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1 Introduction

Holographic methods have provided novel and effective tools to study strongly correlated

systems [1–6] and they have been applied to many condensed matter problems. In par-

ticular, holographic understanding of high Tc superconductor is one of the important is-

sues. The first holographic superconductor model was proposed by Hartnoll, Herzog, and

Horowitz (HHH)1 [7, 8], and there have been extensive development of the model. For

reviews and references, we refer to [2, 3, 9, 10].

The HHH model is a translationally invariant system with finite charge density. There-

fore, it cannot relax momentum and exhibits an infinite electric DC conductivity even in

normal phase not only in superconducting phase. To construct more realistic superconduc-

tor models, some methods incorporating momentum relaxation were proposed. One way

of including momentum relaxation is to break translational invariance explicitly by im-

posing inhomogeneous (spatially modulated) boundary conditions on a bulk field [11–15].

Massive gravity models [16–22] give some gravitons mass terms, which breaks bulk diffeo-

morphism and translation invariance in the boundary field theory. Holographic Q-lattice

1The HHH model is a class of Einstein-Maxwell-complex scalar action with negative cosmological con-

stant. It is based on the action (2.1) with ψI = 0. The holographic interpretation of this model is reviewed

in section 2.
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models [23–27] take advantage of a global symmetry of the bulk theory. For example, a

global phase of a complex scalar plays a role of breaking translational invariance. Models

with massless scalar fields linear in spatial coordinate [28–38] utilize the shift symmetry.

Some models with a Bianchi VII0 symmetry are dual to helical lattices [39–41]. Based on

these models, holographic superconductor incorporating momentum relaxation have been

developed [42–51].

In this paper, we study the HHH holographic superconductor model with massless

scalar fields linear in spatial coordinate [46], where the strength of momentum relaxation

is identified with the proportionality constant to spatial coordinate. The property of the

normal phase of this model such as thermodynamics and transport coefficients were studied

in [28, 30–32, 52–54]. The superconducting phase was analysed in [45, 46]. In particular,

optical electric, thermoelectric and thermal conductivities of the model have been exten-

sively studied in [31, 46, 53, 54]. Building on them, we further investigate interesting

properties related to conductivities and momentum relaxation. There are three issues that

we want to address in this paper: (1) conductivities with a neutral scalar hair instability,

(2) Ward identities: constraints between conductivities, (3) Homes’ law and Uemura’s law.

We explain each issue in the following.

(1) In a holographic superconductor model of a Einstein-Maxwell-scalar action [8, 9], a

superconducting state is due to the formation of a complex scalar field, Φ, with the

charge q in a bulk spacetime below a critical temperature. It amounts to breaking

U(1) symmetry spontaneously by an expectation value of the charged operator. The

formation of the scalar hair Φ may be understood as the coupling of the charged scalar

to the charge of the black hole through the covariant derivative DMΦ ≡ ∇MΦ −
iqAMΦ, which gives an effective mass of Φ as m2

eff ≡ m2 − q2|gtt|A2
t . m2

eff may be

sufficiently negative near the horizon to destabilize the scalar field. Based on this

argument one may expect that when q = 0 the instability would turn off. However, it

turns out that a Reissner-Nordstrom AdS black hole may still be unstable to forming

neutral scalar hair. This instability is not associated with superconductivity because

it does not break a U(1) symmetry, but at most breaks a Z2 symmetry Φ → −Φ.

Therefore, in this system with a neutral scalar hair, it is natural to expect that DC

electric conductivity will be finite contrary to the case with a complex scalar hair

(superconductor). However, to our knowledge, this argument has not been explicitly

checked yet. In the HHH models without momentum relaxation, this question is not

well posed since electric conductivity is always infinite due to translation invariance.

In this paper, in a model with momentum relaxation, we show that DC electric

conductivity that derived from the neutral hairy black hole is indeed finite.

(2) Three transport coefficients, electric conductivity(σ), thermoelectric conductivity(α)

and thermal conductivity(κ̄), are identified by the retarded two-point functions of

two operators, electric current(J) and heat current(Q). See (4.55) for explicit ex-

pressions. It was shown, in normal phase without momentum relaxation, there are

two constraints relating three transport coefficients, σ, α, and κ̄ [3, 55]. The con-

straints can be derived by the Ward identities regarding diffeomorphism and U(1)

gauge symmetry. In our model, there is an extra bulk field, a massless scalar intro-
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duced for momentum relaxation. Therefore, we have another scalar operator, say S,

in the dual field theory and consequently we have six two-point functions of three

operators, J,Q, and S. It turns out, in this case, there are three Ward identities of six

two-point functions: σ, α and κ̄ and three two-point functions related to the operator

S. If S = 0, thanks to the two constraints, α and κ̄ can be obtained algebraically

once σ is computed numerically. This is why only σ is presented in the literature [2].

However, if S 6= 0, the information of σ alone cannot determine α and κ̄, which must

be computed independently. In this paper, following the method in [3], we first derive

the Ward identities for two-point functions analytically from field theory perspective.

Next, we confirm them numerically by computing all two functions by holographic

methods. This confirmation of the Ward identities also demonstrates the faithfulness

of our numerical method.

(3) Homes’ law and Uemura’s law are empirical and material independent universal laws

for high-temperature and some conventional superconductors [56, 57]. The law states

that, for various superconductors, there is a universal material independent relation

between the superfluid density (ρ̃s) at near zero temperature and the transition tem-

perature (T̃ c) multiplied by the electric DC conductivity (σDC) in the normal state

right above the transition temperature T̃ c.

ρ̃s(T̃ = 0) = CσDC(T̃ c) T̃ c , (1.1)

where ρ̃s, T̃ c and σDC are scaled to be dimensionless, and C is a dimensionless

universal constant: C ≈ 4.4 or 8.1. They are computed in [47] from the experimental

data in [56, 57]. For in-plane high Tc superconductors and clean BCS superconductors

C ≈ 4.4. For c-axis high Tc superconductors and BCS superconductors in the dirty

limit C ≈ 8.1. Notice that momentum relaxation is essential here because without

momentum relaxation σDC is infinite. There is another similar universal relation,

Uemura’s law, which holds only for underdoped cuprates [56, 57]:

ρ̃s(T̃ = 0) = B T̃ c , (1.2)

where B is another universal constant. In the context of holography Homes’ law

was studied in [47, 58]. It was motivated [58] by holographic bound of the ratio

of shear viscosity to entropy density (η/s) in strongly correlated plasma [1] and its

understanding in terms of quantum criticality [59] or Planckian dissipation [60],where

the time scale of dissipation is shortest possible. Since Homes’ law also may arise in

systems of Planckian dissipation [60] there is a good chance to find universal physics

in condensed matter system as well as in quark-gluon plasma. In [47] Homes’ law

was observed in a holographic superconductor model in a helical lattice for some

restricted parameter regime of momentum relaxation, while Uemura’s law did not

hold in that model. However, physic behind Homes’ law in this model has not been

clearly understood yet. For further understanding on Homes’ law, in this paper, we

have checked Homes’ law and Uemuras’ law in our holographic superconductor model.

We find that Homes’ law does not hold but Uemura’s law holds at small momentum

relaxation region, related to coherent metal regime.
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This paper is organised as follows. In section 2, we introduce our holographic super-

conductor model incorporating momentum relaxation by massless real scalar fields. The

equilibrium state solutions and the method to compute AC conductivities are briefly re-

viewed. In section 3, the conductivities with a neutral scalar instability are computed and

compared with the ones with a complex hair instability. In section 4, we first derived Ward

identities giving constraints between conductivities analytically from field theory perspec-

tive. These identities are confirmed numerically by holographic method. In section 5, after

analysing conductivities at small frequency, we discuss the Home’s law and Uemura’s law

in our model. In section 6 we conclude.

2 AC conductivities: holographic model and method

2.1 Equilibrium state

In this section we briefly review the holographic superconductor model we study, referring

to [28, 31, 53, 54, 61] for more complete and detailed analysis. We consider the action2

S =

∫
d4x
√
−g

[
R− 2Λ− 1

4
F 2 − |DΦ|2 −m2|Φ|2 − 1

2

2∑
I=1

(∂ψI)
2

]
, (2.1)

where xM = {t, x, y, r} and r is the holographic direction. R is the Ricci scalar and

Λ = −3/L2 is the cosmological constant with the AdS radius L = 1. We have included

the field strength F = dA for a U(1) gauge field A, the complex scalar field Φ with

mass m, two massless scalar fields, ψI(I = 1, 2). The covariant derivative is defined by

DMΦ ≡ ∇MΦ − iqAMΦ with the charge q of the complex scalar field. However, if q = 0,

Φ is a neutral scalar not a charged scalar. We consider a neutral scalar and a charged

scalar in section 3, where it will be shown that a neutral scalar case does not correspond

to superconductors. Having this observation we consider only a charged scalar in section 4

and 5, because we are investigating properties of superconductors in those sections.

The action (2.1) yields equations of motion

RMN −
1

2
gMN

(
R+ 6− 1

4
F 2 − |DΦ|2 −m2|Φ|2 − 1

2

2∑
I=1

(∂ψI)
2

)

=
1

2
FMQFN

Q+
1

2
(DMΦDNΦ∗+DNΦDMΦ∗)+

1

2

2∑
I=1

∂MψI∂NψI , (2.2)

∇MFMN = −iq(Φ∗DNΦ− ΦDNΦ∗) , (2.3)(
D2 −m2

)
Φ = 0 , ∇2ψI = 0 , (2.4)

for which we make the following ansatz:

A = At(r)dt+
1

2
B (xdy − ydx) , Φ = Φ(r) , ψI = (βx, βy) , (2.5)

ds2 = −U(r)e−χ(r)dt2 +
dr2

U(r)
+ r2(dx2 + dy2) . (2.6)

2The complete action includes also the Gibbons Hawking term and some boundary terms for holographic

renormalization, which are explained in [28, 31, 53, 54, 61] in more detail.
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Via the holographic dictionary, At(r) encodes a finite chemical potential or charge density

and B plays a role of an external magnetic field. Φ(r) is dual to a superconducting phase

order parameter, condensate. Near boundary (r → ∞), Φ ∼ JΦ

r3−∆ +
〈OΦ〉
r∆ + . . . with

two undetermined coefficients JΦ and
〈
OΦ
〉
, which are identified with the source and

condensate respectively. The dimension ∆ of the condensate is related to the bulk mass

of the complex scalar by m2 = ∆(∆ − 3). In this paper, we take m2 = −2 and ∆ =

2 to perform numerical analysis. ψI is introduced to give momentum relaxation effect

where β is the parameter for the strength of momentum relaxation. For β = 0, the

model becomes the original holographic superconductor proposed by Hartnoll, Herzog,

and Horowitz (HHH) [7, 8].

One way to understand momentum relaxation effect by ψI is to see the Ward identity

related to the boundary stress tensor of the model (2.1) when Φ = 0 [28]:

∇ν〈T νµ〉 = −F µ
ν 〈Jν〉 − ∇µψI〈OI〉 , (2.7)

where µ, ν are indices in the field theory xµ = (t, x, y). If we consider a homogeneous

and isotopic system in flat spacetime the left hand side becomes the time derivative of the

momentum (say µ = x),

〈Ṗ x〉 = Ex〈J t〉 − ∂xψI〈OI〉 , (2.8)

where 〈P x〉 ≡ 〈T tx〉, Ex ≡ F tx and assume a finite density system without current, i.e.

Jν = (J t, 0, 0). The first term on the right hand side is a driving force, which is the

boundary electric field (Ex) times the charge density (J t). The second term plays a role

of friction and gives momentum relaxation. By choosing ψI = (βx, βy) with constant β as

in (2.5) we can achieve nonzero dissipation in a homogeneous and isotropic system.

First, if Φ(r) = 0 (no condensate), the solution corresponds to a normal state and its

analytic formula is given by

U(r) = r2 − β2

2
− m0

r
+
n2 +B2

4r2
, χ(r) = 0,

At = n

(
1

rh
− 1

r

)
,

(2.9)

where rh is the location of the black brane horizon defined by U(rh) = 0, m0 ≡ r3
h −

β2rh
2 + n2+B2

4rh
, and n is interpreted as charge density. It is the dyonic black brane [62]

modified by β due to ψI [54]. The thermodynamics and transport coefficients(electric,

thermoelectric, and thermal conductivity) of this system was analysed in detail in [54]. In

the case without magnetic field, see [31]. Next, if Φ(r) 6= 0, the solution corresponds to

a superconducting state with finite condensate and its analytic formula is not available.3

For B = 0, the solutions are numerically obtained in [8] for β = 0 and in [46] for β 6= 0.

For example we display numerical solutions for some cases in figure 1, where we set rh = 1

and plot dimensionless quantities scaled by µ: U(r)/µ2, At/µ, and χ. For B 6= 0, due to

the generation of vortex our ansatz (2.5) should be modified. In this paper we will not

consider this case and refer to [2, 63, 64].

3A nonzero Φ(r) induces a nonzero χ(r), which changes the definition of ‘time’ at the boundary so field

theory quantities should be defined accordingly.
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Figure 1. Numerical solutions of bulk background functions, which are numerically integrated from

the black hole horizon (rh = 1). The solid curves are for the case without momentum relaxation

(β = 0) while the dotted curves are for momentum relaxation (β/µ = 0.5). The black curves are

for normal phase (
〈
OΦ
〉

= 0) while the red curves are for superconducting phase (
〈
OΦ
〉
6= 0). In

(a), (b) and (c) the black solid and dotted curves are coincide, but in (d) they are different. The

black curves agree to the analytic formula in (2.9), where β enters only into U(r).

2.2 AC conductivities

The purpose of this subsection is to briefly describe the essential points of a method to

compute the AC thermo-electric conductivities. For more details and clarification regarding

our model at B = 0, see [53, 54] for normal phase and [46] for superconducting phase. At

B 6= 0 see [31] for normal phase.

In order to study transport phenomena holographically, we introduce small bulk fluc-

tuations around the background obtained in the previous subsection. For example, to

compute electric, thermoelectric, and thermal conductivities it is enough to consider

δAi(t, r) =

∫ ∞
−∞

dω

2π
e−iωtai(ω, r) ,

δgti(t, r) =

∫ ∞
−∞

dω

2π
e−iωtr2hti(ω, r) ,

δψi(t, r) =

∫ ∞
−∞

dω

2π
e−iωtξi(ω, r) ,

(2.10)

where i = x, y for B 6= 0 and i = x is enough for B = 0 thanks to a rotational symmetry in

x− y space. For the sake of illustration of our method, we consider the case for B = 0 [46]

and refer to [54] for B 6= 0. In momentum space, the linearized equations of motion around

– 6 –
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the background are4

a′′x +

(
U ′

U
− χ′

2

)
a′x +

(
ω2

U2
eχ − 2q2Φ2

U

)
ax +

r2eχA′t
U

h′tx = 0 ,

h′tx +
A′t
r2
ax +

iβUe−χ

r2ω
ξ′ = 0 ,

ξ′′x +

(
U ′

U
− χ′

2
+

2

r

)
ξ′x −

iβωeχ

U2
htx +

ω2eχ

U2
ξx = 0 .

(2.11)

Near boundary (r →∞) the asymptotic solutions are

htx = h
(0)
tx +

1

r2
h

(2)
tx +

1

r3
h

(3)
tx + · · · ,

ax = a(0)
x +

1

r
a(1)
x + · · · ,

ξx = ξ(0)
x +

1

r2
ξ(2)
x +

1

r3
ξ(3)
x + · · · .

(2.12)

The on-shell quadratic action in momentum space reads

S(2)
ren =

1

2

∫
dω

2π

[
Ja−ωAab(ω)Jbω + Ja−ωBab(ω)Rbω

]
, (2.13)

where

Ja =

a
(0)
x

h
(0)
tx

ξ
(0)
x

 , Ra =

a
(1)
x

h
(3)
tx

ξ
(3)
x

 , A =

0 −n 0

0 2U (1) 0

0 0 0

 , B =

1 0 0

0 −3 0

0 0 3

 . (2.14)

Here U (1) is the coefficient of 1/r when U(r) is expanded near boundary and n is charge

density. The index ω in Ja and Ra are suppressed.

The remaining task for reading off the retarded Green’s function is to express Rb

in terms of Ja. It can be done by the following procedure. First let us denote small

fluctuations in momentum space by Φa collectively. i.e.

Φa = (δai , δhti , δξi) . (2.15)

Near black brane horizon (r = 1), solutions may be expanded as

Φa(r) = (r − 1)−
iω

4πT
+na (ϕa + ϕ̃a(r − 1) + · · · ) , (2.16)

which corresponds to incoming boundary conditions for the retarded Green’s function [65]

and na is some integer depending on specific fields, Φa. The leading terms ϕa are only free

parameters and the higher order coefficients such as ϕ̃a are determined by the equations

4For B 6= 0 case, the bulk fluctuations to y direction should be turned on so the number of equations of

motion are doubled too.
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of motion. A general choice of ϕa can be written as a linear combination of independent

basis ϕai , (i = 1, 2, · · · , N), i.e. ϕa =
∑N

i=1 ϕ
a
i ci. For example, ϕai can be chosen as

(
ϕa1 ϕa2 . . . ϕaN

)
=


1 1 . . . 1

1 −1 . . . 1
...

...
. . .

...

1 1 . . . −1

 . (2.17)

Every ϕai yields a solution Φa
i (r), which is expanded near boundary as

Φa
i (r)→ Sai + · · ·+ Oa

i

rδa
+ · · · , (2.18)

where δa ≥ 1 and the leading terms Sai are the sources of i-th solutions and Oa
i are the

corresponding operator expectation values. S and O can be regarded as regular matrices

of order N , where a is for row index and i is for column index. A general solution may be

constructed from a basis solution set {Φa
i }:

Φa(r) = Φa
i (r)c

i → Sai ci + · · ·+ Oa
i c
i

rδa
+ · · · (2.19)

≡ Ja + · · ·+ Ra

rδa
+ · · · , (2.20)

with arbitrary constants ci’s. For a given Ja, we always can find ci,5

ci = (S−1)iaJ
a , (2.21)

so the corresponding response Ra may be expressed in terms of the sources Jb,

Ra = Oa
i c
i = Oa

i (S−1)ibJ
b . (2.22)

With (2.22), the action (2.13) becomes

S(2)
ren =

1

2

∫
ω≥0

dω

2π

[
Ja−ω

[
Aab(ω) + BacOc

i (S−1)ib(ω)
]
Jbω

]
≡ 1

2

∫
ω≥0

dω

2π

[
Ja−ωGabJ

b
ω

]
,

(2.23)

where the range of ω is chosen to be positive following the prescription in [65] and the

retarded Green’s functions are explicitly denoted as

Gab ≡

GJJ GJT GJS
GTJ GTT GTS
GSJ GST GSS

 . (2.24)

5There is one subtlety in our procedure. The matrix S of solutions with incoming boundary condition

are not invertible and we need to add some constant solutions, which is related to a residual gauge fixing

δgrx = 0 [53].
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Figure 2. AC electric conductivity(σ(ω)), thermoelectric conductivity(α(ω)), and thermal

conductivity(κ̄(ω)) for β/µ = 1 and q = 3 at different temperatures: T/Tc = 3.2, 1, 0.89, 0.66, 0.27

(dotted, red, orange,green, blue). Top is the real part and bottom is the imaginary part of

conductivities.

Finally, the thermo-electric conductivities are related to the retarded Green’s functions as(
σ αT

ᾱT κ̄T

)

= − i
ω

(
GJJ −µGJJ +GJT

−µGJJ +GTJ GTT −GTT (ω = 0)− µ
(
GJT +GTJ − µGJJ

)) . (2.25)

3 Conductivities with a neutral scalar hair instabitliy

In this section we present our numerical results of the electric, thermoelectric and thermal

conductivities of the model (2.1), which are obtained by the numerical method reviewed

in the previous subsection. There are two cases: i) with a charged scalar hair (q 6= 0) or

ii) with a neutral scalar hair (q = 0), where q is defined below (2.1) through the covariant

derivative DMΦ ≡ ∇MΦ− iqAMΦ.

3.1 Charged scalar case (q 6= 0)

The first case with q 6= 0 have been computed in [31, 46, 54]. As an example, in figure 2,

we show the results for B = 0, q = 3 [46], which is reproduced here for easy compar-

ison with new results in this paper. Figure 2 shows AC electric conductivity (σ(ω)),

thermoelectric conductivity (α(ω)), and thermal conductivity (κ̄(ω)) for β/µ = 1 and

q = 3 at different temperatures. The colors of curves represent the temperature ra-

tio, T/Tc, where Tc is the critical temperature of metal/superconductor phase transition.

T/Tc = 3.2, 1, 0.89, 0.66, 0.27 for dotted, red, orange,green, and blue curves respectively.

In particular, the dotted curve is the case above Tc and the red curve corresponds to the
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critical temperature. The first row is the real part and the second row is the imaginary

part of conductivities.

One feature we want to focus on in figure 2 is 1/ω pole in Im[σ] below the critical

temperature. There is no 1/ω pole above the critical temperature. By the Kramers-Kronig

relation, the 1/ω pole in Im[σ] implies the existence of the delta function at ω = 0 in Re[σ].

It means that in superconducting phase the DC conductivity is infinite while in normal

phase the DC conductivity is finite due to momentum relaxation.

3.2 Neutral scalar case (q = 0)

Unlike the studies in [46], here we set q = 0 (a neutral scalar hair). Between finite q

and zero q, there is a qualitative difference in the instability of a Reissner-Nordstrom AdS

black hole [8]. The origin of the superconductor (or superfluidity) instability responsible

for the complex scalar hair Φ may be understood as the coupling of the charged scalar to

the charge of the black hole through the covariant derivative DMΦ ≡ ∇MΦ− iqAMΦ. In

other words, the effective mass of Φ defined by m2
eff ≡ m2 − q2|gtt|A2

t can be compared

with the Breitenlohner-Freedman (BF) bound. The BF bound for AdSd+1 is −d2

4 ≡ m
2
BF.

The effective mass m2
eff may be sufficiently negative near the horizon to destabilize the

scalar field since |gtt| becomes bigger at low temperature.6 Based on this argument one

may expect that when q = 0 the instability would turn off. However, it turns out that a

Reissner-Nordstrom AdS black hole may still be unstable to forming neutral scalar hair,

if m2 is a little bit bigger than the BF bound for AdS4. It can be understood by the

near horizon geometry of an extremal Reissner-Nordstrom AdS black hole. It is AdS2×
R2 so scalars above the BF bound for AdS4 may be below the bound for AdS2. These two

instability conditions can be summarized by one inequality [46]

m2
eff =

m2 − 2q2

1 + β2

µ2

1

6

1 +

β2

µ2

1 + β2

µ2

 < −1

4
= m2

BF , (3.1)

which reproduces the result for β = 0 in [2]:

m2
eff =

(
m2 − 2q2

)(1

6

)
< −1

4
= m2

BF . (3.2)

Here, we see m2
eff can be below the BF bound when q = 0.

However, it was discussed in [8, 9] that the instability to forming neutral scalar hair for

q = 0 is not associated with superconductivity because it does not break a U(1) symmetry,

but at most breaks a Z2 symmetry Φ→ −Φ. Therefore, it would be interesting to see if the

DC conductivity is infinite or not in the background with a neutral scalar hair.7 Without

momentum relaxation (β = 0) this question is not well posed since the DC conductivity

is always infinite with or without a neutral scalar hair due to translation invariance and

finite density. Now we have a model with momentum relaxation (β 6= 0), we can address

this issue properly.

6As the temperature of a charged black hole is decreased, gtt develops a double zero at the horizon.
7We thank Sang-Jin Sin for suggesting this.
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Figure 3. AC electric conductivity(σ(ω)), thermoelectric conductivity(α(ω)), and thermal

conductivity(κ̄(ω)) for β/µ = 1 and q = 0 at different temperatures: T/Tc = 1, 0.84, 0.62, 0.45, 0.32

(red, orange,green, blue). Top is the real part and bottom is the imaginary part of conductivities.
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Figure 4. Near ω = 0 behaviours of the real part of conductivities in figure 3.

To have an instability at q = 0 we choose the same parameters as figure 2: m2 = −2

and β/µ = 1. For q = 0, m2
eff = −1/2, which is below the BF bound (3.1). Figure 3

shows our numerical results of conductivites, where all temperatures are below Tc: T/Tc =

1, 0.84, 0.62, 0.45, 0.32 for red, orange,green, and blue curves respectively. A main difference

of figure 3 from figure 2 is the disappearance of 1/ω pole in Im[σ] below Tc. It confirms

that the neutral scalar hair has nothing to do with superconductivity as expected.

In figure 3 it is not easy to see the conductivities in small ω regime, so we zoom in

there in figure 4. Contrary to the conductivity of normal component in superconducting

phase, the DC electric conductivity is not so sensitive to temperature and increases as

temperature decreases, which is the property of metal. The thermoelectric and thermal

conductivities decrease as temperature increases except a small increase of thermoelectric

conductivity near the critical temperature. As a cross check, we have also computed these

DC conductivities analytically by using the black hole horizon data according to the method

developed in [52]. Since there is no singular behavior in the conductivities as ω → 0 we

may regard the real scalar field here as the dilaton in [52] and the conductivities read

σ = 1 +
4πQ2

β2s
, α = 4π

Q
β2

, κ̄ = 4π
sT

β2
, (3.3)
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Figure 5. AC electric conductivity(σ(ω)), thermoelectric conductivity(α(ω)), and thermal

conductivity(κ̄(ω)) for µ = 0 and q = 0 at different temperatures: T/Tc = 1, 0.9, 0.7, 0.4, 0.25 (red,

orange,green, blue, purple). Top is the real part and bottom is the imaginary part of conductivities.

where s, Q and T are the entropy density, charge density and temperature in the dual field

theory. They are given by s=4πr2
h, Q = limr→∞ r

2eχ/2A′t(r) and T = U ′(rh)
4π e(χ(∞)−χ(rh))/2.

The analytic values are designated by the red dots in figure 4 and they agree to the nu-

merical values very well. For a special case with µ = 0, in figure 5, we see that σ(ω) = 1,

different from superconducting case (q 6= 0 shown in [46]), but α(ω) = 0, same as super-

conducting case.

3.3 General expression for superfluid density

We have found that for q = 0 there is no 1/ω pole in Im[σ], of which strength corresponds to

superfluid density. To understand it better, we derive an expression for superfluid density

for q 6= 0. Let us start with the Maxwell equation,

∇MFMN = −iq
(
Φ∗DNΦ− ΦDNΦ∗

)
. (3.4)

Once we assume that all fields depend on r and t and the fluctuations are allowed only for

the x-direction, the x-component of the Maxwell equation reads

∂r
√
−gF xr = ∂t

√
−gF tx + iq

√
−g (Φ∗DxΦ− ΦDxΦ∗) . (3.5)

The integration of (3.5) from horizon to boundary gives the boundary current

Jx ≡ lim
r→∞

√
−gF xr

= lim
r→rh

√
−gF xr +

∫ ∞
rh

dr∂t
√
−gF tx + iq

∫ ∞
rh

dr
√
−g (Φ∗DxΦ− ΦDxΦ∗) .

(3.6)
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By hydrodynamic expansion for small ω, it turns out that the first term and the second

term goes to zero as8

lim
r→rh

√
−gF xr ∼ O(ω)e−iωt ,

∫ ∞
rh

dr∂t
√
−gF tx ∼ O(ω2)e−iωt , (3.8)

while the last term goes to constant. Here we used the expression of the fields near horizon

δAx =

(
U(r)

r2

)−i ω
4πT

âx(ω, r)e−iωt ,

δgtx = r2

(
U(r)

r2

)−i ω
4πT

ĥx(ω, r)e−iωt + iωr2ζe−iωt ,

δψx =

(
U(r)

r2

)−i ω
4πT

ξ̂x(ω, r)e−iωt + βζe−iωt ,

(3.9)

where ζ is a constant residual gauge parameter fixing δgrx = 0 [53], and âx, ĥx and χ̂x can

be expanded near horizon as

âx(ω, r) ∼ A0 +A1(r − rh) + · · · ,

ĥx(ω, r) ∼ H1(r − rh) + · · · ,

ξ̂x(ω, r) ∼ ξ̃0 + ξ̃1(r − rh) + · · · .

(3.10)

With the following source-vanishing-boundary conditions9

lim
r→∞

1

r2
δgtx = lim

r→∞
(ĥx + iωζ)e−iωt = 0 , lim

r→∞
δψx = lim

r→∞

(
ξ̂x + βζ

)
e−iωt = 0 , (3.11)

except δAx, the current (3.6) can be interpreted as

Jx = −iωσxx(ω)δAx|r=∞ . (3.12)

8More explicitly, by using (3.9) and (2.6), the first term of (3.8) is expressed as

√
−gF xr =

√
−g
(
Fxrg

rrgxx − Ftrgrrgxxgttδgxt
)

= −
√
−g

((
− iω

4πT
âx

(
U

r2

)′
+
U

r2
â′x +A′te

χĥx

)(
U

r2

)− iω
4πT

+ iωζA′te
χ

)
e−iωt ,

where at horizon the second term and third term vanishes because U(rh) = 0 and ĥx ∼ (r−rh) (3.10). Thus,

limr→rh
√
−gF xr ∼ O(ω)e−iωt. Similarly, by using (3.9) and (2.6), the second term of (3.8) is expressed as∫ ∞

rh

dr∂t
√
−gF tx =

∫ ∞
rh

dr
√
−ggttgxx∂2

t δAx = ω2

∫ ∞
rh

dr
e
χ
2

U

(
U

r2

)−i ω
4πT

âxe
−iωt , (3.7)

which is of order ω2.
9The source-vanishing condition is equivalent to the relation ωξ̂x(∞) = iβĥx(∞). Thus it will give some

constraint between two fields ξ̂x and ĥx near horizon, but it does not affect (3.8) because ξ̂x does not enter

in counting order ω near horizon as shown in footnote 8.
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Because only the last term of (3.6) contribute to Jx for ω = 0, as discussed in (3.8), the

superfluid density Ks(the strength of the 1/ω pole of Im[σ]) is given by

Ks ≡ lim
ω→0

ωIm[σ] = lim
ω→0

Jx

δAx(r =∞)

= lim
ω→0

iq

δAx(r =∞)

∫ ∞
rh

dr
√
−g (Φ∗DxΦ− ΦDxΦ∗)

= lim
ω→0

2q2

δAx(r =∞)

∫ ∞
rh

dre−χ/2|Φ|2
(
δAx +

At
U(r)

eχδgtx

)
.

(3.13)

This shows how the hairy configuration Φ contributes to Ks. If q = 0, Ks vanishes, which

confirms our numerical analysis.

4 Ward identities: constraints between conductivities

In this section, our goals are threefold. First, we derive the constraints between three

conductivities (electric, thermoelectric, and thermal) in superconducting phase with mo-

mentum relaxation, which generalize the constraints in normal phase without momentum

relaxation computed in [3, 55]. These constraints are obtained analytically from field the-

ory perspective, by analyzing the Ward identities. Second, we confirm the constraints

numerically from holographic perspective, by solving bulk equations numerically. This

confirmation serves as a nice cross-check of our holographic computation and numerical

method. Third, we compute the small ω limit of the constraints and identify superfluid

density and normal fluid density and the relation between them.

In section 4.1 we analytically derive the Ward identities for our model (2.1) with q 6= 0

regarding diffeomorphism from field theory perspective. In our field theoretic derivation

of the Ward identities, we do not use any details of the bulk model except field contents,

so they hold in more general models sharing the same symmetry and field contents as our

specific model (2.1). The minimum requirement is that the system should be invariant

under diffeomorphism and U(1) gauge transformation (without gravitational and gauge

anomalies). In addition, we assume that the system is described by the following operators:

the stress-energy tensor Tαβ , U(1) current Jµ, two real scalar operators OI(I = 1, 2),

and complex operators OΦ,OΦ
†. Therefore, we will introduce the corresponding external

sources: metric h̄αβ , the gauge field Āµ, real scalar sources ψ̄I , and complex scalar sources

Φ̄∗,Φ̄ respectively.

By using specific field theory information of our model, general Ward identities boil

down to constraints between conductivities(σ, α, κ̄) and two-point functions related to the

scalar operator. Our main results are (4.44)–(4.45) for finite magnetic field (B 6= 0)

and (4.56)–(4.58) for zero magnetic field (B = 0). They extend the Ward identities for

normal phase without momentum relaxation [3, 55] to superconducting phase with mo-

mentum relaxation. Next, in section 4.2 we confirm them numerically from holographic

perspective, by solving bulk equations numerically.
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4.1 Analytic derivation: field theory

To derive the Ward identities, we closely follow the procedure in [3]10 and extend the results

therein to the case with real and complex scalar fields, which are ψ̄I and Φ̄ in (4.1). Our

final results are (4.44)–(4.45) and (4.56)–(4.58).

Let us start with a generating functional for Euclidean time ordered correlation

functions:

eW [h̄αβ ,Āµ,ψ̄I ,Φ̄,Φ̄
∗] =

∫
DXe−S[X,h̄αβ ,Āµ,ψ̄I ,Φ̄,Φ̄

∗] , (4.1)

where h̄αβ , Āµ, ψ̄I , Φ̄, and Φ̄∗ are the non-dynamical external sources of the stress-energy

tensor Tαβ , U(1) current Jµ, real scalar operators OJ , and complex operators OΦ
†,OΦ

respectively. We define the one-point functions by functional derivatives of W :

〈Jµ(x)〉 =
δW

δĀµ(x)
, 〈Tµν(x)〉 = 2

δW

δh̄µν(x)
,
〈
OI(x)

〉
=

δW

δψ̄I(x)
, 〈OΦ(x)〉 =

δW

δΦ̄(x)∗
,

(4.2)

where these expectation values are not tensors but tensor densities under diffeomorphism.

One more functional derivatives acting on one-pint functions give us Euclidean time ordered

(Pt) two-point functions:

Gµν,αβE (x, y) ≡
〈
Pt(Tµν(x)Tαβ(y))

〉
= 4

δ2W

δh̄µν(x)δh̄αβ(y)
, (4.3)

Gµν,αE (x, y) ≡ 〈Pt(Tµν(x)Jα(y))〉 = 2
δ2W

δh̄µν(x)δĀα(y)
, (4.4)

Gµν,IE (x, y) ≡
〈
Pt(Tµν(x)OI(y))

〉
= 2

δ2W

δh̄µν(x)δψ̄I(y)
, (4.5)

Gµν,ΦE (x, y) ≡
〈
Pt(Tµν(x)OΦ(y))

〉
= 2

δ2W

δh̄µν(x)δΦ̄∗(y)
, (4.6)

Gµ,αE (x, y) ≡ 〈Pt(Jµ(x)Jα(y))〉 =
δ2W

δĀµ(x)δĀα(y)
, (4.7)

Gµ,IE (x, y) ≡
〈
Pt(Jµ(x)OI(y))

〉
=

δ2W

δĀµ(x)δψ̄I(y)
, (4.8)

Gµ,ΦE (x, y) ≡
〈
Pt(Jµ(x)OΦ(y))

〉
=

δ2W

δĀµ(x)δΦ̄∗(y)
, (4.9)

GJ,IE (x, y) ≡
〈
Pt(OJ(x)OI(y))

〉
=

δ2W

δψ̄J(x)δψ̄I(y)
, (4.10)

GJ,ΦE (x, y) ≡
〈
Pt(OJ(x)OΦ(y))

〉
=

δ2W

δψ̄J(x)δΦ̄∗(y)
, (4.11)

GΦ,Φ∗

E (x, y) ≡
〈
Pt(OΦ(x)OΦ†(y))

〉
=

δ2W

δΦ̄∗(x)δΦ̄(y)
. (4.12)

We consider the generating functional W [h̄αβ , Āµ, ψ̄I , Φ̄, Φ̄
∗] invariant under diffeomor-

phism, xµ → xµ + ζµ, and the variation of the fields can be expressed in terms of a Lie

10See [66] for a holographic derivation.
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derivative with respect to the vector field ζµ:

δh̄µν = (Lζ h̄)µν = ∇µζν +∇νζµ , (4.13)

δĀµ = (LζĀ)µ = ζλ∇λĀµ + (∇µζν)Āν , (4.14)

δψ̄I = (Lζψ̄I) = ζλ∇λψI , (4.15)

δΦ̄ = (LζΦ̄) = ζλ∇λΦ̄ . (4.16)

For diffeomorphism invariance, the variation of W should vanish:

δW =

∫
d3x

(
δW

δh̄µν(x)
(Lζ h̄)µν +

δW

δĀµ(x)
(LζĀ)µ +

δW

δψ̄I(x)
(Lζψ̄I)

+
δW

δΦ̄(x)
(LζΦ̄) +

δW

δΦ̄∗(x)
(LζΦ̄∗)

)
= 0 ,

(4.17)

which, after integration by parts, yields the Ward identity for one-point functions regarding

diffeomorphism.

Dµ

〈
Tµν

〉
+ F̄ ν

λ

〈
Jλ
〉

+
〈
OI
〉
h̄νλ∂λψ̄I +

〈
OΦ
〉
h̄νλ∂λΦ̄∗ +

〈
OΦ†〉h̄νλ∂λΦ̄ = 0 , (4.18)

where Dµ 〈Tµν(x)〉 ≡ ∂µ 〈Tµν(x)〉+ Γναβ
〈
Tαβ(x)

〉
. Here we also used the Ward identity for

U(1) gauge symmetry, which is summarized in footnote 12.

By taking a derivative of (4.18) with respect to either h̄αβ(y), Āα(y), ψ̄J(y) or Φ̄∗(y),

we obtain the Ward identities for the two-point functions:

Dµ 〈Pt(Jα(y)Tµν(x))〉+ F̄ ν
µ 〈Pt(Jα(y)Jµ(x))〉 − h̄νβ 〈Jα(x)〉 ∂

∂xβ
δ(x− y)

+ h̄να 〈Jµ(x)〉 ∂

∂xµ
δ(x− y) + h̄µν∂µψ̄

〈
Pt(Jα(y)OI(x))

〉
+ 2Re

{
h̄µν∂µΦ̄∗

〈
Pt(Jα(y)OΦ(x))

〉}
= 0 ,

(4.19)

Dµ

〈
Pt(Tαβ(y)Tµν(x))

〉
+ δ(x− y)

(
h̄ναDµ

〈
Tµβ(x)

〉
+ gνβDµ 〈Tµα(x)〉

)
+
(
gνα

〈
Tµβ(x)

〉
+ h̄νβ 〈Tµα(x)〉 − h̄µν

〈
Tαβ(x)

〉) ∂

∂xµ
δ(x− y)

−
(
h̄ναΓβµλ + h̄νβΓαµλ

)〈
Tµλ(x)

〉
δ(x− y)

+ h̄νµ
(
F̄µλ

〈
Pt(Tαβ(y)Jλ(x))

〉
− ∂µψ̄I

〈
Pt(Tαβ(y)OI(x))

〉)
− 2Re

{
h̄νµ∂µΦ̄∗

〈
Pt(Tαβ(y)OΦ(x))

〉}
= 0 ,

(4.20)

Dµ

〈
Pt(OJ(y)Tµν(x))

〉
− h̄νµF̄µλ

〈
Pt(OJ(y)Jλ(x))

〉
+ h̄νλ

〈
Pt(OJ(y)OI(x))

〉
∂λψI

+ h̄νλ
〈
OJ(x)

〉 ∂

∂xλ
δ(x− y) + 2Re

{
h̄νλ

〈
Pt(OJ(y)OΦ(x))

〉
∂λΦ̄∗

}
= 0 , (4.21)

Dµ

〈
Pt(OΦ(y)Tµν(x))

〉
− h̄νµF̄µλ

〈
Pt(OΦ(y)Jλ(x))

〉
+ h̄νλ

〈
Pt(OΦ(y)OI(x))

〉
∂λψ̄I

+ h̄νλ
〈
OΦ(x)

〉 ∂

∂xλ
δ(x− y) + h̄νλ

〈
Pt(OΦ(y)OΦ(x))

〉
∂λΦ̄∗

+ h̄νλ
〈
Pt(OΦ(y)OΦ†(x))

〉
∂λΦ̄ = 0 , (4.22)

where the covariant derivatives act only on the operators of x.
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From here we consider a flat space, h̄µν = δµν , and assume external fields such as

F̄µν , ∂µψ̄I and Φ̄, are constant in space-time. We further assume translation invariance is

not spontaneously broken in the equilibrium state, so all the one point functions,
〈
Tµν

〉
,〈

Jµ
〉
,
〈
OI
〉

and
〈
OΦ
〉
, should be constant in space-time. In momentum space, the Ward

identities (4.19)–(4.22) read

0 = −kµG̃α,µνE (k)− iF̄ ν
µ G̃α,µE (k) + kν 〈Jα〉 − kµδαν 〈Jµ〉 − iδµν∂µψ̄IG̃α,IE (k) , (4.23)

0 = kµ

(
G̃αβ,µνE (k) + δνα

〈
Tµβ

〉
+ δνβ 〈Tµα〉 − δµν

〈
Tαβ

〉)
+ i
(
F̄ ν
λ G̃αβ,λE (k) + δνµ∂µψ̄IG̃

αβ,I
E (k)

)
− iδβν

(
F̄ α
µ 〈Jµ〉+ δαλ

〈
OI
〉
∂λψ̄I

)
− iδαν

(
F̄ β
µ 〈Jµ〉+ δβλ

〈
OI
〉
∂λψ̄I

)
, (4.24)

0 = −kµG̃J,µνE (k)− iF̄ ν
µ G̃J,µE − iG̃

J,I
E (k)δνλ∂λψ̄I −

〈
OJ
〉
kν , (4.25)

0 = −kµG̃Φ,µν
E (k)− iF̄ ν

µ G̃Φ,µ
E − iG̃Φ,I

E (k)δνλ∂λψ̄I −
〈
OΦ
〉
kν . (4.26)

Since we want to study transport coefficients, we analytically continue to Minkowski

space, so that the Euclidian Green’s functions can be continued to the Retarded Green’s

functions. Thus, the Ward identities (4.23)–(4.26) become

0 = −kµG̃α,µνR (k)− iF̄ ν
µ G̃α,µR (k) + kν 〈Jα〉 − kµηαν 〈Jµ〉+ iηµν∂µψ̄IG̃

α,I
R (k) , (4.27)

0 = kµ

(
G̃αβ,µνR (k) + ηνα

〈
Tµβ

〉
+ ηνβ 〈Tµα〉 − ηµν

〈
Tαβ

〉)
+ i
(
F̄ ν
λ G̃αβ,λR (k)− ηνµ∂µψ̄IG̃αβ,IR (k)

)
− iηβν

(
F̄ α
µ 〈Jµ〉 − ηαλ

〈
OI
〉
∂λψ̄I

)
− iηαν

(
F̄ β
µ 〈Jµ〉 − ηβλ

〈
OI
〉
∂λψ̄I

)
, (4.28)

0 = kµG̃
J,µν
R (k) + iF̄ ν

µ G̃J,µR − iG̃
J,I
R (k)ηνλ∂λψ̄I +

〈
OJ
〉
kν , (4.29)

0 = −kµG̃Φ,µν
R (k)− iF̄ ν

µ G̃Φ,µ
R + iG̃Φ,I

R (k)ηνλ∂λψ̄I −
〈
OΦ
〉
kν . (4.30)

In particular, we consider 2+1 dimensional system in an equilibrium state with the

constant expectation values for the energy-momentum and current

〈Tµν〉 =

 ε 0 0

0 p 0

0 0 p

 , 〈Jµ〉 = (n, 0, 0) , (4.31)

with finite or zero condensate
〈
OΦ
〉

and
〈
OI
〉

= 0. To this system we apply a constant

external magnetic field with a background scalar ψ̄I :

F̄ = Bdx ∧ dy , ψ̄I = (βx, βy) . (4.32)

We take kµ = (ω, 0, 0) to focus on the spatially homogeneous AC conductivity induced by

the small external electric field and temperature gradient along i(= x, y) direction.

Under these conditions the Ward identities (4.27)–(4.29) becomes

ωG̃j,0kR − iBεikG̃j,iR + ωδjkn+ iβδkI G̃
j,I
R = 0 , (4.33)

ω
(
G̃0j,0k
R + δkjε

)
− i
(
BεikG̃0j,i

R − βδkI G̃
0j,I
R

)
= 0 , (4.34)

−ωG̃J,0jR + iBεijG̃J,iR − iG̃
J,I
R βδjI = 0 , (4.35)
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where i, j, k run over x and y. It is convenient to introduce the complexified combinations

defined as

〈JT 〉± ≡ ±G̃
x,0x
R − iG̃x,0yR , 〈JJ〉± ≡ ±G̃

x,x
R − iG̃

x,y
R ,

〈TT 〉± ≡ ±G̃
0x,0x
R − iG̃0x,0y

R , 〈SS〉± ≡ ±G̃
1,1
R − iG̃

1,2
R ,

〈SJ〉± ≡ ±G̃
1,x
R − iG̃

1,y
R , 〈ST 〉± ≡ ±G̃

I=1,0x
R − iG̃I=1,0y

R .

(4.36)

With this notation, (4.33)–(4.35) can be rewritten as

±ω 〈JT 〉± −B 〈JJ〉± + ω n± iβ 〈JS〉± = 0 , (4.37)

±ω 〈TT 〉± −B 〈TJ〉± + ω ε± iβ 〈TS〉± = 0 , (4.38)

∓ω 〈ST 〉± −B 〈SJ〉± ∓ iβ 〈SS〉± = 0 , (4.39)

or, in terms of the heat current Q = T − µJ ,

±ω 〈JQ〉± + (±µω −B) 〈JJ〉± + ω n± iβ 〈JS〉± = 0 , (4.40)

±ω 〈QQ〉± + (±µω −B) 〈JQ〉± + ω(ε− µn)∓ iµβ 〈JS〉± = 0 , (4.41)

∓ω 〈SQ〉± + (∓µω −B) 〈SJ〉± ∓ iβ 〈SS〉± = 0 . (4.42)

Finally, using the Kubo formulas for conductivities11

σ± =
1

ω
〈JJ〉± , α± =

1

ωT
〈QJ〉± , ᾱ± =

1

ωT
〈JQ〉± , κ̄± =

1

ωT
〈QQ〉± , (4.43)

we obtain the relations between the conductivities:

Ward 1 : ±ω2T ᾱ± + ω(±µω −B)σ± + ω n± iβ 〈JS〉± = 0 , (4.44)

Ward 2 : ±ω2T κ̄± + ω(±µω −B)T ᾱ± + ω(ε′ − µn)∓ iµβ 〈JS〉± = 0 , (4.45)

Ward 3 : ∓ω 〈SQ〉± + (∓µω −B) 〈SJ〉± ∓ iβ 〈SS〉± = 0 , (4.46)

where we redefined κ̄±

κ̄± → κ̄± −
〈TT 〉±,ω=0

ωT
, (4.47)

to subtract a counter term and ε′ ≡ ε± 〈TT 〉±,ω=0. In normal phase, if β = 0 and B 6= 0,

〈TT 〉±,ω=0 = ±ε/2 [3].

If B = 0, (4.37)–(4.39) is simplified as

ω 〈JT 〉+ ω n+ iβ 〈JS〉 = 0 , (4.48)

ω 〈TT 〉+ ω ε+ iβ 〈TS〉 = 0 , (4.49)

ω 〈ST 〉+ iβ 〈SS〉 = 0 , (4.50)

where
〈JT 〉 ≡ G̃x,0xR , 〈JS〉 ≡ G̃x,1R , 〈TT 〉 ≡ G̃0x,0x

R ,

〈TS〉 ≡ G̃0x,1
R , 〈ST 〉 ≡ G̃1,0x

R , 〈SS〉 ≡ G̃1,1
R ,

(4.51)

11The complexified conductivities are denoted by X± ≡ Xxy ± iXxx, where X = σ, α, ᾱ, κ̄.
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since we don’t need to consider y-coordinate. Or, in terms of the heat current Q = T −µJ ,

〈JQ〉+ µ 〈JJ〉+ n+ i
β

ω
〈JS〉 = 0 , (4.52)

〈QQ〉+ µ 〈JQ〉+ µ 〈QJ〉+ µ2 〈JJ〉+ ε+ i
β

ω
(〈QS〉+ µ 〈JS〉) = 0 , (4.53)

〈SQ〉+ µ 〈SJ〉+ n+ i
β

ω
〈SS〉 = 0 . (4.54)

Using the Kubo formulas

σ =
1

iω
〈JJ〉 , α =

1

iωT
〈QJ〉 , ᾱ =

1

iωT
〈JQ〉 , κ̄ =

1

iωT
〈QQ〉 , (4.55)

we obtain the relations between the conductivities:

Ward 4 : α+
µ

T
σ − i n

ωT
+ β
〈JS〉
ω2T

= 0 , (4.56)

Ward 5 : κ̄+ 2µα+
µ2σ

T
− i ε

′

ωT
+ β
〈QS〉
ω2T

+ β
µ 〈JS〉
ω2T

= 0 , (4.57)

Ward 6 : 〈ST 〉+ iβ
〈SS〉
ω

= 0 , (4.58)

where κ̄ is redefined as (4.47) to subtract a counter term and ε′ = ε+ 〈TT 〉ω=0. In normal

phase, 〈TT 〉ω=0 = −ε and ε/2 for β = 0 and β 6= 0 respectively. In superconducting phase

for β = 0, 〈TT 〉ω=0 = −ε.12

4.2 Numerical confirmation: holography

In the previous subsection we have derived the Ward identities for two-point functions

from field theory perspective. Here we show that those Ward identities indeed hold in

our holographic model studied in [31, 46, 54]. More concretely, our goal is to compute

σ, α, κ̄, 〈JS〉, 〈QS〉, 〈SS〉 numerically and plug them into the Ward identities (4.44)–(4.45)

and (4.56)–(4.58) to check if they add up to zero or not.

For B = 0, the conductivities σ, α, κ̄ were reported in [54] and reproduced in figure 2.

Here in figure 6 we display the other two-point correlation functions related to the real

scalar operator, 〈JS〉, 〈QS〉, and 〈SS〉. Contrary to figure 2 there is no divergence at

ω = 0, which is also shown in their small ω expressions (4.68)–(4.70). By using the data in

figure 2 and 6 we numerically compute the left hand side of three Ward identities (4.56)–

(4.58). The numerical sums for all considered temperatures are shown together in figure 7.

All of them vanish(< 10−15), confirming analytic formulas. We have also checked three

other cases: 1) B = 0 and β/µ = 0.1, 2) B = 0 and µ = 0, 3) B 6= 0. It turned out that all

numerical sums vanish too. For completeness, we show the numerical data for these three

cases in the appendix A.

12If W is invariant under U(1) gauge transformations, Āµ → Āµ + ∂µΛ, the Ward identity for one-

point function yields current conservation ∂µ 〈Jµ(x)〉 = 0. The Ward identities for two point functions are

−ωGt,t + kGt,x = 0,−ωGt,x + kGx,x = 0,−ωGΦ,t + kGΦ,x = 〈OΦ〉,−ωGΦ̄,t + kGΦ̄,x = −〈OΦ〉, [67] and

−ωG1,t + kG1,x = 0.
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Figure 6. 〈JS〉, 〈QS〉, 〈SS〉 for µ/β = 1 at T/Tc = 3.2, 1, 0.89, 0.66, 0.27 (dotted, red, orange,

green, blue).
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(a) Ward 4: (4.56)
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Figure 7. Confirmation of Ward identities. The left hand side of (4.56)–(4.58) is plotted for the

temperatures shown in figure 6 all together. They are almost zero, less than 10−15.

4.3 Conductivities at small ω

In this subsection we analyse small ω behaviours of the two-point correlation functions

based on our numerical results and Ward Identities both in superconducting and normal

phase. After identifying superfluid density and normal component density in the two fluid

model of superconductor we check Homes’ law and Uemura’s law.

For β = 0, the Ward identities (4.56)–(4.58) become simplified

Re[α] = −µ
T

Re[σ] , Re[κ̄] = −µRe[α] ,

Im[α] +
µ

T
Im[σ] =

n

ωT
, Im[κ̄] + µIm[α] =

ε′ − µn
ωT

.
(4.59)

This relation was reported in [2] for normal phase and here we have shown it still holds

for superconducting phase. By these relations, once σ is obtained, α and κ̄ are completely

determined. In both normal and superconducting phase, Im[σ] turns out to have 1/ω pole

by numerical computation so Re[σ] is infinite by the Kramers-Kronig relation [2, 8, 31].
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Therefore, by (4.59), Re[α] and Re[κ̄] are also infinite and Im[α] and Im[κ̄] have 1/ω poles.

In normal phase it is due to the absence of momentum relaxation and in superconducting

phase there is another contribution due to condensate.

For β 6= 0, the Ward identities (4.56)–(4.58) may be rewritten as

Re[α] +
µ

T
Re[σ] = −β

T

Re[〈JS〉]
ω2

, (4.60)

Im[α] +
µ

T
Im[σ] =

n

ωT
− β

T

Im[〈JS〉]
ω2

, (4.61)

Re[κ̄] + µRe[α] = −β
T

Re[〈QS〉]
ω2

, (4.62)

Im[κ̄] + µIm[α] =
ε′

ωT
− µn

ωT
− β

T

Im[〈QS〉]
ω2

, (4.63)

〈QS〉+ µ 〈JS〉+ β
〈SS〉
ω

= 0 , (4.64)

where (4.62) and (4.63) are obtained by combining (4.56) and (4.57), and we used Q =

T−µJ . Contrary to the case of β = 0, α and κ̄ are not determined by σ only, because there

are other correlators 〈JS〉, 〈QS〉, and 〈SS〉 involved in the Ward Identities. For exmaple,

once we know σ, α, and κ̄, we can read off 〈JS〉, 〈QS〉, and 〈SS〉 by the Ward identities.

In normal phase (see, for example, the dotted curve in figure 2), the real and imaginary

part of σ, α, and κ̄ are all finite at ω = 0 due to the momentum relaxation (β 6= 0). At

small ω, it is inferred that Re[〈JS〉] ∼ ω2 from (4.60) and Im[〈JS〉] ∼ ω from (4.61).

Also Re[〈QS〉] ∼ ω2 from (4.62) and Im[〈QS〉] ∼ ω from (4.63).13 Finally, the small ω

behaviour of 〈SS〉 is determined by 〈JS〉 and 〈QS〉 via (4.64). In superconducting phase

(see for example the solid curves in figure 2), unlike normal phase, Im[σ] and Im[κ̄] have

1/ω poles, which implies the existence of delta functions at ω = 0 in the corresponding real

parts. In summary, the small ω behaviours can be written as

σ ∼ Ks
π

2
δ(ω) + σDC + i

(
Ks

ω
+ ωσI

)
, (4.65)

α ∼ αDC + iωαI , (4.66)

κ̄ ∼ −µ
2Ks

T

π

2
δ(ω) + κ̄DC + i

(
−µ

2Ks

T

1

ω
+ ωκ̄I

)
, (4.67)

〈JS〉 ∼ 1

β

(
−µKs

π

2
δ(ω)− µσDC − TαDC

)
ω2 + iω

(
n− µKs

β

)
, (4.68)

〈QS〉 ∼ 1

β

(
µ2Ks

π

2
δ(ω)− TκDC − µTαDC

)
ω2 + iω

(
ε′ − µ(n− µKs)

β

)
, (4.69)

〈SS〉 ∼ − ε′

β2
ω2 + iω3 T

β2

(
−κDC − 2µαDC −

µ2

T
σDC

)
, (4.70)

where σDC, αDC, κ̄DC are real value of conductivities at ω = 0, while σI , αI , κ̄I are imaginary

values linear to ω. Ks is introduced as a strength of the pole of Im[σ],

Ks = lim
ω→0

ωIm[σ] , (4.71)

13It is possible that the power of ω could be bigger than what are inferred. We have fixed them from

numerical data.
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Figure 8. n
µ2 (dotted curves) and Ks

µ (solid curves) for q = 3: the normal density Kn/µ at a given

µ/β is the difference between the dotted and solid curve. The Kn at low temperature vanishes

when µ
β & 2.

which can be identified with the superfluid density [42]. In (4.65)–(4.70), Ks is the only

parameter characterising the superconducting phase and if we set Ks = 0 the expressions

works for the normal phase. The two-point functions related to the scalar operator S (〈JS〉,
〈QS〉, 〈SS〉) diverge when β goes to zero at small ω. We have confirmed that (4.65)–(4.70)

agree to the numerical results in figure 6, 12 and 13.

If we define a normal fluid density (Kn) as

Kn ≡
β

µ
lim
ω→0

Im[〈JS〉]
ω

, (4.72)

the Ward identity (4.61) yields the charge conservation n = µKs+µKn. In figure 8, we plot

n/µ2(dotted curves) and Ks/µ(solid curves) versus T/Tc at several µ/β s. The difference

between the dotted and solid curve at a given µ/β is Kn/µ. As temperature approaches to

zero,14 Kn vanishes for µ/β & 2 (figure 8(b)) while Kn is nonzero for µ/β . 2 (figure 8(a)).

Interestingly, it seems that this transition conicide with the coherent/incoherent metal

transition studied in [31], where the metal state of this model was classified as coherent

state with a well defined Drude peak in AC conductivity for µ/β . 2 and incoherent state

without a Drude peak for µ/β . 2.15 In coherent state, the normal fluid density Kn can be

used as an input parameter to fit the Drude formula in the two fluid model of holographic

superconductors [42]. The non-zero Kn at zero temperature for large momentum relaxation

has been also observed in a holographic superconductor dual to a helical lattice [47].

5 Homes’ law and Uemura’s law

Homes’ law (1.1) and Uemura’s law (1.2) were introduced in section 1. In this section we

check if Homes’ law and Uemura’s law are realized in our model (2.1) with nonzero q. For

q = 0 the system is not a holographic superconductor as shown in section 3. The scalar

14Our numerics becomes unstable near zero temperature, so we present data up to the lowest possible

temperature in our numerics.
15Here, the metal state means both normal phase and the normal component of the two fluid model in

superconductor phase.
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ψI giving momentum relaxation is essential for Homes’ law because without momentum

relaxation σDC is infinite and Homes’ law cannot be satisified.

Homes’ law and Uemura’s law are material independent universal scaling relations

observed in high temperature superconductor as well as conventional superconductors [47,

56–58]. Uemura’s law appearing in underdoped cuprates is

ρ̃s(T̃ = 0) = B T̃ c , (5.1)

and Homes’ law satisfied in a broader class of materials is

ρ̃s(T̃ = 0) = CσDC(T̃ c) T̃ c , (5.2)

where B and C are material independent universal constants. Here, the superfluid density

(ρ̃s), temperature(T̃ ), and conductivity(σDC) are all dimensionless [47]. In this subsection

we use momentum relaxation strength parameter(β) as our scale so we choose ρ̃s = Ks/β

and T̃ = T/β. In our model, there are two free parameters, µ/β and q. Thus universality

of B and C means that B and C are independent of µ/β and q. To check this it is

convenient to fix q first, and make plots of B and C vs µ/β for Uemura’s law and Homes’

law respectively.

To compute B and C,

B =
ρ̃s
T̃ c

=
Ks

Tc
, C =

ρ̃s
σDCT̃ c

=
Ks

σDCTc
, (5.3)

the superfluid density ρ̃s(= µ/β ·Ks/µ) can be read off from the solid curves in figure 8,

where the curves do not reach to T = 0 because of instability of numerical analysis.

Therefore, we extrapolated the curves up to zero temperature to read ρ̃s at T = 0. The

conductivity σDC can be read in figure 2 or analytically σDC = 1+µ2/β2 in our model [28].

The transition temperature T̃ c has been computed numerically in [46]. Our numerical

results of ρ̃s, T̃ c and σDC for q = 3 are shown in figure 9.

From figure 9 we may expect that there is a linear relation between ρ̃s and T̃ c at

least for large µ/β, which supports Uemura’s law. To see if this is the case also for

small µ/β we make a plot of B vs µ/β in figure 10(a), where we find that Uemura’s law

holds only for µ/β & 2, of which data are red dots. Interestingly, the parameter regime

µ/β & 2 (red dots) belongs to coherent metal regime, where the optical conductivity of

normal component shows a Drude peak behaviour. Furthermore, this regime corresponds

to figure 8(b), where charge density is the same as superfluid density at zero temperature.

The blue dots belong to incoherent regime, where a optical conductivity loses a Drude

behaviour. They correspond to figure 8(a) and there is a gap between charge density

and superfluid density at zero temperature. Also, for different values of q, we find that

Uemura’s law is satisfied for large µ/β but with a different constant B. For example,

for q = 2, B ≈ 6.87 and for q = 6, B ≈ 4.64 in the regime of µ/β & 2 (figure 10(c)).

Since Uemura’s law is observed in underdoped regimes, if β can be interpreted as a doping

parameter our result will be consistent with phenomena.

– 23 –



J
H
E
P
1
0
(
2
0
1
6
)
0
4
1

5 10 15 20
μ/β

5

10

15

ρ̃s

(a) ρ̃s

5 10 15 20
μ/β

100

200

300

400

T
˜
c

(b) T̃ c

5 10 15 20
μ/β

100

200

300

400

σDC

(c) σDC

Figure 9. ρ̃s, T̃ s, and σDC for q = 3.

5 10 15 20
μ/β

2

4

6

8

10

12
B

(a) B(= ρ̃s/T̃ c) , q = 3

★
★

★

★
★

★ ★ ★ ★ ★ ★ ★

○

○

○

○
○

○ ○ ○ ○ ○ ○ ○

◆

◆
◆
◆◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆

q=2

q=3

q=6

5 10 15 20
μ/β

2

4

6

8

10

12

B

(b) B(= ρ̃s/T̃ c) for q = 2, 3, 6

Figure 10. Checking Uemura’s law. Uemura’s law holds in coherent regime (red dots: µ/β =

2, 3, 5, 7, 10, 15, 20) while it does not hold in incoherent regime (blue dots: µ/β = 0.3, 0.4, 0.5, 0.7, 1).

In (a) the black line is drawn for B ∼ 5.47, and in (b) the black lines are drawn for B ∼
6.87, 5.47, 4.64 for q = 2, 3, 6 respectively.
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Figure 11. Checking Homes’ law. Homes’ law does not hold. The blue dots are for incoherent

regime (µ/β = 0.3, 0.4, 0.5, 0.7, 1) and the red dots are for coherent regime (µ/β = 2, 3, 5, 7, 10). In

(a) the data for C do not align on a constant value and in (b) the data do not yield a linear relation.

Based on our results on Uemura’s law (figure 10(a)) and σDC (figure 9(c)), we may

anticipate if Homes’ law is satisfied. If σDC is quickly decreasing function approaching to

constant for µ/β & 2 we may have a chance to obtain Homes’ law. However, our σDC

does not show that behaviour. Therefore, as shown in figure 11, Home’s law does not hold

in both coherent regime (red dots) and incoherent regime (blue dots). In figure 11(a), for
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large µ/β, C(= ρ̃s/(σDCT̃ c)) approaches to a constant value, but it is zero. It simply means

that σDC goes to infinite as momentum relaxation goes to zero. Figure 11(b) is another

representation, a plot of ρ̃s versus σDCT̃ c, where it is also clear that there is no linear

relation between between ρ̃s and σDCT̃ c. For different values of q, we considered q = 2

and q = 6 and obtained figures qualitatively similar to figure 11, so Homes’ law seems not

satisfied for different values of q either.

Homes’ law may be understood based on Planckian dissipation, for which the time scale

of dissipation is shortest possible [60]. In summary, the left hand side of (5.2), superfluid

density is proportional to density of mobile electrons in superconducting state (nS). The

right hand side of (5.2), σDC is proportional to density of mobile electrons in normal state

(nN ) times relaxation time (τ), and the relaxation time is inversely proportional to the

temperature (Planckian dissipation):

ρs ∼ nS , σDC ∼ nNτ(Tc) , τ(Tc) ≈
~

kBTc
, (5.4)

where kB is Boltzmann’s constant and proportionality constants of the relations are ma-

terial independent. Notice that thanks to the Planckian dissipation Tc is cancelled out

in Homes’ law, leaving universal constant ~/kB. Finally if we use another empirical law,

Tanner’s law, nS = nN/4, Homes’ law is obtained.

In our model, it turns out a kind of Tanner’s law holds in coherent metal regime

(µ/β ≥ 2), where momentum relaxation is weak. In figure 8(b), all curves coincide and it

means ns/nN does not depend on µ/β, which is the qualitative content of Tanner’s law.

Therefore, if our system were Planckian dissipator in coherent regime, we would have seen

Homes’ law. The relaxation time τ for our model can be written as

τ =
f(T/β, µ/β, q)

T
, (5.5)

where T in the denominator is extracted to mimic the form of Planckian dissipation [47].

Since our system does not show Homes’ law it is not a Planckian dissipator, which means

f is not universal near Tc. Furthermore, we may induce that f ∼ µ2/β2 because Tc ∼ µ/β
from figure 9(b) and τ ∼ µ/β from the analysis in [31]. Indeed, it was shown that in general

the system could not be a Planckian dissipator if momentum is relaxed weakly [47].

Our results on Uemura’s law and Homes’ law are different from the previous work [47],

where a superconductor model in a helical lattice was studied. In the model, there are

two parameters corresponding to the strength of momentum relaxation effect: the lattice

strength λ and the helix pitch p, and it was found that Homes’ law held for restricted

parameter regime (not in small momentum relaxation, but for rather large values of λ and

p) while Uemura’s law did not hold. In particular, Homes’ law was observed in insulating

phase near phase transition. However, in our model there is no insulating phase and it may

be a reason why two models show different results. There are other differences between

two models. The model in helix lattice is anisotropic five dimensional model, while our

model is isotropic four dimensional.
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6 Conclusion and discussions

In this paper, we analysed a holographic superconductor model incorporating momentum

relaxation. Building on previous works [31, 46, 53, 54], we focused on three issues, where

momentum relaxation plays an important role. (1) Ward identities: constraints between

conductivities, (2) conductivities with a neutral scalar hair instability, (3) Homes’ law and

Uemura’s law.

In holographic methods, we often need to solve complicated differential equations which

do not allow analytic solutions, so it is important to develop reliable and systematic nu-

merical methods. Computing AC conductivities is such an example, for which we have

developed a numerical method. However, to make sure our numerics are reliable and ro-

bust, it will be good to have a cross-check. The Ward identity serves as a nice cross-check of

our numerical method since we can compare our numerical results with the independently

derived analytic formula. When there is a neutral scalar instability we explicitly showed

that the DC electric conductivity is finite, while it is infinite for a complex scalar instabil-

ity. This shows that the neutral scalar instability has nothing to do with superconductivity

as expected.

Homes’ law is very interesting and important not only because of its material in-

dependent universality but also a possible relation to quantum criticality and Planckian

dissipation, which also underpins the universal bound of the viscosity to entropy in strongly

correlated systems such as quark-gluon plasma. We have checked Homes’ law and Uemura’s

law in our model. It turns out that Homes’ law does not hold and Umeura’s law holds

for small momentum relaxation related to coherent metal regime. Our results are different

from [47], where a holographic superconductor in a helical lattice was considered and it

was shown that Homes’ law is satisfied for some restricted parameter regime in insulating

phase, while Uemuras’ law is not satisfied at all. The difference may be due to the existence

of insulating phase and/or anisotropy in a model with a helical lattice. To clarify it, it

will be helpful to study Homes’ law in different holographic superconductor models such

as anisotropic massless scalar model, Q-lattice model, or massive gravity model [68].

Regarding Homes’ law and Uemura’s law, there may be an issue in the identification

of the superfulid density. We have found that superfluid density and total charge density

at zero temperature do not agree at large momentum relaxation, similarly to the case in

a helical lattice [47]. Because the Ferrell-Glover-Tinkham (FGT) sum rule still holds in

our model [46], it is possible that part of the low frequency spectral weight are transferred

to intermediate frequencies instead of the superfluid pole. Therefore, as a cross check,

it will be good to compute the superfluid density from the transverse response by the

magnetic/London penetration depth, for which we need to solve for the transverse propa-

gator at small non-zero momentum [47]. There is also another closely related quantity to

superfluid density. By integrating a Maxwell’s equation over the holographic coordinate r,

∇MF tM = iq
(
Φ∗DtΦ− ΦDtΦ∗

)
, (6.1)

we may define the charge density of hair outside the horizon, nhair, as

nhair ≡ n−nh ≡
√
−gF tr|r=∞−

√
−gF tr|r=rh = iq

∫ ∞
rh

dr
√
−g
(
Φ∗DtΦ−ΦDtΦ∗

)
, (6.2)
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where n is the charge density of the dual field theory and nh is interpreted as the charge

density inside the horizon. In normal phase nhair = 0 while in superconducting phase

nhair 6= 0. Therefore, nhair plays a role of order parameter of superconducting phase

transition. For q = 0, nhair is zero so Ks is zero, which is consistent with our results in

section 3. However, it turns out that the numerical value of Ks is different from nhair. We

have checked Homes’ law and Uemura’s law by using nhair as the superfulid density, but

it did not support Homes’ law and Uemura’s law. It will be interesting to find a physical

meaning of nhair in the dual field theory and the precise relation to superfluid density.

Acknowledgments

We would like to thank Johanna Erdmenger, Steffen Klug, Rene Meyer, Yunseok Seo, Sang-

Jin Sin for valuable discussions and correspondence. The work of K.Y.Kim and K.K.Kim

was supported by Basic Science Research Program through the National Research Foun-

dation of Korea(NRF) funded by the Ministry of Science, ICT & Future Planning(NRF-

2014R1A1A1003220) and the GIST Research Institute(GRI) in 2016. K.K.Kim was also

supported by the National Research Foundation of Korea(NRF) grant with the grant num-

ber NRF-2015R1D1A1A 01058220. M. Park is supported by TJ Park Science Fellowship

of POSCO TJ Park Foundation.

A Two-point functions related to the real scalar operator

As commented at the end of section 4, we have confirmed the Ward identities numerically

for other cases too: 1) B = 0, β/µ = 0.1, 2) B = 0, µ = 0, 3) B 6= 0. For completeness,

we show here the numerical data of 〈JS〉, 〈QS〉, 〈SS〉 for (1) and (2) in figure 12 and 13

respectively. For electric, thermoelectric and thermal conductivities we refer to [31, 54]. In

figure 14 we show the numerical results of Ward identites for (3).
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Figure 12. 〈JS〉, 〈QS〉, 〈SS〉 for β/µ = 0.1. T/Tc = 1.5, 1, 0.94, 0.76, 0.37 (dotted, red, orange,

green, blue).
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Figure 13. 〈JS〉, 〈QS〉, 〈SS〉 for µ = 0. T/Tc = 13.2, 3.5, 1, 0.95, 0.7, 0.4, 0.25 (dashed, dotted,

red, orange, green, blue, purple).
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Figure 14. Finite B filed case: we plotted all components of the Ward identities (4.44)–(4.46)

together for the case with µ/T = 1, B/T = 3 and β/µ = 0, 0.5, 1, 1.5.
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