relating three transport coefficients, o,«, and & [3, 55]. The con-
straints can be derived by the Ward identities regarding diffeomorphism and U(1)
gauge symmetry. In our model, there is an extra bulk field, a massless scalar intro-



duced for momentum relaxation. Therefore, we have another scalar operator, say S,
in the dual field theory and consequently we have six two-point functions of three
operators, J, (), and S. It turns out, in this case, there are three Ward identities of six
two-point functions: o, a and K and three two-point functions related to the operator
S. If S = 0, thanks to the two constraints, & and & can be obtained algebraically
once o is computed numerically. This is why only o is presented in the literature [2].
However, if S # 0, the information of ¢ alone cannot determine a and &, which must
be computed independently. In this paper, following the method in [3], we first derive
the Ward identities for two-point functions analytically from field theory perspective.
Next, we confirm them numerically by computing all two functions by holographic
methods. This confirmation of the Ward identities also demonstrates the faithfulness
of our numerical method.

Homes’ law and Uemura’s law are empirical and material independent universal laws
for high-temperature and some conventional superconductors [56, 57]. The law states
that, for various superconductors, there is a universal material independent relation
between the superfluid density (p,) at near zero temperature and the transition tem-
perature (T.) multiplied by the electric DC conductivity (opc) in the normal state
right above the transition temperature T..

po(T = 0) = Cope(Te) T, (1.1)
where p,, T, and opc are scaled to be dimensionless, and C is a dimensionless
universal constant: C' = 4.4 or 8.1. They are computed in [47] from the experimental
data in [56, 57]. For in-plane high T, superconductors and clean BCS superconductors
C =~ 4.4. For c-axis high T, superconductors and BCS superconductors in the dirty
limit C' =~ 8.1. Notice that momentum relaxation is essential here because without
momentum relaxation opc is infinite. There is another similar universal relation,
Uemura’s law, which holds only for underdoped cuprates [56, 57]:

p(T'=0)=BT., (1.2)

where B is another universal constant. In the context of holography Homes’ law
was studied in [47, 58]. It was motivated [58] by holographic bound of the ratio
of shear viscosity to entropy density (n/s) in strongly correlated plasma [1] and its
understanding in terms of quantum criticality [59] or Planckian dissipation [60],where
the time scale of dissipation is shortest possible. Since Homes’ law also may arise in
systems of Planckian dissipation [60] there is a good chance to find universal physics
in condensed matter system as well as in quark-gluon plasma. In [47] Homes’ law
was observed in a holographic superconductor model in a helical lattice for some
restricted parameter regime of momentum relaxation, while Uemura’s law did not
hold in that model. However, physic behind Homes’ law in this model has not been
clearly understood yet. For further understanding on Homes’ law, in this paper, we
have checked Homes’ law and Uemuras’ law in our holographic superconductor model.
We find that Homes’ law does not hold but Uemura’s law holds at small momentum
relaxation region, related to coherent metal regime.



This paper is organised as follows. In section 2, we introduce our holographic super-
conductor model incorporating momentum relaxation by massless real scalar fields. The
equilibrium state solutions and the method to compute AC conductivities are briefly re-
viewed. In section 3, the conductivities with a neutral scalar instability are computed and
compared with the ones with a complex hair instability. In section 4, we first derived Ward
identities giving constraints between conductivities analytically from field theory perspec-
tive. These identities are confirmed numerically by holographic method. In section 5, after
analysing conductivities at small frequency, we discuss the Home’s law and Uemura’s law
in our model. In section 6 we conclude.

2 AC conductivities: holographic model and method

2.1 Equilibrium state

In this section we briefly review the holographic superconductor model we study, referring
to [28, 31, 53, 54, 61] for more complete and detailed analysis. We consider the action?
2

1 1
S = /d4x\/7—g R—20— (F? — [DBP —m?af - 3 (0vn)?|,  (21)
I=1
where zM = {t,z,y,r} and r is the holographic direction. R is the Ricci scalar and

A = —3/L? is the cosmological constant with the AdS radius L = 1. We have included
the field strength F' = dA for a U(1) gauge field A, the complex scalar field ® with
mass m, two massless scalar fields, ¥;(I = 1,2). The covariant derivative is defined by
Dy® = Vy® — igAy P with the charge ¢ of the complex scalar field. However, if ¢ = 0,
® is a neutral scalar not a charged scalar. We consider a neutral scalar and a charged
scalar in section 3, where it will be shown that a neutral scalar case does not correspond
to superconductors. Having this observation we consider only a charged scalar in section 4
and 5, because we are investigating properties of superconductors in those sections.
The action (2.1) yields equations of motion

2
1 e 2 oz2 L 2
Ryn 5IMN <R+6 4F |D®|* — m*|P| 5 ;(31/11)

2
1 1 . o, L
= iFMQFNQ+§ (DM(I)DN‘I) +DNPDp P )+523M¢[3N¢[, (2.2)

I=1
VauFMN = —iq(&*DVN® — oDV d*), (2.3)
(D*-m*)@=0, Vi =0, (2.4)
for which we make the following ansatz:
A= Ay(r)dt + %B (zdy — ydz) , ®=o(r), ¢r=(Bz,By), (2.5
ds? = —U(r)e XM ae? 4 S{:) +r?(da® + dy?). (2.6)

2The complete action includes also the Gibbons Hawking term and some boundary terms for holographic
renormalization, which are explained in [28, 31, 53, 54, 61] in more detail.



Via the holographic dictionary, A;(r) encodes a finite chemical potential or charge density
and B plays a role of an external magnetic field. ®(r) is dual to a superconducting phase

p @] .
order parameter, condensate. Near boundary (r — o0), & ~ T{fA + <rA> + ... with

two undetermined coefficients J® and <O‘b>, which are identified with the source and

condensate respectively. The dimension A of the condensate is related to the bulk mass
of the complex scalar by m? = A(A — 3). In this paper, we take m? = —2 and A =
2 to perform numerical analysis. 7 is introduced to give momentum relaxation effect
where 3 is the parameter for the strength of momentum relaxation. For g = 0, the
model becomes the original holographic superconductor proposed by Hartnoll, Herzog,
and Horowitz (HHH) [7, 8].

One way to understand momentum relaxation effect by 11 is to see the Ward identity
related to the boundary stress tensor of the model (2.1) when ® = 0 [28]:

V. (T") = —-F,(J") — V"1 (Oy), (2.7)

where p,v are indices in the field theory z# = (¢,z,y). If we consider a homogeneous
and isotopic system in flat spacetime the left hand side becomes the time derivative of the
momentum (say p = z),
(P7) = E*(J") = "1 {O"), (2.8)

where (P*) = (T'*), E¥ = F' and assume a finite density system without current, i.e.
JY = (J%0,0). The first term on the right hand side is a driving force, which is the
boundary electric field (E®) times the charge density (J!). The second term plays a role
of friction and gives momentum relaxation. By choosing ¢; = (8z, fy) with constant /3 as
in (2.5) we can achieve nonzero dissipation in a homogeneous and isotropic system.

First, if ®(r) = 0 (no condensate), the solution corresponds to a normal state and its
analytic formula is given by

(2.9)

where 7y, is the location of the black brane horizon defined by U(ry) = 0, mg = r% —

& n2+B2
2 + 47‘h

modified by S due to ¢; [54]. The thermodynamics and transport coefficients(electric,

, and n is interpreted as charge density. It is the dyonic black brane [62]

thermoelectric, and thermal conductivity) of this system was analysed in detail in [54]. In
the case without magnetic field, see [31]. Next, if ®(r) # 0, the solution corresponds to
a superconducting state with finite condensate and its analytic formula is not available.?
For B = 0, the solutions are numerically obtained in [8] for 8 = 0 and in [46] for 5 # 0.
For example we display numerical solutions for some cases in figure 1, where we set r, = 1
and plot dimensionless quantities scaled by u: U(r)/u?, A¢/p, and x. For B # 0, due to
the generation of vortex our ansatz (2.5) should be modified. In this paper we will not
consider this case and refer to [2, 63, 64].

3 A nonzero ®(r) induces a nonzero x(r), which changes the definition of ‘time’ at the boundary so field
theory quantities should be defined accordingly.
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Figure 1. Numerical solutions of bulk background functions, which are numerically integrated from
the black hole horizon (r;, = 1). The solid curves are for the case without momentum relaxation
(8 = 0) while the dotted curves are for momentum relaxation (8/u = 0.5). The black curves are
for normal phase ({(O®) = 0) while the red curves are for superconducting phase ((O®) # 0). In
(a), (b) and (c¢) the black solid and dotted curves are coincide, but in (d) they are different. The
black curves agree to the analytic formula in (2.9), where § enters only into U(r).

2.2 AC conductivities

The purpose of this subsection is to briefly describe the essential points of a method to
compute the AC thermo-electric conductivities. For more details and clarification regarding
our model at B = 0, see [53, 54| for normal phase and [46] for superconducting phase. At
B # 0 see [31] for normal phase.

In order to study transport phenomena holographically, we introduce small bulk fluc-
tuations around the background obtained in the previous subsection. For example, to
compute electric, thermoelectric, and thermal conductivities it is enough to consider

SA(t,r) = / A it ),

oo 2T

Sqult,r) = / () (2.10)
—00

St ) = / T g ),

oo 2T

where i = x,y for B # 0 and ¢ = «x is enough for B = 0 thanks to a rotational symmetry in
x —y space. For the sake of illustration of our method, we consider the case for B = 0 [46]
and refer to [54] for B # 0. In momentum space, the linearized equations of motion around



the background are?

U’ / 2 22@2 XA’
ag+(—x>a§c+<wex— a )(Ix-f-re ——th,, =0,

u 2 U? U U
A/
K. +—I+ZBU6 £ =0, (2.11)
u z,BweX wQeX
" Yo_X _
Near boundary (r — oo) the asymptotic solutions are
O 1o, 10
a0 = al® 4 %a;n b (2.12)
& =0 + 3¢ 3555’>+
The on-shell quadratic action in momentum space reads
d
S8 =5 [ 5o [Toukan() Il + I Buw)RL) (213)
2) 27w
where
ay” as” 0 —n 0 100
Jo= a9, R=|a® |, A=]0o20®W 0|, B=|0-30]|. (214
(0) £§3) 0O 0 0 003

Here UM is the coefficient of 1 /r when U(r) is expanded near boundary and n is charge
density. The index w in J* and R® are suppressed.

The remaining task for reading off the retarded Green’s function is to express R’
in terms of J% It can be done by the following procedure. First let us denote small
fluctuations in momentum space by ®¢ collectively. i.e.

" = (da;, 0hyi ,0&;) - (2.15)
Near black brane horizon (r = 1), solutions may be expanded as
(r) = (r = 1)7F (" G = 1) ) (2.16)

which corresponds to incoming boundary conditions for the retarded Green’s function [65]
and n is some integer depending on specific fields, ®¢. The leading terms ¢® are only free
parameters and the higher order coefficients such as ¢® are determined by the equations

4For B # 0 case, the bulk fluctuations to y direction should be turned on so the number of equations of
motion are doubled too.



of motion. A general choice of % can be written as a linear combination of independent

basis ¢, (i =1,2,--- ,N), i.e. p* = Zfil ¢ic;. For example, ¢f can be chosen as
11 ...1
1-1...1
(sO‘f ¢3 -- cp‘}v)z T (2.17)
11 ...-1

Every ¢¢ yields a solution ®¢(r), which is expanded near boundary as

a

¢
q)?(r)%gg+...+r5i+...7 (2.18)

where J, > 1 and the leading terms S{ are the sources of i-th solutions and Of are the
corresponding operator expectation values. S and O can be regarded as regular matrices
of order IV, where a is for row index and i is for column index. A general solution may be
constructed from a basis solution set {®¢}:

4 . acl
() = BHr) = ST+ E (2.19)
Ra
=J%4 .. +7"Ta+...7 (2.20)

= (SThHL g, (2.21)
so the corresponding response R® may be expressed in terms of the sources J°,
R = 0% = 0¢(S~H)igP. (2.22)
With (2.22), the action (2.13) becomes

52 —

ren

?, [Aa(@) + BacO5(S™(w)] T
(2.23)

1

g/w e
1 a b
2/w e abJ}

where the range of w is chosen to be positive following the prescription in [65] and the
retarded Green’s functions are explicitly denoted as

Grg Gy Gys
Gab = GTJ GTT GTS . (224)
Ggj Gsr Ggs

SThere is one subtlety in our procedure. The matrix S of solutions with incoming boundary condition
are not invertible and we need to add some constant solutions, which is related to a residual gauge fixing
0grz = 0 [53].



Re[Rl/u

wly

wlj
5 H

(a) Electric conductivity (b) Thermoelectric conductivity (¢) Thermal conductivity

Figure 2. AC electric conductivity(o(w)), thermoelectric conductivity(a(w)), and thermal
conductivity(k(w)) for 8/p =1 and ¢ = 3 at different temperatures: T/T, = 3.2,1,0.89,0.66,0.27
(dotted, red, orange,green, blue). Top is the real part and bottom is the imaginary part of
conductivities.

Finally, the thermo-electric conductivities are related to the retarded Green’s functions as

( o aT)
al rT
(2.25)

__t GJJ —nG gy +Gr '
w\ -uGyy+Gry Gpp—Gppw=0)—pu(Gyp+Gpy—uGyy)

3 Conductivities with a neutral scalar hair instabitliy

In this section we present our numerical results of the electric, thermoelectric and thermal
conductivities of the model (2.1), which are obtained by the numerical method reviewed
in the previous subsection. There are two cases: i) with a charged scalar hair (¢ # 0) or
ii) with a neutral scalar hair (¢ = 0), where ¢ is defined below (2.1) through the covariant
derivative Dy ® = VP — igApD.

3.1 Charged scalar case (g # 0)

The first case with ¢ # 0 have been computed in [31, 46, 54]. As an example, in figure 2,
we show the results for B = 0,¢ = 3 [46], which is reproduced here for easy compar-
ison with new results in this paper. Figure 2 shows AC electric conductivity (o(w)),
thermoelectric conductivity (a(w)), and thermal conductivity (k(w)) for f/u = 1 and
qg = 3 at different temperatures. The colors of curves represent the temperature ra-
tio, T'/T,, where T, is the critical temperature of metal/superconductor phase transition.
T/T. = 3.2,1,0.89,0.66,0.27 for dotted, red, orange,green, and blue curves respectively.
In particular, the dotted curve is the case above T, and the red curve corresponds to the



critical temperature. The first row is the real part and the second row is the imaginary
part of conductivities.

One feature we want to focus on in figure 2 is 1/w pole in Im[o] below the critical
temperature. There is no 1/w pole above the critical temperature. By the Kramers-Kronig
relation, the 1/w pole in Im[o| implies the existence of the delta function at w = 0 in Re[o].
It means that in superconducting phase the DC conductivity is infinite while in normal
phase the DC conductivity is finite due to momentum relaxation.

3.2 Neutral scalar case (¢ = 0)

Unlike the studies in [46], here we set ¢ = 0 (a neutral scalar hair). Between finite ¢
and zero ¢, there is a qualitative difference in the instability of a Reissner-Nordstrom AdS
black hole [8]. The origin of the superconductor (or superfluidity) instability responsible
for the complex scalar hair ® may be understood as the coupling of the charged scalar to
the charge of the black hole through the covariant derivative Dy, ® = Vj;® — igAp®. In
other words, the effective mass of ® defined by m2; = m? — ¢*|g"*|A? can be compared
with the Breitenlohner-Freedman (BF) bound. The BF bound for AdSgy; is —% = m3p.
The effective mass mgﬁc may be sufficiently negative near the horizon to destabilize the
scalar field since |g*'| becomes bigger at low temperature.® Based on this argument one
may expect that when ¢ = 0 the instability would turn off. However, it turns out that a
Reissner-Nordstrom AdS black hole may still be unstable to forming neutral scalar hair,
if m? is a little bit bigger than the BF bound for AdS;. It can be understood by the
near horizon geometry of an extremal Reissner-Nordstrom AdS black hole. It is AdSyx
R? so scalars above the BF bound for AdS; may be below the bound for AdS,. These two
instability conditions can be summarized by one inequality [46]

ﬁ2
2¢° 1 oz 1
2 2 0 2

mig=|m"———=| |z |1+ = < —= =mgp, (3.1)

eff 1 % 6 14 ﬁé 4 BF

which reproduces the result for § = 0 in [2]:

2 _ (2 _ 9,2 1 L 3.9
meﬂc—(m q) 5 < 4—mBF- (3.2)

Here, we see mgﬁ can be below the BF bound when ¢ = 0.

However, it was discussed in [8, 9] that the instability to forming neutral scalar hair for
g = 0 is not associated with superconductivity because it does not break a U(1) symmetry,
but at most breaks a Zo symmetry ® — —®. Therefore, it would be interesting to see if the
DC conductivity is infinite or not in the background with a neutral scalar hair.” Without
momentum relaxation (5 = 0) this question is not well posed since the DC conductivity
is always infinite with or without a neutral scalar hair due to translation invariance and
finite density. Now we have a model with momentum relaxation (8 # 0), we can address
this issue properly.

5As the temperature of a charged black hole is decreased, gy develops a double zero at the horizon.
"We thank Sang-Jin Sin for suggesting this.
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Figure 3. AC electric conductivity(o(w)), thermoelectric conductivity(a(w)), and thermal
conductivity(k(w)) for 8/p =1 and ¢ = 0 at different temperatures: T/T, = 1,0.84,0.62,0.45,0.32
(red, orange,green, blue). Top is the real part and bottom is the imaginary part of conductivities.
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Figure 4. Near w = 0 behaviours of the real part of conductivities in figure 3.

To have an instability at ¢ = 0 we choose the same parameters as figure 2: m? = —2
and B/p = 1. For ¢ = 0, m%; = —1/2, which is below the BF bound (3.1). Figure 3
shows our numerical results of conductivites, where all temperatures are below T.: T'/T, =
1,0.84,0.62,0.45,0.32 for red, orange,green, and blue curves respectively. A main difference
of figure 3 from figure 2 is the disappearance of 1/w pole in Im[o] below T,.. It confirms
that the neutral scalar hair has nothing to do with superconductivity as expected.

In figure 3 it is not easy to see the conductivities in small w regime, so we zoom in
there in figure 4. Contrary to the conductivity of normal component in superconducting
phase, the DC electric conductivity is not so sensitive to temperature and increases as
temperature decreases, which is the property of metal. The thermoelectric and thermal
conductivities decrease as temperature increases except a small increase of thermoelectric
conductivity near the critical temperature. As a cross check, we have also computed these
DC conductivities analytically by using the black hole horizon data according to the method
developed in [52]. Since there is no singular behavior in the conductivities as w — 0 we
may regard the real scalar field here as the dilaton in [52] and the conductivities read

2
4;2@5 , o= 471'52 , k= 47r85r€ , (3.3)

c=1+

- 11 -
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where s, Q and T are the entropy density, charge density and temperature in the dual field
theory. They are given by s=4nr?, Q = lim,_,e0 r2eX/2 Al (r) and T = %;h)e(X(oo)_X(’”h))/Q.
The analytic values are designated by the red dots in figure 4 and they agree to the nu-
merical values very well. For a special case with g = 0, in figure 5, we see that o(w) =1,
different from superconducting case (¢ # 0 shown in [46]), but a(w) = 0, same as super-
conducting case.

3.3 General expression for superfluid density

We have found that for ¢ = 0 there is no 1/w pole in Im|[o], of which strength corresponds to
superfluid density. To understand it better, we derive an expression for superfluid density
for ¢ # 0. Let us start with the Maxwell equation,

VuFY"N = —iqg (2*DN® — @DV o*) . (3.4)

Once we assume that all fields depend on r and ¢ and the fluctuations are allowed only for
the z-direction, the z-component of the Maxwell equation reads

O/ —gF™" = Op/—gF"™ +iq/—g (®*D*® — ®D*d*) . (3.5)
The integration of (3.5) from horizon to boundary gives the boundary current

J¥ = lim /—gF*"

r—00

= lim /—gF"" +/ drop/—gF*™® —|—iq/ dry/—g (®*D*® — D" P*) .

T—T
h h h

(3.6)
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By hydrodynamic expansion for small w, it turns out that the first term and the second

term goes to zero as®

lim /—gF* ~ O(w)e ™, / drog/—gF™ ~ O(w?)e ™t (3.8)
Th

T—Th

while the last term goes to constant. Here we used the expression of the fields near horizon

0A, = (U(r)) o g (w,m)e” ™t

r2

I A
gtz =1 <U;;)> ho(w,r)e™ ™ +iwr?e ™" (3.9)

e = (U“))_Z“ Eulw, r)e ™! 4 e,

r2

where ( is a constant residual gauge parameter fixing dg,, = 0 [53], and G, hy and Xz can
be expanded near horizon as

ax(wﬂ") N.A0+A1(T—’I”h)+--~ ,
}Alz(war) ~ Hl(r - Th) ooy (310)
Eolw,r) ~ &0+ &ilr —rp) + -+

With the following source-vanishing-boundary conditions®
lim 25gtx = Tim (hy +iwC)e ™ =0, lim ¢, = lim (5; n ﬁ() et =0, (3.11)
r—o0 T T—00 r—00

except 6 A,, the current (3.6) can be interpreted as

J? = —iwog (w)0 AL |r=co - (3.12)

8More explicitly, by using (3.9) and (2.6), the first term of (3.8) is expressed as

err F(Fmrgrrgz:v Ftrg'rr xx tt 6gzt>

U\ | U. S\ (U T i
=—v/—g (( 47TT (—) + T—Qa; +A;exhz> (ﬁ) +szAieX) et

where at horizon the second term and third term vanishes because U(r4) = 0 and ha ~ (r—r1,) (3.10). Thus,
limy—p,, /—gF™ ~ O(w)e”™*. Similarly, by using (3.9) and (2.6), the second term of (3.8) is expressed as

oo oo oo 2 U —IxT .
/ drog/—gF*™* :/ dry/—gg" ¢" 926 Ap = w / dr% (—2> Gge” ", (3.7)
r
Th Th Th
which is of order w?
9The source-vanishing condition is equivalent to the relation wé,(co0) = iBh. (c0). Thus it will give some
constraint between two fields &, and h, near horizon, but it does not affect (3.8) because &, does not enter

in counting order w near horizon as shown in footnote 8.
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Because only the last term of (3.6) contribute to J* for w = 0, as discussed in (3.8), the
superfluid density K(the strength of the 1/w pole of Im[o]) is given by

: . J*
Ko = iy whmlo] = I e = 0)
T iq > — X VTF T gy *
~ AL = ) / RAR (3:49)

T / T are (0 (54, + 2 oxs
w=0 0 Ay (r = 00) J,, U i | -

This shows how the hairy configuration ® contributes to Ks. If ¢ = 0, K vanishes, which
confirms our numerical analysis.

4 Ward identities: constraints between conductivities

In this section, our goals are threefold. First, we derive the constraints between three
conductivities (electric, thermoelectric, and thermal) in superconducting phase with mo-
mentum relaxation, which generalize the constraints in normal phase without momentum
relaxation computed in [3, 55]. These constraints are obtained analytically from field the-
ory perspective, by analyzing the Ward identities. Second, we confirm the constraints
numerically from holographic perspective, by solving bulk equations numerically. This
confirmation serves as a nice cross-check of our holographic computation and numerical
method. Third, we compute the small w limit of the constraints and identify superfluid
density and normal fluid density and the relation between them.

In section 4.1 we analytically derive the Ward identities for our model (2.1) with ¢ # 0
regarding diffeomorphism from field theory perspective. In our field theoretic derivation
of the Ward identities, we do not use any details of the bulk model except field contents,
so they hold in more general models sharing the same symmetry and field contents as our
specific model (2.1). The minimum requirement is that the system should be invariant
under diffeomorphism and U(1) gauge transformation (without gravitational and gauge
anomalies). In addition, we assume that the system is described by the following operators:
the stress-energy tensor 7%, U(1) current J*, two real scalar operators O/(I = 1,2),
and complex operators Og, Q. Therefore, we will introduce the corresponding external
sources: metric l_zag, the gauge field Am real scalar sources 17, and complex scalar sources
®*,® respectively.

By using specific field theory information of our model, general Ward identities boil
down to constraints between conductivities(o, ar, &) and two-point functions related to the
scalar operator. Our main results are (4.44)—(4.45) for finite magnetic field (B # 0)
and (4.56)—(4.58) for zero magnetic field (B = 0). They extend the Ward identities for
normal phase without momentum relaxation [3, 55] to superconducting phase with mo-
mentum relaxation. Next, in section 4.2 we confirm them numerically from holographic
perspective, by solving bulk equations numerically.
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4.1 Analytic derivation: field theory

To derive the Ward identities, we closely follow the procedure in [3]'? and extend the results
therein to the case with real and complex scalar fields, which are 1; and ® in (4.1). Our
final results are (4.44)—(4.45) and (4.56)—(4.58).

Let us start with a generating functional for Euclidean time ordered correlation

functions: S S
W lhas Ay .87 _ / DX e~ S X has Aoy 887 (4.1)

where Eag, flu, Y, ®, and ®* are the non-dynamical external sources of the stress-energy
tensor 7%, U(1) current J*, real scalar operators O, and complex operators Og', Ogp
respectively. We define the one-point functions by functional derivatives of W:

=g T EE O EE e )= G
(4.2)

where these expectation values are not tensors but tensor densities under diffeomorphism.
One more functional derivatives acting on one-pint functions give us Euclidean time ordered
(P;) two-point functions:

2
G ) = (PUT T (y)) = d gt (1.3
Vo Vi e 2w
Gy (x,y) = (P(TH (2)J%(y))) = 2m7 (4.4)
/LZ/I v I 52W
GE(a.) = (P (@O W) = 27— v (4.5)
uv,® _ v [} _ 52W
Gy (x,y) = (P(TH (2)0%(y))) = 2ma (4.6)
a o §2W
G (z,y) = (Pe(J*(x)J*(y))) = A, (2)0A0(y) (4.7)
T _ I 52w
Gy’ (z,y) = (P(J"(2)O0' (y))) = A, ()00 (4.8)
G (019) = (U0 0) = 5 i (19)
J,I J T 52W
Gy (z,y) = (PO ()0 (y))) = 50, )00 ) (4.10)
J<I> J P (52W
Gy (z,y) = (PO (2)0%(y))) = 50, (2)05* ()’ (4.11)
% 2
GE (w.9) = (PUO* @O (1) = sz (412)

We consider the generating functional Wlhag, A,, ¥r, ®, ®*] invariant under diffeomor-
phism, ¥ — z* 4+ ¢, and the variation of the fields can be expressed in terms of a Lie

193ee [66] for a holographic derivation.
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derivative with respect to the vector field (,:
(ﬁluu = (ECB);W = V,ucu + vl/CM? ( )
5121# = (ECA)M = CAV)\ALL + (VMCV)AV ) (4'14)
S = (Lcr) = OVatr, (4.15)
60 = (L) = MV (4.16)

For diffeomorphism invariance, the variation of W should vanish:

B USRS (L,
oW = / 3z < S (@) (Leh)w + 5, (2) (LcA), + 551(2) (Letdr)
oW _ oW

which, after integration by parts, yields the Ward identity for one-point functions regarding

(4.17)

diffeomorphism.
DT + BV (IY) + (O RA05f; + (OPVR0,8* + (0P NVA0,d =0, (4.18)

where Dy, (T* (z)) = 0, (TH" (2)) + 15 (T8 (x)). Here we also used the Ward identity for
U(1) gauge symmetry, which is summarized in footnote 12.

By taking a derivative of (4.18) with respect to either hos(y), Aa(y), ¥/ (y) or ®*(y),
we obtain the Ward identities for the two-point functions:

Dy (PUT )T (2))) + B, (P ()4 () — B2 () 5 50(2 — )
PRI 5050~ y) 4 B0 (P ()0 (2) (4.19)
+ 2Re { A" 0,@* (P (J*(y)O%(z)))} =0,

Dy (Pi(TP (g)T (@) ) + 8(w — y) (R Dy (T () ) + g7 D, (T7()))
+ (0 (1)) + P ) — B (1)) 225 )
— (BT, + BT ) (T (@) o(w — y) (4.20)
+ B (B (PUT () @)) = Bbr (PUT ()0 (@))))
— 2Re {E“ﬂauci»* <Pt(Taﬂ (y)o<1>(x))>} —0,

Dy (PO ()T () = R Fya (P(O7 ()7 (@) ) + B (P(O7 ()0 (2))) Oty

() ;ﬁa(x —y) + 2Re {B“ (PO (y)O% (2))) 8@*} =0, (4.21)

D, (PO ()T (2)) = W Eyp (PUO® (1) (2)) ) + B (PUO (1) (2)) 0ahy
+ M O%(2)) aiAa(a; —y) + B (P (O% (y)O® (2))) 0, P
+ R <7>t(o‘b(y)o<“(a:))> 00® =0, (4.22)

where the covariant derivatives act only on the operators of x.
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From here we consider a flat space, EW = 0,,, and assume external fields such as
F v 8M1/;1 and @, are constant in space-time. We further assume translation invariance is
not spontaneously broken in the equilibrium state, so all the one point functions, <T“” >,
<J“>, <OI > and <O¢>, should be constant in space-time. In momentum space, the Ward
identities (4.19)—(4.22) read

0=~k GEH" (k) — iF,Y Gt (k) + K (J%) — k8 (JF) — io" 9, 01GR" (k),  (4.23)
0=k (G377 (k) + 87 (T ) 4 6% () — 51 (7))

i (RGP ) + 60,0, G (1))

6% (B, (J#) + 8% (O oy ) — i (B, (7%) + 0™ (O ordr ), (4.24)
0=~k GH" (k) — iF Y G — G (k)8 ozdr — (O7) kY, (4.25)
0=~k GP" (k) —iF Y Gp" — Gy (k)6 0xpr — (OP) kY. (4.26)

Since we want to study transport coefficients, we analytically continue to Minkowski
space, so that the Euclidian Green’s functions can be continued to the Retarded Green’s
functions. Thus, the Ward identities (4.23)—(4.26) become

0= —k, Gy (k) — iF, G (k) + K (J%) — kun™ (J*) + i 8,p1 Gl (k) (4.27)
0=~k (C;‘C;f’“”(k) + 0" <T“B> + P (THey — v <T°‘5>)

i (B G ) = 0, G (k)

—in™ (B, (%) = 0 (O1) dxiy ) —in™ (B2 (%) =y (OT) ordhr ), (4.28)
0= k,Gp (k) +iF Y GR —iGy (k) oxgr + (O7) K, (4.29)
0= —k,Gp" (k) — iF Y GR* + Gy (k)" oz — (OP) k. (4.30)

In particular, we consider 241 dimensional system in an equilibrium state with the
constant expectation values for the energy-momentum and current

€00
(T"y=10p0 |, (J*) = (n,0,0) , (4.31)
00p

with finite or zero condensate <(’)q’> and <(’)I > = 0. To this system we apply a constant
external magnetic field with a background scalar 1);:

F = Bdz Ady, Ur = (Bz, By) . (4.32)
We take k* = (w,0,0) to focus on the spatially homogeneous AC conductivity induced by

the small external electric field and temperature gradient along i(= z,y) direction.
Under these conditions the Ward identities (4.27)-(4.29) becomes

WA _ i Bk G 4+ wiThn 4 iBsEGY =0, (4.33)
w (@ORj’Ok + 5kje> —1 (Beiké?;g’i - ﬁ‘slfé%l) =0, (4.34)
WG BTG — G B8l =0, (4.35)
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where 4, j, k run over z and y. It is convenient to introduce the complexified combinations

defined as
(1), =GR —iGRY, (I, =Gy Gy
(T = AGR G (59, = Gl G,
(ST), = j:é}éx _ ié}q’y, (ST), = ié?wx B Z.é};:l’(]y‘

With this notation, (4.33)—(4.35) can be rewritten as

tw(JT), —B(JJ), +wnxif(JS), =0,
+w(ITT), —B{TJ), +wexiB(TS), =0,
Fw(ST), — B(SJ), FiB(SS),. =0,

or, in terms of the heat current Q =71 — uJ,

tw(JQ), + (fpw —B)(JJ)  +wn=£if(JS), =0,
+w(QQ), + (Fpw — B) (JQ), +w(e—pun) Fipp (JS), =0,
Fw (SQ) L + (Fuw — B) (SJ), FiB(55), =0.

Finally, using the Kubo formulas for conductivities'!

1 1 1 1
0+ = — <‘]‘]>ﬂ: ) a4 = {J.JiT <Q‘]>j: ) O_éi = CUiT <‘]Q>:|: ) Ri = ﬁ <QQ>:|: )

W

we obtain the relations between the conductivities:

Ward 1 : +w?Tas + w(tpw — B)ox +wn+if(JS), =0,
Ward 2:  +w?Tky + w(tpw — B)Tax +w(e —pun) FipB (JS), =0,
Ward 3 : Tw(SQ) . + (Fuw — B)(SJ), Fipf(SS), =0,
where we redefined k4
Ra s Ry — (TT) 1 0 7
wT

(4.36)

(4.37)
(4.38)
(4.39)

(4.40)
(4.41)
(4.42)

(4.43)

(4.44)
(4.45)
(4.46)

(4.47)

to subtract a counter term and ¢ = e+ (TT), _,. In normal phase, if 3 =0 and B # 0,

(TT), o = £e/2 [3).
If B=0, (4.37)—(4.39) is simplified as

w(JT) +wn+iB(JS)=0
w(ITT)+we+iB(TS)=0,
0

where 0 . 00
Ty =G, ISy =Gy, (T =GR,

(TS) =Gy, (ST)=GRp™, (S8) =G},

HThe complexified conductivities are denoted by X4+ = Xoy £1Xer, where X =0, 0, &, k.
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since we don’t need to consider y-coordinate. Or, in terms of the heat current Q =T — uJ,

(JQ) + 1 (J]) +n+i§ (JS) =0, (452
(QQ) + 1 (JQ) +{Q) + 2 (1) +e+i0 (108) + p(IS) =0, (453)
(SQ) + 1 (ST} +n+ ig (SS)=0.  (450)
Using the Kubo formulas
LU, a= Q) G- Q) R= - (QQ) (4.55)
77w r T T r T T v T eT ’ '
we obtain the relations between the conductivities:
. R O
Ward 4 : a+ T sz—l—ﬂsz =0, (4.56)
2 /
- pwo & (QS) | Lu(JS)
Ward 5: R+ 2pua+ T ZwT+Bw2T + 5 T =0, (4.57)
Ward 6 - (ST) + i/ﬂ“f) ~0, (4.58)

where & is redefined as (4.47) to subtract a counter term and € = e+ (T'T) _,. In normal
phase, (TT),,_, = —e€ and €¢/2 for § = 0 and 3 # 0 respectively. In superconducting phase
for 3=0, (TT),_, = —e.'?

4.2 Numerical confirmation: holography

In the previous subsection we have derived the Ward identities for two-point functions
from field theory perspective. Here we show that those Ward identities indeed hold in
our holographic model studied in [31, 46, 54]. More concretely, our goal is to compute
o,a,k, (JS),(QS), (SS) numerically and plug them into the Ward identities (4.44)—(4.45)
and (4.56)—(4.58) to check if they add up to zero or not.

For B = 0, the conductivities o, a, k were reported in [54] and reproduced in figure 2.
Here in figure 6 we display the other two-point correlation functions related to the real
scalar operator, (JS), (QS), and (SS). Contrary to figure 2 there is no divergence at
w = 0, which is also shown in their small w expressions (4.68)—(4.70). By using the data in
figure 2 and 6 we numerically compute the left hand side of three Ward identities (4.56)—
(4.58). The numerical sums for all considered temperatures are shown together in figure 7.
All of them vanish(< 1071%), confirming analytic formulas. We have also checked three
other cases: 1) B=0and 5/u=0.1,2) B=0and =0, 3) B # 0. It turned out that all
numerical sums vanish too. For completeness, we show the numerical data for these three
cases in the appendix A.

21f W is invariant under U(1) gauge transformations, A, — A, + d,A, the Ward identity for one-
point function yields current conservation 9, (J*(x)) = 0. The Ward identities for two point functions are
—wGP + kG = 0, —wGP* + kG™T = 0, —wGP? + kGTT = (0?), —wG®t + kGTT = —(0?), [67] and
—wGY 4+ kEGHT = 0.
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Figure 6. (JS), (QS), (SS) for u/8 =1 at T/T, = 3.2,1,0.89,0.66,0.27 (dotted, red, orange,

green, blue).
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(a) Ward 4: (4.56) (b) Ward 5: (4.57) (c) Ward 6: (4.58)

Figure 7. Confirmation of Ward identities. The left hand side of (4.56)—(4.58) is plotted for the
temperatures shown in figure 6 all together. They are almost zero, less than 10715,

4.3 Conductivities at small w
In this subsection we analyse small w behaviours of the two-point correlation functions
based on our numerical results and Ward Identities both in superconducting and normal
phase. After identifying superfluid density and normal component density in the two fluid
model of superconductor we check Homes’ law and Uemura’s law.

For 8 = 0, the Ward identities (4.56)—(4.58) become simplified

Rela] = —%Re[a] , Re[f] = —uRela] , s
" un 4.59
Tm[a] + %Im[a] - % : Im[#] + plm[a] = % .

This relation was reported in [2] for normal phase and here we have shown it still holds
for superconducting phase. By these relations, once o is obtained, « and k are completely
determined. In both normal and superconducting phase, Im[o] turns out to have 1/w pole
by numerical computation so Re[o] is infinite by the Kramers-Kronig relation [2, 8, 31].
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Therefore, by (4.59), Re[a] and Re[#] are also infinite and Im[a] and Im[&] have 1/w poles.
In normal phase it is due to the absence of momentum relaxation and in superconducting
phase there is another contribution due to condensate.

For B # 0, the Ward identities (4.56)—(4.58) may be rewritten as

B Re[(JS)]

Rela] + ﬁRe[a] = e, (4.60)
tmfa] + Amlo] = 22 - 212050 (1.61)
Re[f] + yRe[a] = —ﬁRe[igS” , (4.62)
Tm[7] + pmla] = :;F - % - gm%gsn (4.63)
(QS) + 1 (JS) + 5<S S) _, (4.64)

where (4.62) and (4.63) are obtained by combining (4.56) and (4.57), and we used @Q =
T —pJ. Contrary to the case of § = 0, @ and R are not determined by ¢ only, because there
are other correlators (J.5), (QS), and (SS) involved in the Ward Identities. For exmaple,
once we know o, a, and k, we can read off (J.S), (QS), and (SS) by the Ward identities.

In normal phase (see, for example, the dotted curve in figure 2), the real and imaginary
part of o, a, and & are all finite at w = 0 due to the momentum relaxation (5 # 0). At
small w, it is inferred that Re[(JS)] ~ w? from (4.60) and Im[(JS)] ~ w from (4.61).
Also Re[(QS)] ~ w? from (4.62) and Im[(QS)] ~ w from (4.63).!3 Finally, the small w
behaviour of (SS) is determined by (JS) and (QS) via (4.64). In superconducting phase
(see for example the solid curves in figure 2), unlike normal phase, Im[o]| and Im[%] have
1/w poles, which implies the existence of delta functions at w = 0 in the corresponding real
parts. In summary, the small w behaviours can be written as

K
o~ ngé(w) +opc +1 <ws + w01> , (4.65)
« ~ apc + wary, (4.66)
1K 1K, 1
i~ =t T 72T(5< )+/_€Dc+i( T w—i—wm) (4.67)
_ 2 : n-— /-‘LKS
(JS) ~ 5 ( 5( ) = HoDC TaDC) w? +iw <ﬂ ) : (4.68)
, —_— —_—
(QS) ~ — <M2Ksz5(u}) — Tkpc — ,uTaDC) w? + iw (6 un MKS)) , (4.69)
B 2 B
/ T 2
<SS> —?w + ZWS@ (—RDC — 2papc — l;UDc> , (4,7())

where opc, apc, kpc are real value of conductivities at w = 0, while o7, ay, K7 are imaginary
values linear to w. Kj is introduced as a strength of the pole of Im[o],

K, = lim wlm(o], (4.71)

w—0

131t is possible that the power of w could be bigger than what are inferred. We have fixed them from
numerical data.
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(a) % =10.3,0.4,10 (red, orange, gray) (b) % =3,5,7,10 (green, blue, purple,
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TIT,

Figure 8. % (dotted curves) and %(solid curves) for ¢ = 3: the normal density K, /u at a given
1/B is the difference between the dotted and solid curve. The K,, at low temperature vanishes
when 5 2 2.

which can be identified with the superfluid density [42]. In (4.65)—(4.70), K, is the only
parameter characterising the superconducting phase and if we set K; = 0 the expressions
works for the normal phase. The two-point functions related to the scalar operator S ({J.S),
(QS), (55)) diverge when S goes to zero at small w. We have confirmed that (4.65)—(4.70)
agree to the numerical results in figure 6, 12 and 13.
If we define a normal fluid density (K,,) as
K, = 5 i LIS (4.72)
M w—0 w
the Ward identity (4.61) yields the charge conservation n = K+ puK,. In figure 8, we plot
n/u?(dotted curves) and K/u(solid curves) versus T)/T, at several u/Bs. The difference
between the dotted and solid curve at a given p/f is K,,/u. As temperature approaches to
zero,'* K, vanishes for p/8 2 2 (figure 8(b)) while K, is nonzero for u/8 < 2 (figure 8(a)).
Interestingly, it seems that this transition conicide with the coherent/incoherent metal
transition studied in [31], where the metal state of this model was classified as coherent
state with a well defined Drude peak in AC conductivity for /8 < 2 and incoherent state
without a Drude peak for p/3 < 2.15 In coherent state, the normal fluid density K, can be
used as an input parameter to fit the Drude formula in the two fluid model of holographic
superconductors [42]. The non-zero K, at zero temperature for large momentum relaxation
has been also observed in a holographic superconductor dual to a helical lattice [47].

5 Homes’ law and Uemura’s law

Homes’ law (1.1) and Uemura’s law (1.2) were introduced in section 1. In this section we
check if Homes’ law and Uemura’s law are realized in our model (2.1) with nonzero ¢g. For
q = 0 the system is not a holographic superconductor as shown in section 3. The scalar

QOur numerics becomes unstable near zero temperature, so we present data up to the lowest possible
temperature in our numerics.

15Here, the metal state means both normal phase and the normal component of the two fluid model in
superconductor phase.
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1 giving momentum relaxation is essential for Homes’ law because without momentum
relaxation opg is infinite and Homes’ law cannot be satisified.

Homes’ law and Uemura’s law are material independent universal scaling relations
observed in high temperature superconductor as well as conventional superconductors [47,
56-58]. Uemura’s law appearing in underdoped cuprates is

ps(T =0)=BT,, (5.1)

and Homes’ law satisfied in a broader class of materials is

7T = 0) = Copa(Te) T, (5.2)

where B and C are material independent universal constants. Here, the superfluid density
(ps), temperature(T'), and conductivity(opc) are all dimensionless [47]. In this subsection
we use momentum relaxation strength parameter(3) as our scale so we choose p, = K¢/
and T = T/5. In our model, there are two free parameters, u/f and g. Thus universality
of B and C means that B and C are independent of u/f and ¢q. To check this it is
convenient to fix ¢ first, and make plots of B and C' vs p/f for Uemura’s law and Homes’
law respectively.
To compute B and C,
ﬁs _ & K

Ps
B = = = ; C = = == 5 5.3
T. Te opcT e opcTe ( )

the superfluid density p,(= p/B - Ks/p) can be read off from the solid curves in figure 8,
where the curves do not reach to T' = 0 because of instability of numerical analysis.
Therefore, we extrapolated the curves up to zero temperature to read p, at 7= 0. The
conductivity opc can be read in figure 2 or analytically opc = 1+ /8% in our model [28].
The transition temperature T, has been computed numerically in [46]. Our numerical
results of j,,T. and opC for ¢ = 3 are shown in figure 9.

From figure 9 we may expect that there is a linear relation between p, and T, at
least for large p/f, which supports Uemura’s law. To see if this is the case also for
small p/f we make a plot of B vs u/f in figure 10(a), where we find that Uemura’s law
holds only for u/5 2 2, of which data are red dots. Interestingly, the parameter regime
/B Z 2 (red dots) belongs to coherent metal regime, where the optical conductivity of
normal component shows a Drude peak behaviour. Furthermore, this regime corresponds
to figure 8(b), where charge density is the same as superfluid density at zero temperature.
The blue dots belong to incoherent regime, where a optical conductivity loses a Drude
behaviour. They correspond to figure 8(a) and there is a gap between charge density
and superfluid density at zero temperature. Also, for different values of ¢, we find that
Uemura’s law is satisfied for large p/f8 but with a different constant B. For example,
for ¢ = 2, B ~ 6.87 and for ¢ = 6, B ~ 4.64 in the regime of p/8 = 2 (figure 10(c)).
Since Uemura’s law is observed in underdoped regimes, if 5 can be interpreted as a doping
parameter our result will be consistent with phenomena.
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Figure 9. ﬁs71~“s, and opc for ¢ = 3.
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Figure 10. Checking Uemura’s law. Uemura’s law holds in coherent regime (red dots: p/f =
2,3,5,7,10,15,20) while it does not hold in incoherent regime (blue dots: p/8 = 0.3,0.4,0.5,0.7,1).
In (a) the black line is drawn for B ~ 5.47, and in (b) the black lines are drawn for B ~
6.87,5.47,4.64 for g = 2, 3, 6 respectively.
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Figure 11. Checking Homes’ law. Homes’ law does not hold. The blue dots are for incoherent
regime (u/8 =0.3,0.4,0.5,0.7,1) and the red dots are for coherent regime (u/8 = 2,3,5,7,10). In
(a) the data for C' do not align on a constant value and in (b) the data do not yield a linear relation.

Based on our results on Uemura’s law (figure 10(a)) and opc (figure 9(c)), we may
anticipate if Homes’ law is satisfied. If opc is quickly decreasing function approaching to
constant for u/8 2 2 we may have a chance to obtain Homes’ law. However, our opc
does not show that behaviour. Therefore, as shown in figure 11, Home’s law does not hold
in both coherent regime (red dots) and incoherent regime (blue dots). In figure 11(a), for
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large /3, C(= p,/(opcTe)) approaches to a constant value, but it is zero. It simply means
that opc goes to infinite as momentum relaxation goes to zero. Figure 11(b) is another
representation, a plot of p, versus opcTe, where it is also clear that there is no linear
relation between between p, and opcTe. For different values of ¢, we considered ¢ = 2
and ¢ = 6 and obtained figures qualitatively similar to figure 11, so Homes’ law seems not
satisfied for different values of ¢ either.

Homes’ law may be understood based on Planckian dissipation, for which the time scale
of dissipation is shortest possible [60]. In summary, the left hand side of (5.2), superfluid
density is proportional to density of mobile electrons in superconducting state (ng). The
right hand side of (5.2), opc is proportional to density of mobile electrons in normal state
(ny) times relaxation time (7), and the relaxation time is inversely proportional to the
temperature (Planckian dissipation):

h
kgT,’

Ps ~ NG, opc ~ ny7(Ty), 7(Te) =~ (5.4)

where kp is Boltzmann’s constant and proportionality constants of the relations are ma-
terial independent. Notice that thanks to the Planckian dissipation 7T, is cancelled out
in Homes’ law, leaving universal constant //kp. Finally if we use another empirical law,
Tanner’s law, ng = ny /4, Homes’ law is obtained.

In our model, it turns out a kind of Tanner’s law holds in coherent metal regime
(/B > 2), where momentum relaxation is weak. In figure 8(b), all curves coincide and it
means ng/ny does not depend on p/f, which is the qualitative content of Tanner’s law.
Therefore, if our system were Planckian dissipator in coherent regime, we would have seen
Homes’ law. The relaxation time 7 for our model can be written as

S f(T/ﬁ,T,U/BaQ) : (5.5)
where T in the denominator is extracted to mimic the form of Planckian dissipation [47].
Since our system does not show Homes’ law it is not a Planckian dissipator, which means
f is not universal near T... Furthermore, we may induce that f ~ u?/3? because T, ~ /3
from figure 9(b) and 7 ~ 1/ from the analysis in [31]. Indeed, it was shown that in general
the system could not be a Planckian dissipator if momentum is relaxed weakly [47].

Our results on Uemura’s law and Homes’ law are different from the previous work [47],
where a superconductor model in a helical lattice was studied. In the model, there are
two parameters corresponding to the strength of momentum relaxation effect: the lattice
strength A and the helix pitch p, and it was found that Homes’ law held for restricted
parameter regime (not in small momentum relaxation, but for rather large values of A and
p) while Uemura’s law did not hold. In particular, Homes’ law was observed in insulating
phase near phase transition. However, in our model there is no insulating phase and it may
be a reason why two models show different results. There are other differences between
two models. The model in helix lattice is anisotropic five dimensional model, while our
model is isotropic four dimensional.
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6 Conclusion and discussions

In this paper, we analysed a holographic superconductor model incorporating momentum
relaxation. Building on previous works [31, 46, 53, 54], we focused on three issues, where
momentum relaxation plays an important role. (1) Ward identities: constraints between
conductivities, (2) conductivities with a neutral scalar hair instability, (3) Homes’ law and
Uemura’s law.

In holographic methods, we often need to solve complicated differential equations which
do not allow analytic solutions, so it is important to develop reliable and systematic nu-
merical methods. Computing AC conductivities is such an example, for which we have
developed a numerical method. However, to make sure our numerics are reliable and ro-
bust, it will be good to have a cross-check. The Ward identity serves as a nice cross-check of
our numerical method since we can compare our numerical results with the independently
derived analytic formula. When there is a neutral scalar instability we explicitly showed
that the DC electric conductivity is finite, while it is infinite for a complex scalar instabil-
ity. This shows that the neutral scalar instability has nothing to do with superconductivity
as expected.

Homes’ law is very interesting and important not only because of its material in-
dependent universality but also a possible relation to quantum criticality and Planckian
dissipation, which also underpins the universal bound of the viscosity to entropy in strongly
correlated systems such as quark-gluon plasma. We have checked Homes’ law and Uemura’s
law in our model. It turns out that Homes’ law does not hold and Umeura’s law holds
for small momentum relaxation related to coherent metal regime. Our results are different
from [47], where a holographic superconductor in a helical lattice was considered and it
was shown that Homes’ law is satisfied for some restricted parameter regime in insulating
phase, while Uemuras’ law is not satisfied at all. The difference may be due to the existence
of insulating phase and/or anisotropy in a model with a helical lattice. To clarify it, it
will be helpful to study Homes’ law in different holographic superconductor models such
as anisotropic massless scalar model, Q-lattice model, or massive gravity model [68].

Regarding Homes’ law and Uemura’s law, there may be an issue in the identification
of the superfulid density. We have found that superfluid density and total charge density
at zero temperature do not agree at large momentum relaxation, similarly to the case in
a helical lattice [47]. Because the Ferrell-Glover-Tinkham (FGT) sum rule still holds in
our model [46], it is possible that part of the low frequency spectral weight are transferred
to intermediate frequencies instead of the superfluid pole. Therefore, as a cross check,
it will be good to compute the superfluid density from the transverse response by the
magnetic/London penetration depth, for which we need to solve for the transverse propa-
gator at small non-zero momentum [47]. There is also another closely related quantity to
superfluid density. By integrating a Maxwell’s equation over the holographic coordinate r,

VuF™M =iq (®*D'® — ¢D'®*), (6.1)

we may define the charge density of hair outside the horizon, nyaj., as

o0
Nhair = 11 = V/—9F" | —oo —/—9gF" | =y, = iq / drv/=g (®*D'®—®D'®*),  (6.2)

Th
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where n is the charge density of the dual field theory and ny is interpreted as the charge
density inside the horizon. In normal phase np,; = 0 while in superconducting phase
Nhair 7 0. Therefore, np.; plays a role of order parameter of superconducting phase
transition. For ¢ = 0, np,i is zero so K is zero, which is consistent with our results in
section 3. However, it turns out that the numerical value of K is different from ny,;.. We
have checked Homes’ law and Uemura’s law by using np.ir as the superfulid density, but
it did not support Homes’ law and Uemura’s law. It will be interesting to find a physical
meaning of ny,j, in the dual field theory and the precise relation to superfluid density.
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