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Abstract: The unitary evaporation of a black hole (BH) in an initially pure state must

lead to the eventual purification of the emitted radiation. It follows that the late radiation

has to be entangled with the early radiation and, as a consequence, the entanglement among

the Hawking pair partners has to decrease continuously from maximal to vanishing during

the BH’s life span. Starting from the basic premise that both the horizon radius and the

center of mass of a finite-mass BH are fluctuating quantum mechanically, we show how this

process is realized. First, it is shown that the horizon fluctuations induce a small amount of

variance in the total linear momentum of each created pair. This is in contrast to the case

of an infinitely massive BH, for which the total momentum of the produced pair vanishes

exactly on account of momentum conservation. This variance leads to a random recoil of

the BH during each emission and, as a result, the center of mass of the BH undergoes

a quantum random walk. Consequently, the uncertainty in its momentum grows as the

square root of the number of emissions. We then show that this uncertainty controls

the amount of deviation from maximal entanglement of the produced pairs and that this

deviation is determined by the ratio of the cumulative number of emitted particles to the

initial BH entropy. Thus, the interplay between the horizon and center-of-mass fluctuations

provides a mechanism for teleporting entanglement from the pair partners to the BH and

the emitted radiation.
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1 Introduction

Let us consider an evaporating black hole (BH) in a four-dimensional asymptotically flat

spacetime. The standard Hawking description of BH radiation via pair production [1, 2]

implies that the quantum state of the near-horizon matter is the Unruh vacuum state, which

is that of maximally entangled pairs straddling the horizon. Ultimately, the positive-energy

partners fly off to become the Hawking radiation, while their negative-energy counterparts

fall into the interior and lead to a reduction in the BH mass.

One problem with this picture is its failure to explain how information can escape from

the BH, which is an essential requirement for a unitary process of evaporation. It was long

thought that this quandary could be resolved by non-perturbative effects such as contri-

butions from other geometries [3] or subtle correlations between the emitted quanta [4].

However, this optimistic stance leads one to an even bigger issue: explaining how the in-

formation can get out without violating another fundamental tenet of quantum theory —

the monogamy of entanglement, i.e., that no particle can be strongly entangled with more

than one other particle. This concern has been championed by Mathur [5–8, 11], while

Almheiri et al. brought this matter to the forefront with their notion of a near-horizon

“firewall” [12] (also see [13–18]).

Using the strong-subadditivity inequality, one can recast this problem in precise terms,

but it is also easy to understand the central issues at a simple intuitive level. For informa-

tion to escape from the BH and then be encoded in the state of the external radiation, there

must be some degree of entanglement between the emitted Hawking particles. Otherwise,

the final state of the radiation could have no “knowledge” about the initial state of the

collapsing matter. Also, it is not viable for this information to be released only in the final

stages of evaporation, as the amount that is stored in the BH interior cannot exceed the

horizon area in Planck units. To argue differently would be to argue for BH remnants.

Monogamy of entanglement then rules out the possibility of maximally entangled pairs

in the near-horizon zone — the Unruh state cannot be the correct quantum state of the

near-horizon matter.
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One might hope that the entanglement between pair partners could be large enough

that the state is still “approximately Unruh”. However, this hope is squashed once the

BH reaches its half life in terms of the number of the emitted particles, the so-called Page

time. The reason being that, according to the Page model of BH evaporation [19, 20], which

establishes parametrically the minimal rate of information release for a unitary process,

this is the time when information must begin to emerge from the BH at a rate of order

unity. This, in turn, implies that the near-horizon state has significant corrections away

from the Unruh state.

The Unruh state had always been given preferential status in this context because a

freely falling observer in this state would fall according to the predictions of classical general

relativity. A different choice of vacuum would lead to deviations from these predictions, and

it is implicitly assumed by many that such a choice would be problematic; for example, by

putting the validity of Einstein’s equivalence principle at risk. We do not agree, however,

that the demise of the equivalence principle follows as a inevitable consequence of having

disentangled pairs [21, 22]. In particular, it is shown in [22] that, for typical objects,

the classical tidal forces at the horizon of a finite-mass BH are more dangerous than a

significant degree of disentanglement. Our conclusion is that one cannot use this line of

reasoning to single out the Unruh vacuum as the preferred state, and we will proceed to

consider other possibilities in this spirit.

Our basic premise is that a consistent treatment of a finite-mass BH must account for

its quantum fluctuations [23, 24]. The location of the BH horizon is, at least in principle,

a physically measurable quantity [25], so that it makes sense to talk about its quantum

fluctuations. Similarly for the position and momentum of the BH center of mass, and so

their quantum spreads also have a physical meaning. So far, we have considered the impact

of fluctuations of the horizon area (or radius) on the BH evaporation process [26–28]. But,

as mentioned, the center of mass of the BH is also fluctuating quantum mechanically.

The main new idea of the current paper is that the interplay between the quantum

fluctuations of the horizon and those of the center of mass determine the state of the

produced pairs, while allowing for the swapping or teleportation of entanglement from the

pair partners to the BH and emitted Hawking radiation. Our focus is on the entanglement

of linear momentum, but we do expect that similar considerations also apply to angular

momentum.

In Hawking’s model for pair production [2], the negative-energy partner is subsumed

by the BH interior and the positive-energy partner escapes to the exterior. At times much

earlier than the Page time, the pair is in a state that is close to maximally entangled. As the

partnership ends with the subsumption of the negative-energy partner, the state of the BH

interior will have to change accordingly. It is unclear what the state of the BH interior is

to begin with (however, see [29, 30]), never mind what it will change into. But we do know

that unitary evolution implies that entanglement will not be destroyed, only teleported.

Hence, it must be that the BH interior is now entangled with the positive-energy partner,

which is by then part of the exterior radiation.

Ultimately, the BH must teleport this newly acquired entanglement to its exterior;

otherwise, the purification of the external radiation cannot be completed. The only means
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Figure 1. Diagrams of pair production in a BH background. Left: an infinite-mass BH. Neither

the horizon position nor center-of-mass (CM) momentum fluctuate, and the momentum transfer

vanishes. Right: a finite-mass BH. Both the horizon position and CM momentum fluctuate, and

the momentum transfer vanishes on average but not for every pair-production event.

that the BH has for doing this is through the influence of its near-horizon gravitational

field on subsequently produced pairs.

So, somehow, the pair-production mechanism needs to “remember” the history of

emissions! But how? On one hand, the state of the produced pairs is apparently determined

solely by the gravitational field near the horizon of the BH. On the other, a “memory”

requires a dynamical mechanism that allows the history of emissions to change the state

of the produced pairs.

Our proposal1 is that the swapping or teleportation of entanglement proceeds via the

transfer of quantum fluctuations; from those of the horizon to those of the center of mass.

In the limiting case, when the BH mass is taken to infinity, the momentum transfer van-

ishes due to momentum conservation in the absence of recoil. For a BH of finite mass, two

new effects arise: the horizon of the BH experiences Planck-sized fluctuations [23, 32, 33]

and, additionally, the center of mass of the BH fluctuates. (See figure 1.) Our goal is

to show how the interplay between these two types of fluctuations leads to an increasing

uncertainty in knowing one of the partners momentum when the momentum of the other

is measured. It is this loss of knowledge that leads to a decreasing entanglement.

First, we will show that the horizon fluctuations induce a small variance in the total

momentum of each of the created pairs. This variance results in a random recoil of the

BH; its center-of-mass momentum becomes uncertain by a small amount during each emis-

sion, and these deviations accumulate. The resulting picture is that the center-of-mass

momentum of the BH undergoes a quantum random walk with (approximately) fixed step

sizes and, hence, the uncertainty in its momentum grows as the square root of the num-

1A similar idea concerning angular momentum was discussed for the case of a rotating BH by Chowdhury

and Mathur [31] in the context of fuzzball models.
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ber of emissions. The growing uncertainty in the center-of-mass momentum leads to an

increasing uncertainty in the correlation between the momenta of the pair partners, which

in turn decreases their entanglement. What will eventually be shown is that this decrease

in entanglement is determined by the ratio of the cumulative number of emitted particles

to the initial BH entropy.

There are other sources of momentum fluctuations besides those induced by the horizon

fluctuations. One source is the uncertainty principle. If the initial center-of-mass position

of the BH is localized to within a region of size RS , then the center-of-mass momentum

has to have a spread of order 1/RS [34]. An additional source is the random recoil of the

BH due to the eventual absorption of the negative-energy partner of the emitted positive-

energy Hawking particles. (See section 6 of [7]. Also, [35, 36].) This recoil is of order

1/RS per emitted particle. However, since momentum is conserved in this process, it does

not lead to any change in the entanglement of the emitted pairs, in agreement with the

conclusion of [7].

2 Momentum transfer in black hole pair production

To obtain the typical scale of momentum transfer for a pair, we first recall that the horizon

fluctuates at Planckian scales,2 ∆R ∼ lp. Then the momentum of the partners fluctu-

ates according to ∆p ∼ ∂p
∂R

∣∣∣
R=RS

∆R ∼ lp
R2

S

, where the last estimate is obtained using

p ∼ TH ∼ 1/R. This estimate indicates that the typical momentum transfer from the pro-

duced pair to the BH is of the extremely small magnitude q ∼ lp/R
2
S .

Let us now reinterpret this result in terms of random “momentum kicks” to the center

of mass of the BH. Each pair-production event takes about a Schwarzschild time RS and

results in a momentum kick of magnitude ∆PCM ∼ q ∼ lp/R
2
S in a random direction. This

process may be analyzed in terms of a quantum random walk in momentum space. In terms

of N , the cumulative number of emitted particles, this is ~̂PCM(N + 1) = ~̂PCM(N) +
lp
R2

S

~̂J ,

where ~̂J is a random Gaussian variable with a mean of zero and a variance of 1.

The wavefunction of the center-of-mass momentum is therefore a Gaussian with a mean

of zero and a variance of ∆P 2
CM ∼ l2p

R4
S

N ∼ N
SBH

1
R2

S

. Hence, Ψ(PCM) = 1√
N e

− 1
4

P2
CM

σ2
CM , with N

being a suitable normalization constant and σ2
CM = N

SBH

1
R2

S

.

3 Entanglement in pair production

What are the entangled quantities in the BH pair-production? They cannot be just the

spin or angular momentum because one can imagine a situation when a Schwarzschild BH

emits most of the radiation in the form of scalar particles. And just how entangled need

they be?

2Conventions: R is the horizon radius in general, while RS is its classical (Schwarzschild) value. Also,

TH ∼ 1
RS

is the Hawking temperature and SBH ∼
R2

S

l2
P

is the Bekenstein-Hawking entropy, where lP is the

Planck length.
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We begin answering these questions by considering the physical observables in the pair-

production process. The factor that determines the degree of entanglement between the

produced particles is the near-horizon gravitational field. For the case of electron-positron

pair production, this is made clear in (e.g.) [37, 38].

Suppose that one measures the momentum of an outgoing Hawking particle. How ac-

curately would they know about the momentum of its ingoing (negative-energy) partner?

If the BH is infinitely massive, the answer would be complete accuracy because momen-

tum is conserved during the pair-production process and, consequently, the pair would be

maximally entangled. However, what about a BH of finite mass? If the center-of-mass

momentum is not measured, the observer would not know what value to assign it and the

partner’s momentum would be necessarily uncertain — some disentanglement has incurred.

From this point of view, disentanglement results from a lack of information about one of

the pair-member’s momentum.

Let us set the initial momentum of the BH center of mass to zero, ~PCM = 0. If the

momentum of the first emitted particle is measured, we would know with high precision

what the change to ~PCM would be. Meaning that, in this situation, the variables are

maximally entangled and imply maximal entanglement between pair members. If, on the

other hand, we measure the momentum of the second emitted particle but not the first,

then PCM would only be known to accuracy lP /R
2
S since the kick from the first particle is

unknown. Clearly, if we measure just the momentum of the N th emitted particle (after,

say, about half the particles were emitted so that N ∼ SBH), then PCM would only be

known to an accuracy of about
√
N

lp
R2

S

∼ 1/RS . This would mean significant deviations of

the pair from maximal entanglement.

What we then need to consider is a superposition of bipartite states |~PCM(N), ~qN 〉 =
|~PCM(N)〉|~qN 〉. Here, ~qN is the momentum transfer in the N th pair-production event (i.e.,

the negative of the net momentum of this produced pair) and ~PCM(N) is the center-of-mass

momentum just before this event. Because of total momentum conservation, the latter is

equal to the sum of all previous momentum transfers, ~PCM(N) =
N−1∑
i

~qi.

It follows that we can write

|~PCM(N), ~qN 〉 = 1√
Ñ

∫ ∫
d3QNd3qNδ

(
~QN − ~PCM(N)− ~qN

)
e
− Q2

N

4σ2
CM | ~QN , ~qN 〉, (3.1)

where ~QN =
N∑
i
~qi = ~PCM(N + 1) and the Gaussian incorporates the growing uncertainty

in the center-of-mass position due to its previously discussed random walk. As explained

in section 2, the width of this distribution is given by

σ2
CM(N) = Nσ2

i ≃ N
l2p
R4

S

. (3.2)

A reduced density matrix for the momentum of the N th pair can now be written in

the standard way,

ρred =

∫
d3Q′〈 ~Q′|

[
|~PCM(N), ~qN 〉〈~PCM(N), ~qN |

]
| ~Q′〉, (3.3)
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for which a straightforward calculation reveals that

ρred =
1

N

∫
d3qNe

− q2
N

2σ2
CM |~qN 〉〈~qN | . (3.4)

We may now apply eq. (3.4) and the results of the appendix, where it is shown that

the degree of entanglement among the pair partners is determined by the variance of the

distribution σ2
CM. The purity of the reduced density matrix (in 3 space dimensions) is

given by Trρ2red ≃
[

σ2
CM

(∆Q)2

]3/2
, where ∆Q is the relevant range of momentum. Here, it is

the Hawking temperature, ∆Q ∼ TH ∼ 1/RS , since the energies of the emitted particles

are within the thermal window, Trρ2red ≃
[
σ2
CMR2

S

]3/2
.

Using eq. (3.2), we obtain

Trρ2red ≃
[

N

SBH(0)

]3/2
. (3.5)

The purity is initially very small, indicating that the pairs are maximally entangled. As

more particles are emitted, the purity increases until reachingN ∼ SBH(0). Then the purity

becomes order one, indicating that the pairs are produced effectively in a product state.

These observations can be made more formal by parametrizing the associated entropy.

Following Mathur [9, 10], one can define a parameter ǫ that indicates the deviation from

maximal entanglement. In general, ǫ = Smax−S
Smax

, where S is some measure of entropy and

Smax is its maximal value. Mathur used the Von Neumann entropy, whereas we used the

Rényi entropy in [40]. Different parametrizations will, of course, lead to somewhat different

quantitative results.

In the current context, we find that the linear entropy SL is the appropriate measure of

entanglement, being directly related to the purity of the reduced density matrix (e.g.) [39].

For a system with a large number of possible states, as in the case of momentum entangle-

ment, the linear entropy is given by SL = 1 − Trρ2red. The linear entropy for the pairs is

therefore given by

SL(N) ≃ 1−
[

N

SBH(0)

]3/2
. (3.6)

As the linear entropy ranges from 1 (maximal entanglement) to 0 (product state), the

deviation parameter for the N th produced pair is simply

ǫ(N) ≃
[

N

SBH(0)

]3/2
. (3.7)

As expected, this parameter is initially very small and already of order unity at times

comparable to the Page time but never exceeds unity.

One final consideration: as the entanglement between the pair partners decreases, the

entanglement between the positive-energy partner and the previously emitted particles will

increase in kind. This is because the total momentum of all emitted particles must sum up

to zero by the end of evaporation; so that, if we knew the momenta of the first N emissions,

our knowledge of the N th particle’s momentum would accordingly increase.

– 6 –
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This latter entanglement also measures the amount of correlation between the N th

emission and all the emissions that follow it until the end of the evaporation. This is

because, if one measures the momenta of the first N emitted articles, then the sum of

momenta of the rest of the SBH(0)−N particles has to be exactly of the same magnitude

and opposite direction as the sum of the first N particles.

To make this idea precise, one can repeat the previous analysis for ~KCM(N) =
SBH(0)∑
i=N+1

~qi.

Then, as N grows, the variance of ~KCM(N) is decreasing in proportion to the decrease of

the variance in ~PCM. It is also clear that ~qN is always maximally entangled with the sum
~PCM + ~KCM because ~qN + ~PCM + ~KCM = 0.

4 Conclusion

We have relied on a pair of fundamental ideas — unitary evolution and the fact that a

finite mass BH must fluctuate quantum mechanically — to conclude that the state of the

near-horizon pairs is much different than the Unruh state at all but the earliest stages of

BH evaporation. Mathur and others have deduced this outcome on the basis of general

arguments; our contribution is to provide a physical mechanism that leads to such a state

and to provide a quantitative treatment of its deviations from the Unruh vacuum. Our

result is consistent with [40], where we found by using the constraint of strong subadditivity

that N/SBH(0) is an upper bound on the degree of disentanglement.

A central lesson of our work is that deviations from maximal entanglement depend

on the quantum fluctuations of a finite-mass BH. On the contrary, an infinitely massive

object cannot recoil, assuring that momentum and, therefore, perfect entanglement are

conserved for the produced pairs. This explains why Hawking and others concluded that

the pairs were maximally entangled; given the assumption of an infinitely massive BH, this

must be so.

The techniques that were used here have an element of crudeness, as do many model-

independent calculations. One would like to further the analysis in a more rigorous way,

but this requires a much clearer understanding about the state of the BH interior and,

then, how it changes when a negative-energy particle is subsumed. We have only begun

to broach the subject of the BH interior [30] but hope that this path eventually leads to

calculations along these lines.
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A Momentum entanglement

As a concrete example of momentum entanglement, we discuss the state of a pair of particles

in 3 space dimensions. For simplicity, we consider a pair of massless bosons and, therefore,

the state has to be symmetric under the exchange of the particles. Similar conclusions

would be obtained for massive bosons or fermions.

The state of the pair can be written as

|pair〉 =
∫

d3p1d
3p2 g(~p1, ~p2)|~p1, ~p2〉, (A.1)

and its density matrix is then

ρ̂pair = |pair〉〈pair| , (A.2)

so that the density-matrix elements are given by

ρ(~p1, ~p2; ~q1, ~q2) = g(~p1, ~p2)g
†(~q2, ~q1) , (A.3)

and the reduced density-matrix elements are expressible as

ρred(~p1, ~p2) = (gg†)(~p1, ~p2) . (A.4)

Given that the full density matrix is normalized, the reduced density matrix is as well,

Trgg† = 1. One can use the Rényi entropy for estimating the amount of entanglement,

H2 = − ln
Tr(ρ2red)

(Trρred)
2 = − lnTr

[
(gg†)2

]
.

If the total momentum of the pair vanishes, then

g(~p1, ~p2) =
1√
N

δ(~p1 + ~p2) , (A.5)

where N is a normalization factor (Tr1 = N ). The Rényi entropy is then given by

H2 = lnN , (A.6)

which indicates that the pair is maximally entangled. As expected, when the total mo-

mentum of the pair is fixed, the state of the pairs is indeed maximally entangled. On the

other hand, if the state is a product state,

g(~p1, ~p2) =
1√N1

f1(~p1)
1√N2

f2(~p2) , (A.7)

with N1, N2 being normalization factors, then H2 = 0 as expected.

We now understand that, in order to deviate from maximal entanglement, there must

be some spread in the total momentum of the pair. In technical terms, the matrix g(~p1, ~p2)

has to have some support away from the diagonal. An example could be a Gaussian spread

in the momentum difference with some small width σ < ∆Q where ∆Q represents the

window of applicable momenta,

g(~p1, ~p2) =
1√
N

e−
(~p1−~p2)

2

2σ2 . (A.8)

– 8 –
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In the case of this Gaussian, the purity of the reduced density is given by

Trρ2red =
1

N

∫ ∆Q

d3p1d
3p2d

3p3d
3p4e

− (~p1−~p2)
2

2σ2 e−
(~p2−~p3)

2

2σ2 e−
(~p3−~p4)

2

2σ2 e−
(~p4−~p1)

2

2σ2 , (A.9)

where
√
N = Trρred =

∫ ∆Q
d3p1d

3p2e
− (~p1−~p2)

2

2σ2 and the upper limit on the integrals means∫ ∆Q
d3p =

∫ ∆Q
−∆Q dpx

∫ ∆Q
−∆Q dpy

∫ ∆Q
−∆Q dpz.

For small values of the dimensionless variance, σ2

(∆Q)2
< 1, one then obtains

Trρ2red =
(π
2

)3/2
[

σ2

(∆Q)2

]3/2 [
1 +

3(2−
√
2)

4
√
π

√
σ2

(∆Q)2
+ · · ·

]
. (A.10)

The Rényi entropy (H2) = − ln(Trρ2red) is then given by

H2 ≃ 3/2 ln

[
(∆Q)2

σ2

]
. (A.11)

Here, it should be understood that this expression has to be normalized in the limiting case

σ2 ≪ (∆Q)2. We circumvent the issue of normalization in the main text by using the linear

entropy to quantify the entanglement of the pairs. But what is clear is that small values

of the dimensionless variance lead to small deviations from the maximum entanglement.

If, on the other hand, the width σ is large and extends over all of the allowed range of

momenta, then the state becomes effectively a product state as in eq. (A.7) with uniform

f1, f2. In this case, H2 is small. This outcome is already clear by taking the limit of

σ2/(∆Q)2 → 1 in eq. (A.11), as then Trρ2red → 1 so that H2 → 0.
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