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1 Introduction

There has been a lot of recent progress in the study of N = 2 supersymmetric field theories

in four dimensions (see [1] for a survey). Highlights include exact results on the expecta-

tion values of certain observables like Wilson and ’t Hooft loop operators, and powerful

algorithms for the computation of the spectra of BPS states. Many of these results are

deeply related to mathematical structures on the moduli spaces of vacua.

A rich and interesting class of N = 2 theories, often referred to as class S, arises from

the twisted compactification of the six-dimensional (2, 0) theory with Lie algebra g on a

Riemann surface Cg,n of genus g with n punctures [2, 3]. Class S theories of type g = A1

admit weakly-coupled Lagrangian descriptions specified by pair of pants decompositions of

Cg,n. Each of the 3g−3+n cutting curves defining the pants decomposition corresponds to

an SU(2) gauge group, while each of the n punctures corresponds to an SU(2) flavor group.

Alday, Gaiotto, and Tachikawa (AGT) made the striking observation that the four-sphere

partition functions of A1 theories can be expressed in terms of the correlation functions of

Liouville conformal field theory on Cg,n [4].

An important goal is the generalization of the AGT correspondence to higher rank.

The origin of class S theories from the six-dimensional (2, 0) theory suggests that the

relations to two-dimensional conformal field theory may have interesting generalizations

for N > 2. In particular, AN−1 theories are expected to be related to SU(N) Toda field

theory [5], and a lot of evidence has been accumulated for this conjecture, including [6–20].

It has been proven in [14] for a particular subclass of the AN−1 theories in class S which can

be represented as quiver gauge theories with linear or circular quiver diagrams. However,

neither side of this higher-rank AGT correspondence is well-understood. Usual methods do

not apply because class S theories of type g = AN−1 with N > 2 do not have Lagrangian

descriptions in general. It is therefore unclear what should play the role of instanton

partition functions in these non-Lagrangian theories. Similarly, the Toda conformal blocks

seem to be poorly understood at the time of writing.

Parallel developments came from the insight of Gaiotto, Moore, and Neitzke (GMN)

that the BPS spectrum of a class S theory is encoded in geometrical structures on the

moduli space Mvac of vacua of the theory on R3 × S1 [3, 21–23]. The six-dimensional

description of class S theories implies that Mvac is isomorphic to Hitchin’s moduli space
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Figure 1. Triangle of relations between 4d N = 2 supersymmetric gauge theories labeled by

Riemann surfaces Cg,n (left), conformal field theory (Liouville or Toda) on Cg,n (right), and the

moduli space of flat SL(N,C)-connections on Cg,n (bottom). We also indicate the interpretation of

line defects in each description.

MH of solutions to the self-duality equations on Cg,n (see [24] for a review). This space

has a hyperkähler structure, and in one of its complex structures it can be identified with

the moduli space Mflat of complex flat connections. This leads to the key relation

Mvac(R3 × S1) =Mflat(Cg,n) . (1.1)

An important manifestation of this relation is that vacuum expectation values of BPS line

operators in class S theories can be expressed as holonomies of flat connections on Cg,n.

It has subsequently been observed in [25] that the origin of the AGT correspondence

can be understood from the relation toMflat (see [26]). Thus there appears to be a triangle

of relations between N = 2 supersymmetric gauge theories, conformal field theories, and

moduli spaces of flat connections, as depicted in figure 1.

In this paper, we make the first steps towards a generalization of this triangle of rela-

tions to higher rank. Given the difficulties in tackling directly higher-rank gauge theories

and Toda field theory, we focus first on flat connections. We will describe in detail the

quantum algebra Aflat of functions on the moduli space of flat SL(N,C)-connections, which

the arguments of GMN relate to the algebra Aline of quantized line operators in class S
theories of type AN−1. We will moreover show that Aflat can be identified with the algebra

AVer of Verlinde loop and network operators in SU(N) Toda field theory. Given the central

role played by these algebras in the approach of [25], we may regard the relations

Aline ' Aflat ' AVer (1.2)

as support for a higher-rank AGT correspondence.

Before summarizing our results in more detail, we now give some background about

line operators and their role in the AGT correspondence.

Line operators and framed BPS states. BPS line operators in class S theories are

supersymmetric generalizations of Wilson and ’t Hooft line observables, describing the

effect of inserting heavy dyonic probe particles labeled by electric and magnetic charge

– 2 –
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Figure 2. The algebra of line operators can be quantized by twisting R3 × S1 such that a plane

C ⊂ R3 rotates as one moves along the S1. BPS line operators wrap S1 and align along the axis R
at the origin of C.

vectors.1 Such a line operator can be viewed as descending from a surface operator in the

six-dimensional (2, 0) theory, which is labeled by a representation R of g and supported

on Σ = S1 × ℘, with ℘ a path in Cg,n. This leads to a relation between the vacuum

expectation value (vev) of the line operator L(R;℘) on S1 and the classical holonomy of a

flat connection A along the path ℘ on Cg,n:〈
L(R;℘)

〉
= trRHol℘A . (1.3)

BPS line operators thus provide natural coordinate functions on Mflat.

As argued in [22, 29], the vev of a UV line operator L can be represented in the IR

in terms of a set of vevs of line operators Xγ with charge γ defined using the low-energy

abelian gauge fields:

L 
∑
γ

Ω(L, γ)Xγ . (1.4)

The coefficients Ω(L, γ) are integers which count the BPS states supported by the line

operator L, called framed BPS states. The IR line operators Xγ are Darboux coordinates

onMflat that are closely related to the coordinates constructed by Fock and Goncharov in

their study of higher Teichmüller spaces [30].

The line operators can be quantized by twisting R3 × S1 into the fibered product R×
C×q S1 such that a coordinate z on C rotates as z → qz after going around S1 [22, 31, 32].

BPS conditions then constrain line operators on S1 to be located at points along the axis R
and at the origin of C (see figure 2). The relation (1.4) between UV and IR line operators

becomes

L̂ 
∑
γ

Ω(L, γ; q)X̂γ , (1.5)

where the noncommutative variables X̂γ satisfy the relation X̂γX̂γ′ = q
1
2
〈γ,γ′〉X̂γ+γ′ ap-

pearing in the quantization of the algebra of functions on higher Teichmüller spaces. The

coefficients Ω(L, γ; q) are the framed protected spin characters defined in [22] as

Ω(L, γ; q) = trHBPS
L

qJ3(−q
1
2 )2I3 , (1.6)

1 Note that allowed sets of “mutually local” line operators are specified by a certain topological data,

which impose some restrictions on the representations [22, 27, 28]. This subtlety will not affect our conclu-

sions in an essential way, as noted for the A1 case in [26].
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where HBPS
L is the Hilbert space of framed BPS states, and J3 and I3 are generators of the

SO(3) and SU(2)R symmetries. GMN conjectured that framed BPS states have I3 = 0 (“no

exotics conjecture”), which implies in particular that the Ω(L, γ; q) are linear combinations

of su(2) characters with positive integral coefficients. The coefficients of qmXγ in the

decomposition (1.5) of a line operator are dimensions of Hilbert spaces graded by the IR

electromagnetic charges γ and the so(3) spins m.

The noncommutative algebra of IR line operators X̂γ determines via (1.5) the algebra

of UV line operators, which can be represented by relations of the form

L̂ ∗ L̂′ =
∑
L′′

c(L,L′, L′′; q)L̂′′ . (1.7)

The order in which we multiply operators corresponds to their ordering along the axis R.

The algebra generated by the operators L̂ can be viewed as a noncommutative deformation

of the algebra of functions on Mflat, with q the deformation parameter. For A1 theories,

it was argued in [22] that this algebra is isomorphic to the algebra of quantum geodesic

length operators in quantum Teichmüller theory.

The role of line operators in the AGT correspondence. Expectation values of line

operators in A1 theories on the four-ellipsoid E4
ε1,ε2 = {x2

0 + ε21(x2
1 + x2

2) + ε22(x2
3 + x2

4) = 1}
can be calculated by localization [33–35] and take the schematic form

〈
L
〉
ε1,ε2

=

∫
da (Ψ(a))∗ LΨ(a) . (1.8)

The integration is performed over variables a = (a1, . . . , ah) representing the zero modes of

the h = 3g − 3 + n scalar fields in the vector multiplets. Ψ(a) represents the contribution

of the path integral over the lower half-ellipsoid with x0 < 0, and L is a finite difference

operator acting on the variables a. It is natural to interpret the right hand side of (1.8) as

an expectation value in an effective zero-mode quantum mechanics. By localization, this

quantum mechanics in finite volume can be shown to represent the exact result for 〈L〉ε1,ε2 .

The functions Ψ(a) can be identified with the instanton partition functions (see [36] for a

review and references) that were found to be related to Liouville conformal blocks by AGT.

The approach proposed in [25] establishes the relation between the wave-functions

Ψ(a) in (1.8) and the Liouville conformal blocks without using the relation to the instanton

partition functions observed in [33]. It is based on the observation that the effective zero-

mode quantum mechanics in which line operators take the form (1.8) coincides with the

quantum-mechanical system obtained by quantizing a real sliceMR
flat inMflat. This follows

from the fact that the algebra Aline
ε1ε2 generated by the supersymmetric line operators on

E4
ε1,ε2 factorizes as Aline

ε1ε2 ' A
flat
ε1/ε2

×Aflat
ε2/ε1

into two copies of the noncommutative algebra

Aflat
~ obtained in the quantization of the algebra of coordinate functions onMflat, as argued

for instance in [37]. The two copies correspond to line operators supported on x0 = x1 =

x2 = 0 and x0 = x3 = x4 = 0, respectively. The same conclusion can be reached from

the observation made in [32] that the algebra of line operators supported on x0 = x1 =

x2 = 0, for example, is isomorphic as a noncommutative algebra to the algebra of line

– 4 –
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operators in R3 × S1 defined via (1.7) with ~ = ε1/ε2. The twisting of R3 × S1 inducing

the noncommutativity models the residual effect of the curvature near the support of the

line operators on E4
ε1,ε2 .

Duality invariance of the expectation values (1.8) can then be combined with the

representation theory of Aline
ε1ε2 to obtain a precise mathematical characterization of the

wave functions Ψ(a) ≡ Ψτ (a), now considered as multivalued analytic functions of the

gauge coupling constants τ = (τ1, . . . , τh) [25]. It was furthermore shown in [25] that the

Virasoro conformal blocks represent the same mathematical objects. Within conformal

field theory one can, in particular, define a natural family of operators called the Verlinde

loop operators representing the action of the quantized algebra of functions on Mflat on

spaces of conformal blocks.

Having established the relation between wave-functions Ψτ (a) and the Liouville con-

formal blocks it remains to notice that the functions Ψ(a) in (1.8) must coincide with the

instanton partition functions defined in [38]. Different arguments in favour of this identi-

fication can be found in [33] and in [37]. This line of argument establishes the validity of

the relations between conformal blocks and instanton partition functions conjectured in [4]

for all A1 theories of class S.2 A crucial role is played by the relation of the algebra Aflat
~

to the algebra AVer generated by the Verlinde line operators. This relation is generalized

to theories of higher rank in our paper, thereby supporting the natural generalization of

the AGT correspondence to class S theories of type AN−1.

Overview. In this paper, we start a program to generalize the AGT correspondence

to higher rank based on the central role of line operators and the moduli space of flat

connections in the approach of [25].

The six-dimensional origin of class S theories of type AN−1 suggests that there should

exist a family of line operators that correspond to coordinate functions on the moduli

space MN
g,n ≡ M

SL(N,C)
flat (Cg,n) of flat SL(N,C)-connections. While for A1 theories traces

of holonomies along simple closed loops as in (1.3) were enough to parameterize M2
g,n, for

higher rank we consider in addition some functions associated with networks on Cg,n. These

network functions are constructed from a collection of holonomies along open paths that

are contracted at junctions with SL(N)-invariant tensors. Such networks arise naturally

from products of simple curves by applying SL(N) skein relations at their intersections.

The algebra ANg,n of functions on MN
g,n can be described in terms of a set of generators

(loop and network functions) and the relations that they satisfy (section 2). A standard

way to quantize ANg,n into a noncommutative algebra is to use quantum skein relations

to resolve intersections in a product of operators (this deformation can be defined using

the Reshetikhin-Turaev construction of knot invariants in terms of quantum group theory).

This gives a product of the form (1.7), where the operators L̂may also be network operators.

In section 3, we give several explicit examples of algebras ANg,n and their quantizations

for basic surfaces: three-puncture sphere C0,3, one-punctured torus C1,1, four-punctured

sphere C0,4. Using pants decompositions of surfaces Cg,n, we can build the algebras ANg,n
from these building blocks, in the spirit of the “tinkertoys” approach [40].

2A somewhat similar approach to the case ε2 = 0 had previously been outlined in [39].
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In section 4, we describe an explicit representation of the algebra ANg,n in terms of

Fock-Goncharov coordinates [30]. Loop and network functions are expressed in terms of

positive Laurent polynomials, as in the relation (1.4) between UV and IR line operators.

The natural quantization of Fock-Goncharov coordinates then determines uniquely the

quantization of ANg,n. For all the cases that we compared, we find that the resulting

quantum relations coincide with the ones obtained from skein quantization. Furthermore,

the existence of such quantum relations turns out to lead to a unique quantization of the

Fock-Goncharov polynomials, as in (1.5). This allows us obtain many examples of framed

protected spin characters (1.6) in higher-rank theories.

In section 5, we define Verlinde network operators, which are natural generalizations

of Verlinde loop operators [41, 42] acting on spaces of conformal blocks in Toda field

theory. We show that the algebra AVer generated by the Verlinde network operators can

be identified with the quantized algebra ANg,n. To see this, we first observe that the braiding

matrix in Toda field theory, from which the Verlinde network operators are built, is related

via a twist to the standard R-matrix of the quantum group Uq(slN ). In turn, this R-matrix

is used to construct the quantum skein algebra defining the quantized version of ANg,n.

As an outlook, we make a few observations in section 6 about the comparison of the

spectra of the operators representing the skein algebra in Toda field theory and in the

quantum theory of the moduli space of flat connections, respectively. The appendices

collect some background about Fock-Goncharov coordinates and about quantum groups.

2 Algebra of loop and network operators

This section describes relevant background on the algebra ANg,n of functions on the moduli

spaceMN
g,n of flat connections on a punctured Riemann surface Cg,n, which can be described

in terms of generators and relations. We construct a set of generators for ANg,n consisting

of functions associated with simple loops and networks naturally associated with a pair

of pants decomposition of Cg,n. Other functions can then be obtained by taking products

of generators and resolving intersections with skein relations. The number of generators

obtained in this way typically exceeds the dimension of the moduli space, as is reflected in

the existence of polynomial relations between the coordinate functions. The algebra ANg,n
has a Poisson structure, and it can be deformed into a noncommutative algebra ANg,n(q) by

applying the skein relations that encode the representation theory of the quantum group

Uq(slN ). We study in detail the case of pair of pants C0,3, which is the building block for

any Cg,n. This will illustrate the crucial role of networks at higher rank. We also present

some results for the punctured torus C1,1 and the four-punctured sphere C0,4. Using pants

decompositions one can use these results to get a set of coordinates allowing us to cover

MN
g,n at least locally.

2.1 Moduli space of flat connections

The close relationship between 4d N = 2 supersymmetric theories in class S and Hitchin

systems is revealed by compactifying on a circle S1. The moduli space Mvac of vacua of

such theories with gauge group G on R3 × S1 can be identified with the moduli space of

– 6 –
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solutions to Hitchin’s equations on Cg,n [3, 22]. These equations imply that the complex

connections A(ζ) built out of a connection A and a one-form ϕ,

A(ζ) = Rζ−1ϕ+A+Rζϕ̄ , (2.1)

are flat for all values of the parameter ζ ∈ C∗ (R is the radius of S1).3 Mvac is a hyper-

Kähler space, and with the appropriate choice of complex structure it is identified with

the moduli space of flat GC-connections on Cg,n, with singularities at the punctures. We

will only consider the cases where the singularities at the punctures are of regular type.4

Flat connections modulo gauge transformations are then completely characterised by the

representation of the fundamental group π1(Cg,n) generated by the holonomy matrices. The

holonomy of a flat GC-connection ∇ = d +A along a closed curve γ ∈ π1(Cg,n) is given by

Hol(γ) = P exp
∫
γ A ∈ GC. The moduli space Mvac is thereby identified with the space of

representations of π1(Cg,n) into GC called the character variety:

Mvac ' Hom
(
π1(Cg,n), GC

)
/GC . (2.2)

More explicitly we have

M =

{
(A1, . . . ,Ag,B1, . . . ,Bg,M1, . . . ,Mn) |

g∏
i=1

AiBiA
−1
i B−1

i =

n∏
a=1

Ma

}/
GC,

where Ai,Bi ∈ GC are holonomy matrices for based loops going around the A- and B-

cycles for each of the g handles, and Ma ∈ GC are holonomy matrices for based loops

going around each of the n punctures. These matrices are considered modulo the action of

GC by simultaneous conjugation.

For 4d N = 2 theories of type AN−1, the complexified gauge group is GC = SL(N,C).

We are thus interested in the moduli space MN
g,n ≡ M

SL(N,C)
flat (Cg,n) of flat SL(N,C)-

connections on a Riemann surface Cg,n, modulo gauge transformations. It has a dimension

given by

dim[MN
g,n] = −χ(Cg,n) dim[SL(N,C)] = (2g + n− 2)(N2 − 1) , (2.3)

with the Euler characteristic χ(Cg,n) = 2− 2g − n. We can furthermore fix the conjugacy

classes of the holonomies Ma around the punctures (as we will see, this amounts to re-

stricting to a symplectic leaf of the Poisson variety MN
g,n). The moduli space M̄N

g,n of flat

connections with Ma in fixed conjugacy classes has the dimension

dim[M̄N
g,n] = −χ(Cg,n) dim[SL(N,C)]− nrank[SL(N,C)]

= (2g + n− 2)(N2 − 1)− n(N − 1) . (2.4)

2.2 Trace functions

The algebra ANg,n ≡ Funalg(MN
g,n) of algebraic functions on MN

g,n can be described in

terms of generators and relations, as we now review. Traces of holonomy matrices provide

3We will restrict to the case ζ = 1 henceforth.
4Regularity means that the connection is gauge-equivalent to a meromorphic connection with simple

poles at the punctures.
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coordinate functions for MN
g,n (see e.g. [43] for a review). They can be expressed as traces

of words made out of letters given by the holonomy matrices Ai,Bi,Ma. The relation

coming from the fundamental group π1(Cg,n) allows us to eliminate one of the holonomy

matrices, say Mn, which leaves (1 − χ) independent letters (for n > 0). General upper

bounds are known for the maximal length of words that form a generating set of ANg,n. The

generators can be taken to be traces of words with lengths up to N(N + 1)/2 for N ≤ 4,

or up to N2 for N > 4 (see references in [44]). The difference between the number of

generators and the dimension ofMN
g,n is then accounted for by the existence of polynomial

relations Pα = 0, which are consequences of the Cayley-Hamilton theorem. The algebra

ANg,n is thus described as the polynomial ring generated by trace functions quotiented by

polynomial relations:

ANg,n = C [trAi, trAiBj , · · · ] /{Pα}. (2.5)

Note that this algebraic structure of MN
g,n does not distinguish between different sur-

faces with the same number of letters. For example, the description of ANg,n in terms of

generators and relations is the same for the one-punctured torus C1,1 and for the three-

punctured sphere C0,3, which both have (1− χ) = 2 letters.

Examples for N = 2: let us first consider the particularly simple example of SL(2,C)-

connections on the one-punctured torus C1,1. The moduli space is given by

M2
1,1 = {(A,B,M)|ABA−1B−1 = M}/SL(2,C) . (2.6)

The algebra of functions A2
1,1 is generated by the trace functions

trA, trB, trAB . (2.7)

Since the dimension ofM2
1,1 is 3, there is no relation between these 3 generators. However,

the generators are related to the trace of the holonomy around the puncture via

(trA)2 + (trB)2 + (trAB)2 − trAtrBtrAB = −trM + 2 , (2.8)

and therefore they do satisfy a relation once we fix the conjugacy class of M to obtain M̄2
1,1.

A more typical example is the sphere C0,4 with four punctures, which we label by A,

B, C, D. The moduli space is

M2
0,4 = {(A,B,C,D)|ABCD = I}/SL(2,C) . (2.9)

The holonomies A, B, C can be taken to be 3 independent letters, while D = (ABC)−1.

The algebra of functionsA2
0,4 is generated by traces of words with maximal length equal to 3:

A, B, C, AB ≡ S, BC ≡ T, CA ≡ U, ABC = D−1, CBA . (2.10)

These 8 trace functions satisfy 2 polynomial relations (we use the notation A1 ≡ trA):

D1 + trCBA = A1T1 +B1U1 + C1S1 −A1B1C1 , (2.11)

D1 · trCBA = S1T1U1 + S2
1 + T 2

1 + U2
1 +A2

1 +B2
1 + C2

1

−A1B1S1 −B1C1T1 − C1A1U1 − 4 .

– 8 –
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The first relation allows to eliminate trCBA since it is linear. The algebra of functions

A2
0,4 is then described as the quotient of the polynomial ring

C[A1, B1, C1, D1, S1, T1, U1] (2.12)

by the quartic polynomial

P1 = S1T1U1 + S2
1 + T 2

1 + U2
1 +A1B1C1D1 +A2

1 +B2
1 + C2

1 +D2
1

−(A1B1 + C1D1)S1 − (B1C1 +D1A1)T1 − (C1A1 +B1D1)U1 − 4 . (2.13)

This gives a 6-dimensional quartic hypersurface in C7.

In general, the number of words in r letters of length up to 3 is

r +

(
r

2

)
+

(
r

3

)
=
r(r2 + 5)

6
. (2.14)

This number of generators becomes quickly much larger than the dimension 3(r − 1) of

M2
g,n, which implies that there are many polynomial relations.

Example for N = 3: the description of A3
g,n for surfaces with 2 letters is very similar

to that of A2
g,n for surfaces with 3 letters (see for example [45] and references therein).

The generators of A3
1,1 can be taken to be the traces of the 10 following words with length

up to 6 (note that the Cayley-Hamilton theorem implies that A−1 ∼ A2 so it counts as 2

letters):

A±1, B±1, (AB)±1, (AB−1)±1, (ABA−1B−1)±1 . (2.15)

These generators satisfy 2 relations (similar to the relations (2.11) for A2
0,4):

trABA−1B−1 + trBAB−1A−1 = (. . .) ,

trABA−1B−1 · trBAB−1A−1 = (. . .) . (2.16)

Eliminating trBAB−1A−1 with the first relation, we can then describe A3
1,1 as an 8-

dimensional sextic hypersurface in C9.

2.3 Poisson structure

There is a Poisson structure on the moduli space MN
g,n, see [46] for a review and further

references. Note that unlike the algebraic structure described in the previous subsection,

the Poisson structure does distinguish between surfaces with the same χ(Cg,n). Goldman

gave a general formula for the Poisson bracket of trace functions in terms of intersections

of curves [47]:

{trHol(α), trHol(β)} =
∑
p∈α∩β

ε(p;α, β)

[
trHol(αpβp)−

1

N
trHol(α)trHol(β)

]
, (2.17)

where ε(p;α, β) = ±1 is the oriented intersection number at the point p, and αp, βp are the

curves α, β based at p.
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Figure 3. Top: the product of the trace functions for the A- and B-cycles on C1,1 gives the trace

functions associated with the curves obtained by resolving the intersection. Bottom: locally, the

crossing is replaced by two pairs of non-intersecting segments. This is the classical skein relation

for N = 2.

As an illustration we can consider C1,1 with N = 2. Since the A- and B-cycles intersect

once, Goldman’s formula gives

{trA, trB} = trAB− 1

2
trAtrB . (2.18)

Note that the right-hand side can be written as the derivative of the relation (2.8) by trAB.

This indicates that the Poisson structure on M2
1,1 is compatible with its structure as an

algebraic variety. The Poisson algebra for the traces functions (2.15) on M3
0,3 and M3

1,1

has been studied in [48].

2.4 Classical skein algebra

Relations between functions in ANg,n have a topological origin. Let us take again the example

of C1,1 withN = 2. The product of the traces associated with the A- and B-cycles is given by

trAtrB = trAB + trAB−1 . (2.19)

Graphically, we can interpret this as resolving the intersection of the A- and B-cycles into

a pair of curves that curl up around the torus in two ways (see figure 3). This procedure

is reminiscent of the classical skein relations in knot theory, which are linear relations

between knot diagrams (projections of knots onto a plane) that differ only locally around

an intersection. In fact, skein relations are nothing else than graphical representations of ε-

tensor identities such as εabε
cd = δcaδ

d
b−δdaδcb , which can be used to derive the relation (2.19).

The SL(2) skein relation implies that A2
g,n can be described in terms of simple curves

without self-intersections. In the case of C0,3 with N = 2, the trace function trAB−1, which

corresponds to a figure-8 curve surrounding the punctures A and B and intersecting itself

once, can be expressed in terms of non-intersecting curves as

trAB−1 = Aa
dB
−1b
cδ
c
aδ
d
b = Aa

dB
−1b
c(εabε

cd + δdaδ
c
b)

= −trAB + trAtrB , (2.20)

where we used B = −ε(Bt)−1ε and trB−1 = trB. Similarly, trCBA on C0,4 corresponds

to the Pochhammer curve with three self-intersections and can be expressed in terms of

simple curves by applying the skein relation, as in (2.11).
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Figure 4. The application of the skein relation for general N to a self-intersecting curve produces

a network with two N -valent junctions connected by an edge with multiplicity N − 2.

An important difference for N > 2 is that the skein relations involve N -valent junctions,

associated with SL(N)-invariant ε-tensors (see for example [49]). In the case N = 3, the

ε-tensor identity

δcaδ
d
b = εabmε

cdm + δdaδ
c
b (2.21)

corresponds to the skein relation expressed graphically as

(2.22)

For general N > 2, the resolution of a self-intersection via skein relations therefore produces

a network with two junctions. Let us consider again a figure-8 curve around two punctures:

trAB−1 = Ad
aB
−1c
bδ
a
c δ
b
d = Ad

aB
−1c
b

(
1

(N − 2)!
εabm1···mN−2εcdm1···mN−2

+ δadδ
b
c

)
.(2.23)

This relation can be represented graphically as in figure 4.

The natural appearance of junctions in the algebra ANg,n motivates us to adopt a set of

generators for ANg,n which does not consist exclusively of trace functions, but also includes

network functions.

2.5 Loop and network functions

The set of generators of ANg,n described in subsection 2.2 involves traces of large words

of the holonomy matrices Ai, Bi, Ma, which are generally associated with curves that

have self-intersections. In this paper, we will mostly trade such self-intersecting curves for

networks with junctions using the skein relations. Our generators are thus associated with

simple loops (without self-intersections) and with networks.

Loops: each loop on Cg,n gives N − 1 trace functions Ai, i = 1, . . . N − 1, which can

be taken to be the coefficients of the characteristic polynomial of the associated holonomy

matrix A ∈ SL(N,C):

det(A− λI) = (−λ)N + (−λ)N−1A1 + (−λ)N−2A2 + · · · − λAN−1 + 1 . (2.24)

The coefficients Ai are sums of all principal i× i minors of A:

Ai =
∑

n1,··· ,nN−i

[A]n1···nN−i , (2.25)
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Figure 5. Left : loop functions are depicted as oriented simple closed curves labeled by integers

i = 1, . . . , N − 1. Reversing the orientation amounts to replacing i by N − i. Right : trivalent

junctions with all outgoing edges (source) or all incoming edges (sink). Edges are labeled by

integers i, j, k that sum to N .

where we denote the determinant of A with the rows and columns n1, . . . , nN−i removed by

[A]n1···nN−i =
1

i!
εn1···nN−im1miA

m1
l1
· · ·Ami

li
εn1···nN−il1···li . (2.26)

We can also write the loop functions Ai as traces of exterior powers of A:

A1 = trA , A2 =
1

2
[(trA)2 − tr(A2)] , . . . , Ai = tr(∧iA) . (2.27)

The loop function Ai corresponds to the ith fundamental antisymmetric representation ∧i�
of SL(N,C). Note that if we replace A by its inverse A−1 in the expression for Ai we obtain

the complex conjugate representation AN−i. For example, the fundamental representation

corresponds to A1 = trA, while the antifundamental representation corresponds to AN−1 =

trA−1. We can thus represent loop functions graphically by an oriented loop labeled by an

integer i = 1, . . . , bN/2c, where bN/2c is the integral part of N/2. Reversing the orientation

corresponds to replacing A by A−1, the fundamental A1 by the antifundamental AN−1,

and so on (see figure 5 left). For even N , the (N/2)th representation is self-adjoint, and so

the corresponding loop does not need an orientation.

Networks: we also construct functions associated with networks. By a network5 we

mean a closed directed graph whose edges carry antisymmetric representations and whose

vertices carry invariant tensors.6 The vertices, or junctions, are in principle N -valent but

they can always be resolved into trivalent junctions, on which we therefore focus. The

three edges that meet at a junction (either all outgoing or all incoming) are labeled by

positive integers i, j, k satisfying i+ j+k = N , which indicate that they carry respectively

the ith, jth, kth antisymmetric representations (see figure 5 right). Junctions do not have

labels since there is only one invariant tensor εm1···mN in ∧i� ⊗ ∧j� ⊗ ∧k�. A network

function is defined by contracting the holonomy matrices along the edges with the ε-tensors

at the junctions. The resulting function is invariant under simultaneous conjugation of the

holonomy matrices. For example, a network consisting of two junctions connected by three

5Closely related objects go under the names of spin networks, trace diagrams, tensor diagrams, bird-

tracks, webs, etc.
6We prefer this definition to the one given by Samuel Johnson in his Dictionary of the English Language

(1755): “Network: any thing reticulated or decussated, at equal distances, with interstices between the

intersections.”
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Figure 6. Network with two trivalent junctions and three edges surrounding two punctures. The

edges carry the ith, jth, and kth antisymmetric representations of SL(N,C), with i+j+k = N . The

network function Nijk is constructed by contracting i copies of the holonomy matrix U1, j copies

of U2, and k copies of U3 with the two ε-tensors at the junctions.

oriented edges as in figure 6 gives (N − 1)(N − 2)/2 network functions Nijk of the form

Nijk =
1

i!j!k!
εm1···mNUm1

1 n1
· · ·Umi

1 ni
U
mi+1

2 ni+1
· · ·Umi+j

2 ni+j
U
mi+j+1

3 ni+j+1
· · ·UmN

3 nN
εn1···nN ,

(2.28)

where U1,U2,U3 are the holonomy matrices (in the fundamental representation) along

the three edges. If we reverse the orientation of the edges we obtain another set of (N −
1)(N − 2)/2 network functions, which we denote by N̄ijk.

From networks to self-intersecting curves: network functions can also be expressed

in terms of the holonomy matrices Ai, Bi, Ma generating a representation of π1(Cg,n).

In order to do this, let us recall that a flat SL(N)-connection can always be trivialized by

gauge transformations in any simply-connected domain. Covering Cg,n by simply-connected

domains one may describe the flat connections in terms of the constant transition functions

from one domain to another. Equivalently, one may describe flat connections using branch-

cuts, a collection of curves or arcs on Cg,n such that cutting along the branch-cuts produces

a simply-connected domain. The holonomy Hol(γ) will then receive contributions only

when the curve γ crosses branch-cuts. Hol(γ) can therefore be represented as the product

of “jump”-matrices associated with the branch-cuts crossed by γ, taken in the order in

which the different branch-cuts are crossed.

Considering the network Nijk defined in (2.28), for example, we can use the branch-

cuts depicted in figure 7. The “jump”-matrices associated with these branch-cuts coincide

with the holonomy matrices A and B around the two punctures depicted in figure 7. The

holonomy matrix associated with the middle arc labeled by the letter k is the identity, as

no branch-cut is crossed. It follows that we can express Nijk as

Nijk =
1

i!j!k!
εm1···mNAm1

n1
· · ·Ami

niB
−1mi+1
ni+1 · · ·B

−1mi+j
ni+j δ

mi+j+1
ni+j+1 · · · δmNnN εn1···nN ,

=
1

i!j!
δ
n1···ni+j
m1···mi+jA

m1
n1
· · ·Ami

niB
−1mi+1
ni+1 · · ·B

−1mi+j
ni+j

= trAiB−j − trAi−1B−1AB−j+1 + · · · (2.29)

We thus see that this point of view relates network functions to trace functions as-

sociated with self-intersecting curves as in subsection 2.2. As illustrated on the right of
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Figure 7. The branch-cuts (orange lines) encode the holonomies A and B around the punctures.

The edges of the network Nijk are associated with the holonomies of the branch-cuts that they

cross: i times A, j times B−1, and k times the identity I. The right-hand side shows two of the

self-intersecting curves that appear in the expansion of the network function in terms of traces.

figure 7, the corresponding trace functions are typically associated with very complicated

curves with many self-intersections. This is one of the advantages of working with networks

instead of self-intersecting curves. Different labelings of a network with a given topology

account for a family of intricate curves. Notice that the relation (2.29) between network

and trace functions can also be seen as a consequence of skein relations, given that it

involves contractions of ε-tensors. We have shown a simple example in figure 4.

2.6 Commuting Hamiltonians

The moduli space M̄N
g,n with fixed conjugacy classes for the holonomies around the punc-

tures exhibits the key features of an integrable Hamiltonian system. Firstly, M̄N
g,n is a

symplectic manifold. Fixing the conjugacy classes of the holonomies around the punctures

corresponds to restricting to a symplectic leaf of the Poisson manifold MN
g,n viewed as a

symplectic foliation.

We can moreover find a maximal set of Hamiltonians, that is a number of Poisson-

commuting functions equal to half the dimension of the moduli space M̄N
g,n. Goldman’s

formula (2.17) implies that trace functions associated with curves that do not intersect

each other automatically Poisson-commute. In the case N = 2 we can simply consider the

trace functions associated to a maximal number of mutually non-intersecting closed curves

on Cg,n. Cutting Cg,n along such a collection of curves defines a decomposition of Cg,n into

(2g − 2 + n) pairs of pants with (3g − 3 + n). The traces of holonomies associated with

these curves thus provides a maximal set of Poisson-commuting Hamiltonians:

#{cutting loops} = 3g − 3 + n =
1

2
dimM̄2

g,n . (2.30)

However, for N > 2, the cutting curves alone do not suffice to get a maximal set of com-

muting Hamiltonians. We therefore supplement them by the two-junction networks (2.28)

that can be put on each pair of pants (see figure 8). Each cutting curve provides (N − 1)

trace functions, and each pants network provides (N − 1)(N − 2)/2 network functions.

They add up to give a number of functions which is precisely half the dimension (2.4) of

the moduli space of flat connections with fixed holonomies around the punctures:

(3g − 3 + n)(N − 1) + (2g − 2 + n)
(N − 1)(N − 2)

2
=

1

2
dimM̄N

g,n . (2.31)
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Figure 8. A maximal set of commuting Hamiltonians is provided by the functions associated

with cutting curves (red) and with pants networks (blue) in a pair of pants decomposition of the

surface Cg,n.

Figure 9. The neighborhood of a cutting loop (red) on Cg,n can look either like C0,4 or like C1,1.

In each case we can find a natural conjugate loop (green).

The Poisson-commutativity of the cutting curves among themselves and with the net-

works is obvious from the fact that they do not intersect (Goldman’s formula (2.17) applies

to self-intersecting curves, and hence to networks as well). The same is true for pants net-

works on different pairs of pants. In contrast, it is not obvious that pants networks on

the same pair of pants commute among themselves, since they intersect at least twice. We

checked that they commute up to N = 6 (see section 3.1 for some sample computations).

2.7 Tinkertoys

In order to get a complete system of coordinates for M̄N
g,n we need to supplement the

maximal set of commuting Hamiltonians described in the previous subsection by sufficiently

many additional coordinate functions. A natural way to find additional variables that do

not Poisson-commute with the pants networks Nijk on C0,3 is to take the pants networks

N̄ijk with reverse orientation.

Simple additional coordinates that do not Poisson-commute with the trace functions

associated to the cutting curves defining the pants decomposition can also be defined in a

simple way. Each cutting curve is contained in a subsurface isomorphic either to a four-

holed sphere or a one-holed torus embedded in Cg,n, see figure 9 for an illustration. In the

case of C0,4, natural additional coordinates are associated with curves surrounding another

pair of holes than the cutting curve under consideration. In the case of C1,1 one may for
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example consider an additional coordinate associated with the B-cycle if the cutting curve

is the A-cycle, see figure 9.

Altogether, the cutting loops and their conjugate loops, together with the pants net-

works of both orientations provide a complete set of coordinates on M̄N
g,n that cover this

space at least locally. We can therefore reduce the study of M̄N
g,n for a generic Riemann

surface Cg,n to the study of pants networks on C0,3, and of pairs of conjugate loops on C0,4

and C1,1. This motivates us to focus on these three cases in the following subsections.

Note that the additional coordinates on M̄N
g,n that we introduced above are not canon-

ically conjugate. However, it should be possible to define generalizations of the Fenchel-

Nielsen coordinates, a set of Darboux coordinates for M̄N
g,n in terms of which one may pa-

rameterize the coordinate functions defined above. Such Darboux coordinates were shown

in the case N = 2 to play a key role in the relation to integrable systems [39].

2.8 Skein quantization

Motivated by the applications to supersymmetric gauge theories, we will next discuss the

quantization of the moduli space MN
g,n of flat SL(N,C)-connections on a Riemann surface

Cg,n. This means in particular to construct a family of noncommutative deformations

ANg,n(q) of the algebra ANg,n of functions on MN
g,n parameterized by one parameter q ≡ e~.

The loop and network functions get replaced by generators of the noncommutative algebra

ANg,n(q). In the classical limit q → 1 (~ → 0), the product ÂB̂ of two operators reduces

to the commutative product AB of the corresponding functions, while the commutator

[Â, B̂] = ÂB̂ − B̂Â should reproduce the Poisson bracket {A,B}.
This problem has been extensively studied in the past, starting from [50], and moti-

vated in particular by the relation to Chern-Simons theory7 [51, 52]. Considering Chern-

Simons theory on three-manifolds M3 of the form Cg,n × I, with I an interval with coordi-

nate t, one may note that parameterized closed curves on Cg,n naturally define knots in M3.

In the context of Chern-Simons theory it is natural to relate the ordering of the factors

in a product of generators in ANg,n(q) to the ordering of observables according to the value

of their “time”-coordinates t. Given two knots KA and KB one can define their formal

product KAKB to be the link composed of KA in Cg,n × [1/2, 1] and KB in Cg,n × [0, 1/2],

KAKB =
{

(x, t) ∈ Cg,n×[0, 1]|(x, 2t−1) ∈ KA for t ≥ 1
2 ; (x, 2t) ∈ KB for t ≤ 1

2

}
. (2.32)

This operation is depicted in figure 10. A natural set of relations to be imposed on the

product in ANg,n(q) has been identified, severely constrained by the topological nature of

Chern-Simons theory leading to the definition of isotopy invariants of knots and links.

The first constructions of quantum slN invariants were provided by Reshetikhin and

Turaev [53] using the representation theory of the quantum group Uq(slN ). It was later

observed that the resulting algebra can be described without the use of quantum groups

in terms of generators and relations. In the following we will briefly describe the work of

7A lot of the research in this direction was devoted to Chern-Simons theories with compact gauge groups

like SU(N). However, the resulting algebras ANg,n(q) appearing in this context turn out to be independent

of the real form of the corresponding complex group (here SL(N)) under consideration.
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Figure 10. Left : product of two knots KA and KB in the 3-manifold Cg,n × [0, 1]. Right : the

corresponding loop operators that intersect classically are superposed at the quantum level.

Sikora [54] on link invariants in R3 which uses both points of view (see also [49] for SL(3),

and [55] for similar formulations).

Sikora describes in [54] a construction of isotopy invariants of certain ribbon graphs

called N -webs. The N -webs are composed of oriented ribbons emanating from, or ending

in, N -valent vertices called sources or sinks, respectively (see [54] for a more formal defi-

nition). We will see that the N -webs are closely related to the networks considered in this

paper. This construction can be understood as a special case of Reshetikhin and Turaev’s

constructions. It can be described using the projections of N -webs to R2 called N -web

diagrams. The web-diagram can be decomposed into pieces of three types: (i) crossings,

(ii) sinks or sources, and (iii) cups or caps of the form

.

With each of these pieces one associates intertwining maps between tensor products of fun-

damental representations � of Uq(slN ). The maps associated with crossings, in particular,

are in a basis e1, . . . , eN for CN represented by

R(ea ⊗ eb) = q
1

2N


eb ⊗ ea for a > b ,

q−
1
2 ea ⊗ eb for a = b ,

eb ⊗ ea + (q−
1
2 − q

1
2 )ea ⊗ eb for a < b ,

(2.33)

or by the inverse map R−1, depending on which edge is on top of the other:

.

(2.34)
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The maps associated with sinks are the unique (up to normalization) intertwining maps

from the N -fold tensor product of the fundamental representation of Uq(slN ) to the trivial

representation, while the conjugate of this map is associated with the sources. In a similar

way one associates to the caps the unique (up to normalization) intertwining maps from

the tensor products of fundamental representations � with the anti-fundamental represen-

tations �̄ to the the trivial representation. The maps associated with the cups are the

conjugate intertwining maps, respectively. Explicit formulae can be found in [54]. Using

these building blocks one constructs the invariant associated with an N -web by compos-

ing the intertwining maps associated to the pieces in the natural way specified by the

decomposition of the given N -web diagram into pieces.

The isotopy invariants of N -webs defined in this way satisfy various relations that can

be used to calculate them explicitly. These relations relate invariants associated with N -

web diagrams that are identical outside of suitable discs D ⊂ R2. A typical example may

be graphically represented as

(2.35)

Such relations are quantum analogs of the skein relations discussed previously. Before

entering into a more detailed description of the skein relations, let us note that the local

nature of the skein relations will allow us to use the same relations as defining relations for

the algebras ANg,n(q) we are interested in. This will be the basis for the approach used in

the next section, as is illustrated in particular by figure 22 below. The three-dimensional

isotopy invariance of the N -web invariants ensures that the resulting algebra has a three-

dimensional interpretation via (2.32). It is easy to see that the relation (2.35) reproduces

Goldman’s bracket (2.17) in the limit ~→ 0.

We shall now turn to a more detailed description of the set of relations proposed in [54].

The first condition in [54] is the crossing condition (2.35).8 Next, the quantum invariant

for the union of two unlinked knots must be equal to the product of the quantum invariants

for the knots. There are also conditions for the contraction of a trivial knot and for the

Reidemeister move of type I:

(2.36)

We have been using the notation [n] defined as

[n] ≡ qn/2 − q−n/2

q1/2 − q−1/2
= q(n−1)/2 + q(n−3)/2 + · · ·+ q−(n−1)/2 . (2.37)

8We choose conventions that agree with the calculations in terms of Fock-Goncharov holonomies in

section 4. They are related to the bracket used in [54] by the redefinition q → q−2, and then the renormal-

ization of each junction by iq−N(N−1)/4 and of each edge carrying the ith antisymmetric representation by

1/[i]!. We also introduce some signs in (2.36).
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Finally, there is a relation between two nearby N -valent junctions (a source and a sink)

and a sum of positive braids labeled by permutations σ (with lengths l(σ)):

(2.38)

It was shown in [54] that the relations above suffice to characterize the resulting invariant

of N -webs uniquely.

Note that the edges do not carry labels in Sikora’s formulation. For our goals it

will be convenient to represent i parallel edges between two junctions by a single edge

with label i. This will allow us to define the quantized counterparts of the networks

introduced previously. A quantum network corresponding to the network shown in figure 6,

for example, may be represented by an N -web obtained by splitting the N edges connecting

one source and one sink into three groups of i, j, and k edges.

The relation (2.38) allows to derive skein relations for the resolution of all possible

crossings in terms of N -web diagrams without crossings. Of particular interest is the

following special case of the fundamental skein relation obtained by contracting (N − 2)

pairs of edges from the upper and lower parts of (2.38):

(2.39)

We indicate that the edge between the two junctions carries the label N − 2 by drawing it

thicker than the other edges associated with the fundamental representation. The funda-

mental skein relation with the other ordering at the crossing has q replaced by q−1. A large

set of useful relations can be derived from the relations stated above, including reduction

moves of contractible bubbles (digons), squares, hexagons, etc. Such relations were worked

out in [56–58]. We show some examples in figure 11.

Sikora’s construction allows one to recover the construction of quantum slN invariants

previously given by Murakami, Ohtsuki, and Yamada in [55] (a useful summary is given

in [59]). This construction uses trivalent graphs with a “flow” built out of the following

two types of vertices:

(2.40)

The edges connected at such vertices cary labels with values in {0, 1, . . . , N − 1}. An edge

with label 0 can be removed, and an edge with label i is equivalent to an edge with label

N − i with opposite orientation, as depicted on the left of figure 5. The vertices (2.40) can

be represented in terms of pairs of the sources and sinks used in Sikora’s formulation, as

explained in [54].
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Figure 11. Reduction of contractible cycles. The square reduction on the right is valid for N = 4.

Our conventions are that thin edges carry the fundamental representation, while thick edges carry

the (N − 2)th antisymmetric representation.

It is possible to derive an expression for a general skein relation resolving the crossing

of lines labeled by arbitrary i, j ∈ {0, 1, . . . , N − 1} [55] (see [59] for the normalization):

(2.41)

with m = min{i, j,N− i,N−j}. For the other ordering at the crossing, one should replace

q by q−1. When i = j = 1 this expression reproduces the fundamental skein relation (2.39).

We will also need skein relations for N = 4 with i = 2 (thick line) and j = 1 or j = 2:

(2.42)

Let us finally note that the link invariants constructed in [55] also correspond to sim-

ple special cases of the Reshetikhin-Turaev construction. The label i ∈ {0, 1, . . . , N − 1}
assigned to an edge of a colored N -web is identified with the label for one of the irre-

ducible representation Mi ≡ ∧i� of the quantum group Uq(slN ) that is obtained as the

ith antisymmetric tensor power of the fundamental representation �. The linear map

Rij : Mj ⊗Mi →Mi ⊗Mj appearing on the left hand side of (2.41) can be obtained from
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the universal R-matrix R of Uq(slN ) via

Rij = Pij(πj ⊗ πi)(R) , (2.43)

with Pij the permutation of tensor factors, Pij : Mj⊗Mi →Mi⊗Mj . The trivalent vertices

in (2.40) are associated with the Clebsch-Gordan maps (with k = i+ j):

Ckij : Mi ⊗Mj →Mk , Cijk : Mk →Mi ⊗Mj . (2.44)

In the case where i + j = N , one edge carries the trivial representation and can thus be

removed. This gives cap and cup maps:

C0
i,N−i : Mi ⊗MN−i → C , CN−j,j0 : C→MN−j ⊗Mj . (2.45)

Quantum invariants of a network are then obtained by composing the intertwining maps

associated with the pieces of the network.

3 Quantization of tinkertoys

In this section we will describe the algebras obtained by using skein quantization in some

simple examples associated with surface Cg,n with (g, n) being (0, 3), (1, 1) and (0, 4). As

explained previously, it seems reasonable to regard the results as building blocks for the

description of the algebras associated with more general surfaces Cg,n.

3.1 Pants networks

As the prototypical illustration of the role of network operators, we consider flat SL(N,C)-

connections on a three-punctured sphere C0,3, also known as the pair of pants, or pants for

short. As we mentioned in subsection 2.6, any Riemann surface Cg,n can be decomposed

into pants by choosing a maximal set of simple loops that do not intersect. The pair of

pants C0,3 is hence not merely the simplest example, but also the most essential one, from

which any other surface can in principle be understood. The main novelties for the case

N > 2 will be apparent in this example. Indeed, any simple loop on C0,3 can be deformed

into a loop surrounding a puncture, so networks are the only relevant objects in this case.

A particularly important network has two trivalent junctions and three edges, running

between every pair of punctures; we call it the pants network (see figure 12). The number

of possible pants network operators is given by the partition of N into three strictly positive

integers i+ j + k = N , which gives
(
N−1

2

)
= (N − 1)(N − 2)/2.

In terms of 4d N = 2 gauge theories, C0,3 corresponds to the theory TN studied by

Gaiotto [2], which can be used as a fundamental building block for more general theories.

TN is a strongly coupled N = 2 superconformal field theory with no known weakly-coupled

Lagrangian description (except for T2, which is free). It has SU(N)3 flavor symmetry and

SU(2)×U(1) R-symmetry. It contains operators Q and Q̃ with scaling dimension (N − 1)

that transform in the trifundamental representations (�,�,�) and (�̄, �̄, �̄) of SU(N)3.
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Figure 12. Pants network on a pair of pants C0,3.

There are also Higgs branch operators µ1, µ2, µ3, which have scaling dimension 2 and

transform in the adjoint of one SU(N). Finally, there are Coulomb branch operators u
(i)
k

with dimension k; the labels take the values k = 3, . . . , N and i = 1, . . . , k − 2, so their

number is (N−1)(N−2)/2. We see that this matches nicely the number of pants networks.

The fundamental group of the sphere C0,3 with three punctures A,B,C is represented

by the loops γA, γB, γC around each puncture satisfying one relation:

π1(C0,3) = 〈γA, γB, γC | γAγBγC = γ◦〉 , (3.1)

where γ◦ denotes a contractible loop. The corresponding holonomy matrices A, B, C

satisfy ABC = (−1)N−1I (the sign is chosen for consistency with (2.40) and (4.6)). The

moduli space of flat SL(N,C)-connections has the dimension

dim[MN
0,3] = N2 − 1 . (3.2)

The functions coming from the loops around the punctures, Ai, Bi, Ci, with i = 1, . . . , N−1,

and from the pants network with both orientations, Na, N̄a, with a = 1, . . . , (N − 1)(N −
2)/2, provide the correct number of coordinates on MN

0,3:

3(N − 1) + 2
(N − 1)(N − 2)

2
= N2 − 1 . (3.3)

Fixing the eigenvalues of the holonomies around the punctures then gives 3(N − 1) con-

straints and leaves us with only the pants networks:

dim[M̄N
0,3] = (N − 2)(N − 1) . (3.4)

SL(3). The first non-trivial case is N = 3. We will show how to obtain a closed Poisson

algebra involving the loops and pants network, together with an extra six-junction network.

This gives 10 generators satisfying 2 polynomial relations, which can be quantized using

quantum skein relations.

Loop and network functions: there are two loop functions for each holonomy matrix,

namely the coefficients of the characteristic polynomial, which can be expressed in terms of

traces as in (2.27): A1 = trA and A2 = trA−1 (and similarly for B and C). The network
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Figure 13. Left : construction of the network operator N1 on C0,3 from the holonomy matrices Ua,

Ub, Uc along its edges contracted with ε-tensors at the junctions. Right : the holonomy matrices

A, B, C are associated with the branch-cuts (dashed) starting at the punctures A, B, C. Two

edges of the network N1 intersect the branch-cuts and are thus associated with A and C−1.

Figure 14. Applying the skein relation to a self-intersecting loop going around two punctures

produces a network and pair of loops around the punctures.

function N1 and its reverse N̄1 can be constructed as in (2.28) by fusing the three edges at

the two trivalent junctions with ε-tensors (see figure 13 left):9

N1 = −εmnpUm
a rU

n
b sU

p
c tε

rst ,

N̄1 = −εmnp(U−1
a )mr (U−1

b )ns (U−1
c )pt ε

rst . (3.5)

Alternatively, we can construct the network functions as in (2.29) by associating holon-

omy matrices with the edges of the network according to which branch-cuts they cross (see

figure 13 right). This gives the following expressions:

N1 = −εmnpAm
r δ

n
s (C−1)pt ε

rst = trAC−1 −A1C2 ,

N̄1 = −εmnp(A−1)mr δ
n
sCp

t ε
rst = trA−1C−A2C1 . (3.6)

The several possible choices for the position of the branch-cuts all lead to the same network

function:

N1 = trAC−1 −A1C2 = trBA−1 −B1A2 = trCB−1 − C1B2 . (3.7)

A term such as trBA−1 corresponds to a self-intersecting figure-8 loop going around the

punctures B clockwise and A anticlockwise. Resolving the intersection with the skein

relation in (2.22) produces the relation (3.7) (see figure 14).

9The overall sign is chosen for later convenience, so that N1 will be expressed as a positive Laurent

polynomial in the Fock-Goncharov coordinates, as in (4.24).
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Figure 15. The Poisson bracket of the pants networks N1 and N̄1 can be expressed in terms of

Pochhammer curves or in terms of the 6-junction network W1 and its reverse W̄1.

Closed Poisson algebra: we would like to find a set of generators including Ai, Bi, Ci
and N1, N̄1 that forms a closed Poisson algebra. The Poisson brackets can be obtained

from Goldman’s formula (2.17). Since the Poisson bracket is proportional to the intersection

number, the loop functions Ai, Bi, Ci around the punctures obviously Poisson-commute

with everything:

{Ai, •} = {Bi, •} = {Ci, •} = 0 . (3.8)

To apply Goldman’s formula to the pants networks we use their expressions (3.6) in terms

of trace functions. We get

{N1, N̄1} = {trAC−1, trA−1C} = −trCBA + tr(CBA)−1 = −W1 + W̄1 , (3.9)

where the functions W1 and W̄1 correspond to the six-junction networks shown in figure 15

and are related to the so-called Pochhammer curves trCBA and tr(CBA)−1 via the skein

relation and reductions in (2.39) and figure 11 (with q = 1):

W1 = trCBA−A1A2 −B1B2 − C1C2 ,

W̄1 = tr(CBA)−1 −A1A2 −B1B2 − C1C2 . (3.10)

If we want to obtain a closed Poisson algebra we thus need to add W1 and W̄1 to the

set of generators and compute their Poisson brackets. We find that they indeed close:10

{N1,W1} = trB−1C2BA− trCB−1CBA + trA−1B−1AC− trCB−1

= −N1W1 + 3N̄2
1 + 2N̄1(A1B2 +B1C2 + C1A2)− 6N1 + Λ ,

{N1, W̄1} = −trCB−2C−1A−1 + trB−1CB−1C−1A−1 − trA−1B−1AC + trCB−1

= N1W̄1 − 3N̄2
1 − 2N̄1(A1B2 +B1C2 + C1A2) + 6N1 − Λ ,

{W1, W̄1} = tr(BAC)−1ACB− tr(CBA)−1ACB + tr(ACB)−1CBA

−tr(BAC)−1CBA + tr(CBA)−1BAC− tr(ACB)−1BAC

= 3(N3
1 − N̄3

1 ) + 2N2
1 (A2B1 +B2C1 + C2A1)

−2N̄2
1 (A1B2 +B1C2 + C1A2) +N1Λ̄− N̄1Λ , (3.11)

10Because of the large number of self-intersections to resolve, it is tedious to get the expressions in

terms of networks (second lines) from applying skein relations. However, they can be derived easily with

Mathematica in the explicit representation of loop and network functions as Fock-Goncharov polynomials

that we will present in section 4.
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Figure 16. The product N1N̄1 can be expressed in terms of the networks W1 and W̄1 via the skein

relation.

and the remaining Poisson brackets can be deduced by replacing every object by its reverse:

A→ A−1, A1 → A2, N1 → N̄1, W1 → W̄1, and so on. Here we have defined

Λ ≡ A1A2B2C1 +B1B2C2A1 + C1C2A2B1 +A2
1B1 +B2

1C1 + C2
1A1

+A2B
2
2 +B2C

2
2 + C2A

2
2 − 3(A2B1 +B2C1 + C2A1) . (3.12)

In conclusion, we have obtained a closed Poisson algebra with the generators

Ai, Bi, Ci, N1, N̄1,W1, W̄1 . (3.13)

Since the dimension of the moduli spaceM3
0,3 is 8, there must be 2 relations between these

10 generators.

Relations. A simple way to obtain a relation is to consider the product of N1 and N̄1. We

can draw these networks on C0,3 such that they have two intersections, which we resolve by

applying the skein relation (see figure 16). The resulting networks can be simplified via the

square reduction of figure 11 (with q = 1), and the polynomial relation is then P1 = 0 with

P1 = N1N̄1 −
(
W1 + W̄1 +A1B1C1 +A2B2C2 +A1A2 +B1B2 + C1C2 + 3

)
. (3.14)

The second relation P2 = 0 comes from the product of W1 and W̄1:11

P2 = (W1 + 6)(W̄1 + 6)−
[
N3

1 +N2
1 (A2B1 +B2C1 +A1C2) +N1Λ̄

+A3
1 +B3

1 + C3
1 +A2

1A2B1C1 +A1B
2
1B2C1 +A1B1C

2
1C2

+A2
1B

2
1C2 +A2B

2
1C

2
1 +A2

1B2C
2
1 − 2(A2

1B2C2 +A2B
2
1C2 +A2B2C

2
1 ) + reverse

+A1A2B1B2C1C2 +A1A2B1B2 +B1B2C1C2 + C1C2A1A2

−3(A1B1C1 +A2B2C2)− 9(A1A2 +B1B2 + C1C2) + 27
]
, (3.15)

Here “+reverse” means that all the previous terms should be added with reverse orientation.

We have therefore arrived at a description of the algebra A3
0,3 in terms of the 10

generators (3.13) satisfying the 2 relations P1 and P2:

A3
0,3 = C

[
Ai, Bi, Ci, N1, N̄1,W1, W̄1

]
/{P1,P2} . (3.16)

It is straightforward to relate our description involving networks to the description in terms

of trace functions as in (2.15) and (2.16).

11This complicated expression is also more readily obtained in the explicit representation presented in

section 4.
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Figure 17. The quantum product of N̂1
ˆ̄N1 resolved via the quantum skein relation.

Remarkably, we can write the Poisson brackets in terms of derivatives of the polynomial

relations (this can be compared with [48]):

{N1, N̄1} =
∂P1

∂W1

∂P2

∂W̄1
− ∂P1

∂W̄1

∂P2

∂W1
, {N1,W1} =

∂P1

∂W̄1

∂P2

∂N̄1
− ∂P1

∂N̄1

∂P2

∂W̄1
,

{N1, W̄1} =
∂P1

∂N̄1

∂P2

∂W1
− ∂P1

∂W1

∂P2

∂N̄1
, {W1, W̄1} =

∂P1

∂N1

∂P2

∂N̄1
− ∂P1

∂N̄1

∂P2

∂N1
. (3.17)

This implies that the Poisson structure of M3
0,3 is compatible with its structure as an

algebraic variety.

Quantization: quantum versions of the polynomial relations P1 and P2, in which the

network functions are replaced by noncommuting operators, can be obtained by applying

the quantum skein relations in (2.39) and figure 11.

The quantum relation P̂1 is obtained by superposing the operators N̂1 and ˆ̄N1 and

resolving their two intersections via the quantum skein relation (see figure 17):

N̂1
ˆ̄N1 = q−

1
2 Ŵ1 + q

1
2 ˆ̄W1 + Â1B̂1Ĉ1 + Â2B̂2Ĉ2 + Â1Â2 + B̂1B̂2 + Ĉ1Ĉ2 + [3] . (3.18)

The operator N̂1, which appears first in the product, is drawn on top of the second operator
ˆ̄N1. Note that the product ˆ̄N1N̂1 with inverted order would give the same expression but

with the replacement q → q−1.

The quantization of the second relation P2 gives(
Ŵ1+[6]

)(
ˆ̄W1+[6]

)
= q

3
2 N̂3

1 + q̂̂N2
1 (Â2B̂1 + B̂2Ĉ1 + Â1Ĉ2) + q

1
2 N̂1

ˆ̄Λ′

+ Â3
1 + B̂3

1 + Ĉ3
1 + Â2

1Â2B̂1Ĉ1 + Â1B̂
2
1B̂2Ĉ1 + Â1B̂1Ĉ

2
1 Ĉ2

+ Â2
1B̂

2
1Ĉ2 + Â2B̂

2
1Ĉ

2
1 + Â2

1B̂2Ĉ
2
1

− (q + q−1)(Â2
1B̂2Ĉ2 + Â2B̂

2
1Ĉ2 + Â2B̂2Ĉ

2
1 ) + reverse

+ Â1Â2B̂1B̂2Ĉ1Ĉ2

− (q − 3 + q−1)(Â1Â2B̂1B̂2 + B̂1B̂2Ĉ1Ĉ2 + Ĉ1Ĉ2Â1Â2)

− (2q2 + q − 3 + q−1 + 2q−2)(Â1B̂1Ĉ1 + Â2B̂2Ĉ2)

− (2q2 + q + 3 + q−1 + 2q−2)(Â1Â2 + B̂1B̂2 + Ĉ1Ĉ2)

+ q5 + 2q4 + q3 + 3q2 + 3q + 7 + 3q−1 + 3q−2 + q−3 + 2q−4 + q−5 ,

(3.19)

where now “+ reverse” also implies the replacement q → q−1, and in ˆ̄Λ′ we have replaced

the coefficient of 3 by 2q + q−2.
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Figure 18. The pants networks Na, Nb, Nc differ from one another by the choice of the edge

(thick) that carries the second antisymmetric representation of SL(4).

We also find the following quantum commutators:

N̂1
ˆ̄N1 − ˆ̄N1N̂1 = (q

1
2 − q−

1
2 )( ˆ̄W1 − Ŵ1) ,

q
1
2 N̂1Ŵ1 − q−

1
2 Ŵ1N̂1 = (q

3
2 − q−

3
2 ) ˆ̄N2

1 + (q − q−1) ˆ̄N1(Â1B̂2 + B̂1Ĉ2 + Ĉ1Â2)

−(q2 + q − q−1 − q−2)N̂1 + (q
1
2 − q−

1
2 )Λ̂ ,

q−
1
2 N̂1

ˆ̄W1 − q
1
2 ˆ̄W1N̂1 = (q−

3
2 − q

3
2 ) ˆ̄N2

1 + (q−1 − q) ˆ̄N1(Â1B̂2 + B̂1Ĉ2 + Ĉ1Â2)

−(q−2 + q−1 − q − q2)N̂1 + (q−
1
2 − q

1
2 )Λ̂ ,

Ŵ1
ˆ̄W1 − ˆ̄W1Ŵ1 = (q

3
2 − q−

3
2 )(N̂3

1 − ˆ̄N3
1 ) + (q − q−1)N̂2

1 (Â2B̂1 + B̂2Ĉ1 + Ĉ2Â1)

−(q − q−1) ˆ̄N2
1 (Â1B̂2 + B̂1Ĉ2 + Ĉ1Â2)

+(q
1
2 − q−

1
2 )(N̂1

ˆ̄Λ− ˆ̄N1Λ̂) , (3.20)

where in Λ̂ we have made the replacement 3→ [3]. These relations reduce at first order in

~ to the Poisson brackets (3.9) and (3.11). For example, with a little bit of rewriting we

obtain

[N̂1, Ŵ1] = (1− q)Ŵ1N̂1 + (q − q−2) ˆ̄N2
1 + (q

1
2 − q−

3
2 ) ˆ̄N1(Â1B̂2 + B̂1Ĉ2 + Ĉ1Â2)

−(q
3
2 + q

1
2 − q−

3
2 − q−

5
2 )N̂1 + (1− q−1)Λ̂

= ~
[
− Ŵ1N̂1 + 3 ˆ̄N2

1 + 2 ˆ̄N1(Â1B̂2 + B̂1Ĉ2 + Ĉ1Â2)− 6N̂1 + Λ̂
]

+O(~2)

= ~{N1,W1}+O(~2) . (3.21)

SL(4). We find a similar structure for SL(4) loop and network operators. The loop

functions Ai around the puncture A are

A1 = trA , A2 =
1

2

[
(trA)2 − tr(A2)

]
, A3 = trA−1 . (3.22)

We can construct three pants networks Na, Nb, Nc, differing by the choice of the edge that

carries the second antisymmetric representation of SL(4) (see figure 18):

Na = −1

2
εmnpqU

m
a rU

n
a sU

p
b tU

q
cuε

rstu = trCB−1 − C1B3 ,

Nb = −1

2
εmnpqU

m
a rU

n
b sU

p
b tU

q
cuε

rstu = trAC−1 −A1C3 ,

Nc = −1

2
εmnpqU

m
a rU

n
b sU

p
c tU

q
cuε

rstu = trBA−1 −B1A3 . (3.23)

Pants networks with the same orientation Poisson-commute with each other:

{Na, Nb} = {Nb, Nc} = {Nc, Na} = 0 , (3.24)
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Figure 19. Product of pants networks: N̂aN̂b (top), N̂a
ˆ̄Na (middle), N̂a

ˆ̄Nb (bottom).

but they do not commute with their reverses:

{Na, N̄a} = {Nb, N̄b} = {Nc, N̄c} = trCBA− tr (CBA)−1 ,

{Na, N̄c} = trCB−1AB−1 − trCB−2A ,

{Nc, N̄b} = trBA−1CA−1 − trBA−2C ,

{Nb, N̄a} = trAC−1BC−1 − trAC−2B . (3.25)

As in the SL(3) case, to obtain a closed Poisson algebra we would need to add the functions

appearing in the Poisson brackets of the pants networks to the set of generators, compute

their Poisson brackets, and so on. Repeating this procedure until the Poisson algebra

closes would lead to a large number of generators, satisfying many polynomial relations.

Ultimately, it should be possible to choose the set of 15 independent generators of A4
0,3 to

be given by the loop functions around the punctures and by the pants networks:

Ai, Bi, Ci, Na, N̄a, Nb, N̄b, Nc, N̄c . (3.26)

This can be compared with the 15 generators of the ring of invariants of two matrices

given in [60].

Many quantum relations can be easily obtained by applying quantum skein relations

to products of pants networks. We show a few examples in figure 19.

3.2 One-punctured torus

Our next simple example is the torus with one full puncture, denoted by C1,1 (see figure 20).

The corresponding 4d gauge theory is the so-called N = 2∗ SU(N) gauge theory, which

can be obtained from the N = 4 theory by giving a mass to an adjoint hypermultiplet.

The fundamental group of C1,1 consists of three loops, the A-cycle γA (meridian), the

B-cycle γB (longitude), and the loop γM around the puncture, subject to one relation:

π1(C1,1) = 〈γA, γB, γM | γAγBγ−1
A γ−1

B = γM 〉 . (3.27)
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Figure 20. One-punctured torus C1,1. The A- and B-cycles are shown, together with a network

operator N1, consisting of three edges and two junctions.

The holonomy matrices by A, B, and M satisfy ABA−1B−1 = M. We can also combine

the matrices A and B into matrices C ≡ (AB)−1 and C′ ≡ AB−1 associated with the

curves γC = (γAγB)−1 and γC′ = γAγ
−1
B , respectively. Each of these holonomy matrices

gives (N − 1) loop functions.

We also consider a particular two-junction network N1 with two junctions whose edges

go around the A- and B-cycles (in contrast to the case of C0,3, there are many two-junction

networks that we can consider on C1,1). The network N1 and its reverse N̄1 each contributes

(N − 1)(N − 2)/2 operators. Together, the operators coming from A, B, C and from

the networks N1, N̄1 add up to the dimension (2.3) of the moduli space of flat SL(N)-

connections on C1,1:

3(N − 1) + 2
(N − 1)(N − 2)

2
= N2 − 1 = dim[MN

1,1] . (3.28)

SL(2). We start by briefly reviewing the well-studied case of flat SL(2,C)-connections on

the one-punctured torus C1,1 [22] (see also [25, 39, 61]). The Poisson bracket of the A-cycle

function A1 = trA and the B-cycle function B1 = trB is (by Goldman’s formula (2.17)):

{A1, B1} = trAB− 1

2
A1B1 = −trAB−1 +

1

2
A1B1 . (3.29)

The extra traces C1 = trAB and C ′1 = trAB−1 correspond to curves that go once around

the A-cycle and once around the B-cycle (in different directions). Applying the skein

relation to products of loop functions gives

A1B1 = C1 + C ′1 , C1C
′
1 = A2

1 +B2
1 +M1 − 2 , (3.30)

which can be combined to obtain the relation P1 = 0 with

P1 = A1B1C1 − (A2
1 +B2

1 + C2
1 +M1 − 2) . (3.31)

The Poisson bracket between the generators A1, B1, C1 can be written as

{A1, B1} = −1

2

∂P1

C1
, (3.32)
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Figure 21. Left : covering of C1,1 with two branch-cuts (dashed lines). Each branch-cut is associated

with a holonomy matrix A or B. Right : C1,1 described as a square with opposite sides identified,

and with the puncture at the corners. The holonomy matrices associated with the three edges of

the network N1 are determined by the branch-cuts that they cross.

and cyclic permutations of A1, B1, C1.

To obtain quantum relations, we apply the quantum skein relation:

Â1B̂1 = q
1
4 Ĉ1 + q−

1
4 Ĉ ′1 . (3.33)

Inverting the order in the product amounts to exchanging q ↔ q−1, so we can obtain the

q-deformed commutation relation

q
1
4 Â1B̂1 − q−

1
4 B̂1Â1 =

(
q

1
2 − q−

1
2

)
Ĉ1 . (3.34)

Note that this relation can be written as a quantum commutator

[Â1, B̂1] = (q−
1
2 − 1)B̂1Â1 + (q

1
4 − q−

3
4 )Ĉ1 , (3.35)

which reproduces the Poisson bracket (3.29) at first order in ~. Similarly, the quantum

skein relation leads to the quantization of the cubic relation (3.31):

P̂1 = q
1
4 Â1B̂1Ĉ1 −

(
q

1
2 Â2

1 + q−
1
2 B̂2

1 + q
1
2 Ĉ2

1 +M1 − [2]
)
. (3.36)

SL(3). We now have the loop functions A1 = trA and A2 = trA−1 and similarly for Bi,

Mi, Ci, and C ′i. There are many different two-junction networks that can be put on C1,1.

A natural choice is the network that goes once around the A-cycle and once around the

B-cycle. The associated network function N1 and its reverse N̄1 can be expressed as

N1 = εmnpU
m
a rU

n
b sU

p
c tε

rst ,

N̄1 = εmnp(U
−1
a )mr (U−1

b )ns (U−1
c )pt ε

rst . (3.37)

As explained in section (2.5), the network functions N1 and N̄1 can also be obtained from

the transition functions in a covering of C1,1. We can for example cover C1,1 with one patch

that overlaps itself along two branch-cuts that go around the A- and B-cycles and intersect

at the puncture (see figure 21). The network N1 has one edge that crosses the branch-cut
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Figure 22. Relations between loop and network operators arise from the skein relation.

Figure 23. Left : flipped network N ′1. Right : network W6 appearing in the product N1N̄1.

associated with A (with reverse orientation), one that crosses the branch-cut associated

with B, and one that does not cross any branch-cut. This gives the following expressions

N1 = εmnp(A
−1)mrB

n
sδ
p
tε
rst = A2B1 − C ′2 ,

N̄1 = εmnpA
m
r(B

−1)nsδ
p
tε
rst = A1B2 − C ′1 , (3.38)

with C ′1 = trAB−1 and C ′2 = trA−1B. Such relations between networks and products of

intersecting loops can of course also be understood as arising from the skein relation (2.22)

(see figure 22):

A2B1 = N1 + C ′2 , A1B2 = N̄1 + C ′1 . (3.39)

The quantization of relations such as (3.39) can be obtained by applying quantum

skein relations to resolve the intersection of the A- and B-cycles:

Â2B̂1 = q
1
6 N̂1 + q−

1
3 Ĉ ′2 , Â1B̂1 = q−

1
6 N̂ ′1 + q

1
3 Ĉ2 ,

Â1B̂2 = q
1
6 ˆ̄N1 + q−

1
3 Ĉ ′1 , Â2B̂2 = q−

1
6 ˆ̄N ′1 + q

1
3 Ĉ1 . (3.40)

Here the operator N̂ ′1 corresponds to the flipped network shown on the left of figure 23.

Changing the ordering in the product of two operators simply inverts q, so we can

deduce expressions for commutators, whose leading terms in ~ correspond to the Poisson

brackets. For example we obtain

[Â2, B̂1] = (q
1
6 − q−

1
6 )N̂1 + (q−

1
3 − q

1
3 )Ĉ ′2 → {A2, B1} =

1

3
(N1 − 2C ′2) . (3.41)

We can also apply the quantum skein relation to the product of N̂1 and ˆ̄N1:

N̂1
ˆ̄N1 = q−

1
2 Ŵ6 + q

1
2 ˆ̄W6 + Â1Â2 + B̂1B̂2 + Ĉ1Ĉ2 + M̂1 + M̂2 + [3] , (3.42)
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where W6 is a network with six junctions shown on the right of figure 23. The same network

W6 also appears in the product

ˆ̄N ′1Ĉ2 = Ŵ6 + q
1
2 Â1Â2 + q−

1
2 B̂1B̂2 . (3.43)

More complicated relations are impractical to derive in this way, but can be computed in

the explicit representation of the loop and network operators in terms of Fock-Goncharov

polynomials, as we will discuss in section 4. We have for example the classical relation

(also given in [45, 62])

A1A2B1B2C1C2 =
[
N3

1 +N2
1 (A2B1 +B2C1 + C2A1) (3.44)

+N1(A1A2B1C2 +A2
1C1 +A2

2B2 − 3A1B2 + cyclic)

− (A1B
2
2C

2
2 − 2A2

1B2C2 +A3
1 + cyclic) + reverse

]
−N1N̄1(A1A2 + cyclic)− (A1A2B1B2 + cyclic)

+3(A1B1C1 +A2B2C2) +M1M2 + 6(M1 +M2) + 9 .

Here “+cyclic” means adding the terms obtained by cyclic permutation of A,B,C, and

“+reverse” the terms obtained by reversing the orientation, A1 ↔ A2, N1 ↔ N̄1, and so on.

Recall that at the classical level the algebraic structures ofMN
0,3 andMN

1,1 are the same, so

that the relation (3.44) is the counterpart of the relation (3.15) for the 3-punctured sphere.

The Poisson structures on MN
0,3 and MN

1,1 can also be related via a symplectic quotient,

as explained in [63].

In conclusion, we can describe the algebra A3
1,1 in terms of the 10 generators Ai, Bi,

Mi, Ci, N1, N̄1 satisfying the relations (3.42) and (3.44). Classically, these generators form

a closed Poisson algebra (as noted in [62]):

{A1, B1} = C2 −
1

3
A1B1 , {A2, B1} = N1 −

2

3
A2B1 ,

{B1, C1} = A2 −
1

3
B1C1 , {B2, C1} = N1 −

2

3
B2C1 ,

{C1, A1} = B2 −
1

3
C1A1 , {C2, A1} = N1 −

2

3
C2A1 ,

{A1, N1} = −1

3
A1N1 +A2C2 −B1 , {A1, N̄1} =

1

3
A1N̄1 −A2B2 + C1 ,

{B1, N1} = −1

3
B1N1 +A2B2 − C1 , {B1, N̄1} =

1

3
B1N̄1 −B2C2 +A1 ,

{C1, N1} = −1

3
C1N1 +B2C2 −A1 , {C1, N̄1} =

1

3
C1N̄1 −A2C2 +B1 ,

{N1, N̄1} = A1B1C1 −A2B2C2 . (3.45)

The remaining Poisson brackets can be obtained by reversing the orientation. In addition,

the functions Mi associated with the curve around the puncture are central elements of the

Poisson algebra, {Mi, •} = 0.

Fixing the values of the central elements Mi leaves us with a 6-dimensional moduli

space M̄3
1,1 which is symplectic. A natural maximal set of commuting Hamiltonians consists
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Figure 24. A maximal set of commutting Hamiltonians on M̄3
1,1 is provided by the A-cycle

functions Ai and the pants network N2.

Figure 25. Network N4 that appears in the product A2B2 (thick lines carry ∧2�)).

of the A-cycle functions Ai together with a network N2 that surrounds the puncture and

has one edge along the A-cycle (see figure 24):

N2 = −εmnpAm
rM

n
sδ
p
tε
rst = trAM−A1M1 . (3.46)

This network is the pants network in the pants decomposition obtained by cutting C1,1

along the A-cycle. It is related to the network N1 defined above via

N2 = −N1C1 − N̄1B1 +A2B1C1 +B2C2 −A2
2 +A1 . (3.47)

The A-cycle functions Ai and the pants network N2 Poisson-commute, as is obvious from

the fact that they do not intersect:

{A1, A2} = {A1, P1} = {A2, P1} = 0 . (3.48)

SL(4). The A-cycle functions are A1 = trA, A2 = 1
2

[
(trA)2 − tr(A2)

]
, A3 = trA−1.

We define three networks which are going once around the A-cycle and once around the

B-cycle, and differ by the choice of the branch that is doubled:

Na = 1
2εmnpqU

m
a rU

n
a sU

p
b tU

q
cuε

rstu ,

Nb = 1
2εmnpqU

m
a rU

n
b sU

p
b tU

q
cuε

rstu ,

Nc = 1
2εmnpqU

m
a rU

n
b sU

p
c tU

q
cuε

rstu . (3.49)
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Figure 26. Sphere C0,4 with 4 punctures A,B,C,D. The holonomy matrices S and T are associated

with loops surrounding pairs of punctures.

Quantum relations between the loop and network operators can be obtained by apply-

ing quantum skein relations:

Â1B̂3 = q−
1
8 ˆ̄Nb + q

3
8 Ĉ ′1 , Â1B̂1 = q

1
8 N̂ ′b + q−

3
8 Ĉ3 ,

Â3B̂1 = q−
1
8 N̂b + q

3
8 Ĉ ′3 , Â3B̂3 = q

1
8 ˆ̄N ′b + q−

3
8 Ĉ1 ,

Â1B̂2 = q−
1
4 ˆ̄Na + q

1
4 N̂ ′a , Â2B̂1 = q−1/4N̂c + q

1
4 N̂ ′c ,

Â3B̂2 = q−
1
4 N̂a + q

1
4 ˆ̄N ′a , Â2B̂3 = q−1/4 ˆ̄Nc + q

1
4 ˆ̄N ′c ,

Â2B̂2 = q
1
2 Ĉ ′2 + q−

1
2 Ĉ2 + N̂4 . (3.50)

Here the networks with a prime are flipped, and N4 is the four-junction network shown in

figure 25.

3.3 Four-punctured sphere

The next example (with χ = −2) is the sphere C0,4 with four full punctures, denoted by

A, B, C, D. Its fundamental group can be expressed in terms of the loops γA, γB, γC , γD
surrounding the punctures clockwise, subject to one relation:

π1(C0,4) = 〈γA, γB, γC , γD | γAγBγCγD = γ◦〉 . (3.51)

We associate the holonomy matrices A,B,C,D to these loops, satisfying ABCD =

(−1)N−1I. In addition, we consider the loops γS and γT surrounding pairs of punctures:

S ≡ AB and T ≡ BC (see figure 26). We also define the two networks NAB, NCD

(and their inverses N̄AB, N̄CD) around punctures A,B, and C,D, respectively, which are

adapted to the pants decomposition determined by the curve γS . Each of the holon-

omy matrices A,B,C,D,S,T gives (N − 1) functions, while each of the four networks

NAB, NCD, N̄AB, N̄CD gives (N − 1)(N − 2)/2 functions. This gives the following number

of functions:

6(N − 1) + 4
(N − 1)(N − 2)

2
= 2(N2 − 1) = dim[MN

0,4] . (3.52)

Fixing the conjugacy classes of A,B,C,D gives 4(N − 1) constraints.
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SL(2). The generators A1, B1, C1, D1, S1, T1 do not form a closed Poisson algebra on their

own. Indeed, applying the quantum skein relation gives

Ŝ1T̂1 = q−
1
2 Û1 + q

1
2 Û ′1 + Â1Ĉ1 + B̂1D̂1 , (3.53)

with U1 ≡ trBD and U ′1 ≡ trAC (up to an overall sign for later convenience). The leading

order in ~ gives the Poisson bracket

{S1, T1} = −U1 + U ′1 . (3.54)

We can eliminate U ′1 via the relation (3.53), but then we must include U1 in the set of

generators in order to obtain a closed Poisson algebra. The closure of the Poison alge-

bra with the 7 generators A1, B1, C1, D1, S1, T1, U1 is implied by the following q-deformed

commutators:

q−
1
2 Ŝ1T̂1 − q

1
2 T̂1Ŝ1 = (q−1 − q)Û1 − (q

1
2 − q−

1
2 )(Â1Ĉ1 + B̂1D̂1) ,

q−
1
2 T̂1Û1 − q

1
2 Û1T̂1 = (q−1 − q)Ŝ1 − (q

1
2 − q−

1
2 )(Â1B̂1 + Ĉ1D̂1) ,

q−
1
2 Û1Ŝ1 − q

1
2 Ŝ1Û1 = (q−1 − q)T̂1 − (q

1
2 − q−

1
2 )(B̂1Ĉ1 + Â1D̂1) . (3.55)

Since dim[M2
0,4] = 6, there must be one relation between the 7 generators. It is provided

by the product of U1 and U ′1:

Û1Û
′
1 = qŜ2

1 + q−1T̂ 2
1 + q

1
2 Ŝ1(Â1B̂1 + Ĉ1D̂1) + q−

1
2 T̂1(B̂1Ĉ1 + Â1D̂1)

+Â1B̂1Ĉ1D̂1 + Â2
1 + B̂2

1 + Ĉ2
1 + D̂2

1 − [2]2 . (3.56)

Eliminating U ′1 with the relation (3.53) we obtain the familiar cubic relation (see for ex-

ample [25])

P̂1 = q−
1
2 Ŝ1T̂1Û1 − q−1Ŝ2

1 − qT̂ 2
1 − q−1Û2

1

−q−
1
2 Ŝ1(Â1B̂1 + Ĉ1D̂1)− q

1
2 T̂1(B̂1Ĉ1 + Â1D̂1)− q−

1
2 Û1(Â1Ĉ1 + B̂1D̂1)

−Â1B̂1Ĉ1D̂1 − Â2
1 − B̂2

1 − Ĉ2
1 − D̂2

1 + [2]2 . (3.57)

Note that the same relation holds with U1 replaced by U ′1 and q by q−1. We thus have a

presentation of the algebra A2
0,4 in terms of 7 generators satisfying the cubic relation P1:

A2
0,4 = C [A1, B1, C1, D1, S1, T1, U1] /P1 . (3.58)

The Poisson brackets can be expressed as derivatives of P1, for example

{S1, T1} =
∂P1

∂U1
= S1T1 − 2U1 − (A1C1 +B1D1) . (3.59)

SL(3). For Riemann surfaces with dim[π1(Cg,n)] = 3 such as C0,4, the SL(3) character

variety has dimension 16, and is generated by a minimal number of 45 trace functions,

see [60, 64]. This implies the existence of 29 relations between the generators. Choices for

the 16 independent generators were given in [65]. In terms our description, we can take

the following loop and pants network functions:

Ai, Bi, Ci, Si, Ti, U
′
i , NAB, N̄AB, NAC , N̄AC , (3.60)
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Figure 27. The product Ŝ1T̂1 generates networks via skein relations.

Figure 28. The six-junction network N6 that appears in the product NABN̄AB .

with

NAB = trAB−1 −A1B2 , NAC = trAC−1 −A1C2 . (3.61)

We can then apply quantum skein relations to products of generators to obtain relations.

For example we get (see figure 27)

Ŝ1T̂1 = q−
1
2 N̂BD + q

1
2 N̂ ′BD + N̂ABC + B̂1D̂2 , (3.62)

with

NBD = trBD−1 −B1D2 , N ′BD = trAB−1C−B2U
′
1 ,

NABC = trCB−1A−A1N̄BC − C1NAB −A1B2C1 . (3.63)

We also find

N̂AB
ˆ̄NAB = q−

1
2 N̂6 + q

1
2 ˆ̄N6

+Ŝ1Â2B̂2 + Ŝ2Â1B̂1 + Ŝ1Ŝ2 + Â1Â2 + B̂1B̂2 + [3] , (3.64)

with (see figure 28)

N6 = trABA−1B−1 − S1S2 −A1A2 −B1B2 . (3.65)

4 Fock-Goncharov holonomies

We now give an explicit representation of the algebra ANg,n in terms of polynomials in the

coordinates defined by Fock and Goncharov in their seminal work on higher Teichmüller

theory [30]. The holonomy matrices constructed with their methods have some nice pos-

itivity properties, which imply that all loop and network functions are given by Laurent

polynomials with positive integral coefficients. Relations between generators can then

be easily obtained (with the help of Mathematica for higher rank). Thanks to the natural

quantization of the Fock-Goncharov coordinates, these relations can be quantized uniquely.
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Figure 29. Left : ideal triangulation of the three-punctured sphere C0,3 into two triangles. Right :

N -triangulation of an ideal triangle into N2 small black and white triangles (here for N = 4). The

Poisson structure ε is encoded in the arrows circulating clockwise around the small black triangles.

In all examples we have studied perfect agreement is found with the results of skein quan-

tization presented in the previous section. The most non-trivial part of the quantization

concerns the positive integral coefficients in the loop and network polynomials. We will

see that they get quantized to positive integral Laurent polynomials in q1/2 — as expected

from their interpretation as the framed protected spin characters of Gaiotto, Moore, and

Neitzke [22]. We give many examples up to N = 4 for the surfaces C0,3, C1,1, and C0,4.

4.1 Fock-Goncharov coordinates

Fock and Goncharov defined useful systems of coordinates for MN
g,n associated with trian-

gulations of Cg,n. Provided that Cg,n is a hyperbolic surface with at least one puncture, it

can be decomposed into triangles with vertices at the punctures. There are −2χ triangles

and −3χ edges in this ideal triangulation. Each ideal triangle can then be further decom-

posed into N2 small triangles, which produces a so-called N -triangulation (see figure 29).

The Fock-Goncharov coordinates xα, with α = 1, . . . , d, are associated with the vertices of

these small triangles (excluding the punctures of Cg,n). There are (N − 1) coordinates on

each edge, and
(
N−1

2

)
coordinates inside each face, which add up to d ≡ dim[MN

g,n] (see

appendix A for more details).

The Poisson structure on MN
g,n can be neatly encoded in a system of oriented arrows

on the edges of the small triangles of the N -triangulation (see figure 29 right). The Poisson

bracket between two Fock-Goncharov coordinates is given by

{xα, xβ} = εαβxαxβ , (4.1)

with

εαβ = #(arrows from xα to xβ)−#(arrows from xβ to xα) ∈ {0,±1,±2} . (4.2)

A monomial xa11 · · ·x
ad
d can be encoded in a vector of exponents a = (a1, . . . , ad), called

tropical a-coordinates.12 The Poisson bracket between two monomials xa ≡
∏
α x

aα
α and

12The ai are coordinates for the tropicalization of the A-space defined by Fock and Goncharov, which

is dual to the X -space parameterized by the xi. The A-space is isomorphic to the space of laminations

on Cg,n.
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Figure 30. Two triangles in a triangulation and the corresponding dual graph Γ (black). The fat

dual graph (dashed) is decomposed into rectangles and hexagons, and its segments are associated

with matrices e, s, v.

xb ≡
∏
α x

bα
α is given by

{xa, xb} =
∑
α,β

(aαεαβbβ)xaxb = (atεb)xaxb = −
∑
α

(xαbα)xaxb . (4.3)

In the last expression, the combinations xα ≡
∑

β εαβaβ are the tropical x-coordinates of

the monomial xa. Clearly, monomials with xα = 0 for all α are central elements of the

Poisson algebra (we will see below that they correspond to traces of holonomies around

the punctures). The moduli space MN
g,n is a symplectic fibration over the space of central

monomials.

4.2 Holonomies

Fock and Goncharov constructed holonomies on the triangulated surface Cg,n using the

snake matrices reviewed in appendix A. The general procedure to obtain the holonomy

for a curve γ is to choose a curve homotopic to γ on the graph Γ that is dual to the

triangulation and multiply the matrices assigned to the corresponding edges and vertices

of the dual graph.

More precisely, the dual graph Γ must be fattened and decomposed into rectangles

along its edges and hexagons around its vertices (see figure 30). There are three types of

segments in the decomposed fat graph: the segments e crossing an edge of the triangulation,

the segments s intersecting the dual graph, and the segments v around the vertices of the

dual graph. The segments e and v are oriented clockwise around the punctures, while the

segments s are not oriented. The matrices e, s,v ∈ SL(N,C) assigned to the segments e, s, v

of the decomposed fat graph are the snake matrices defined in appendix A (normalized to

have unit determinant):

ex1 = H1(x1)H2(x2) · · ·HN−1(xN−1) , s = S , vx = F . (4.4)
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Here the matrix ex1 depends on the (N − 1) coordinates x1, . . . , xN−1 along the relevant

edge in the triangulation (for conciseness we only indicate the coordinate that is closest

to the puncture around which it rotates). Similarly, the matrix vx depends on all the

coordinates inside the relevant face in the triangulation. For example, for N = 3 we have

ex1 =

1 0 0

0 x1 0

0 0 x1x2

 , s =

0 0 1

0 −1 0

1 0 0

 , vx =

1 0 0

1 1 0

1 1 + x x

 . (4.5)

The holonomy for a path on the fat graph with successive segments (s1, s2, · · · , sm),

where si ∈ {e, s, v}, is given by the product of the corresponding matrices: sm · · · s2s1.

The holonomy around a rectangle or an hexagon is (projectively) equal to the identity:

eses = vsvsvs = (−1)N−1I . (4.6)

Note that this sign is consistent with our conventions for the contraction of a fundamental

loop in (2.39) (in the classical case q = 1).

The holonomy for any curve γ on the surface Cg,n is obtained by choosing a curve

homotopic to γ on the fat graph and multiplying the corresponding matrices (the proper-

ties (4.6) ensure that the choice of curve on the graph is irrelevant). Fock and Goncharov

showed that the resulting holonomy matrix is conjugate to a matrix whose minors are given

by Laurent polynomials with positive integral coefficients (in any coordinate system, that

is for any triangulation).13 It follows that the loop functions Ai that we defined in (2.25)

as sums of principal minors (invariant under conjugation) will also be given by positive

integral Laurent polynomials in the variables x
1/N
α . We will moreover observe in explicit

examples below that the network functions (2.28) also turn out to be positive integral Lau-

rent polynomials, but we did not find an easy derivation of this property from the positivity

of the minors.

A loop or network function L will always contain a highest term with unit coefficient,

that is a monomial xa =
∏
α x

aα
α such that any other monomial xb =

∏
α x

bα
α has bα ≤ aα

for all α:

L = xa11 x
a2
2 · · ·x

ad
d + · · · (4.7)

In contrast, other monomials in L have integral coefficients Ω that can be larger than 1:

L = xa + Ωbxb + Ωcxc + · · · . (4.8)

The product of two loop or network functions L and L′ can be expanded as

LL′ =
∑
L′′

c(L,L′;L′′)L′′ . (4.9)

For SL(2), Fock and Goncharov proved the positivity of the coefficients c(L,L′;L′′) by ap-

plying the skein relation shown in figure 3 to the intersections between the loops associated

13In the case of a holonomy for a loop running around a puncture, the resulting matrix is moreover

conjugate to a triangular matrix.
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with L and L′ and by reducing contractible loops as in (2.36).14 Note that the positivity

of the SL(N) skein relation (2.22) immediately implies that a product of loop or network

functions can be written as a finite sum with positive coefficient. However, reduction moves

such as those shown in figure 11 can spoil this positivity since they involve negative signs.

4.3 Quantization

The Fock-Goncharov coordinates admit a natural quantization. The algebra ANg,n of func-

tions onMN
g,n can be q-deformed into a noncommutative algebra ANg,n(q) by promoting the

coordinates xα to operators x̂α satisfying the relations

x̂αx̂β = qεαβ x̂βx̂α . (4.10)

It is convenient to work with logarithmic coordinates Xα, defined via xα = expXα, and

the corresponding operators X̂α, which satisfy the commutation relation (recall q = exp ~)

[X̂α, X̂β ] = ~{Xα, Xβ} = ~εαβ . (4.11)

A monomial in the Fock-Goncharov coordinates can be quantized by first expressing it as

an exponential of a sum of logarithmic coordinates, and then promoting them to operators

(as in [61] for example):

xa =
n∏

α=1

xaαα = exp
∑
α

aαXα
q−→ x̂a = exp

∑
α

aαX̂α = q−
1
2

∑
α<β aαεαβaβ

∏
α

x̂aαα ,

(4.12)

where in the last step we used the Baker-Campbell-Hausdorff formula. Similarly, the

quantum product of two monomials is given by

x̂a ∗ x̂b = exp
∑
α

aαX̂α ∗ exp
∑
β

bβX̂β = e
1
2

∑
α,β [aαX̂α,bβX̂β ] exp

∑
α

(aα + bα)X̂α

= q
1
2
atεbx̂a+b . (4.13)

The loop and network functions that we want to quantize are positive integral Laurent

polynomials in the Fock-Goncharov coordinates. The monomials xa that they involve can

simply be quantized as in (4.12). It is much less obvious to determine how to quantize the

positive integral coefficients Ω of the monomials. Fock and Goncharov conjectured that

these quantum coefficients are positive Laurent polynomials in q1/2. They also conjectured

that the highest term, which has a unit coefficient classically, has a unit coefficient in the

quantum operator too. We will make the assumption that all the unit coefficients in a loop

or network polynomial remain unit coefficients in the quantized operator (as expected from

the interpretation of these coefficients as protected spin characters in [22]). What remains

to find is how the non-unit coefficients Ω get quantized:

L = xa + Ωbxb + · · · q−→ L̂ = x̂a + Ω
q
bx̂b + · · · . (4.14)

14More precisely, their proof does not apply to the loop functions Ai that we are using, but to their

slightly different “canonical maps” I = tr(Ai) from the space of integral A-laminations to the space of

positive Laurent polynomials.
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Figure 31. Left : 3-triangulation of the sphere C0,3 with three punctures labeled by A,B,C. The

edges carry two coordinates each, ai, bi, ci and the faces one each, x, y. Right : the dual graph, and

the branches Ua,Ub,Uc projected on the fat graph. The white junction indicates the base point

for the loops in π1(C0,3).

Our strategy is to demand that the classical loop and network functions, which satisfy

some relations of the form (4.9) (such as (3.14) and (3.15) for C0,3), get quantized into

operators satisfying quantized versions of these relations. This requirement turns out to

be powerful enough to determine uniquely the coefficients in expansions of the loop and

network generators into monomials of quantised Fock-Goncharov-coordinates. We will

illustrate this quantization procedure in many examples in the following subsections.

We first need to determine how the quantized relations look like. The classical relations

are typically of the form (4.9) and get quantized to

L̂ ∗ L̂′ =
∑
L̂′′

cq(L̂, L̂′; L̂′′)L̂′′ , (4.15)

where the cq(L̂, L̂′; L̂′′) are some functions of q. On the left-hand side, the quantum product

L̂L̂′ generates some powers of q as in (4.13). Focusing on the monomials in L̂, L̂′, and L̂′′

with unit coefficients, we can then read off the quantum coefficients cq(L̂, L̂′; L̂′′). We will

see that they are integral Laurent polynomials in q1/2N . The resulting quantum relations

agree with the ones that we could obtain from skein quantization, such as (3.18).

We can then determine the quantum coefficients Ω
q

by comparing coefficients of mono-

mials with the same exponents on both sides of the quantum relations. We will find that

the Ω
q

are always finite positive integral Laurent polynomials in q1/2 which are invariant

under q ↔ q−1. This is in agreement with the positivity conjectures made in [22] for the

protected spin characters.

4.4 Pants networks

We come back to the basic example of flat SL(N,C)-connections on the pair of pants

C0,3. The abstract structure of the algebra of loop and network operators was discussed in

subsection 3.1.
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SL(3). A 3-triangulation of the pair of pants C0,3 is shown in figure 31 left. We denote

the Fock-Goncharov coordinates on the edges of the triangles by ai, bi, ci, with i = 1, 2,

and on the faces by x, y.

Loop functions: the dual graph consists of three edges Ua,Ub,Uc, which we can project

on segments of the fat graph to obtain the following holonomy matrices:

Ua = sv−1
x sea2sv

−1
y s , Ub = e−1

b2
, Uc = vxec2vy . (4.16)

The holonomy matrices for the three clockwise loops around the punctures can then be

expressed as

A = U−1
b Uc , B = U−1

c Ua , C = U−1
a Ub , (4.17)

so that they satisfy the relation ABC = I from π1(C0,3). The eigenvalues of these matrices

correspond (up to normalizations) to products of coordinates along parallel loops around

the punctures in the 3-triangulation (see figure 32 left):

A : (1, α1, α1α2) , α1 = b2c2 , α2 = b1c1xy ,

B : (1, β1, β1β2) , β1 = c1a2 , β2 = c2a1xy ,

C : (1, γ1, γ1γ2) , γ1 = a1b1 , γ2 = a2b2xy . (4.18)

Defining the loop functions A1 = trA and A2 = trA−1, we can write the compact expression

Ai =
∏
j

α
−κ−1

ij

j (1 + αi + α1α2) , (4.19)

where the normalization factor is determined by the Cartan matrix κ of SL(3):

κ =

(
2 −1

−1 2

)
, κ−1 =

1

3

(
2 1

1 2

)
. (4.20)

This simple interpretation of the loop functions comes from the fact that for a path around

a puncture the Fock-Goncharov holonomy matrix can be written as a triangular matrix:

A =
∏
j

α
−κ−1

1j

j

 1 0 0

b2 + α1 α1 0

b1b2(1 + c2 + c2x+ c1c2x) b1α1(1 + x+ c1x+ c1xy) α1α2

 . (4.21)

The normalization factor ensures that det A = 1. Note that the tropical x-coordinates all

vanish for Ai, Bi, Ci, which implies that they are central elements of the Poisson algebra

(recall (4.3)).

Network functions: we construct the network function N1 and its reverse N̄1 by fus-

ing the three edges at the two trivalent junctions with ε-tensors (see (3.5), or alterna-

tively (3.6)):

N1 = −εmnpUm
a rU

n
b sU

p
c tε

rst ,

N̄1 = −εmnp(U−1
a )mr (U−1

b )ns (U−1
c )pt ε

rst . (4.22)
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Figure 32. Left : paths homotopic to the loop around the puncture A on the 3-triangulation of

C0,3, which correspond to the monomials α1 = b2c2 and α2 = b1c1xy. Right : paths homotopic to

the network N1, corresponding to ν1 = a2b1c2xy (dark) and ν2 = a1b2c1xy (dashed).

This gives polynomials with 25 terms each. Three of these terms stand out: the highest

term, the lowest term, and the middle term (which also happens to be the only term with

a non-unit coefficient). They can be written in terms of monomials ν1 and ν2 that have

a geometric interpretation as paths homotopic to the network on the 3-triangulation (see

figure 32 right):

N1 3
∏
i

ν
−κ−1

1i
i (1 + 2ν1 + ν1ν2) , ν1 = a2b1c2xy ,

N̄1 3
∏
i

ν
−κ−1

2i
i (1 + 2ν2 + ν1ν2) , ν2 = a1b2c1xy . (4.23)

The full expression for N1 is

N1 =
∏
i

ν
−κ−1

1i
i

(
1 + y + a2y + b1y + c2y + a2b1y + a2c2y + b1c2y + a2b1c2y + a2b1xy

+ a2c2xy + b1c2xy + 2ν1 + a1a2b1c2xy + a2b1b2c2xy + a2b1c1c2xy

+ a2b1c2x
2y + a1a2b1c2x

2y + a2b1b2c2x
2y + a1a2b1b2c2x

2y + a2b1c1c2x
2y

+ a1a2b1c1c2x
2y + a2b1b2c1c2x

2y + a1a2b1b2c1c2x
2y + ν1ν2

)
. (4.24)

This is consistent with the expression obtained in [62] from products of trace functions

(see also [66]). The tropical a-coordinates of N1 (the exponents of its highest term) and

its tropical x-coordinates are given by

a(N1) =
1

3
(2, 1, 1, 2, 2, 1, 3, 3) , x(N1) = (0, 0, 0, 0, 0, 0, 1,−1) . (4.25)

Poisson brackets: the Poisson bracket for the pants networks is computed by using (4.3).

The Poisson tensor (4.2) can be read off from the 3-triangulation in figure 31, and is given
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in the basis {a1, a2, b1, b2, c1, c2, x, y} by

ε =



0 0 0 0 0 0 −1 1

0 0 0 0 0 0 1 −1

0 0 0 0 0 0 1 −1

0 0 0 0 0 0 −1 1

0 0 0 0 0 0 −1 1

0 0 0 0 0 0 1 −1

1 −1 −1 1 1 −1 0 0

−1 1 1 −1 −1 1 0 0


(4.26)

This gives the Poisson bracket (3.9)

{N1, N̄1} = −W1 + W̄1 . (4.27)

The network functions W1 and W̄1 have 187 terms each, with the following highest, lowest,

and middle terms:

W1 3
∏
j

σ
−κ−1

1j

j (1 + 8σ1 + σ1σ2) , σ1 = a1a2b1b2c1c2y
3 ,

W̄1 3
∏
j

σ
−κ−1

2j

j (1 + 8σ2 + σ1σ2) , σ2 = a1a2b1b2c1c2x
3 . (4.28)

All the Poisson brackets (3.11) between the generators N1, N̄1,W1, W̄1 can be easily com-

puted in this way.

Classical relations: it is easy to obtain the polynomial relations between the generators

Ai, Bi, Ci, N1, N̄1,W1, W̄1. One useful method is to start with a product, say N1N̄1, and to

look for a combination of generators with the same highest term, in this case A1B1C1, in

order to cancel it. Then we find that the highest terms in N1N̄1−A1B1C1 can be cancelled

by W1 and W̄1. Repeating this procedure a few more times leads to the relation P1 given

in (3.14). After implementing this algorithm in Mathematica we can obtain relatively

complicated relations such as P2 given in (3.15). In contrast, it would be very laborious

to derive this relation purely from applying skein relations, because it would require the

resolution of many intersections in the products W1W̄1, N3
1 , and N2

1 . Of course, the fact

that P2 is a combination of several product expansions of the form (4.9) implies that

its coefficients can appear somewhat unnatural (this comment applies even more for the

quantized relation (3.19)).

Quantization of the relations: we now want to obtain quantum versions of the poly-

nomial relations P1 and P2, in which the network functions are replaced by noncommuting

operators. Each term in the classical relations can acquire at the quantum level a coeffi-

cient that is an arbitrary function of the quantization parameter q = e~ and that reduces

to the classical integral coefficient in the limit q → 1.

The quantum product of polynomials in the Fock-Goncharov coordinates can be ob-

tained by applying the product (4.13) to each pair of monomials. For example, the quantum
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product N̂1
ˆ̄N1 will produce a certain power of q for each pair of monomials coming from

N̂1 and ˆ̄N1. Let us consider first the highest terms xa and xā in N1 and N̄1 with tropical

a-coordinates

a =
1

3
(2, 1, 1, 2, 2, 1, 3, 3) , ā =

1

3
(1, 2, 2, 1, 1, 2, 3, 3) . (4.29)

These two monomials Poisson-commute, {xa, xā} = 0, which implies that their quantum

product does not produce any power of q:

x̂ax̂ā = x̂a+ā . (4.30)

This implies that the corresponding term in P̂1 with tropical a-coordinate

a + ā = (1, 1, 1, 1, 1, 1, 2, 2) (4.31)

must have the same coefficient as N̂1
ˆ̄N1. This term turns out to be the highest term in

Â1B̂1Ĉ1, and so, by an overall rescaling, we can set the coefficients of N̂1
ˆ̄N1 and Â1B̂1Ĉ1

to one in the quantum relation P̂1. The next highest terms in the relation have tropical

a-coordinates (1, 1, 1, 1, 1, 1, 2, 1) and (1, 1, 1, 1, 1, 1, 1, 2). They correspond respectively to

the highest terms of the operators Ŵ1 and ˆ̄W1, as well as to two products of monomials

in N̂1
ˆ̄N1 with coefficients q−1/2 and q1/2. This fixes the quantum coefficients of Ŵ1 and

ˆ̄W1 in P̂1.

Repeating this procedure for the next highest terms in the relation allows us to de-

termine all the quantum coefficients, except for the constant term 3 in P1. We find that

it should quantize as Q2Q̄2 − 1, where Q2 and Q̄2 are the quantizations of the coefficients

of 2 that appear in the expansion of the network operators N̂1 and ˆ̄N1 (recall (4.23)). We

will show momentarily that Q2 = Q̄2 = [2] and thus the 3 should quantize as [2]2− 1 = [3].

The quantum relation P̂1 finally takes the form

N̂1
ˆ̄N1 = q−

1
2 Ŵ1 + q

1
2 ˆ̄W1 + Â1B̂1Ĉ1 + Â2B̂2Ĉ2 + Â1Â2 + B̂1B̂2 + Ĉ1Ĉ2 + [3] . (4.32)

Pleasingly, this quantum relation agrees exactly with the result (3.18) that we obtained in

section 3.1 by applying the quantum skein relation.

Applying the same procedure (with the help of Mathematica) to the second relation

P2 leads to the quantum relation given in (3.19).

Quantization of the generators: having quantized the relations, we would now like

to quantize the generators themselves, as described in subsection 4.3. The generators

are polynomials in the Fock-Goncharov coordinates with integer coefficients. The unit

coefficients should not be affected by the quantization, but we need to find how to quantize

the non-integral coefficients that appear in front of some monomials. We will see how the

quantum relation (3.18) can be used to determine these quantum coefficients uniquely.

There is only one term in the expansion for N1 with a non-unit coefficient, namely the

middle term with the factor of 2 in (4.23). In the quantum operator N̂1, this coefficient of

2 will be replaced by a function Q2 of q. We can determine Q2 by finding a term in the

quantum relation that is linear in it. For example, the monomial 1/a1 appears in N̂1
ˆ̄N1

– 45 –



J
H
E
P
1
0
(
2
0
1
5
)
1
4
3

with the coefficient Q2, and also in Ŵ1 and ˆ̄W1 with unit coefficient. Since W1 and W̄1

appear in the quantum relation (3.18) with factors of q1/2 and q−1/2, we deduce that the

coefficient of 2 in N1 simply becomes a quantum [2] in N̂1:

2 ∈ N1
q→ Q2 = q

1
2 + q−

1
2 ≡ [2] ∈ N̂1 . (4.33)

The coefficient of 2 in N̄1 similarly quantizes to Q̄2 = [2]. So we have (up to normalization)

N1 3 1 + 2ν1 + ν1ν2
q→ N̂1 3 1 + [2]ν̂1 + ν̂1ν̂2 ,

N̄1 3 1 + 2ν2 + ν1ν2
q→ N̂1 3 1 + [2]ν̂2 + ν̂1ν̂2 . (4.34)

Among the 187 monomials in the network W1, 24 have a coefficient 2, 4 a 3, 12 a 4, 6

a 5, 2 a 6, and 1 an 8. Let us focus on the monomial 8y/x in W1. In the classical relation

P1 given in (3.14), the coefficient of 8 is cancelled by 8 pairs of monomials in N1N̄1, xai
from N1 and xāi from ˆ̄N1, whose products give y/x. For example we have

a1 = −1

3
(1, 2, 2, 1, 1, 2, 3, 0) , ā1 =

1

3
(1, 2, 2, 1, 1, 2, 0, 3) (4.35)

satisfying a1 + ā1 = (0, 0, 0, 0, 0, 0,−1, 1). In the quantum relation, however, the quantum

product of the corresponding monomials in N̂1
ˆ̄N1 produces some power of q as in (4.13):

x̂a1 x̂ā1 = q
1
2
at
1εā1 x̂a1+ā1 = qx̂a1+ā1 . (4.36)

Summing over the contributions of all such pairs (ai, āi), we obtain the expression for the

quantization of the term 8y/x in Ŵ1 (recall there is a factor of q−1/2 in front of Ŵ1 in the

quantum relation (3.18)):

8 ∈W1
q→ q

1
2

8∑
i=1

q
1
2
at
iεāi = q

3
2 + 3q

1
2 + 3q−

1
2 + q−

3
2 = [2]3 ∈ Ŵ1 . (4.37)

The quantization of all the non-unit coefficients in the network operators Ŵ1 and ˆ̄W1 can

be determined in the same way. We find

2→ q
1
2 + q−

1
2 = [2] , 8→ q

3
2 + 3q

1
2 + 3q−

1
2 + q−

3
2 = [2]3 ,

3→ q + 1 + q−1 = [3] , 4→ q + 2 + q−1 = [3] + 1 = [2]2 ,

5→ q + 3 + q−1 = [3] + 2 , 6→ q + 4 + q−1 = [3] + 3 . (4.38)

We see that all the quantized coefficients in the loop and network operators are positive

integral Laurent polynomials in q1/2, and are also invariant under q → q−1.

This provides further evidence for the positivity conjectures of Gaiotto, Moore, and

Neitzke [22] about the framed protected spin characters (1.6), which should take the form

Ω(L, γ; q) = trHBPS
L

qJ3 , (4.39)

with J3 a generator of so(3).
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Figure 33. 4-triangulation of C0,3. Left : the green lines represent the eigenvalues αi of the

holonomy matrix A around the puncture A. Right : paths corresponding to ν1 (continuous), ν2

(fine dashed), and ν3 (dashed) appearing in N1.

SL(4). We find a similar structure for SL(4) loop and network operators. For example,

the holonomy matrix A around the puncture A has the following eigenvalues (see figure 33):

A :
∏
i

α
−κ−1

1i
i (1, α1, α1α2, α1α2α3) ,

α1 = b3c3 , α2 = b2c2x3y3 , α3 = b1c1x1x2y1y2 , (4.40)

with the SL(4) Cartan matrix

κ =

 2 −1 0

−1 2 −1

0 −1 2

 , κ−1 =
1

4

 3 2 1

2 4 2

1 2 3

 . (4.41)

The loop functions Ai can be expressed in terms of the αi:

A1 = trA =
∏
i

α
−κ−1

1i
i (1 + α1 + α1α2 + α1α2α3) ,

A2 =
1

2

[
(trA)2 − tr(A2)

]
=
∏
i

α
−κ−1

2i
i (1 + α2 + α1α2 + α2α3 + α1α2α3 + α1α

2
2α3) ,

A3 = trA−1 =
∏
i

α
−κ−1

3i
i (1 + α3 + α2α3 + α1α2α3) . (4.42)

We can construct three pants networks Na, Nb, Nc (and their reverses), differing by

the choice of the edge that carries the second antisymmetric representation of SL(4) (recall

figure 18):

Na = −1

2
εmnpqU

m
a rU

n
a sU

p
b tU

q
cuε

rstu = trCB−1 − C1B3 ,

Nb = −1

2
εmnpqU

m
a rU

n
b sU

p
b tU

q
cuε

rstu = trAC−1 −A1C3 ,

Nc = −1

2
εmnpqU

m
a rU

n
b sU

p
c tU

q
cuε

rstu = trBA−1 −B1A3 . (4.43)
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These pants network functions contain 176 terms each, all with unit coefficient apart from

12 that have a coefficient of 2. Some of the terms have an interpretation as paths homotopic

to the network (see figure 33), and we can write for example

Na 3
∏
i

ν
−κ−1

1i
i (1 + 2ν1 + 2ν1ν2 + ν1ν2ν3) , (4.44)

N̄a 3
∏
i

ν
−κ−1

3i
i (1 + 2ν3 + 2ν2ν3 + ν1ν2ν3) , (4.45)

with ν1 = a2b1c3x1x3y1y3, ν2 = a1a3b2c2x1x2y1y2, and ν3 = a2b3c1x2x3y2y3.

Quantum relations can be obtained by using the quantum skein relations for Uq(sl4)

(see figure 19). The quantization of the network operators can then be obtained from

these relations. In particular, the 12 coefficients of 2 appearing in each pants operator get

quantized to [2] = q1/2 + q−1/2, much in the same way as for SL(3). A more elaborate

illustration is provided by the network that appears with a factor of q1/2 in the relation

for N̂a
ˆ̄Nb (see figure 19). This network operator contains 2344 terms with a coefficient of

2, 184 with a 3, 815 with a 4, 123 with a 5, 91 with a 6, 115 with an 8, 6 with a 9, 14 with

a 10, 8 with a 12, and 4 with a 16. Every coefficient gets quantized in a unique way. Note

however that coefficients that are the same classically can quantize in different ways:

2 → q
1
2 + q−

1
2 or 2 ,

3 → q + 1 + q−1 or 3 ,

4 → q + 2 + q−1 or 2q
1
2 + 2q−

1
2 ,

5 → q + 3 + q−1 ,

6 → q
3
2 + 2q

1
2 + 2q−

1
2 + q−

3
2 or 3q

1
2 + 3q−

1
2 or q + 4 + q−1 ,

8 → 2q + 4 + 2q−1 or q
3
2 + 3q

1
2 + 3q−

1
2 + q−

3
2 ,

9 → 2q + 5 + 2q−1 ,

10 → q
3
2 + 4q

1
2 + 4q−

1
2 + q−

3
2 ,

12 → q2 + 3q + 4 + 3q−1 + q−2 or 2q
3
2 + 4q

1
2 + 4q−

1
2 + 2q−

3
2 ,

16 → q2 + 4q + 6 + 4q−1 + q−2 or 2q
3
2 + 6q

1
2 + 6q−

1
2 + 2q−

3
2 , (4.46)

4.5 One-punctured torus

SL(2). We start by briefly reviewing the well-studied case of flat SL(2,C)-connections

on the one-punctured torus C1,1 [22] (see also [61]). A triangulation of C1,1 and its dual

graph are shown on the right of figure 34. The three edges of the dual graph can be used

to express all the loop and network functions. After projecting the edges on the fat graph,

we can express the corresponding holonomy matrices as products of (normalized) snake

matrices:

Ua = sv−1seavy , Ub = e−1
b , Uc = vecsv

−1s . (4.47)

The holonomy matrices for the A- and B-cycles, and for the clockwise closed loop around

the puncture (all based at the black junction in figure 20) are expressed as

A = UbU−1
c , B = UaU

−1
b , M = UbU−1

c UaU
−1
b UcU

−1
a . (4.48)
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Figure 34. Left : one-punctured torus C1,1. The A- and B-cycles are shown, together with a

network operator N1. Right : a triangulation of C1,1 into two triangles. The dual graph consists of

the edges Ua, Ub, Uc, and corresponds to the network N1.

In terms of the Fock-Goncharov coordinates a, b, c on the edges of the triangulation, these

loop functions are given by

A1 =
√
bc+

√
b

c
+

1√
bc
, B1 =

√
ab+

√
a

b
+

1√
ab
, M1 = abc+

1

abc
. (4.49)

These results were already derived by Gaiotto, Moore, and Neitzke [22], who emphasized

that they were unexpected from classical reasoning. Indeed, the vev of a Wilson line

operator in a representation R of the gauge group would naively correspond in the IR

theory (where the gauge group is broken to its Cartan subgroup) to a sum of vevs of

Wilson lines labeled by the weights of R. In the case of A1 in (4.49), these IR Wilson

lines correspond to the terms
√
bc and 1/

√
bc. However, extra contributions, such as

√
b/c,

come as a surprise. They were attributed to interesting bound states in [22].

The Poisson bracket of A1 and B1 can be obtained by direct calculation from (4.1)

and agrees with (3.29):

{A1, B1} = trAB− 1

2
A1B1 = −trAB−1 +

1

2
A1B1 . (4.50)

The traces C1 = trAB and C ′1 = trAB−1 correspond to curves that go once around the

A-cycle and once around the B-cycle (in different directions) and take the form

C1 =
√
ca+

√
c

a
+

1√
ca
, C ′1 =

√
a

c

(
bc+ b+ 2 +

1

b
+

1

ab

)
. (4.51)

As explained in subsection 4.3, in order to quantize the generators we first write them

in terms of logarithmic coordinates A,B,C defined via a = eA, b = eB, c = eC , and then

promote these coordinates to operators Â, B̂, Ĉ satisfying the commutation relations

[Â, B̂] = [B̂, Ĉ] = [Ĉ, Â] = 2~ . (4.52)

For example, the quantized A-cycle operator is given by

Â1 = e−
1
2

(B̂+Ĉ) + e
1
2

(B̂−Ĉ) + e
1
2

(B̂+Ĉ) . (4.53)
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Figure 35. Left : 3-triangulation of C1,1. The edges carry two coordinates each, ai, bi, ci, and the

faces one each, x, y. Right : the A-cycle (red), the B-cycle (green), the loop around the puncture

(black), and the network N1 corresponding to the dual graph (blue).

We can explicitly check that the quantum relation (3.36) is satisfied by using the quantum

product (4.13).

A key point is that the loop function C ′1 contains a coefficient of 2 in (4.51), and it is

not clear a priori how to quantize it. However, the quantum relation (3.33) imposes that

this 2 in C ′1 be replaced by the quantum integer [2] = q1/2 + q−1/2 in Ĉ ′1.

SL(3). A 3-triangulation of C1,1 is shown in figure 35. There are now two Fock-Goncharov

coordinates for each edge, ai, bi, ci, with i = 1, 2, and one for each triangle, x, y. We express

the holonomy matrices corresponding to the three branches of the dual graph as

Ua = sv−1
x sea2vy , Ub = e−1

b2
, Uc = vxec2sv

−1
y s . (4.54)

These three branches can be used to construct all the loop and network functions, exactly

as in (4.48) for the SL(2) case.

The loop functions M1 = trM and M2 = trM−1 can be expressed compactly as

Mi =
∏
j

µ
−κ−1

ij

j (1 + µi + µ1µ2) , (4.55)

where µ1 = a1a2b1b2c1c2 and µ2 = a1a2b1b2c1c2x
3y3 correspond to products of coordinates

along paths surrounding the puncture. The A-cycle functions A1 = trA and A2 = trA−1

similarly involve the monomials α1 = b1c1x and α2 = b2c2y, which are products of coordi-

nates along paths homotopic to the A-cycle (see figure 36):

A1 =
∏
j

α
−κ−1

1j

j [1 + b1 + b1x+ b1b2x+ α1(1 + b2 + b2y + α2)] ,

A2 =
∏
j

α
−κ−1

2j

j [1 + b2 + b2y + b1b2y + α2(1 + b1 + b1x+ α1)] . (4.56)

Interestingly, the tropical x-coordinates of the terms in Ai involving only the αi (namely the

highest, middle, and lowest terms) reproduce the weight systems of the fundamental and
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Figure 36. Left : paths corresponding to the monomials α1 = b1c1x, α2 = b2c2y, β1 = a1b1x, β2 =

a2b2y, and µ1 = a1a2b1b2c1c2. Right : paths corresponding to ν1 = a2b1c2xy and ν2 = a1b2c1xy.

anti-fundamental representations. More specifically, the tropical x-coordinates (b1, b2) are

A1 3
∏
j

α
−κ−1

1j

j


α1α2 : (0, 1)

α1 : (1,−1)

1 : (−1, 0) ,

A2 3
∏
j

α
−κ−1

2j

j


α1α2 : (1, 0)

α2 : (−1, 1)

1 : (0,−1) .

(4.57)

The B-cycle functions Bi have similar expressions, involving the monomials β1 = a1b1x

and β2 = a2b2y. The Poisson bracket between βi and αj can be neatly expressed in terms

of the Cartan matrix κ (as in [67]):

{βi, αj} = κijβiαj , {βi, βj} = {αi, αj} = 0 . (4.58)

The network function N1 and its reverse N̄1 defined as

N1 = εmnpU
m
a rU

n
b sU

p
c tε

rst ,

N̄1 = εmnp(U
−1
a )mr (U−1

b )ns (U−1
c )pt ε

rst (4.59)

contain 28 terms each, only one of which has a non-unit coefficient of 2. The full expression

for N1 is precisely the same as the expression (4.24) for the pants network function on C0,3,

apart from three extra terms:

N1(C1,1) = N1(C0,3) +
∏
j

ν
−κ−1

1j

j (a2b1b2xy + b1c1c2xy + c2a1a2xy) . (4.60)

The loop functions C ′1 = trAB−1 and C ′2 = trA−1B are polynomials with 27 terms, 8

of which have a coefficient of 2.

The quantization of relations such as (3.39) can be obtained by using the quantum

product:

Â2B̂1 = q
1
6 N̂1 + q−

1
3 Ĉ ′2 , Â1B̂1 = q−

1
6 N̂ ′1 + q

1
3 Ĉ2 ,

Â1B̂2 = q
1
6 ˆ̄N1 + q−

1
3 Ĉ ′1 , Â2B̂2 = q−

1
6 ˆ̄N ′1 + q

1
3 Ĉ1 . (4.61)

Here the network operator N̂ ′1 corresponds to the flipped dual graph (see figure 23). This

agrees with the relations (3.40) obtained by applying the quantum skein relation.
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Figure 37. 4-triangulation of C1,1. The edges carry three coordinates each, ai, bi, ci, and the faces

three each, xi and yi. The paths corresponding to the monomials α1 = b1c1x2x3, α2 = b2c2x1y3,

and α3 = b3c3y1y2 appearing in the loop functions Ai are indicated.

In order for these quantum relations to hold, the coefficients of 2 appearing in the

classical functions N1, C ′i, and N ′1 must be replaced by the quantum integer [2] = q1/2 +

q−1/2 in the operators N̂1, Ĉ ′i, and N̂ ′1.

We can also reproduce the quantum relations (3.42):

N̂1
ˆ̄N1 = q−

1
2 Ŵ6 + q

1
2 ˆ̄W6 + Â1Â2 + B̂1B̂2 + Ĉ1Ĉ2 + M̂1 + M̂2 + [3] , (4.62)

where W6 is a network with six junctions shown in figure 23. The same network W6 also

appears in the product

ˆ̄N ′1Ĉ2 = Ŵ6 + q
1
2 Â1Â2 + q−

1
2 B̂1B̂2 . (4.63)

We can further compute the classical relation (also obtained in [45] and [62])

A1A2B1B2C1C2 =
[
N3

1 +N2
1 (A2B1 +B2C1 + C2A1) (4.64)

+N1(A1A2B1C2 +A2
1C1 +A2

2B2 − 3A1B2 + cyclic)

− (A1B
2
2C

2
2 − 2A2

1B2C2 +A3
1 + cyclic) + reverse

]
−N1N̄1(A1A2 + cyclic)− (A1A2B1B2 + cyclic)

+3(A1B1C1 +A2B2C2) +M1M2 + 6(M1 +M2) + 9 .

Here “+cyclic” means adding the terms obtained by cyclic permutation of A,B,C, and

“+reverse” the terms obtained by reversing the orientation, A1 ↔ A2, N1 ↔ N̄1 and so

on. We also managed to quantize the relation (4.64) but the result is not very enlightening

so we omit it (in a basis where each monomial is ordered alphabetically, we need to add

terms that vanish in the classical limit q → 1).

SL(4). The 4-triangulation of C1,1 has 15 coordinates, 3 for each edge, ai, bi, ci, and 3 for

each face, {xi, yi}, with i = 1, 2, 3 (see figure 37). The A-cycle functions A1 and A3 have
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21 terms each, while A2 has 56 terms, some of which can be expressed as

A1 3
∏
i

α
−κ−1

1i
i (1 + α1 + α1α2 + α1α2α3) ,

A2 3
∏
i

α
−κ−1

2i
i (1 + α2 + α1α2 + α2α3 + α1α2α3 + α1α

2
2α3) , (4.65)

A3 3
∏
i

α
−κ−1

3i
i (1 + α3 + α2α3 + α1α2α3) ,

with α1 = b1c1x2x3, α2 = b2c2x1y3, and α3 = b3c3y1y2. The tropical x-coordinates

{b1, b2, b3} of these terms in A1 and A3 reproduce the weight systems of the fundamen-

tal and anti-fundamental representations (similarly to (4.57)), while those in A2 form the

weight system of the second antisymmetric representation:

A2 3
∏
i

α
−κ−1

2i
i



α1α
2
2α3 : (0, 1, 0)

α1α2α3 : (1,−1, 1)

α1α2, α2α3 : (−1, 0, 1), (1, 0,−1)

α2 : (−1, 1,−1)

1 : (0,−1, 0) .

(4.66)

We define three networks homotopic to the dual graph, differing by the choice of the branch

that is doubled (their expansions contain 223 monomials each):

Na =
1

2
εmnpqU

m
a rU

n
a sU

p
b tU

q
cuε

rstu ,

Nb =
1

2
εmnpqU

m
a rU

n
b sU

p
b tU

q
cuε

rstu ,

Nc =
1

2
εmnpqU

m
a rU

n
b sU

p
c tU

q
cuε

rstu . (4.67)

The quantum relations in (3.50) allow to uniquely determine how all the integral

coefficients of 2, 4, and 8 appearing in the Fock-Goncharov expansions of the network

functions get quantized:

2→ [2] = q
1
2 + q−

1
2 , 4→ [2]2 = q + 2 + q−1 ,

8→ [2]3 = q
3
2 + 3q

1
2 + 3q−

1
2 + q−

3
2 . (4.68)

4.6 Four-punctured sphere

Another example is a sphere C0,4 with four full punctures, A, B, C, D. It can be triangu-

lated into four triangles, as shown in figure 38.

SL(2). The loop around the punctures give the following trace functions:

A1 =
√
acf +

1√
acf

, B1 =
√
bce+

1√
bce

,

C1 =
√
def +

1√
def

, D1 =
√
abd+

1√
abd

. (4.69)
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Figure 38. 3-triangulation of C0,4. The edges on the left and on the right are glued together. The

paths corresponding to the monomials α1 = a2c1f2 and α2 = a1c2f1x1x3x4 are indicated.

We also consider loops surrounding pairs of punctures, S = AB, T = BC, and U = BD

(see [22]):

S1 =
1√
abef

(1 + a+ e+ ae+ abe+ aef + abef) ,

T1 =
1√
bcdf

(1 + b+ f + bf + bcf + bdf + bcdf) ,

U1 =
1√
acde

(1 + c+ d+ cd+ acd+ cde+ acde) . (4.70)

These polynomials do not contain any non-unit coefficients, so their quantization is straight-

forward. In particular, we can reproduce the quantum relation P̂1 (3.57).

The loop function associated with the holonomy U′ = AC does however contain

coefficients of 2 and 4:

U ′1 =
1

√
ab
√
c
√
d
√
ef

(ab2cdef2 + ab2cef2 + ab2cef + ab2def2 + ab2def + ab2ef2

+ 2ab2ef + ab2e+ abcef2 + abcef + abdef2 + abdef + 2abef2

+ 4abef + 2abe+ abf + ab+ aef2

+ 2aef + ae+ af + a+ bef + be+ ef + e+ 1) . (4.71)

The quantization of these non-unit coefficients can be determined by demanding that the

quantum relation (3.53) holds. We find that we must make the following replacements:

2→ q
1
2 + q−

1
2 , 4→ q + 2 + q−1 . (4.72)

SL(3). A 3-triangulation of C0,4 is shown in figure 38. Each holonomy matrix gives two

loop functions, for example

Ai =
∏
j

α
−κ−1

ij

j (1 + αi + α1α2) , α1 = a2c1f2 , α2 = a1c2f1x1x3x4 . (4.73)
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The monomials αi are products of coordinates along paths surrounding the puncture on

the 3-triangulation (see figure 38). The operators coming from S,T,U have 48 terms each.

The operators Si contain the terms

Si 3
∏
j

σ
−κ−1

ij

j (1 + σi + σ1σ2) , σ1 = a2b2e2f2x1x3 , σ2 = a1b1e1f1x2x4 . (4.74)

We can reproduce the quantum relations (3.62) and (3.64), provided that we quantize

the non-unit integer coefficients appearing in the network operators as follows:

2→ q
1
2 + q−

1
2 , 3→ q + 1 + q−1, 4→ q + 2 + q−1 ,

5→ q + 3 + q−1 , 6→ q + 4 + q−1 or q
3
2 + 2q

1
2 + 2q−

1
2 + q−

3
2 , (4.75)

7→ q + 5 + q−1 , 8→ q
3
2 + 3q

1
2 + 3q−

1
2 + q−

3
2 , 10→ q

3
2 + 4q

1
2 + 4q−

1
2 + q−

3
2 .

Note that among the 21 coefficients of 6 appearing in N6, 13 are quantized to q + 4 + q−1

and 8 to q3/2 + 2q1/2 + 2q−1/2 + q−3/2.

5 Relation to conformal field theory

We will now explain how the quantized algebras ANg,n(q) of functions onMN
g,n arise naturally

in conformal field theory. We first review several aspects of sl(N) Toda field theory.15 We

then define Verlinde network operators, which are natural generalizations of Verlinde loop

operators. We show that their algebra is equivalent to the quantum skein algebra described

in section 2.8. Our arguments are based on the fact that the braid matrix is twist-equivalent

to the R-matrix of the quantum group Uq(slN ) defining the skein algebra.

5.1 Toda field theory and WN -algebra

The Lagrangian for sl(N) Toda field theory has the form

L =
1

8π
(∂aφ, ∂

aφ) + µ

N−1∑
i=1

eb(ei,φ) , (5.1)

where φ = (φ1, . . . , φN−1) is a two-dimensional scalar field and (·, ·) denotes the scalar

product in RN−1. The vectors ei are the simple roots of the Lie algebra sl(N). Our

conventions on the Lie algebra sl(N) are summarized in appendix B.1. The parameters are

the dimensionless coupling constant b and the scale parameter µ.

The example of Liouville theory corresponding to the case N = 2 [69, 70] suggests

that we should to be able to construct the Toda field φ(z, z̄) using chiral free fields ϕj(z),

j = 1, . . . , N − 1 with mode expansion

ϕj(z) = qj − ipj ln z +
∑
n 6=0

i

n
ajnz

−n , (5.2)

15A somewhat different approach leading to important results is described in [68] and references therein.
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where the modes satisfy

[ain, a
j
m] = nδijδn+m , ai†n = ai−n , [pj , qk] = −iδjk . (5.3)

In order to build the non-chiral fields φi(z, z̄) out of the chiral free fields ϕj(z) one must

of course supplement them with a similar collection of anti-chiral fields ϕ̄j(z̄).

The chiral algebra of Toda conformal field theory is a WN -algebra. It is an associa-

tive algebra generated by holomorphic currents W j(z) of spin j = 2, . . . , N (see [71] for a

review). These can be constructed in the free-field representation via the Miura transfor-

mations
N−1∏
i=0

: (Q∂ + (hN−i, ∂ϕ)) : =
N∑
k=0

WN−k(z)(Q∂)k , (5.4)

where : : denotes Wick ordering, Q ≡ b + b−1, and W 0(z) = 1, W 1(z) = 0. The currents

W k(z), k = 2, . . . , N , have mode expansions

W k(z) =

∞∑
n=−∞

W k
nz
−n−k . (5.5)

The modes Ln ≡ W 2
n of the stress energy tensor T (z) ≡ W 2(z) = (Qρ, ∂2ϕ) − 1

2(∂ϕ, ∂ϕ)

generate a Virasoro subalgebra

[Ln, Lm] = (n−m)Ln+m +
c

12
(n3 − n)δn+m . (5.6)

The modes of the currents W k(z) satisfy nonlinear commutation relations which contain a

quadratic term. The WN -algebra is therefore not a Lie algebra.

Irreducible representations Vα of the WN -algebra are labeled by an (N−1)-component

vector α in the Cartan subalgebra of AN−1. The representations Vα are generated from

highest-weight vectors vα which are annihilated by the positive modes of W k(z), and eigen-

vectors of W k
0 with eigenvalues determined by α. The representation space of Vα is gener-

ated by acting on vα with the modes W k
−n for n > 0, as usual.

It will be useful to distinguish three types of representations. A distinguished role

will be played by the representations which have α = −bωi − b−1ωj , where ωi and ωj
are weights of finite-dimensional representations of sl(N). Such representations are called

fully degenerate to reflect the fact that the vectors in these representations satisfy the

maximal possible number of inequivalent relations of the form Pl(W k
−n)vα = 0 for certain

polynomials Pl. For generic α one has no such relations in the representations Vα, which

are then called fully non-degenerate. There are various intermediate cases, called semi-

degenerate, in which there do exist relations of the form Pl(W k
−n)vα = 0, but the number

of inequivalent relations of this type is smaller than in fully degenerate representations.

This happens for example if α = κω1, with κ ∈ C.

5.2 Conformal blocks

Conformal blocks can be introduced elegantly as certain invariants in the tensor product of

representations of WN -algebras associated with Riemann surfaces Cg,n. The definition will
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be spelled out explicitly only for the case g = 0, more general cases are discussed in [72].

We shall associate a highest-weight representation Vr ≡ Vαr of the WN -algebra with the

rth puncture Pr of Cg,n for r = 1, . . . , n. Let tr be local coordinates around Pr such that

tr(Pr) = 0. Conformal blocks can be defined as linear functionals

F0,n : ⊗nr=1Vr → C (5.7)

satisfying an invariance condition of the form

F0,n

(
W k[ηk] · v

)
= 0 , v ∈ ⊗nr=1Vr , (5.8)

where W k[ηk] is defined for meromorphic (1 − k)-differentials ηk(t) on C0,n by expanding

ηk(t) =
∑
n∈Z

η
(r)
k,n t

n−(1−k)
r , (5.9)

and setting

W k[ηk] =

n∑
r=1

∑
n∈Z

η
(r)
k,n

[
id⊗ · · · ⊗W k

n
rth
⊗ · · · ⊗ id

]
. (5.10)

The conditions (5.8) generalize the conformal Ward identities [73]. The value of a conformal

block on vectors ⊗nr=1wr can be interpreted as a generalized correlation function of n chiral

vertex operators Vαr(wr|Pr). If wr = vαr is the highest-weight state in the representation

Vαr , one calls Vαr(Pr) ≡ Vαr(vαr |Pr) a primary field, otherwise a descendant.

Space of conformal blocks: the invariance conditions (5.8) represent an infinite system

of linear equations defining a subspace of the dual vector space to ⊗ni=1Vi. The vector space

defined in this way is called the space of conformal blocks CB(V[n], C0,n) associated with

the Riemann surface C0,n with representations Vi at the punctures. This space is infinite-

dimensional, in general. We now want to get a first idea about the “size” of this space.

In the case N = 2, the conformal block for C0,3 is known to be defined uniquely up to

normalization by the invariance property (5.8). Using this same equation one may express

all values F0,4(w4 ⊗ w3 ⊗ w2 ⊗ w1) associated with C0,4 in terms of

F0,4(vα4 ⊗ vα3 ⊗ Lk−1vα2 ⊗ vα1) ≡ Fk , Fk ∈ C , k ∈ Z>0 . (5.11)

One therefore finds that the space of conformal blocks associated with C0,4 is infinite-

dimensional and isomorphic as a vector space to the space of formal power series in one

variable. This space is far too big to be interesting for physical applications, as stressed

in [25, 74]. Only if the growth of the complex numbers Fk ensures convergence of series

like F (z) =
∑

k
1
k!Fkz

k, can one integrate the canonical connection on spaces of conformal

blocks defined by the energy-momentum tensor at least locally. Further conditions like

existence of an analytic continuation of F (z) to the Teichmüller space T0,4, and reasonable

growth at the boundaries of T0,4 characterize the subspaces of CB(V[4], C0,4) of potential

physical interest.
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In the case N = 3, one generically finds an infinite-dimensional space of conformal

blocks already for the three-punctured sphere. Using the invariance property (5.8), it is

possible to express the values of the conformal blocks associated with C0,3 in terms of [75]

F0,3(vα3 ⊗ (W 3
−1)kvα2 ⊗ vα1) ∈ C . (5.12)

Therefore, similarly to (5.11), the space of conformal blocks associated with C0,3 is infinite-

dimensional. It can also be identified with the space of formal Taylor series in one variable.

In analogy to the case N = 2, n = 4 mentioned above we may expect that the physically

relevant subspaces of CB(V[3], C0,3) may have a representation as spaces of analytic functions

in one variable.

At general rank (N − 1), the number of extra variables required to get similar rep-

resentations for the spaces of conformal blocks associated with C0,3 is equal to half of

the dimension16 of the moduli space of flat connections (N − 1)(N − 2)/2. One way

to understand this is by considering, as in [76, 77], the difference between the number

of basic 3-point functions and the number of constraints from the Ward identities (5.8)

and corresponding to generators of the WN -algebra. There are N(N − 1)/2 descendant

operators constructed by acting with the modes (W k
−l)

n on a highest-weight state, for

l = 1, 2, . . . , k − 1 and k = 2, 3, . . . , N , which lead to 3N(N − 1)/2 basic 3-point functions

after taking into account the three primaries. Subtracting N2−1 constraints corresponding

to generators W k
l , for l = −k + 1,−k + 2, . . . , k − 1 and k = 2, . . . , N, gives precisely the

number (N − 1)(N − 2)/2 of unconstrained positive integers parameterizing the conformal

block associated with C0,3.

Gluing construction: given a possibly disconnected Riemann surface with two marked

points P i0, i = 1, 2, surrounded by parameterized discs one can construct a new Riemann

surface by pairwise identifying the points in suitable annular regions around the two marked

points, respectively. Having conformal blocks associated with two surfaces Ci with ni + 1

punctures P i0, P
i
1, . . . , P

i
ni one can construct a conformal block associated with the surface

C12 obtained by gluing annular neighborhoods of P i0, i = 1, 2 as follows

FC12(v1 ⊗ · · · ⊗ vn1 ⊗ w1 ⊗ · · · ⊗ wn2) =

=
∑
ν∈Iβ

FC1(v1 ⊗ · · · ⊗ vn1 ⊗ vν)FC2(e2πiτL0v∨ν ⊗ w1 ⊗ · · · ⊗ wn2) . (5.13)

The vectors vν and v∨ν are elements of bases {vν ; ν ∈ Iβ} and {v∨ν ; ν ∈ Iβ} for the repre-

sentation Vβ which are dual with respect to the invariant bilinear form (., .)β on Vβ . The

parameter τ in (5.13) is the modulus of the annular region used in the gluing construction

of C12. The rest of the notations in (5.13) are hopefully self-explanatory. The case where

P i0, i = 1, 2, are on a connected surface can be treated in a similar way.

A general Riemann surface Cg,n can be obtained by gluing 2g−2+n pairs of pants Cv0,3,

v = 1, . . . , 2g−2+n. It is possible to construct conformal blocks for the resulting Riemann

16This number is equal to the dimension of the Coulomb branch of the TN gauge theory. Together with

the 3(N−1) parameters of the momenta α, it gives the (N+4)(N−1)/2 parameters of the TN theory [76].
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Figure 39. Vertex operator as an intertwiner of highest-weight representations Vαi
.

surface from the conformal blocks associated with the pairs of pants Cv0,3 by recursive

use of the gluing construction outlined above. This yields families of conformal blocks

parameterized by (i) the choices of representations Vβ used in the gluing construction, and

(ii) the choices of elements of the spaces CB(Cv0,3), v = 1, . . . , 2g − 2 + n.

Closely related to the gluing construction of conformal blocks are constructions of con-

formal blocks using chiral vertex operators. To any 3-point conformal block F ∈ CB(C0,3)

we can associate a chiral vertex operator VF
(
α2
α3α1

)
(v2|z) : Vα1 → Vα3 such that(

v3 , VF
(
α2
α3α1

)
(v2|1) v1

)
α3

= F(v3 ⊗ v2 ⊗ v1) (5.14)

holds for all vi ∈ Vαi , i = 1, 2, 3. The field VF
(
α2
α3α1

)
(vα2 |z) associated with the highest-

weight vector vα2 ∈ Vα2 is called a primary field, and all other fields are called descendants.

A graphical representation is given in figure 39. Conformal blocks associated with n-

punctured spheres C0,n can be constructed using compositions of chiral vertex operators in

the form (
vn , VFn−1

( αn−1

αn,βn−3

)
(vn−1|zn−1) · · · VF2

( α2
β1,α1

)
(v2|z2) v1

)
αn
, (5.15)

assuming that zn =∞ and z1 = 0.

5.3 Free-field construction of chiral vertex operators

There is a useful way to construct chiral vertex operators in terms of the free fields ϕj(z).

Basic building blocks are the normal-ordered exponential fields

Vα(σ) = e(α,ϕ(σ)) . (5.16)

The normal-ordered exponential represents densely defined unbounded operators on M≡
F⊗L2(RN−1) for Im(σ) > 0, F being the Fock space generated by the oscillators ain. Rep-

resenting the momenta pj as multiplication operators on L2(RN−1) leads to a representation

of the operators e(α,q) appearing in (5.16) as finite difference operators on functions ψ(p).

For our goals it will often suffice to adopt the closely related definition of the operators

e(α,q) as formal shift operators mapping the highest-weight vector vβ ∈ Vβ to vβ+α ∈ Vα+β .

The fields Vα(σ) can then be identified with the chiral primary fields V
(

α
β+α,β

)
(z) for the

algebra WN via

Vα(σ)vβ = z∆αV
(

α
β+α,β

)
(z)vβ , vβ ∈ Vβ , (5.17)

assuming that z = eiσ. For later use, let us note that the normal-ordered exponentials

satisfy the exchange relations

Vβ(σ′)Vα(σ) = e−πi(α,β)sgn(σ′−σ)Vα(σ)Vβ(σ′) . (5.18)
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An important role is furthermore played by the screening charges which are defined as

Qi(σ) =

∫ σ+2π

σ
dσ′ Vbei(σ

′) . (5.19)

Powers of the screening charges like Qni (σ) ≡ (Qi(σ))n make sense as unbounded self-

adjoint operators onM if the power n is sufficiently small compared to b−2. Higher powers

can be defined by analytic continuation in b2, and the result can be represented explicitly

using suitable modifications of the contours of integration in (5.19). The key property of

the screening charges Qi(σ) follows from the fact that the commutator of the fields Vbei(σ)

with the generators of the WN -algebra can be represented as a total derivative. This implies

that the screening charges commute with the generators W k
n .

More general primary fields can therefore be constructed by multiplying normal-ordered

exponentials with monomials formed out of the screening charges. In the case N = 2 one

may consider composite fields of the form V s
α (σ) = Vα(σ)Qs(σ), s ∈ Z≥0. For N = 3 one

could consider, more generally, fields of the form VαQ
s1
1 Q

s2
2 Q

s3
1 Q

s4
2 · · · . One should note,

however, that there exist many linear relations among these fields, as follows from the fact

that the screening charges Qi satisfy the Serre relations of the quantum group Uq(slN ) [78],

Q2
iQj = (q + q−1)QiQjQi −QjQ2

i , with |i− j| = 1 . (5.20)

Using these relations it is elementary to show that in the case N = 3 arbitrary screened

vertex operators can be expressed as linear combinations of

V s
α (σ) = Vα(σ)Qs1−s1 (σ)Qs2−s2 (σ)Qs13(σ) , (5.21)

where s = (s1, s2, s), and

Q13(σ) = Q1Q2 − qQ2Q1 = (1− q2)

∫ σ+2π

σ
dσ′

∫ σ′

σ
dσ′′Vbe1(σ′)Vbe2(σ′′) . (5.22)

Indeed, the relations (5.20) can be rewritten as

Q1Q13q
−1Q13Q1 , Q2Q13 = qQ13Q2 . (5.23)

By making repeated use of these relations together with17

Q1Q
n
2 = qnQn2Q1 + [n]qQ

n−1
2 Q13 , (5.24)

we can then express an arbitrary product of charges Qs11 Q
s2
2 Q

s3
1 Q

s4
2 · · · as linear combi-

nation of monomials of the form Qs1−s1 Qs2−s2 Qs13, reducing any screened vertex operator

to (5.21).

By using the screened vertex operators V s
α one can represent more general chiral vertex

operators via

V s
α (σ)vβ = z∆αVs

(
α
β′β

)
(z)vβ , with β′ = β + α+ b(s1e1 + s2e2) . (5.25)

17Here we are using [n]q ≡ qn−q−n

q−q−1 = qn−1 + qn−3 + · · ·+ q−n+1 .
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It is clear that we cannot represent the most general chiral vertex operators in terms of

screened vertex operators using only integer values of s1, s2. It is therefore useful to observe

that Q1(σ), Q2(σ) and Q13(σ) are proportional to positive self-adjoint operators, allowing

us to consider also non-integer values for the powers s1, s2, s in (5.21). The arguments

used in [69, 70] for the case N = 2 can easily be adapted to establish that Q1(σ) and

Q2(σ) are positive self-adjoint. The operator Q13(σ) defined in (5.22) can be shown to

be proportional to a positive operator by expressing it as an ordered double integral and

normal-ordering the product Vbe1(σ′)Vbe2(σ′′). Considering non-integer s1, s2 allows us to

get arbitrary values for the weights (β′, α, β) appearing in (5.25).

It is furthermore important to note that the difference between β′ and β is independent

of the parameter s in (5.21). By varying s one can therefore define via (5.25) an infinite

family of chiral vertex operators Vs
(
α
β′β

)
(z) intertwining between the same two representa-

tions β′ and β. The correspondence (5.14) between chiral vertex operators and conformal

blocks on the three-punctured sphere associates with each chiral vertex operator Vs
(
α
β′β

)
(z)

a conformal block Fs ∈ CB(C0,3). It seems plausible that the conformal blocks Fs generate

a basis for the physically relevant subspace of conformal blocks on C0,3.

To generalize these observations to N > 3 let us note that it directly follows from (5.20)

that the space of screened vertex operators forms a module for the nilpotent sub-algebra of

Uq(slN ), with action of the generators Ei represented by right multiplication with Qi. One

can define screening charges Qij(σ) associated with the generators Eij , j > i of Uq(slN )

recursively via Qi,i+1(σ) ≡ Qi(σ) together with

Qij(σ) = Qik(σ)Qkj(σ)− qQkj(σ)Qik(σ) , 1 ≤ i < k < j ≤ N . (5.26)

More general screened vertex operators can be constructed as

V s
α (σ) = Vα(σ)

[
Qs1212 (σ)Qs1313 (σ) · · ·Qs1N1N (σ)

]
× · · ·

×
[
Qs2323 (σ) · · ·Qs2N2N (σ)

]
× · · · × [Q

sN−1,N

N−1,N (σ)] ,
(5.27)

where s = {sij ; i < j}. This can be extended to a module for the Borel-subalgebra of

Uq(slN ) with generators Hi and Ei by identifying Hi with the adjoint action of −ipi/b.

For general α one can identify the resulting module with the Verma module of Uq(slN )

with weight ωα = −α/b. The observations above imply a relation between screened vertex

operators and representations of Uq(slN ) on the level of vector spaces. This relation will

be strengthened considerably below.

As before one can use the screened vertex operators V s
α (σ) to define chiral vertex

operators via the obvious generalization of (5.25) to N > 3. Fixing the difference β′ − β
defines a subspace in the space of parameters s of dimension 1

2(N − 1)(N − 2). This

dimension coincides with half of the dimension of the moduli space of flat connections on

C0,3, which was previously found to be equal to the dimension of the space of parameters

labeling inequivalent elements in CB(C0,3). This observation raises our hopes that the

screened vertex operators V s
α (σ) can indeed be used to construct bases for CB(C0,3).
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Degenerate fields: for special values of α and s one may observe that the screened vertex

operators satisfy certain differential equations relating derivatives of V s
α (σ) to the WN -

currents. These fields are called degenerate fields. The basic example for this phenomenon

occurs in the case α = −bω1 when [pi, V s
α (σ)] = ibhiV

s
α (σ), where hi, i = 1, . . . , N are

the weights of the fundamental representation. We will use the simplified notation Di(σ)

for the screened vertex operators V s
α (σ) satisfying these conditions. They satisfy an N th-

order operator differential equation [79], which is essentially equivalent to the equations

expressing the decoupling of null-vectors in the Verma module V−bω1 within the framework

of [73], see e.g. [68, 75]. State-operator correspondence in CFT relates the allowed values

of β′ to the so-called fusion rules, the rules determining the set of labels of the primary

fields that can appear in the operator product expansion of fields V−bω1(z1)Vβ(z2).

The operator product expansion of degenerate fields generates further degenerate fields.

It follows from the fusion rules that the screened vertex operators V s
−bλ(σ) that can be

generated by recursively by performing operator product expansions of the operators Di(σ)

are labeled by the weights λ of finite-dimensional representations18 Mλ of Uq(slN ). The

allowed powers of screening charges collected in s = {sij , i < j} are constrained by the

fusion rules determining the fields Vβ′(z2) appearing in the operator product expansion

V−bλ(z1)Vβ(z2). The sij have to be integers constrained by the condition that 1
b (β − β

′)

coincides with one of the weights of the vectors in Rλ.

5.4 Braiding and fusion of degenerate fields

It was shown in [79] that the degenerate fields Di(σ) satisfy exchange relations of the form

Di(σ2)Dj(σ1) =

N∑
k,l=1

BD(p)ijklD
k(σ1)Dl(σ2) . (5.28)

Note that the matrix BD(p) appearing in (5.28) is operator-valued in general, being de-

pendent on the zero-mode operator p = (p1, . . . , pN−1). The matrix BD(p) satisfies a

modified form of the Yang-Baxter equation called dynamical Yang-Baxter equation, and

BD(p) therefore represents an example of what is called a dynamical R-matrix. It was

furthermore shown in [80] that there exist linear combinations D̃i(σ) =
∑N

j=1 c(p)
i
j D

j(σ)

satisfying exchange relations of the form (5.28) with a matrix B̃D(p) that is p-independent,

and will therefore be denoted by B̃. The matrix B̃ is different from the standard braid-

matrix R representing the braiding of two fundamental representations of the quantum

group U ≡ Uq(slN ) (see appendix B.2 for the relevant background on Uq(slN )). R can be

obtained from the universal R-matrix R of Uq(slN ) as

R = P (π� ⊗ π�)(R) , (5.29)

where P is the operator permuting the two tensor factors of CN⊗CN . The relation between

B̃ and R was subsequently clarified in [81], where is was shown that B̃ can be obtained

in a similar way as (5.29) from a universal R-matrix R̃ that is related to R by a Drinfeld

18We identify Mi ≡Mωi in our notations, with ωi being the weight of the representation ∧i�.
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Figure 40. Part of a decomposition of Ĉg,n+d with n punctures Pr and d marked points Qk into

three-holed spheres C0,3 and annuli Am with m marked points.

twist J ∈ U ⊗U such that R̃ = J21
−1RJ . The twist J that relates R and R̃ satisfies the

cocycle condition

(∆⊗ id)(J ) · J12 = (id⊗∆)(J ) · J23 . (5.30)

As explained in appendix B.3, one can extend the action of J to m-fold tensor products,

allowing us to define operators

J
(m)
f := (πf ⊗ · · · ⊗ πf )(J (m)) . (5.31)

The cocycle condition (5.30) implies that J
(m)
f is independent of the order in which tensor

products are taken.

Let us consider the space VOm spanned by the compositions of vertex operators

Dim...i1(σm, . . . , σ1) := D̃im(σm)D̃im−1(σm−1) · · · D̃i1(σ1) with ik ∈ {1, . . . , N} for k =

1, . . . ,m. The space VOm carries a representation of the braid group Bm with m strands

represented in terms of the braid matrices B̃. It follows from the fact that R and R̃ are

related by the Drinfeld twist J that the linear operator J
(m)
f maps the braid group repre-

sentation on VOm to the standard braid group representation on the m-fold tensor product

of fundamental representations of Uq(slN ).

By repeated use of the operator product expansion one can construct other degen-

erate vertex operators Ds
λ(σ) starting from the products Dim...i1(σm, . . . , σ1). The vertex

operators Ds
λ(σ) that can be obtained in this way have weights λ associated with the

finite-dimensional irreducible representations of Uq(slN ). It easily follows from the results

described above that the braid group representation generated by products of the vertex

operators Ds
λ(σ) is isomorphic to the braid group representation on the tensor product of

the corresponding representations of Uq(slN ). This implies, in particular, that the vector

space spanned by the vertex operators Ds
λ(σ) with fixed λ is isomorphic to the space on

which the finite-dimensional irreducible representation Mλ with highest weight λ is realized.

5.5 Conformal blocks with degenerate fields

Let us consider conformal blocks associated with a Riemann surface Ĉg,n+d with n + d

punctures (see figure 40). We assume that fully degenerate representations Dk are associ-

ated with the punctures Qk, k = 1, . . . , d. The remaining n punctures Pr, r = 1, . . . , n are

assumed not to be fully degenerate. We may alternatively consider Qk, k = 1, . . . , d, as a

collection of distinguished points on the Riemann surface Cg,n which has punctures only at
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Pr, r = 1, . . . , n. We may start from a pants decomposition σ = (γ,Γ) of the surface Cg,n.

Cutting Cg,n along the simple closed curves contained in γ = {γ1, . . . , γ3g−3+n} decom-

poses the surface into spheres Cv0,3 with three boundary components which can be holes or

punctures. The trivalent graph Γ on Cg,n has exactly one vertex within each Cv0,3; it allows

us to distinguish pants decompositions related by Dehn twists. The pants decomposition

specified by σ = (γ,Γ) can always be refined to a decomposition into a collection of annuli

Ae and three-holed spheres T v such that each of the fully degenerate punctures is contained

in one of the annuli Ae. This can be done by cutting along additional simple closed curves

on Cg,n which do not intersect any of the curves in γ, do not mutually intersect, and do not

contain any Qk, k = 1, . . . , d. We furthermore need to cut out discs around the punctures

Pr, r = 1, . . . , n. A chosen orientation of the edges of Γ allows us to distinguish an incoming

and an outgoing boundary component of each annulus Ae.

The gluing construction of conformal blocks allows us to construct families of confor-

mal blocks out of two types of building blocks: the conformal blocks associated with the

three-holed spheres, and the conformal blocks associated with the annuli Ae. Of particular

interest for us will be the latter. Let CB(Am) be the space of conformal blocks associated

with an annulus with m marked points associated with fully degenerate representations,

and incoming and outgoing boundary components associated with non-degenerate repre-

sentations. We shall fix the representation associated with the incoming boundary com-

ponent to be Vβ , and we assign fully degenerate representations V−bλ1 , . . . ,V−bλm to the

m marked points, respectively. The set of representations associated with the outgoing

boundary component is then restricted by the fusion rules to a finite set. We will assign

to the outgoing boundary component the direct sum of all representations allowed by the

fusion rules.

It follows from the fusion rules that the resulting space of conformal blocks CB(Am) is

finite-dimensional. A basis for CB(Am) can be constructed explicitly using the degenerate

vertex operators defined above,

FAm(vm+1 ⊗ vm ⊗ · · · ⊗ v1 ⊗ v0) =
(
vm+1 , D

sm
λm

(vm|σm) · · · Ds1
λ1

(v1|σ1) v0

)
β′
, (5.32)

where v0 ∈ Vβ , vm+1 ∈ Vβ′ , and Dsk
λk

(vk|σk) are the descendants of the degenerate vertex

operators Dsk
λk

(σk) associated with vectors vk ∈ V−bλk for k = 1, . . . ,m.

It follows from the results discussed in the previous subsection that the space of con-

formal blocks CB(Am) is naturally isomorphic (as a module for Bm) to the tensor product

of the m finite-dimensional representations Mλm , . . . ,Mλ1 of the quantum group Uq(slN ),

CB(Am) ' Mλm ⊗ · · · ⊗Mλ1 . (5.33)

This isomorphism is realized by a linear operators J
(m)
λm...λ1

(p) that is constructed by com-

bining the change of basis removing the p-dependence with the Drinfeld twist J .

5.6 Verlinde network operators

Verlinde network operators are generalizations of Verlinde loop operators [41, 42] to Toda

CFT of higher rank, and were previously studied in [82]. In order to define the Verlinde
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Figure 41. Verlinde network operator.

network operators one needs to consider conformal blocks associated with a Riemann sur-

face Cg,n+d, as above. Our definition will be based on certain relations between the spaces

of conformal blocks with varying number d of fully degenerate insertions. In order to de-

scribe these relations we will employ the set-up introduced in the previous subsection, in

particular the decomposition of Cg,n+d into three-holed spheres Tv and annuli Ae, and the

isomorphism (5.33) which can be applied locally for each annulus Ae.

This needs to be combined with one further ingredient. We will conjecture that there

exist exchange relations between fully degenerate chiral vertex operators and generic chiral

vertex operators,

Di(z1)V s
α (z2) =

∑
j

∑
s′

Bi,s
j,s′(α)V s′

α (z2)Dj(z1) , (5.34)

where |z1| = |z2|, and furthermore operator product expansions of the form

Di(w)V s
α (z) =

∑
j

∑
s′

F i,sj,s′(α)V s′
α−bhj

(
Dj(w − z)vα|z

)
, (5.35)

where hs are the weights of the fundamental representation with highest weight ω1. These

relations would imply that there exist linear relations between the spaces of conformal

blocks associated with surfaces Cg,n+d and C′g,n+d related by moving a degenerate field

from one annulus Ae to another one Ae
′
. So far we do not have a proof of these relations.

We expect that such a direct proof should be possible using the free-field representation

of the vertex operators. One may furthermore note that the relations (5.34), (5.35) follow

from the results of [82] if the vertex operator V s
α is associated with a semi-degenerate

representation Vα. Further generalizations of these braid relations were found in [20]. The

general statement should follow from this special case if the operator product expansion of

sufficiently many semi-degenerate vertex operators generates vertex operators associated

with fully non-degenerate representations, as is generally expected.

By combining these ingredients we are now ready to define generalizations of the Ver-

linde loop operators as follows (see figure 41). The isomorphisms (5.33) allow us to associate
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maps between spaces of conformal blocks with all the maps between tensor products of rep-

resentations used in the Reshetikhin-Turaev construction. These maps can be composed

with the moves (5.34), (5.35) describing the motion of a fully degenerate puncture from

one annulus to another. One may in particular consider compositions of these two types

of fusion and braiding operations for degenerate fields starting and ending with the space

of conformal blocks associated with a surface Cg,n with no fully degenerate insertions. It

is clear that such compositions can be labeled by networks of the same type as considered

in the previous sections. The construction outlined above associates with each network

an operator acting on the space CB(Cg,n) of conformal blocks for a surface Cg,n with n

non-degenerate punctures.

5.7 Relation to skein algebra

The Verlinde network operators generate an algebra AV realized on the spaces CB(Cg,n).

We are going to argue that this algebra is the same as the algebra of quantized functions on

MN
g,n. Recall that the product of two networks is represented in terms of a network with

crossings. It may be assumed that all crossings are located in annuli Ae. In order to describe

the resulting algebraic relations we may therefore use the isomorphism (5.33) allowing us

to describe the operations representing the crossing in terms of the intertwining maps used

in the Reshetikhin-Turaev construction. All skein relations valid in the framework of the

Reshetikhin-Turaev construction thereby carry over to the Verlinde network operators. In

order to verify this claim it suffices to check that the basic skein relations are preserved

by the twist Jλn...λ1 representing the isomorphism (5.33). Recall that the basic skein

relations (2.41) take the form

(5.36)

with m = min{i, j,N − i,N − j}. In the framework of Reshetikhin-Turaev one associates

to both sides intertwining maps between the representations Mj ⊗Mi and Mi ⊗Mj of

the Hopf algebra Uq(slN ). The intertwining map on the left of (5.36) is represented by

the operator Rij defined in (2.43), the operators on the right of (5.36), in the following

denoted as C(n)ijji, are compositions of Clebsch-Gordan maps, as introduced in section 2.8.

If the quasitriangular Hopf-algebra U = Uq(slN ) is replaced by a quasi-triangular Hopf-

algebra Ũ related to U by a Drinfeld twist, one can construct the intertwining maps C̃(n)ijji
between representations of Ũ from the intertwining maps C(n)ijji of U in a natural way, as

is explained in appendix B. The construction is such that we have C̃(n)ijji = J−1
ij C(n)ijjiJji,

provided that Jij is the similarity transformation relating Rij and B̃ij as B̃ij = J−1
ij RijJji.

It follows immediately that C̃(n)ijji and B̃ij will satisfy a relation of the same form as (5.36).

One may in particular consider Verlinde network operators associated with networks

that are confined to a disc D embedded in an annulus Ae. It is easy to see that such network
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operators will act on CB(Cg,n) as multiplication by a number. This number represents

one of the link invariants obtained by using the Reshetikhin-Turaev construction. This

construction is thereby recognized as a special case of the definition of the Verlinde network

operators given above.

6 Spectrum

In the previous section we have found strong hints that the construction of loop and net-

work operators using Fock-Goncharov coordinates defines an algebra isomorphic to the

algebra generated by the Verlinde network operators in the Toda CFT. We had further-

more observed in subsection 2.6 that the resulting algebra shares some features with the

algebra of operators in a quantum integrable model, containing large commutative sub-

algebras. Simultaneously diagonalizing these sub-algebras defines natural representations.

The next natural step in our program is to compare the representations resulting from the

quantization of the Fock-Goncharov coordinates, and from Toda conformal field theory. As

an outlook, we collect here a few observations and conjectures concerning this problem.

6.1 Spectrum in Toda field theory

In order to determine the set of representations of the algebra WN appearing in the spec-

trum of Toda field theory one may follow the example of Liouville theory. For studying the

spectral problem of Toda field theories it is natural to consider canonical quantization on a

spacetime having the geometry of a two-dimensional cylinder with time coordinate t and a

spatial coordinate σ ∼ σ + 2π. At time t = 0 one can decompose the fields φ(σ) ≡ φ(0, σ)

as φ(σ) = φ0 + χ(σ), where the zero mode is defined as the average φ0 = 1
2π

∫ 2π
0 dσ φ(σ).

One may then observe that the interaction term
∫ 2π

0 dσ eb(ei,φ(σ)) in the Hamiltonian is

equal to 2π eb(ei,φ0) up to terms of order b2. This means that zero modes and oscillators

completely decouple in the limit b2 → 0. Canonical quantization of the oscillators yields a

Hamiltonian of the form

H = H0 + N + N̄ +O(b2) , with H0 =
1

2
(p, p) + 2πµeb(ei,φ0) , (6.1)

which is defined on the Hilbert space H = L2(RN−1) ⊗ F by choosing the Schrödinger

representation on L2(RN−1) for the operators pi and φj0 satisfying [φi0, pj ] = iδij , and by

realizing two sets of oscillators ain and āin, i = 1, . . . , N − 1, n ∈ Z \ {0}, on the Fock space

F in the usual way. The operator N satisfies [N, ain] = −nain, and commutes with āin, and

similarly for N̄.

The problem of determining the spectrum of the Hamiltonian H therefore reduces in

the limit b2 → 0 to the problem of finding the spectrum of the quantum-mechanical system

with Hamiltonian H0. This system is a well-known quantum integrable model called the

open Toda chain, and its spectrum is known exactly [83–85]. The spectrum is purely

continuous, with generalized eigenstates in one-to-one correspondence with the orbits of

vectors p ∈ RN−1 under the Weyl group of SU(N). This suggests that the spectrum of

Toda field theory will be purely continuous.
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Observing furthermore that the interaction terms
∫ 2π

0 dσ eb(ei,φ(σ)) are closely related

to the screening charges of the free-field realization of the algebra WN , it becomes straight-

forward to generalize the arguments used in [86] to determine the spectrum of Liouville

theory to Toda field theories with N > 2, leading to the conclusion that the spectrum has

the form

H =

∫
S

dβ Vβ ⊗ V̄β , (6.2)

where Vβ and V̄β are representations of the algebra WN generated by holomorphic currents

W k(z) and their anti-holomorphic counterparts W̄ k(z̄), respectively, S denotes the set of

Weyl-orbits of vectors of the form β = Q + ip, with p ∈ RN−1 and Q = ρ(b + b−1). It

follows from this form of the spectrum that correlation functions such as〈
α∞ |Vα2(z2, z̄2)Vα1(z1, z̄1) |α0

〉
, (6.3)

can be represented in the form〈
α∞ |Vα2(z2, z̄2)Vα1(z1, z̄1) |α0

〉
=

∫
S

dβ

∫
V

ds1ds2ds̄1ds̄2 Cs2s̄2(α∞, α2, β)Cs1s̄1(Q− β, α1, α0)

×F
[
α2
α∞s2|β|s1

α1
α0

]
(z2, z1)F̄

[
α2
α∞ s̄2|β|s̄1

α1
α0

]
(z̄2, z̄1) ,

(6.4)

where

F
[
α2
α∞s2|β|s1

α1
α0

]
(z2, z1) =

(
vα∞ , Vs2

( α2
α∞β

)
(z2)Vs1

( α1
βα0

)
(z1) vα0

)
α∞

. (6.5)

In order to arrive at the expansion (6.4) we have inserted a complete set of intermediate

states from H between the two vertex operators Vα2(z2, z̄2) and Vα1(z1, z̄1), and we have

furthermore assumed that the resulting matrix elements can be expanded as〈
Q− α3 |Vα2(z, z̄) |α1

〉
=

=

∫
V

ds ds̄ Css̄(α3, α2, α1)
(
vα3 , Vs

(
α2
α3α1

)
(z) vα1

)
α3

(
vα3 , Vs̄

(
α2
α3α1

)
(z̄) vα1

)
α3
.

(6.6)

The assumption (6.6) will hold for any set of chiral vertex operators Vs
(
α2
α3α1

)
(z) labeled

by an index s taking values in the set V with measure ds which may be continuous or

discrete allowing us to define a basis for the space CB(C0,3) via (5.14). If the index set V
or measure ds depends nontrivially on the choice of αi, one will have to modify (6.4) in an

obvious way.

It seems likely that the usual consistency conditions of the conformal bootstrap can

only be satisfied if the conformal blocks with β ∈ S form a basis for the space of conformal

blocks CB(C0,4) on the four-punctured sphere P1 \ {0, z1, z2,∞}, as is known to be the

case for N = 2 (Liouville theory) [25]. It is furthermore easy to show that the Verlinde

loop operators associated with the curve γs separating punctures z1 and 0 from z2 and

∞ act diagonally in this basis, with eigenvalues parameterized in terms of β = Q + ip.

The formulas for the eigenvalues look simplest if one represents the vectors p ∈ RN−1 in

terms of vectors a ∈ RN lying on the plane
∑

k ak = 0, where ak are the components of a

with respect to an orthonormal basis for RN . The eigenvalues λω1(a) of the Verlinde loop
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operator associated with the curve γs and the degenerate fields Di, for example, can then

be represented as

λω1(a) =
N∑
i=1

e−2πibai . (6.7)

The considerations above motivate us to propose that the Hilbert space of Toda con-

formal blocks has the form

HCB(Cg,n) =

∫
S

∏
edges e

dβe
⊗

vertices v

HCB(Cv0,3) . (6.8)

Here HCB(Cv0,3) is the Hilbert space of conformal blocks on the three-punctured spheres

Cv0,3, with v = 1, . . . , 2g − 2 + n, that appear in the pants decomposition of Cg,n. The

conformal blocks constructed by gluing will diagonalize the Verlinde loop operators for the

cutting curves in the pants decomposition.

It should be noted that our conjecture (6.8) appears to be necessary for having consis-

tency conditions of the conformal bootstrap like crossing symmetry, modular invariance,

or locality realized in the usual way. Let us consider, for example, the condition of mutual

locality of the vertex operators Vα(z, z̄) within correlation functions such as〈
α∞ |Vα2(z2, z̄2)Vα1(z1, z̄1) |α0

〉
=
〈
α∞ |Vα1(z1, z̄1)Vα2(z2, z̄2) |α0

〉
. (6.9)

Such relations would hold if (i) the conformal blocks satisfy braid relations of the form

F
[
α2
α∞s2|β|s1

α1
α0

]
(z2, z1) =

=

∫
S

dβ′
∫
T

dt2dt1 Bββ′
[
α2
α∞

α1
α0

]t2t1
s2s1
F
[
α1
α∞t1|β|t2

α2
α0

]
(z1, z2) ,

(6.10)

and (ii) kernels Bββ′
[
α2
α∞

α1
α0

]t2t1
s2s1

and structure functions Css̄(α3, α2, α1) appearing in (6.4)

satisfy suitable orthogonality relations. Equations (6.10) may then be interpreted as re-

lations between two different bases for the space of conformal blocks HCB(C0,4). The

spectrum (6.2) thereby gets related to the spectrum (6.8) of Verlinde loop operators on the

space of conformal blocks.

6.2 Spectrum of quantized trace functions

We have explained in section 2.6 that a maximal set of commuting Hamiltonians on the

symplectic moduli space M̄N
g,n (with fixed holonomies around the punctures) consists of the

cutting loops that specify a pants decomposition of Cg,n together with the corresponding

pants networks. This implies that all these loop and network operators can be simultane-

ously diagonalized.

We are going to argue that the spectrum of the Hamiltonians associated with the

cutting curves coincides with the expected spectrum of the corresponding Verlinde loop

operators. To this aim we are going to observe that some essential features of the spectrum

can be anticipated without solving the eigenvalue problem explicitly.
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Example for N = 2: as a warm-up, let us consider the case of SL(2)-connections on

C1,1. In the polarization p = 1
2(B̂ + Ĉ) and q = −1

2(B̂ − Ĉ) with [p, q] = −i~, the A-cycle

operator (4.53) becomes

Â = 2 cosh p + e−q , (6.11)

which defines a positive self-adjoint, but unbounded operator on L2(R). A complete set of

eigenfunctions for this difference operator is known [87, 88]. The spectrum is purely con-

tinuous, and supported in the semi-infinite interval (2,∞). The (generalized) eigenvalues

are non-degenerate and can therefore be parameterized in terms of a parameter s ∈ R+ as

2 cosh(s).

Without having solved the spectral problem explicitly one could still note that the

term e−q appearing in the definition of Â decays exponentially for q → ∞, and that the

term 2 cosh p can be seen as a “deformation” of the usual term p2 in Schrödinger operators.

One may therefore expect that the spectral problem for Â will in some respects be similar

to the spectral problem for the Liouville quantum mechanics with Hamiltonian H0 (6.1).

The extent to which this is the case was clarified in [88]. In the Schrödinger representation

with q represented on wave-functions ψ(q) as an operator of multiplication with q one

can construct two linearly independent Jost solutions, eigenfunctions f±s (q) of H0 that

behave for q → ∞ as f±s (q) = e±
i
~ sq + o(1) [88]. The Jost solutions grow exponentially

at the opposite end q → −∞. One can, however, find a function R(s) such that the

linear combination ψs(q) = f+
s (q) + R(s)f−s (q) decays rapidly for q → −∞. Only this

linear combination may appear in the spectral decomposition of Â. Note that ψ−s(q) is

related to ψs(q) by a relation of the form ψ−s(q) = R(s)ψs(q), analogous to the case of a

Schrödinger operator with repulsive potential.

The fact that the spectrum is bounded from below by 2 follows from the observation

that Â is the sum of two positive self-adjoint operators, and its spectrum therefore bounded

from below by the spectrum of 2 cosh p.

Example for N = 3: although we will not be able to find explicit diagonal representa-

tions for the A-cycle operators for higher rank, we can anticipate features of their spectra

by a similar reasoning. In order to see how the observation above generalize, let us next

consider the quantization of the trace functions associated with SL(3)-connections on C1,1.

In order to represent the trace functions associated with A- and B-cycles in a form

that will be convenient for the quantization, let us start by fixing the eigenvalues of the

holonomy M around the puncture in terms of constants γ1 = a1a2b1b2c1c2 and γ2 = xy:

{
1

a1a2b1b2c1c2xy
,

1

xy
, a1a2b1b2c1c2x

2y2

}
=

{
1

γ1γ2
,

1

γ2
, γ1γ

2
2

}
. (6.12)

We must then choose a polarization with momenta Pi and positionsQj satisfying {Pi, Qj} =

δijPiQj . The nice Poisson bracket (4.58) between the monomials αi and βj appearing in

– 70 –



J
H
E
P
1
0
(
2
0
1
5
)
1
4
3

the A- and B-cycle suggests the following choice:

P1 = α1 = b1c1x , Q1 =
∏
i

β
−κ−1

1i
i = a

− 2
3

1 a
− 1

3
2 b

− 2
3

1 b
− 1

3
2 x−

1
3 y−

2
3 ,

P2 = α2 = b2c2y , Q2 =
∏
i

β
−κ−1

2i
i = a

− 1
3

1 a
− 2

3
2 b

− 1
3

1 b
− 2

3
2 x−

2
3 y−

1
3 ,

P3 = x , Q3 = (a2b2c2)−1 . (6.13)

The A-cycle trace functions are then expressed as

A1 = P
1
3

1 P
2
3

2 +
P

1
3

1

P
1
3

2

+
1

P
2
3

1 P
1
3

2

+
P

1
3

1 P
2
3

2 P3

γ1γ2
2Q1Q2

+ P
1
3

1 P
2
3

2

Q1Q3

Q2
2

(
1 +

1

γ2

)
+
P

1
3

1 Q2(1 + P3)

γ1γ2P
1
3

2 Q
2
1Q3

,

A2 = P
2
3

1 P
1
3

2 +
P

1
3

2

P
1
3

1

+
1

P
1
3

1 P
2
3

2

+
P

1
3

2 Q1Q3

P
1
3

1 P3Q2
2

+
P

1
3

2 Q1Q3

P
1
3

1 Q
2
2

(
1

P3
+

1

γ2

)
+
P

2
3

1 P
1
3

2 Q2

γ1γ2Q2
1Q3

(1 + P3) .

If we take the limit Q1, Q2 → ∞ with Q1/Q2 finite we see that only the first three terms

survive. The quantization of these expressions is straightforward following our discussions

above, allowing us to define operators Âi, i = 1, 2.

By generalizing the arguments used in the case N = 2 above one finds that the eigen-

values A′i of the operators Âi can be parameterized in terms of a vector (s1, s2) ∈ R2 as

follows

A′1 = ξ1 + ξ2 + ξ3 , A′2 =
1

ξ1
+

1

ξ2
+

1

ξ3
, (6.14)

where ξa are defined for a = 1, 2, 3 as(
ξ1, ξ2, ξ3

)
=
(
e

1
3

(s1+2s2), e
1
3

(s1−s2), e−
1
3

(2s1+s2)
)
. (6.15)

The expressions for the eigenvalues A′i are manifestly invariant under Weyl symmetry

permuting the ξa.

Furthermore, it seems likely that the repulsive nature of the dependence on Q1, Q2 will

imply that the spectrum is parameterized by the Weyl-orbits of vectors s = (s1, s2) ∈ R2.

In order to see this, let ψs(q), q = (q1, q2), be a joint eigenfunction of the operators Âi,

i = 1, 2, in a Schrödinger-type representation where the quantum operators corresponding

to the classical variables logQi are diagonal with eigenvalues qi. The wave-function ψs(q)

will be of the form

ψs(q) = ψ0
s (q) +O

(
e−

1
2

(q1+q2)
)
, (6.16)

where ψ0
s (q) is an eigenfunction of the operators

Â0
1 = P

1
3
1 P

2
3
2 + P

1
3
1 P
− 1

3
2 + P

− 2
3

1 P
− 1

3
2 , Â0

2 = P
2
3
1 P

1
3
2 + P

− 1
3

1 P
1
3
2 + P

− 1
3

1 P
− 2

3
2 ,

where Pi = e
~
i
∂
∂qi . A joint eigenfunction of Â0

i is given by e
i
~ (s1q1+s2q2) ≡ e

i
~ (s,q), where (s, q)

denotes the standard scalar product of the vectors s and q in R2. The Weyl-invariance of

the eigenvalues of Â0
i implies that other joint eigenfunctions of Â0

i are given by the functions
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e
i
~ (w(s),q), where w(s) is the vector obtained by the action of the element w of the Weyl-

group W of SL(3) on s ∈ R2. It follows that the most general joint eigenfunction of the Â0
i

has the form

ψ0
s (q) =

∑
w∈W

Cw(s)e
i
~ (w(s),q) . (6.17)

The exponential growth of the terms in Âi depending on qi ≡ logQi will imply that

the wave-functions ψs(q) have to decay very rapidly when q1, q2 → ∞. This will imply

that ψs(q) has to satisfy two reflection relations that must be compatible with the struc-

ture (6.17) of the ψ0
s (q). The reflection relations must therefore be of the form

ψwi(s)(q) = Ri(s)ψs(q) , i = 1, 2 , (6.18)

with wi two different elements of W. By composition of the Weyl reflections wi, one can

generate reflection relations corresponding to all elements of the Weyl group W. The re-

sulting relations will determine the coefficients Cw(s) in (6.17) completely up to an overall

normalization. We are thereby lead to the conclusion that the spectrum is indeed param-

eterized by the Weyl-orbits of vectors s ∈ R2.

A very similar structure is found for the trace functions Bi associated with the B-cycles.

The explicit expressions turn out to be of the form

B1 = Q2 +
Q1

Q2
+

1

Q1
+O

(
(P1P2)

1
6
)
, B2 =

1

Q2

+
Q2

Q1
+Q1 +O

(
(P1P2)

1
6
)
, (6.19)

suggesting that the eigenvalues can be parameterized in terms of real positive numbers ζa,

a = 1, 2, 3, satisfying ζ1ζ2ζ3 = 1, as

B1 → ζ1 + ζ2 + ζ3 , B2 →
1

ζ1
+

1

ζ2
+

1

ζ3
. (6.20)

Our observations above suggest that the spectrum of the trace-functions A1 and B1 coin-

cides with the spectrum (6.7) of the corresponding Verlinde loop operators.

Higher rank: the remarks above seem to generalize to cases with N > 3. In the case

N = 4, for example, one may note that the trace function A2 of the A-cycle holonomy in

the second antisymmetric representation (see (4.65)) has a similar structure as observed in

the case N = 3 above, with the following leading term:

A0
2 = 2 cosh

1

2
(p1 + p3) + 2 cosh

1

2
(p1 − p3) + 2 cosh

1

2
(p1 + 2p2 + p3) , (6.21)

where we defined pi ≡ logPi. This further strengthens our confidence that the spectra of

quantized trace functions will coincide with the spectra of the Verlinde loop operators in

Toda CFT.

6.3 Concluding remarks

One of the most important problems is clearly to find useful bases for the space of conformal

blocks CB(C0,3). A natural possibility would be to define such bases by diagonalizing a
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maximal set of commuting Verlinde network operators. Natural as it may be, it seems

technically much harder to analyze the spectrum of network operators along similar lines

as described above. As an example let us consider the pants network N1 on C0,3 in the case

N = 3. We can use the coordinates

p1 = a1 , q1 = y , (6.22)

and denote the eigenvalues of A by α̃1 = α
1/3
1 α

2/3
2 and α̃2 = α

1/3
1 α

−1/3
2 , and similarly for

B and C. The pants network function can then be represented as

N1 =
p1

β̃1γ̃1γ̃2

[
1 +

2β̃2
1 γ̃

2
1 γ̃

3
2

α̃1p3
1

+ α̃1β̃1γ̃1 (6.23)

+
1

p2
1

(
β̃1γ̃

2
1 γ̃

2
2

α̃1α̃2
+
β̃2

1 γ̃
2
1 γ̃

3
2

α̃1
+
β̃2

1 γ̃1γ̃2

α̃1
+ α̃2β̃1γ̃

2
1 γ̃

2
2 + β̃2

1 β̃2γ̃1γ̃
2
2 +

β̃1γ̃1γ̃
2
2

β̃2

)

+ q1

(
α̃2β̃

2
1 β̃2γ̃

2
1 γ̃

4
2

α̃1p3
1

+
α̃2β̃

2
1 β̃2γ̃1γ̃

2
2

α̃1p2
1

+
β̃1β̃2γ̃

2
1 γ̃

3
2

α̃1p2
1

+
β̃1β̃2γ̃1γ̃2

α̃1p1
+
α̃2β̃1γ̃1γ̃

3
2

p2
1

+
α̃2β̃1γ̃2

p1
+
γ̃1γ̃

2
2

p1
+1

)

+
1

q1

(
β̃2

1 γ̃
2
1 γ̃

2
2

α̃1α̃2β̃2p3
1

+
β̃2

1 γ̃
2
1 γ̃

2
2

α̃1α̃2β̃2p2
1

+
α̃1β̃1γ̃1

p1
+α̃1β̃1γ̃1+

β̃2
1 γ̃1γ̃2

α̃2p2
1

+
β̃2

1 γ̃1γ̃2

α̃2p1
+
β̃1γ̃

2
1 γ̃2

β̃2p2
1

+
β̃1γ̃

2
1 γ̃2

β̃2p1

)]
.

We see that there is no limit in which the terms depending on q1 vanish. This might

indicate that the spectrum of the corresponding quantum operator is discrete rather than

continuous. It would be very interesting if one could describe the spectrum of this operator

more precisely.

One may also note that the free-field construction of chiral vertex operators gave us

families of conformal blocks labeled by a space of parameters which has the same dimension

as Lagrangian subspaces of MN
0,3. This indicates that the conformal blocks that can be

obtained in this way may represent a basis for CB(C0,3).

Let us finally note that the geometric engineering of gauge theories of class S, combined

with the topological vertex technique has led to a prediction for the structure functions

Css̄(α3, α2, α1) appearing in (6.4), see [89, 90]. The labels s for a basis of CB(C0,3) would

thereby be identified with geometric data of the local Calabi-Yau manifold used in the

geometric engineering of the class S theories associated with C0,3. It would be very inter-

esting to identify the meaning of this parameter within conformal field theory, or within

the quantum theory obtained by quantizing MN
0,3.
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A Fock-Goncharov coordinates

In [30], Fock and Goncharov constructed coordinates systems on the moduli space of flat

connections over a punctured surface Cg,n. They assume that the surface is hyperbolic, that

is χ(Cg,n) = 2− 2g− n < 0, and has at least one puncture, n ≥ 1. Their approach consists

in “localizing” flat connections on the triangles of an ideal triangulation of Cg,n (in which

the vertices of the triangles are at punctures). However, since a triangle is contractible,

any flat connection on it is trivial. This difficulty can be overcome by considering framed

flat connections, which means adding on each puncture a flag that is invariant under the

holonomy around the puncture.

A.1 Coordinates associated with N-triangulations

Let us review how to build coordinates on the moduli space of framed flat connections

over a punctured surface Cg,n (We mostly follow section 4 in [67], and appendix A in [23]).

Given an SL(N)-vector bundle with a framed flat connection over Cg,n, each triangle of an

ideal triangulation of Cg,n gives rise to a (generic) configuration of three flags {A,B,C}
associated with the vertices. A flag A in an N -dimensional complex vector space VN is a

collection of nested subspaces

A : 0 = A0 ⊂ A1 ⊂ A2 ⊂ · · · ⊂ AN = VN , (A.1)

with dim[Aa] = a. An N -triangulation consists in a further decomposition of each triangle

into small triangles, whose vertices are at the
(
N+2

2

)
lattice points pabc with

a+ b+ c = N , a, b, c ∈ Z≥0 . (A.2)

See figure 42 for an example with N = 3. There are N2 small triangles for each ideal

triangle,
(
N+1

2

)
of which are “upright” (white) and labeled by the solutions of a+ b+ c =

N−1, while
(
N
2

)
are “upside-down” (black) and labeled by the solutions of a+b+c = N−2.

To every white triangle we associate a line labc in VN arising as the intersection of the

corresponding subspaces of the flags {A,B,C}. More explicitly, writing Aa ≡ AN−a with

codim[Aa] = a, we have

labc = Aa ∩Bb ∩ Cc , a+ b+ c = N − 1 . (A.3)

Similarly, we associate to every black triangle a plane Pabc, and to every internal lattice

point with a+ b+ c = N − 3 a 3-space Vabc:

Pabc = Aa ∩Bb ∩ Cc , a+ b+ c = N − 2 ,

Vabc = Aa ∩Bb ∩ Cc , a+ b+ c = N − 3 . (A.4)
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Figure 42. N -triangulation of a triangle (here for N = 3). The triples of non-negative integers

a, b, c sum to 3 on lattice points pabc, to 2 on white triangles associated with lines labc (black dots),

and to 1 on black triangles associated with planes Pabc (white dots). The internal lattice point is

associated with the 3-space V000. Arrows between dots indicate incidence relations.

The plane Pabc on a black triangle contains all three lines l(a+1)bc, la(b+1)c, and lab(c+1) on

the adjacent white triangles. In turn, the 3-space Vabc on an internal lattice point contains

all three planes on the surrounding black triangles, and thus all six lines on the surrounding

white triangles.

This collection of subspaces on the N -triangulation allows us to associate coordinates

to every lattice point (excluding the vertices at the punctures). We can define coordinates

xabc associated with the internal lattice points pabc with a+b+c = N−3 as the triple-ratio

of the six surrounding lines contained in Vabc (the neighborhood of an internal lattice point

looks like the 3-triangulation shown in figure 42). The 3-space Vabc contains the three flags

Ã : 0 ⊂ l(a+2)bc ⊂ P(a+1)bc ⊂ Vabc ,
B̃ : 0 ⊂ la(b+2)c ⊂ Pa(b+1)c ⊂ Vabc ,
C̃ : 0 ⊂ lab(c+2) ⊂ Pab(c+1) ⊂ Vabc . (A.5)

Fixing the flags to be Ã = (a1,a1 ∧ a2), with ai vectors in Vabc, we can write the triple-

ratio as

xabc =
〈a1 ∧ a2 ∧ b1〉〈b1 ∧ b2 ∧ c1〉〈c1 ∧ c2 ∧ a1〉
〈a1 ∧ a2 ∧ c1〉〈b1 ∧ b2 ∧ a1〉〈c1 ∧ c2 ∧ b1〉

. (A.6)

Here the notation 〈v1 ∧ v2 ∧ v3〉 means the determinant of the matrix expressing the

vectors v1,v2,v3 in a unimodular basis for the 3-space containing them (this triple-ratio

is the inverse of the one originally defined by Fock and Goncharov, see appendix A in [23]).

It remains to define coordinates for the lattice points on the edges of the ideal trian-

gulation. Along the common edge of two glued N -triangulated triangles, adjacent white

triangles are associated with the same lines, and adjacent black triangles to the same planes

(see figure 43). A lattice point on an edge is thus surrounded by four lines, which allows us

to define a cross-ratio coordinate. For example, at the point p2010 on figure 43, we choose

four vectors a ∈ l2000, b ∈ l1100, c ∈ l1010, d ∈ l1001, all contained in the plane P1000, which

give the cross-ratio

x2010 =
〈a ∧ b〉〈c ∧ d〉
〈a ∧ d〉〈b ∧ c〉

. (A.7)
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Figure 43. Two 3-triangulated triangles ABC and ACD glued along the edge AC. The quadruples

of non-negative integers a, b, c, d sum to 3 on lattice points pabcd, and to 2 on white triangles

associated with lines labcd. Lines and planes adjacent across the edge are identical. Each edge point

is surrounded by four lines.

Figure 44. Example of a snake on the (N − 1)-triangulation of a triangle (here for N = 4).

An ideal triangulation of the surface Cg,n has −2χ(Cg,n) triangles and −3χ(Cg,n) edges.

There are
(
N−1

2

)
internal lattice points in each triangle and N−1 lattice points on each edge,

so the total number of independent coordinates provided by triple-ratios and cross-ratios is

#{x-coordinates} = −χ(Cg,n) dim[SL(N,C)] . (A.8)

This agrees with the dimension (2.3) of the moduli space of flat SL(N,C)-connections

on Cg,n.

A.2 Snakes and projective bases

Fock and Goncharov showed how to construct projective bases in the N -dimensional vector

space VN related to three flags A,B,C at the vertices of a triangle. Each basis is represented

by a snake, that is an oriented path on the edges of the (N − 1)-triangulation from one

vertex to the opposite side (see figure 44 for an example). Notice that in the (N − 1)-

triangulation the vertices correspond to lines, and the upright (black) triangles to planes.

Each segment of the snake goes from a line l1 to a line l2, and the plane they define also

– 76 –



J
H
E
P
1
0
(
2
0
1
5
)
1
4
3

Figure 45. Segment of a snake along an edge of a black triangle in an (N − 1)-triangulation. The

vertices of the triangles correspond to 3 coplanar lines l1, l2, l3. Picking a vector v1 ∈ l1 at the start

of the segment determines v2 ∈ l2 by the rule that v2 ± v1 ∈ l3 depending on whether the segment

is oriented clockwise or counterclockwise around the triangle.

contains a third line l3 at the third vertex of the black triangles. Given a vector v1 ∈ l1,

a vector v2 ∈ l2 is determined by the rule that v2 + v1 ∈ l3 if the segment is oriented

clockwise around the black triangle, and v2−v1 ∈ l3 if it is oriented counterclockwise (see

figure 45). To construct the projective basis {v1,v2, · · · ,vN} defined by a snake, we can

choose any vector v1 at the first vertex of the snake and use this rule to determine all the

subsequent vectors.

A projective basis can be transformed into another one by a sequence of simple moves.

The moves I and II shown in figure 46 can be expressed in terms of two types of elementary

GL(N) matrices. Let ϕi : SL(2) → GL(N) be the canonical embedding corresponding to

the ith root λi − λi+1. Then the two types of elementary matrices can be written as

Fi = ϕi

(
1 0

1 1

)
, Hi(x) = diag(1, · · · , 1︸ ︷︷ ︸

i times

, x, · · · , x) . (A.9)

For example, for N = 3 we have the following elementary matrices:

F1 =

1 0 0

1 1 0

0 0 1

 , F2 =

1 0 0

0 1 0

0 1 1

 ,

H1(x) =

1 0 0

0 x 0

0 0 x

 , H2(x) =

1 0 0

0 1 0

0 0 x

 . (A.10)

Note that Fi and Hj(x) commute unless i = j.

Move I flips the last segment of a snake across a black triangle, which according to the

rule in figure 45 transforms the projective basis as
v1

...

vN−1

vN

 7→


v1

...

vN−1

vN + vN−1

 = FN−1


v1

...

vN−1

vN

 . (A.11)

Move II takes any two consecutive segments of a snake across a pair of adjacent black and

white triangles, see figure 46. For a choice of vector a at their first common vertex, the
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Figure 46. Elementary moves for segments of a snake. Left : move I can only occur on the last

segment of a snake. Right : move II can occur on any two consecutive segments of a snake.

initial and final snakes define two vectors v3 and v′3 spanning the line at the vertex where

the snakes meet again. The proportionality function is precisely the coordinate xabc for the

internal lattice point associated with the white triangle

v′3 = xabcv3 . (A.12)

This can be checked by writing down the triple-ratio (A.6) for the choice of flags A = (a,v1),

B = (b,v3), C = (c,v2) and using the relations provided by the black triangles as in

figure 45 (that is v1 = v2 + a, b = v′3 + v1, c = v3−v2). The transformation between the

bases associated with the two snakes in figure 46 acts as a

v2

v3

 7→
 a

v1

v′3

 = F1H2(xabc)

 a

v2

v3

 . (A.13)

More generally, we can see that moving the ith segment of snake across a black triangle

corresponds to acting with a matrix Fi, while moving it across a white triangle corresponds

to acting with a matrix Hi(x), where x is the face coordinate associated with the white

triangle. An important snake transformation consists in moving a snake from one edge of a

triangle across the entire face to the next edge, rotating clockwise around the initial vertex

(see figure 47). For N = 2 this gives simply F = F1. For N = 3, this gives

F = F2F1H2(x000)F2 =

1 0 0

1 1 0

1 1 + x000 x000

 . (A.14)

For N = 4 as in figure 47 this gives

F = F3F2H3(x010)F3F1H2(x100)F2H3(x001)F3 . (A.15)

Another type of move is the reversal of the orientation of a snake along an edge of a

triangle, see figure 48. This reverses the order of the basis vectors, and changes the sign of
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Figure 47. Elementary matrices Fi and Hi(x) in an (N − 1)-triangulation (here for N = 4). The

transformation F from the snake along the edge AC to the snake along AB can be decomposed into

a sequence of moves across the black and white triangles, corresponding to matrices Fi and Hi(x).

Figure 48. Left : reversal of the orientation of the snake along an edge of a triangle. Right : snake

crossing an edge of a triangle with a cross-ratio coordinate x.

every even-numbered vector, thus multiplying by an anti-diagonal matrix

S =


· · · 0 0 1

· · · 0 −1 0

· · · 1 0 0

. .
. ...

...
...

 . (A.16)

Finally, we can move a snake from one triangle to another across their common edge. If

the coordinates along the edge followed by the snake are {x1, x2, . . . , xN−1} (in this order),

this transformation acts as

H1(x1)H2(x2) · · ·HN−1(xN−1) = diag(1, x1, x1x2, . . . , x1x2 · · ·xN−1) . (A.17)

This can again be checked by writing down the cross-ratio (A.7) for the edge coordinate x

in figure 48 and using the relations provided by the black triangles as in figure 45.
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B Background on sl(N) and Uq(slN)

B.1 Lie algebra conventions

The vectors ei with i = 1, . . . , N − 1 are the simple roots of the Lie algebra sl(N) and

(·, ·) denotes the scalar product on the Cartan subalgebra of sl(N), with the Cartan matrix

given by κij = (ei, ej). It is often useful to represent the root/weight subspace of sl(N)

as a hyperplane in RN , allowing us to represent the simple roots as ei = ui − ui+1 with

ui a unit vector of RN . The simple roots are dual to the fundamental weights ωi in the

sense that (ei, ωj) = δij . In general they can be written as ωi =
∑i

j=1 uj −
i
N

∑N
k=1 uk.

Their inner product is given by the inverse Cartan matrix (ωi, ωj) = κ−1
ij and their sum is

the Weyl vector ρ =
∑

i ωi. The weights of the fundamental representation of sl(N) with

highest weight ω1 are hi = ω1 −
∑i−1

j=1 ej , with i = 1, . . . , N and (hi, hj) = δij − 1
N .

B.2 Basic definitions

We review some basic notions about quantum groups that are relevant here. For a complete

background and set of axioms we refer the reader to some of the standard references [91].

Abstractly, a Hopf algebra is a collection (U ,m, η,∆, ε, S), with unit η : C(q) → U ,

product m : U ⊗ U → U , coproduct ∆ : U → U ⊗ U , counit ε : U → C(q) and an

algebra antiautomorphism called antipode S : U → U . The triple (U ,m, η) is a unital

associative algebra and (U ,∆, ε) is a counital associative coalgebra. ∆, ε are unital algebra

homomorphisms and satisfy the following relations

(∆⊗ id) ◦∆ = (id⊗∆) ◦∆ (co-associativity)

(ε⊗ id) ◦∆ = (id⊗ ε) ◦∆ = id

m ◦ (S ⊗ id) ◦∆ = η ◦ ε = m ◦ (id⊗ S) ◦∆ (pentagon) . (B.1)

The quantum group U = Uq(slN ) is an example of a Hopf algebra, generated as an asso-

ciative algebra over C(q) by Ei, Fi, K
±1
i for i = 1, . . . , N − 1 satisfying

KiK
−1
i = 1 = K−1

i Ki , KiEj = q(i,j)EjKi , KiFj = q−(i,j)FjKi for i, j = 1, . . . , N − 1 ,

where (i, j) ∈ {2,−1, 0} when |i− j| = 0, 1 or ≥ 2, and

[Ei, Fj ] = δij
Ki −K−1

i

q − q−1
, i, j = 1, . . . , N − 1 , [Ei, Ej ] = 0 , [Fi, Fj ] = 0 , |i− j| ≥ 2 .

For |i− j| = 1, the generators satisfy the quantum Serre relations

E2
i Ej − (q + q−1)EiEjEi + EjE

2
i = 0 , F 2

i Fj − (q + q−1)FiFjFi + FjF
2
i = 0 .

The Hopf algebra structure is given by ε(Ki) = 1, ε(Ei) = 0 = ε(Fi),

∆(Ki) = Ki ⊗Ki , ∆(Ei) = Ei ⊗Ki + 1⊗ Ei , ∆(Fi) = Fi ⊗ 1 +K−1
i ⊗ Fi

and

S(Ki) = K−1
i , S(Ei) = −EiK−1

i , S(Fi) = −KiFi .
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A quasitriangular Hopf algebra U additionally has an invertible element R ∈ U ⊗ U , the

universal R-matrix of U , which satisfies a set of relations. For example, R∆(a) = ∆′(a)R
for any a ∈ U , where ∆′(a) = P ◦∆(a) and P is the permutation homomorphism mapping

P (a⊗ b) = (b⊗ a).

With each algebra U , we can associate the category RepU of its finite dimensional

linear representations, with objects V, W, . . . that are finitely generated left U -modules

and with morphisms that are U -linear homomorphisms. The action of U on an U -module

V induces a representation πV : U → End V .

The coproduct in a quasitriangular Hopf algebra U induces the tensor product in RepU ,

where for U -modules U, V and ∀a ∈ U , πU⊗V (a) = (πU ⊗ πV )(∆(a)). The unit object in

RepU is the ground field C(q) equipped with the action of U by means of the counit ε.

Furthermore, there exist associativity and left and right action homomorphisms that make

RepU a monoidal category (see for example [53]). Moreover, for any U -modules V, W

there is a mapping called braiding

RVW = P ◦ (πV ⊗ πW )(R) : V ⊗W →W ⊗ V , (B.2)

which is a morphism of RepU and turns this into a braided monoidal category.

For triples of U -modules U, V, W , where U ⊂ V ⊗W , a Clebsch-Gordan map CUVW :

V ⊗W → U intertwines the actions on V ⊗W and U ,

CUVW (πV ⊗ πW )∆(x) = πU (x)CUVW , x ∈ U . (B.3)

Clebsch-Gordan maps are represented graphically as trivalent vertices in figure 49. We

note that the representations V , W and U may be reducible, in general. We may, in

particular, consider cases that V , W and U can be tensor products of representations such

as V = V1 ⊗ · · · ⊗ Vm, for example. Such Clebsch-Gordan maps CUVW can be constructed

as compositions of Clebsch-Gordan maps intertwining the respective representations on

the tensor factors. Avoiding cases where q is a root of unity, one can find any irreducible

finite-dimensional representation in a sufficiently high tensor power of the fundamental

representation.

The conjugate Clebsch-Gordan maps CVWU : U → V ⊗W satisfy the property

CVWU πU (x) = (πV ⊗ πW )∆(x)CVWU . (B.4)

A special subset of intertwiners are the cap and cup maps intertwining between a tensor

product V ⊗ V̄ and the trivial representation 1 ' C(q), respectively, where V̄ is the

conjugate representation to V . In the Reshetikhin-Turaev construction, one considers

general morphisms M in RepU between tensor products of modules V1 ⊗ . . . ⊗ Vm and

W1 ⊗ . . .⊗Wn.

B.3 Twisted (compositions of) Clebsch-Gordan maps

Two quasitriangular Hopf algebras U and Ũ are related by a Drinfeld twist J ∈ U ⊗ U if

the co-products and R-matrices are related by

∆̃(·) = J −1∆(·)J , R̃12 = J −1
21 R12J12 . (B.5)
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Figure 49. (Left): Clebsch-Gordan maps. (Middle): gluing of vertices. (Right): generic network.

Here we are using leg-numbering notation where the subscripts refer to tensor factors. The

twist will preserve co-associativity if

(∆⊗ id)(J ) · J12 = (id⊗∆)(J ) · J23 , (B.6)

The action of J can be extended to m-fold tensor products by defining recursively

J (k+1) := (id⊗(k−1) ⊗∆)(J (k)) · (id⊗(k−1) ⊗ J ) , J (2) := J . (B.7)

The condition (B.6) ensures that the operator

J
(m)
Vm⊗···⊗V1 := (πVm ⊗ · · · ⊗ πV1)(J (m)) , (B.8)

is independent of the order in which tensor products are taken.

Given a Clebsch-Gordan map CUVW : V ⊗W → U one may define

C̃UVW := CUVW · JVW , JVW := (πV ⊗ πW )(J ) . (B.9)

It is easy to see that C̃UVW is a Clebsch-Gordan map intertwining the representation defined

on V ⊗W using the twisted coproduct ∆̃ with the representation U . Similarly, by defining

C̃VWU := J−1
VWC

VW
U one can show that C̃VWU πU (x) = (πV ⊗ πW )∆̃(x)C̃VWU .

Given a general intertwining map C : V1⊗ . . .⊗ Vm →W1⊗ . . .⊗Wn it seems natural

to define

C̃ := (J
(n)
W1⊗...⊗Wn

)−1 ·M · J (m)
V1⊗...⊗Vm . (B.10)

If M is represented as the composition of “more elementary” Clebsch-Gordan maps one

needs to verify the consistency of definition (B.10) with (B.9). This boils down to the

consideration of two cases, as will be discussed in the following.

Twisting composite intertwiners (I): let CUVWT : T → U ⊗ V ⊗W be constructed

as CUVS CSWT . This composition may be re-expressed in terms of C̃UVS C̃SWT by using

CUVS CSWT = CUVS JSWJ
−1
SWC

SW
T = CUVS JSW C̃

SW
T . (B.11)

Decomposing JSW =
∑

k πS(xk)⊗ πW (xk), one can use the intertwining property satisfied

by CUVS to calculate

CUVS JSW = CUVS ·
∑
k

πS(xk)⊗ πW (xk) =

=
∑
k

(πU ⊗ πV )(∆(xk))⊗ πW (xk) · CUVS = J(U⊗V )⊗W CUVS .
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Noting that CUVS = JUV C̃
UV
S , we arrive at

CUVS CSWT = J(U⊗V )⊗WJUV C̃
UV
S C̃SWT . (B.12)

In a similar way one can verify that CVWS CUST = JU⊗(V⊗W )JVW C̃
VW
S C̃UST .

Twisted compositions (II): Clebsch-Gordan maps of the type CVWU and CUVW can also

be composed in the following ways

CVWV ′W ′ := CVWU CUV ′W ′ , CVWV ′W ′ := CWUW ′C
V U
V ′ . (B.13)

The second type of composition is diagrammatically represented in figure 49.

Recall that the representations πV , πU , . . . are not necessarily irreducible. As such, the

blocks in figure 49 should themselves be thought of as networks with a general number of

incoming and outgoing legs and iterated compositions of Clebsch-Gordan maps inside each

block. Compositions of the first type in equation (B.13) are twisted trough

ÑVW
V ′W ′ = C̃VWU C̃UV ′W ′ = J−1

VWC
VW
U CUV ′W ′JV ′W ′ . (B.14)

Compositions of the second type

N̂VW
V ′W ′ = CWUW ′C

V U
V ′ = C̃WUW ′J

−1
UW ′JV U C̃

V U
V ′ (B.15)

also transform by conjugation with the J-factors of equation (B.14). To show that N̂VW
V ′W ′

is twisted by acting on its free legs as

N̂VW
V ′W ′,twist = J−1

VW N̂
VW
V ′W ′JV ′W ′ , (B.16)

we insert the identity in (B.15)

N̂VW
V ′W ′,twist = J−1

VWC
W
UW ′JV (U⊗W ′)J

−1
V (U⊗W ′)J(V⊗U)W ′J

−1
(V⊗U)W ′C

V U
V ′ JV ′W ′ .

JV (U⊗W ′) and J−1
(V⊗U)W ′ can be shifted past CWUW ′ and CV UV ′ to cancel J−1

VW and JV ′W ′

CWUW ′JV (U⊗W ′) = CWUW ′
∑
k

πV (xk)⊗ (πU ⊗ πW ′)∆(xk) =
∑
k

πV (xk)⊗ πW (xk)CWUW ′ ,

where
∑

k πV (xk)⊗ πW (xk)CWUW ′ = JVWC
W
UW ′ and similatly for J−1

(V⊗U)W ′ . So we find

N̂VW
V ′W ′,twist = CWUW ′J

−1
V (U⊗W ′)J(V⊗U)W ′C

V U
V ′ = C̃WUW ′J

−1
UW ′J

−1
V (U⊗W ′)J(V⊗U)W ′JV U C̃

V U
V ′ .

By the cocycle condition (B.6) J−1
UW ′J

−1
V (U⊗W ′)J(V⊗U)W ′JV U reduces to the identity evalu-

ated on the tensor product of modules V ⊗ U ⊗W ′ and

N̂VW
V ′W ′,twist = C̃WUW ′C̃

V U
V ′ (B.17)

as claimed. Therefore general networks N̂VW
V ′W ′ , constructed as iterated compositions of

Clebsch-Gordan maps, are twisted by J-factors which act on their external free legs.
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