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conditions with the Lorentz and scaling symmetries of the class of stationary solutions,

singles out a very special set of “holographic boundary conditions” that is described by a

single parameter. Remarkably, in stark contrast with the somewhat pathological behaviour
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1 Introduction

In three-dimensional spacetimes, the fall-off of the electromagnetic field for a localized

distribution of charge is very slow, and it then generates a strong backreaction in the

asymptotic behaviour of the metric. Consequently, finding a suitable regularization for the

energy in this class of instances turns out to be a hard nut to crack [1], even in the case

of negative cosmological constant [2]. A similar situation occurs for General Relativity on

AdS3 minimally coupled to scalar or two-form fields [3, 4] where, despite the asymptotic

behaviour is relaxed as compared with the one of Brown and Henneaux [5], it is found that

the conserved charges associated to the asymptotic symmetries become finite, and acquire

terms that manifestly depend on the matter fields. Besides, the electrically charged black

hole solution in the Einstein-Maxwell theory with negative cosmological constant, has been

shown to exhibit somewhat pathological properties. Indeed, the energy is unbounded from

below, and for a fixed value of the mass, the electric charge possesses no upper bound [2].

These unusual properties seem to suggest that the solution might be unstable, and it would

also preclude its embedding within a suitable supergravity theory [6]. Note that if one takes

into account that both, the black hole geometry and the Einstein-Maxwell Lagrangian are

well behaved, this certainly becomes a very puzzling situation. In order to clarify the

point, it is worth to stress that according to the action principle, the theory cannot be

suitably understood without the knowledge of a precise set of boundary conditions. This

issue is one of the main points of our work. The plan is as follows. In the next section

we deal with stationary circularly symmetric solutions of General Relativity coupled to

the Maxwell field on AdS3, and it is shown that a suitable choice of the asymptotic form

of the electromagnetic Lagrange multiplier (At), makes the action to attain an extremum

provided it fulfills a nontrivial integrability condition. Hence, as in the case of scalar and
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two-form fields, for a generic choice of boundary conditions, the mass and also the angular

momentum become automatically finite, and acquire explicit contributions from the matter

field. In section 2.1, it is shown that requiring compatibility of the boundary conditions

with the scaling symmetry of the class of stationary solutions, singles out a precise set of

“holographic boundary conditions” that is described by an arbitrary function of a single

variable. It can also be seen that if one further requires the holographic boundary conditions

to be compatible with Lorentz symmetry, selects a very special subset that is parametrized

just by a single arbitrary fixed constant. In section 3 we compare the global charges that

are obtained in the case of an electrically charged rotating black hole solution for different

choices of boundary conditions. It is shown that the standard result in [2] corresponds

to the simplest choice of Lorentz invariant boundary conditions. Noteworthy, it is found

that if the boundary conditions are compatible with both Lorentz and scaling symmetries,

the energy spectrum of an electrically charged (rotating) black hole is nonnegative, and

also, for a fixed value of the mass, the electric charge becomes bounded from above. We

conclude with further remarks in section 4.

2 Reduced action principle: stationary solutions, integrability conditions

and conserved charges

Let us consider the electromagnetic field minimally coupled to General Relativity with

negative cosmological constant in three spacetime dimensions. The action reads

I =

ˆ
d3x
√
−g
[

1

2κ
(R− 2Λ)− ε0

4
FαβF

αβ

]
, (2.1)

where the Newton constant G and the AdS radius l are defined through κ = 8πG and

Λ = −l−2, respectively. The “vacuum permeability” ε0 has units of length, and is assumed

to be fixed as ε0 = 1. A wide family of exact stationary circularly symmetric solutions has

already been found in the literature [1, 2, 7–22]. Hereafter we deal with generic stationary

circularly symmetric configurations, so that the spacetime metric can be written as

ds2 = −N (r)2F (r)2 dt2 +
dr2

F (r)2
+R (r)2

(
N φ (r) dt+ dφ

)2
, (2.2)

and the gauge field can be chosen to be given by1

A = At (r) dt+Aφ (r) dφ . (2.3)

It is then clear that the form of (2.2) and (2.3) is mapped into itself under the action of

a Lorentz boost in the “t− φ cylinder”. It is also worth pointing out that the metric and

the gauge field are invariant under scalings of the form

r → λr , t→ λ−1t , φ→ λ−1φ , (2.4)

1Here the gauge field has been assumed to be stationary and circularly symmetric. Had we made the

same assumption for the field strength, one would obtain a wider class of configurations, so that (2.3)

corresponds to one of the two possible branches (see e.g., [22, 23]).
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provided

F → λF , R → λR , Aφ → λAφ ,
N → N , N φ → N φ , At → λAt . (2.5)

These symmetries are then automatically incorporated in the reduced field equations that

are obtained from the action (2.1) for stationary circularly symmetric configurations.

The reduced action principle is obtained by replacing the form of the metric and gauge

field given by (2.2) and (2.3), respectively in (2.1), which reads

I = −2π (t2 − t1)
ˆ
dr
(
NH +N φHφ +AtG

)
+B , (2.6)

where B stands for a suitable boundary term that has to be included in order to ensure

that the action attains a bona fide extremum. It is then apparent that N , N φ, At are the

Lagrange multipliers associated to the constraints, which read

H = − R
κl2

+ 4κR
(
πrφ
)2

+
(pr)2

2R
+
F2
(
A′φ
)2

2R
+

(
F2
)′R′

2κ
+
F2R′′

κ
, (2.7)

Hφ = −prA′φ − 2
(
R2πrφ

)′
, (2.8)

G = −∂rpr , (2.9)

respectively, where the momenta πrφ and pr are given by

πrφ = −N
φ′R

4κN
; pr =

R
N

(
A′φN φ −A′t

)
. (2.10)

Indeed, varying the action with respect to the Lagrange multipliers implies that

H = Hφ = G = 0 , (2.11)

while the variation with respect to Aφ, F , R, yields the following field equations(
F2NRA′φ

)′
= 2F2NR′A′φ +R2(N φpr)′ ,

R′′ − [log (N )]′R′ = −κ
(
A′φ
)2R−1 ,

κ
[
A′2φF2 + (pr)2

]
R−2 =

(
F2
)′′

+ 2

[
N ′′F2 +

3

2
N ′
(
F2
)′

+ 4κN φ′Rπrφ
]
N−1

+ 8
(
κπrφ

)2
+ 2Λ . (2.12)

The reduced action (2.6) then possesses an extremum (δI = 0) provided the variation of

the boundary term B is given by

δB = − (t2 − t1) δQ (r)|r→∞ ,

with

δQ (r) =
2π

κ

[
NF

(
F ′δR− δ

(
FR′

)
− κF
R
A′φδAφ

)
+N ′

(
F2δR

)]
+ 2πN φ

[
prδAφ + 2δ

(
πrφR2

)]
+ 2πAtδpr . (2.13)
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In order to integrate the variation of the boundary term one needs to know the behaviour

of the fields in the asymptotic region. By virtue of the constraints and the field equations

in (2.11) and (2.12), respectively, it can be seen that asymptotically AdS3 solutions possess

the following fall-off:

R2 = r2 − κl2

π

[
hR log

(r
l

)
− fR

2

]
+ · · ·

F2 =
r2

l2
− κ

π

[(
2hR +

1

4π

(
q2t + q2φ

))
log
(r
l

)
+ fF

]
+ · · ·

N φ = Nφ
∞ +

κ

2π
N∞

[
l

2π
qtqφ log

(r
l

)
− j
]

1

r2
+ · · · (2.14)

N = N∞ + · · ·

At = − 1

2π

(
qtN∞ + qφlN

φ
∞

)
log
(r
l

)
+Nφ

∞ϕφ +N∞
ϕt
l
− Φ + · · ·

Aφ = −
qφl

2π
log
(r
l

)
+ ϕφ + · · ·

where the constants hR, fR, fF , j, ϕt, ϕφ, qt, qφ, are allowed to vary in the action principle,

while N∞, Nφ
∞, and Φ stand for arbitrary constants without variation, whose value is kept

fixed at the boundary. Here, “· · · ” correspond to subleading terms that are irrelevant for

the analysis.

It should be highlighted that the parameters that characterize the deformations of a

spacelike surface at infinity, N∞ and Nφ
∞, have been manifestly incorporated in the asymp-

totic form of the electromagnetic potential At. This has to be so in order to preserve the

gauge fixing of the electromagnetic field under such deformations. In other words, this

guarantees that the smeared canonical generator associated to the deformation parame-

ters spans the Lie derivative of the gauge field along them. This procedure then improves

the Hamiltonian by an additional contribution that comes from the U (1) generator (see

e.g. [24]). In d ≥ 4 spacetime dimensions, the improvement just amounts to a proper gauge

transformation that does not change the surface integrals associated to the canonical gen-

erators. However, in the three-dimensional case, due to the slow fall-off of the electromag-

netic field, the improvement turns out to generate an improper gauge transformation that

modifies the global charges in a nontrivial way. Hence, and remarkably, the logarithmic

divergence in the boundary term that would arise from the original Hamiltonian precisely

cancels out, without the need of any kind of regularization procedure. Therefore, for our

prescribed fall-off in (2.14), the variation of the global charges (2.13) reduces to

δQ = N∞δM −Nφ
∞δJ − Φδqt , (2.15)

being manifestly finite. According to [25], eq. (2.15) allows to identify δqt, δJ and δM with

the variation of the electric charge, the angular momentum, and the mass, respectively.

The angular momentum directly integrates as

J = j +
l

4π
qtqφ − qtϕφ , (2.16)
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while the variation of the mass, given by

δM = δ

[
fR + fF + hR +

1

l
(qφϕφ)

]
− 1

l
(ϕφδqφ − ϕtδqt) , (2.17)

implies a non trivial integrability condition involving ϕt, ϕφ, qt, qφ. Since the integrabil-

ity condition is independent of the choice of N∞ and Nφ
∞, without loss of generality, it

is convenient to express it in a manifestly Lorentz-covariant way, by assuming that the

(conformal) boundary metric is given by the flat one, ηµν = diag(−l−2, 1). Equation (2.17)

can then be written as

δM = δ

[
fR + fF + hR +

1

l
(qφϕφ)

]
− 1

l
ϕµδq

µ , (2.18)

with qµ =
(
l−1qt, qφ

)
, and ϕµ =

(
l−1ϕt, ϕφ

)
.

The integrability condition of the energy then reads

δ2M = −1

l
(δϕµ ∧ δqµ) = 0 , (2.19)

which means that ϕµ and qµ are functionally related. The condition (2.19) is solved by

ϕµ = − δV
δqµ

, (2.20)

where V = V (qµ) is an arbitrary function of qt and qφ.

Therefore, the mass and the angular momentum read

M = fR + fF + hR +
1

l

(
V − qφ

δV
δqφ

)
, (2.21)

J = j +
l

4π
qtqφ + qt

δV
δqφ

(2.22)

which manifestly acquire contributions from the electromagnetic field, as well as from the

function V that characterizes the set of boundary conditions that are compatible with

integrability of the energy.

It is worth highlighting that, unlike the case of higher dimensional spacetimes, for d = 3

dimensions the precise value of the mass and the angular momentum explicitly depends on

the choice of boundary conditions. Note that a similar effect is known to occur in the case

of scalar fields with slow fall-off at infinity [3]. Nonetheless, in the latter case, this effect

manifests only in the mass, but not in the angular momentum.

2.1 Compatibility of the boundary conditions with Lorentz and scaling sym-

metries

As in the case of the self-adjoint extensions in quantum mechanics, it is natural to wonder

about suitable boundary conditions that are consistent with a well-defined energy spectrum.

In order to have a guide, it is compulsory to explore whether the set of boundary conditions

is compatible with the symmetries of stationary circularly symmetric configurations of the
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form (2.2) and (2.3). Thus, since a consistent set of boundary conditions turns out to be

specified by a single function V = V (qµ), requiring invariance of them under the Lorentz

boosts of the (conformally) flat boundary metric, implies that the allowed function must

be of the form

V = V
(
q2
)
, (2.23)

with q2 = ηµνqµqν = q2φ − q2t . Note that the simplest choice of Lorentz-invariant boundary

conditions corresponds to V = V0, where V0 is an arbitrary fixed constant without variation,

which can always be set to zero due to the arbitrariness in the choice of the energy of the

reference background.

As explained in section 2, the class of stationary circularly symmetric configurations is

invariant under scalings of the form (2.4), (2.5). Indeed, the reduced action (2.6) in the bulk

scales as I → λ2I, so that the field equations are invariant under the scaling symmetry.2

Thus, it is also interesting to look for the set of “holographic boundary conditions” that is

compatible with this scaling symmetry. The precise form of the function V (qµ) can then

be found taking into account that ϕµ and qµ are functionally related and transform in

a different way under the scaling symmetry. The transformation rules of ϕµ and qµ are

inherited from the ones of the radial coordinate r and the gauge field A, which according

to (2.4) and (2.5), are given by r → λr, and Aµ → λAµ, and hence

ϕµ → λ

(
ϕµ +

l

2π
qµ log (λ)

)
; qµ → λqµ .

The functional relationship between ϕµ and qµ then implies that

ϕµ (λqµ) = λ

(
ϕµ +

l

2π
qµ log (λ)

)
. (2.24)

Taking the derivative of (2.24) with respect to λ, and evaluating it for λ = 1, yields the

following linear differential equation

qν
∂2V

∂qν∂qµ
=

∂V
∂qµ
− l

2π
qµ ,

where V is defined as in eq. (2.20). The general solution is given by

V = q2tF

(
qφ
qt

)
+

l

8π

(
q2t
[
log
(
q2t
)
− 1
]
− q2φ

[
log
(
q2φ
)
− 1
])
, (2.25)

up to an arbitrary constant without variation.

The set of holographic boundary conditions that is compatible with the scaling sym-

metry is then determined by (2.25), being described by an arbitrary function of a single

variable F = F (qφ/qt). Note that, as expected, the function V in (2.25) transforms anoma-

lously under scalings, i.e., V (λqµ) = λ2
(
V − q2l

4π log (λ)
)

.

Interestingly, if one requires simultaneously both Lorentz and scaling symmetries, then

consistency of (2.23) with (2.25) fixes the form of the arbitrary function according to

F (x) =
l

8π

[
log
[ κ

8π2
(
1− x2

)]
− x2 log

[ κ

8π2
(
x−1 − 1

)]
+ γ

(
1− x2

)]
,

2A similar scaling symmetry, for which the reduced action is invariant has been reported in [26].
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where γ is an arbitrary fixed constant. Therefore, the holographic Lorentz invariant set of

boundary conditions corresponds to the following choice:

V =
l

8π

(
q2t − q2φ

) [
log
( κ

8π2
(
q2t − q2φ

))
+ γ − 1

]
. (2.26)

3 Black hole spectrum and Lorentz invariant boundary conditions: sim-

plest and holographic choices

Let us focus on the analysis of global charges in the case of electrically charged rotating

black hole solutions for a generic choice of boundary conditions. We then concentrate

in Lorentz invariant choices for the simplest, as well as for the holographic cases. For

the sake of simplicity, we begin describing the static solution, and then we extend to the

rotating case.

3.1 Static electrically charged black hole

The static electrically charged solution found in [9] can be written as

ds2 = −N2
∞

(
r2

l2
−
r2+
l2
− κq2t

4π2
log

(
r

r+

))
dt2 +

dr2

r2

l2
−
r2+
l2
− κq2t

4π2
log

(
r

r+

) + r2dφ2 ,

A =
(
− qt

2π
N∞ log

(r
l

)
+N∞

ϕt
l
− Φ

)
dt , (3.1)

where the event horizon locates at r = r+, provided the electric charge is bounded as

q2t ≤
8π2

κl2
r2+ . (3.2)

This bound saturates in the extremal case. According to (2.14), the asymptotic behaviour

is such that qφ = ϕφ = hR = fR = 0, and

fF =
πr2+
κl2
− q2t

4π
log
(r+
l

)
,

so that the global charges can be readily found from (2.21), (2.22).

For a generic choice of V = V (qt) the angular momentum vanishes, and the mass

reduces to

M =
πr2+
κl2
− q2t

4π
log
(r+
l

)
+

1

l
V . (3.3)

Simplest Lorentz invariant boundary conditions. In the case of V = 0, the result

in (3.3) agrees with the one found in [2]. Note that in the extremal case, the mass reads

Mext =
q2t
8π

[
1− log

(
κq2t
8π2

)]
. (3.4)

As explained in [2], the energy spectrum is unbounded from below, and for a fixed

value of the mass, the electric charge possesses no upper bound, see figure 1(a).
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Figure 1. Electrically charged black holes exist in the region of the
(
M, q2t

)
-plane defined through

M ≥Mext, being delimited by the curve that corresponds to the extremal solution. Figure (a) de-

scribes the standard case, that corresponds to the simplest choice of Lorentz invariant boundary con-

ditions: V = 0, so that Mext =
q2t
8π

[
1− log

(
κq2t
8π2

)]
. The energy spectrum is unbounded from below,

and for a fixed value of the mass there is no upper bound on the electric charge. Figure (b) illustrates

the case of holographic Lorentz invariant boundary conditions: V = l
8π q

2
t

[
log
(
κ

8π2 q
2
t

)
+ γ − 1

]
, so

that Mext = γ
8π q

2
t , for γ > 0. The energy spectrum is nonnegative, and for a fixed value of the mass

the electric charge is bounded from above.

Holographic Lorentz invariant boundary conditions. In this case, according

to (2.26), the suitable boundary conditions that are consistent with the scaling symme-

try are determined by

V =
l

8π
q2t

[
log
( κ

8π2
q2t

)
+ γ − 1

]
,

which depends on a single fixed parameter γ. The black hole mass in (3.3) then reads

M =
πr2+
κl2

+
q2t
8π

[
log

(
κl2

8π2
q2t
r2+

)
+ γ − 1

]
, (3.5)

so that in the extremal case is given by

Mext =
γ

8π
q2t . (3.6)

Remarkably if the arbitrary parameter fulfills γ > 0, the spectrum is such that the energy

is nonnegative, and for a fixed value of the mass, the electric charge is bounded from above.

This is depicted in figure 1(b). For γ = 0, the energy spectrum remains nonnegative, but

the electric charge has no upper bound. The case γ < 0 is pathological, since the energy is

unbounded from below and there is no upper bound for the electric charge.

3.2 Electrically charged rotating black hole

The electrically charged rotating black hole solution has been obtained in [2], and inde-

pendently in [27] following a different approach. The spacetime metric and the gauge field

– 8 –
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can be written as in eqs. (2.2), (2.3), with

R2 = r2 +

(
ω2

1− ω2

)
r2+ +

κ

4π2
(qtωl)

2 log

(
r

r+

)
,

N φ = Nφ
∞ −

(
ω

1− ω2

)(
r2

l2
−F2

)
l

R2
N∞ ,

N 2 =
r2

R2
N2
∞ ,

F2 =
r2

l2
−
r2+
l2
− κ

4π2
q2t
(
1− ω2

)
log

(
r

r+

)
, (3.7)

At = − qt
2π

[
N∞ − ωlNφ

∞

]
log
(r
l

)
+Nφ

∞ϕφ +N∞
ϕt
l
− Φ ,

Aφ =
qtωl

2π
log
(r
l

)
+ ϕφ .

This configuration possesses an event horizon at r = r+, provided the electric charge qt
and the rotation parameter ω fulfill the following bounds

ω2 ≤ 1 , (3.8)

q2t ≤
8π2

κl2
r2+

1− ω2
, (3.9)

that saturate in the extremal cases. The relevant contributions to the global charges

in (2.21), (2.22) can be directly read from the asymptotic behaviour in (2.14), which are

determined by

hR = −ω
2q2t
4π

; fR =
2π

κl2
r2+ω

2

1− ω2
− q2t ω

2

2π
log
(r+
l

)
,

qφ = −qtω ; fF =
πr2+
κl2
−
q2t
(
1− ω2

)
4π

log
(r+
l

)
.

Hence, for a generic choice of boundary conditions given by V = V (qµ), the mass and the

angular momentum read

M =
πr2+
κl2

(
1 + ω2

1− ω2

)
− q2t

4π

(
ω2 +

(
1 + ω2

)
log
(r+
l

))
+

1

l

(
V − qφ

δV
δqφ

)
, (3.10)

J =
2πr2+ω

κl (1− ω2)
− q2t ωl

4π

(
1 + log

(
r2+
l2

))
+ qt

δV
δqφ

, (3.11)

respectively.

Note that for a generic choice of boundary conditions, the value of the mass and

the angular momentum might be sensitive to the sign of the electric charge, or even the

sign of the angular momentum could be the opposite of the rotation parameter, which

are certainly curious but not necessarily inconsistent features.3 In this sense, despite the

3Indeed, the sign of J can differ from the one of ω for black holes in gravity theories with parity odd

terms in the action, like in the case of topologically massive gravity (see, e.g. [28]). Besides, as it has been

recently shown in [29], in the case of black holes on AdS3 endowed with spin-four fields, the allowed range

of positive spin-four charges is wider than that of the negative ones. Furthermore, the allowed range of

spin-four charges is consistent, and precisely agrees, with the one that comes from the bounds that are

obtained from the locally hypersymmetric extension of the theory.
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global charges have acquired explicit contributions due to presence of the arbitrary function

V, in the (naive) limit of extreme rotation (ω2 → 1) they relate as in the electrically

neutral case [9, 30], i.e., J/Ml = 1. It is also amusing to perform an explicit check of

the validity of the first law of thermodynamics when the global charges are generically

given by (3.10), (3.11), which is known to hold in advance because it is just reflection

of the fact that the Euclidean reduced action attains an extremum for smooth solutions.

Indeed, demanding regularity of the Euclidean geometry and the gauge field around the

event horizon implies that

N2
∞ =

4π2l4r2+
1− ω2

(
r2+ −

κl2

8π2
q2t
(
1− ω2

))−2
, (3.12)

Nφ
∞ =

ω

l
N∞ , (3.13)

Φ = − qt
2π

(
N∞ − ωlNφ

∞

)
log
(r+
l

)
−Nφ

∞
δV
δqφ

+
1

l
N∞

δV
δqt

, (3.14)

so that the variation of the entropy, S = A
4G = πR(r+)

2G , fulfills

δS = N∞δM −Nφ
∞δJ − Φδqt . (3.15)

Therefore, N∞ corresponds to the inverse Hawking temperature β = T−1, while the product

of β times the chemical potentials associated to the angular momentum and the electric

charge are identified with Nφ
∞, and Φ, respectively.

Lorentz invariant boundary conditions. Requiring the boundary conditions to be

consistent with Lorentz invariance at the boundary implies that V = V
(
q2
)
. It is worth

pointing out that, according to eqs. (2.21) and (2.22), this ensures that the angular mo-

mentum possesses the same sign as the rotation parameter, and also guarantees that both

the mass and the angular momentum do not depend on the sign of the electric charge qt.

Note that in the simplest case, V = 0, expressions (3.10) and (3.11) agree with the results

found in [2].

Holographic Lorentz invariant boundary conditions. The boundary conditions

in (2.26) in this case read

V =
l

8π
q2t
(
1− ω2

) [
log
( κ

8π2
q2t
(
1− ω2

))
+ γ − 1

]
, (3.16)

so that the mass and the angular momentum in (3.10) and (3.11) reduce to

M =
π

κ

(
1 + ω2

1− ω2

)
r2+
l2

+
q2t
(
1 + ω2

)
8π

(
log

[
κ

8π2
q2t l

2

r2+

(
1− ω2

)]
+ γ − 1

)
, (3.17)

J =
2lω

1 + ω2
M . (3.18)

Interestingly, the relationship in (3.18) does not involve the electric charge, and hence, it

precisely agrees with the one for the electrically neutral BTZ black hole. In the extremal
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case for which the bound (3.9) saturates, the black hole mass reads

Mext =
γ

8π
q2t
(
1 + ω2

)
. (3.19)

It is then clear that the energy spectrum and the upper bound in the electric charge remain

well-behaved also in the rotating case.

4 Final remarks

We have shown that the mass and the angular momentum of stationary circularly sym-

metric solutions of the Einstein-Maxwell theory on AdS3 generically acquire nontrivial

contributions due to the electromagnetic field, and turn out to be sensitive to the choice

of boundary conditions. Indeed, this effect not only manifests for spin-1 fields, since it is

known that it also occurs for scalar [3, 31, 32] and even for higher spin fields [33] in three

spacetime dimensions. It is worth pointing out that, according to different results found

in the literature [2, 13, 19, 34–40], the precise value of the electrically charged black hole

mass manifestly appears to depend on the distinct regularization procedures. In this sense,

our results might shed light on this puzzle, since the different results could just correspond

to inequivalent choices of boundary conditions. It would also be interesting to explore the

effect of different choices of the function V that defines the suitable boundary conditions

in the context of holographic superconductivity [41–46].

There is a very special choice of boundary conditions that is singled out by requiring

compatibility with Lorentz and scaling symmetries. This set of “holographic boundary

conditions” is characterized by a unique fixed parameter γ, that plays a similar role as

the length of the box for a confined free particle in quantum mechanics, or a modulus

parameter in a gauge field theory. The holographic boundary conditions can also be natu-

rally interpreted as an analog of Robin boundary conditions. It is worth highlighting that

this parameter manifestly appears in the energy spectrum of rotating black hole solutions,

which for γ > 0 is nonnegative, and for a fixed energy level there is an upper bound for

the electric charge. One then naturally expects that the good properties of the energy

spectrum should be inherited to different aspects of the thermodynamic structure. Jump-

ing ahead, it would also be worth to reconsider whether electrically charged black holes

could be suitably embedded within an appropriate supergravity theory. In this case, one

should expect that the extremal case would saturate the energy bounds that come from

supersymmetry. Note that, according to eq. (3.6), the energy bound should be quadratic

in the electric charge, which appears to go by hand with the quadratic nonlinearity of the

superconformal algebra with N > 1 (see e.g. [47] and references therein).

As an ending remark we would like to mention that the Brown-Henneaux boundary

conditions [5] can be consistently relaxed so as to accommodate electrically charged black

holes in the Einstein-Maxwell theory on AdS3 [48]. Remarkably, the asymptotic behaviour

can be further relaxed, so as to accommodate the generic rotating case; and if one requires

these fall-off conditions to be mapped into themselves under the full conformal group in

two dimensions, the holographic choice of boundary conditions in (2.26) turns out to be

singled out [49].
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