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Abstract: We study different phases in the holographic model of d-wave superconductor.

These are described by solutions to the classical equations of motion found in different

ansatze. Apart from the known homogeneous d-wave superconducting phase we find three

new solutions. Two of them represent two distinct families of the spatially modulated

solutions, which realize the charge density wave phases in the dual theory. The third one

is the new homogeneous phase with nonzero anapole moment. These phases are relevant

to the physics of cuprate high-Tc superconductor in pseudogap region.

While the d-wave phase preserves translation, parity and time reversal symmetry, the

striped phases break translations spontaneously. Parity and time-reversal are preserved

when combined with discrete half-periodic shift of the wave. In anapole phase translation

symmetry is preserved, but parity and time reversal are spontaneously broken. All of the

considered solutions break the global U(1).

Thermodynamical treatment shows that in the simplest d-wave model the anapole

phase is always preferred, while the stripe phases realize the continuous transition in solu-

tion space between the normal phase and two homogeneous condensed phases.
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1 Introduction

The large variety of different phases, which is observed in the cuprate superconductors is

a distinctive feature of high-Tc superconductivity and a big puzzle in modern condensed

matter theory. The superconducting dome is surrounded by the normal metal, strange

metal and pseudogap phases. While the normal metal is described by the Fermi liquid

theory and is relatively well understood, the other two phases haven’t got yet a rigor-

ous theoretical description. The strange metal is believed to be a normal phase of the

strongly coupled medium, which may not allow for a quasiparticle description and thus

exhibits the features, like linear in temperature resistivity, which can not be understood

in the framework of the standard Fermi-liquid approach. The pseudogap may be though

of as a phase where some symmetries of this strongly coupled medium are broken by a

bunch of competing order parameters, leading to the very controversial phenomenological

features, which are not well understood even from the experimental point of view. In the

last few years a considerable experimental evidence and theoretical understanding has been

accumulated concerning the presence of the charge density wave in the pseudogap region

of the cuprate phase diagram, which breaks translational invariance in the material by

introducing a striped superstructure, which may or may not be commensurate with the

lattice spacing [1–4]. From the other hand, there were claims that in the pseudogap one

can observe a so called loop current order [5–7], the mesoscopic ordering of the molecular

currents, which is described by nonzero in-plane time-reversal odd polar vector, so called

“anapole moment”. The claims for other exotic orderings are often arising either in the-

oretical or in experimental literature [8]. In general the clear understanding on what is

actually happening in the pseudogap region is missing so far.

The reason why these unconventional phases of cuprates remain an unsolved problem

of physics is the fact that the underlying system is strongly coupled. In the case of strange
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metal this leads to the absence of quasiparticles and in the case of pseudogap it substantially

mixes the various order parameters. The modern tool, which allows one to treat the

strongly coupled theories in a relatively controlled fashion, is the holographic duality. First

formulated as a duality between strongly coupled supersymmetric N=4 Yang-Mills theory

and string theory in a curved background, this approach can be generalized to the other

strongly coupled systems. Even though there is no rigorous proof of the duality even in

a simple supersymmetric case, the holographic approach provides a useful algorithm for

construction of phenomenological models which can point out unexpected links between

the features of the system which could not be related via the other approaches. Nowadays

there is a bursting activity in applying the holographic tools to the study of the strange

metals [9–14]. This paper is devoted to the holographic study of the possible phases

and order parameters, which can arise in a strongly coupled medium like cuprate high-Tc

superconductor in a pseudogap region.

The paper is organized as follows. In section 2 we introduce the holographic model

of d-wave superconductor and describe a d-wave superconducting phase, which is present

there, as well as its spatially modulated unstable modes. In section 3 we obtain the spatially

modulated solutions in this model and show that they include charge density wave as seen

from the dual field theory perspective. In this study we also find a strong indication of the

presence of another homogeneous phase of the model, which has not been observed before

in the literature. We discuss the thermodynamics and special features of this new phase in

section 4. Conclusion is given in section 5. The single appendix is devoted to the details

of the numerical calculation performed in section 3.

2 Holographic model of D-wave superconductor

The holographic model of d-wave superconductor was introduced in [15–17]. The top-

down approach to this problem was discussed in [18]. The main ingredient of the model is

a charged massive spin-2 field which is dual to the d-wave order parameter. The consistent

action for such a field on the curved background can be written down in the following way

L = −|Dρφµν |2 + 2|Dµφ
µν |2 + |Dµφ|2 − [Dµφ

∗µνDνφ+ c.c.]−m2(|φµν |2 − |φ|2) (2.1)

+ 2Rµνρλφ
∗µρφνλ − 1

d+ 1
R|φ|2 − iqFµνφ∗µλφνλ −

1

4
FµνF

µν ,

where φµν is a complex symmetric tensor field, φ = φµµ, φµ = Dνφµν and covariant deriva-

tive acts on it as Dµ = ∇µ − iqAµ. In [16] it was discussed, that in order to describe a

proper number of the degrees of freedom and avoid ghosts in the spectrum, one needs to

neglect the backreaction of the matter fields on the metric. This can be done in a consistent

way by taking the limit of infinitely large gauge charge q →∞. We should stress here that

neglecting gravitational backreaction doesn’t mean that the theory becomes linear, as the

self interaction of the matter field is not suppressed and leads to an interesting nonlinear

dynamics. Hence in the following we are considering the dynamics of the tensor and gauge

fields on top of the static gravitational background. In order to describe the system at
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finite temperature one chooses AdS/Schwarzschild black hole as a background metric:1

ds2 =
L2

0

z2

(
−f(z)dt2 + f(z)−1dz2 + dx2 + dy2

)
, f(z) = 1− z3

z3
h

. (2.2)

and the radius of the horizon is related to the temperature in the dual system T = 3
4π

1
zh

.

In what follows we will rescale the curvature radius of the space to unity: L0 = 1.

In [16] the specific ansatz for the tensor field was considered. It included only the

spatial components of the tensor field φxy = φyx 6= 0, which are dual to the charged

operator with dxy spherical symmetry, and temporal component of the gauge field dual to

the charge density ρ and chemical potential µ. This ansatz provides a consistent truncation

to the equations of motion. At high temperatures the only existing solution is the empty

Reissner-Nordström black hole with

ANSt = µ

(
1− z

zh

)
, φµν = 0 (2.3)

Below the certain critical temperature Tc, defined in units of µ, the nontrivial solution

to the equations of motion arises which is related by duality to the emergence of nonzero

vacuum expectation value (VEV) of the order parameter. Hence it was shown that the

model describes a transition from the normal phase to the superconducting (SC) phase

with dxy gap, similar to the transition observed in the holographic model of s-wave super-

conductor [19, 20].

Contrary to the s-wave model, though, the d-wave holographic action (2.1) contains

several terms which contribute to the mixing between different components of the tensor

field. And these terms are proportional to the spatial momentum of the corresponding

modes. This observation motivated our earlier study of the possible spatially modulated

instabilities of the condensed phase in the spirit of [21–25]. The mixing terms proportional

to momentum are responsible to the spontaneous translational symmetry breaking in these

models. Indeed, in [26] we found that the perturbative spectrum of the condensed phase

of holographic d-wave superconductor has a spatially modulated unstable mode with the

specific wave vector kcr, which signals the onset of the instability leading to the formation

of the new striped phase. Moreover, the instability was found at all temperatures, the

fact which means that the condensed SC phase is always unstable in the model under

consideration, see figure 1.

The perturbative study of the spectrum performed in [26] can show the presence of

instability, but can not describe the phase, which is the endpoint of the transition. In order

to study the new phase one need to solve full nonlinear system of equations of motion.

3 Striped phases

The unstable mode observed in [26] includes the fluctuations of several components of

the tensor field as well as the fluctuation of the temporal component of the gauge field

1Keeping in mind that cuprates have layered structure, i.e. the system we aim to describe is quasi 2+1

dimensional, the number of dimensions in the holographic model is 3+1.
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Figure 1. The values of momenta of the unstable mode (measured in units of z−1
h ) in the per-

turbative spectrum of d-wave superconducting phase. See [26] for details. Dashed lines show the

temperatures used for plots in figure 3.

dual to the charge density. The instability is modulated only along either x- or y-axis

(where the axes are defined in such a way, that it is component φxy which condenses in the

superconducting phase). If one considers modulation along y-axis with the wave vector ky,

the components involved in the unstable mode are φtx, φzx, φxy and At. The symmetry of

the model requires also the existence of the similar mode in x-direction which is obtained

from the previous one by simple exchange x↔ y. This form of the unstable mode suggests

the following ansatz for the solution to the nonlinear equations of motion

φµν =
q−1

2z2


0 iψtx(y, z) 0 0

iψtx(y, z) 0 ψxy(y, z) ψxz(y, z)

0 ψxy(y, z) 0 0

0 ψxz(y, z) 0 0

 , (3.1)

Aµ =
(
At(y, z) 0 0 0

)
,

where ψµν are the real functions and the overall factor coincides with the one used in [16].

By plugging this ansatz into the equations of motion, which follow from the action (2.1),

one can check that this is indeed a consistent truncation of the model at nonlinear level.

The only nontrivial equations of motion in this ansatz are

Exy : ∂2
zψxy +

(
f ′(z)

f(z)
− 2

z

)
∂zψxy + ψxy

(
A2
t

f(z)2
− L2m2

z2f(z)

)
(3.2)

− ∂z∂yψzx +

(
2

z
− f ′(z)

f(z)

)
∂yψzx +

∂yAt ψtx
2f(z)2

+
At ∂yψtx
f(z)2

= 0,

Etx : ∂2
zψtx −

2

z
∂zψtx +

∂2
yψtx

f(z)
−
(
z2f ′′(z)− 2zf ′(z) + 2L2m2

)
2z2f(z)

ψtx

+
∂yAt ψxy

2f(z)
+
At ∂yψxy
f(z)

+At ∂zψzx +

(
1

2
∂zAt −

2At
z

)
ψzx = 0,
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Ezx : ∂2
yψzx − ∂z∂yψxy + ψzx

(
A2
t

f(z)
− f ′′(z)

2
+
f ′(z)

z
− L2m2

z2

)
+
∂zAtψtx
2f(z)

+
At∂zψtx
f(z)

= 0,

Et : ∂2
zAt +

∂2
yAt

f(z)
−
Atψ

2
xy

z2f(z)
− Atψ

2
zx

z2

− ∂yψtxψxy
2z2f(z)

+ ψtx

(
∂yψxy

2z2f(z)
− ψzx

z3
+
∂zψzx
2z2

)
− ∂zψtxψzx

2z2
= 0.

On top of that the expression DµEµν = 0 leads to a nontrivial constraint:

Cx : ∂yψxy + f(z)∂zψzx −
z2ψtx
2m2

(
∂2
zAt +

∂2
yAt

f(z)

)
− Atψtx

f(z)
+

(
f ′(z)− 4

z
f(z)

)
ψzx (3.3)

− 3z2

2m2f(z)
∂yAt (Atψxy + ∂yψtx) +

z2

2m2
∂zAt

(
2

z
ψtx − 3Atψzx − 3∂zψtx

)
= 0.

We study the solution to these equations numerically. We expect the solution to be

periodic in y-direction with a wavelength λy = 2π
ky

, thus we can choose a finite domain

y ∈ (0, λy), z ∈ (0, zh) in which the equations of motion have to be solved. Periodic

boundary conditions are imposed in y-direction. The boundary conditions in z-direction

are specified by means of usual holographic prescriptions.

Near the z = 0 boundary the fields can be expanded in terms of normalizable and

non-normalizable modes:

ψµν(y, z) = ψ(0)
µν (y)

(
z

3
2
− 1

2

√
9+4m2

+ . . .
)

+ ψ(1)
µν (y)

(
z

3
2

+ 1
2

√
9+4m2

+ . . .
)
, µ, ν 6= z

(3.4)

ψµz(y, z) = ψ(0)
µz (y)

(
z

5
2
− 1

2

√
9+4m2

+ . . .
)

+ ψ(1)
µz (y)

(
z

5
2

+ 1
2

√
9+4m2

+ . . .
)
, µ 6= z

Aµ(y, z) = A(0)
µ (y) +A(1)

µ (y)z + . . .

The coefficients for leading modes are equal to the sources of corresponding operators in

the dual theory, while the coefficients for subleading modes are related to the vacuum

expectation values.2 The only operator source, which is present in the problem, is a

chemical potential µ, so the boundary conditions at z = 0 are

A
(0)
t (y) = µ, ψ(0)

µν (y) = 0. (3.5)

The boundary conditions at the black hole horizon are specified by the usual require-

ment that only the modes infalling under horizon are present [27]. In case of zero frequency

this just means that the fields are regular at z = zh.3 In order to impose such regularity

2After plugging in these expressions to the equations (3.2) one can notice, that the source term for ψxz is

related to the sources of the other fields. Thus there is no independent source term for the ψxz component.

It is expected indeed, because this component is not dual to any operator in the boundary theory.
3For At and ψtx regularity requires the functions to vanish at the horizon linearly in f(z). In our

numerical procedure we solve for the nonvanishing functions Ât = f(z)−1At and ψ̂tx = f(z)−1ψtx. See

also (A.2) in the appendix.
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conditions we expand the equations of motion near the horizon. The leading terms in z

expansion form a system of 4 nonsingular differential equations (A.5), which can be seen

as a system of ordinary differential equations along the y-coordinate with the boundary

values of the fields and their first z−derivatives being unknown functions.4 These relations

provide us with the generalized boundary conditions at the horizon.

Given these boundary conditions we find solutions to the system of 2D PDEs (3.2)

by means of the finite difference derivative method, approximating the derivatives pseu-

dospectrally and using Newton-Raphson procedure in order to solve the resulting system

of algebraic equations (see details in the appendix A).

For each numerical solution we extract its thermodynamical (TD) potential. By holo-

graphic duality it is related to the Euclidean action, evaluated on the given solution. As

the equations of motion are satisfied, the action reduces to the boundary term [28, 29].

According to the condition (3.5) the only contribution to this boundary term comes from

the kinetic action of the gauge field which is proportional to µ. Hence the expression for

the mean density of thermodynamic potential of a certain solution with wavevector ky and

wavelength λy is

ω(ky) = − 1

q2

λy∫
0

dy

λy
µρ(y), (3.6)

where ρ(y) = −A(1)
t (y) is the expectation value for the local charge density in the boundary

theory. It is useful to note here, that the thermodynamic potential of the solutions under

consideration is of order q−2. If one would be able to consider the backreaction of matter

fields on the geometry, the perturbation of the metric would be δg = O(q−2) and the

corresponding contribution of gravity to the thermodynamic potential would be O(δg2) ∼
O(q−4) (the term O(δg) vanishes due to the equations of motion) and is subleading in the

q → ∞ regime. Hence it does actually make sense to study the thermodynamics of the

matter fields even though the backreaction of the gravity can not be taken into account in

the present setting.

In this section we restrict ourselves to the study of the model with particular value

of the tensor field mass m2 = 4 which corresponds to the scaling dimension of the dual

operator [∆µν ] = 4. In the following we will also measure the temperature in relation to

the critical temperature of the d-wave superconductor phase transition. For chosen mass

this temperature is [16]

Tc ≈
3

4π

1

11.29
qµ. (3.7)

We were able to find two distinct families of striped solutions at given set of temperatures

and wavelengths λy. We will denote them as Type A and Type B. After extracting the

local values of the charge density from the asymptotic behavior of the solutions (3.4), we

4One should pay attention to the fact that the equation Exy in (3.2) does not include the second derivative

on y. Hence in the boundary expansion only 3 equations of 4 are of the second order and the boundary

value problem along y-axis is not well defined. In our calculation it was useful to avoid this complication

by considering the constraint (3.3) which relates the derivatives ∂yψtx and ∂zψzx. By using this constraint

one can re-express the term ∂z∂yψzx in Exy via ∂2
yψxy and obtain the second order equation for ψxy.
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(a) Type A.
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(b) Type B.

Figure 2. Boundary data for the two families of striped solutions at T ≈ 0.8Tc with the wave

vectors kyzh = 2, 4.8 and 7.6 (blue, purple, brown) for Type A and kyzh = 1.9, 3.1 and 5.2 (blue,

purple, brown) for Type B. The values for tensor condensates ∆ are measured in units of zh. The

scales of plots for Type A and Type B are intentionally kept the same.

find that in both families they are spatially modulated, see figure 2. Thus we see that there

are two families of solutions in holographic model of d-wave superconductor which realize

charge density wave.

Plots on figure 2 show the expectation values of the charged spin-2 operator as well:

∆µν = 〈Oµν〉 = ψ
(1)
µν . In both types of the solutions the amplitude of the charge density

modulation as well as the amplitude of oscillation of the order parameters grow when the

wave vector of the given solution decreases. In both cases one can find a maximal value

of the wave vector kmax at which the amplitudes of all fields go to zero and the solution

reduces to the empty Reisner-Nordström black hole (2.3). One can see that the oscillating

frequency of the charge density is twice the condensate one. This is consistent to the fact

that the gauge field interacts with the charged tensor only at quadratic order (3.2).

There are though some important differences between the two families of striped so-

lutions. Firstly, as one can see on figure 2, the amplitude of the ∆xy order parameter in

Type B is larger by the order of magnitude then that of the Type A. One can say that

the type B striped solution is characterized by the oscillations of the dxy superconducting

order parameter with zero mean value. These oscillations would lead to the breakdown of

the long range superconducting order in the y-direction if the phase of the order parameter

could be different in each wave, but this is not the case here. The modulus of the tensor

VEV |∆µν | never vanishes along the wave profile, so the phase correlation remains present.

One cannot associate though this behavior with any particular pattern of the gap in the

density of states of fermionic excitations. Thus it is not obvious what kind of the features

of superconductivity could this phase exhibit.
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By comparing the behavior of ∆tx component of the order parameter in two families

of the solutions one can notice the following. While the amplitude of ∆tx oscillation

monotonically grows with decreasing ky in type A, in type B at the smallest ky it starts

to decrease. Even though for the intermediate values of ky the ∆tx amplitudes are of the

same order in both types of the striped solutions, at smaller wave vectors ∆tx becomes

suppressed in type B solution and enhanced in type A. Thus we can associate the type A

solution primarily with the oscillations of this component of the tensor order parameter.

The wavelength of the solution is an external parameter in our calculation procedure,

i.e. the system is forced to have the given periodicity by putting it on a cylinder with com-

pact y-direction. Thus in order to claim that the obtained solutions actually describe the

stable state of the system we need to scan all possible wavelengths at constant temperature

and study the mean density of thermodynamic potential of the obtained solutions (3.6) as

we are considering the system in the grand canonical ensemble. If ω(ky) would have a min-

imum at certain k∗y at given temperature, this would mean that the stable striped phase

with k∗y is spontaneously formed at this temperature even when the periodicity requirement

is relaxed. The dependence of TD potentials of type A and type B solutions on the wave

vector at various temperatures is shown on figure 3. There exists the maximal value of

the momentum kmax beyond which, as we noted above, the amplitudes of the modulation

of all the functions vanish and the striped solution smoothly connects with the Reisner-

Nordstrom solution, which characterizes at this temperature the unstable normal state.

When the momentum gets lower, TD potentials of both solutions monotonically decrease

and there is no sign of the minimum at finite ky. Given the fact that the problem under

consideration is symmetric under ky → −ky parity, it is suggestive to expect that the given

striped phase will reach the minimum of the thermodynamic potential at ky = 0 while

evolving to the certain homogeneous phase.

This idea gets the support from the form of the striped solution at low ky. On the

second plots of figures 2a and 2b one can observe, that the value of the order parameter gets

flattened around the points 1
4λy and 3

4λy. At lower momenta this flattening becomes more

pronounced while the curves around 1
2λy get steeper.5 This behavior means that while one

increases the period of the solution, the wave profile decays into the homogeneous regions

with finite constant values of ψtx with opposite signs which are separated by the domain

walls. The mean density of the TD potential in this configuration consists of the constant

part associated with the homogeneous solution and the contribution from the domain

walls. The latter drops inversely proportional to the wavelength λy. Given there are only

2 domain walls with constant potentials Ωd.w. on one period, the spatial average value of

ω will behave as ωd.w. = 2Ωd.w./λy . Thus we expect that at ky → 0 the thermodynamic

potential of the striped solution will approach the one of the homogeneous phase.

This behavior is seen for the type B phase on figure 3 which smoothly approaches the

homogeneous dxy SC phase as ky → 0. The thermodynamic potential of the type A phase,

on the contrary, crosses the value of ω of the superconducting phase at finite wave vector and

reduces further down. It is interesting to observe, that this crossing happens exactly at the

5Because of this steepness we couldn’t get precise numerical data at low k, as one can see on figure 3.
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Figure 3. Mean density of the thermodynamic potential of different solutions depending on the

wave vector at various temperatures. The homogeneous solutions are present only at ky = 0, the

thick dashed gridlines show corresponding values of ω. The dimensional quantities are measured

in terms of zh, temperature is measured in terms of Tc. The thick dots represent the results of the

perturbative study of instabilities in the homogeneous phases, see figure 1 and figure 4. Dotted

lines are eye-guides, we haven’t got reliable numeric data in these regions.

value of critical momentum of SC phase calculated perturbatively in [26] and shown on fig-

ure 1. Thick dots on figure 3 show the values of these critical momenta at given temperature

and exhibit reasonable agreement between these two conceptually different calculations.

The endpoint of the thermodynamic evolution of the type A striped phase is the new homo-

geneous phase which realizes the true minimum of TD potential and which apparently was

not studied in the literature before. We will call it “anapole” phase as explained in section 4.

Before we proceed further it is instructive to check our results by comparing the max-

imal values of the stripe wave vectors, which are observed in our solutions of the PDEs,

with the momenta of the unstable modes in the spectrum of the perturbative fluctuations

of normal phase. We expect them to coincide because the striped phases reduce to the

normal one exactly at these values of ky.

We study the linear perturbations of the Reisner-Norström solution with finite momen-

tum k. We linearize the system of equations of motion (3.2) about the background (2.3)

and look for the values of k, at which the nontrivial static solutions to the fluctuation equa-

tions with zero boundary conditions exist. The procedure is completely analogous to the

one described in [26]. In the end of the day, we find two branches of unstable fluctuations

with different momenta which are shown on figure 4. One of the branches sets in exactly at

T = Tc and the critical values of k at lower temperatures coincide exactly with the values

of kmax for the striped solution of type B, see figure 3. This observation supports our

argument that type B stripe is associated with fluctuating d-wave superconductor order

– 9 –
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Figure 4. The wave vectors of two unstable modes in the perturbative spectrum of the normal

phase (measured in units of z−1
h ). The two curves are related to the two types of striped solutions.

The grid lines show the temperatures used in plots of figure 3.

parameter. The other branch sets in at higher temperature T ≈ 1.36Tc and describes the

maximum wave vectors of the stripes of type A. As the type A stripe is associated with the

oscillations of ∆tx and evolves to the anapole phase, we expect the critical temperature of

the new phase to be equal to 1.36Tc.

4 Homogeneous anapole phase

In this section we are going to study the new homogeneous phase which arises as a result

of thermodynamic evolution of the Stripe A solution discussed above. It is suggestive to

introduce ψtx component of the tensor field as a part of the ansatz for this new solution.

Indeed, one can check that the ansatz

A = At(z)dt, ψtx = ψtx(z), ψxz = ψzx(z), ψxy = 0 (4.1)

provides a consistent truncation to the nonlinear equations of motion (3.2). The result is

a system of 3 nonlinear ordinary differential equations. One should note that the equation

Etx becomes algebraic and can serve to eliminate ψzx from the problem.6 In the end of

the day we have only 2 second order ODEs which can be solved by means of the shooting

method in complete analogy to the treatment of the ψxy case in [16].

We obtain the boundary conditions at the horizon by power expanding the functions

at z = zh and solving the equations of motion order by order. We find that the boundary

data is defined by 2 constants

ψ̂tx(zh) =
ψtx
f(z)

∣∣∣∣
z→zh

= C1 + C1

(
9C2

2

8m2
− m2

6

)
z − zh
zh

+O
(
(z − zh)2

)
, (4.2)

6It is worth noting here that, as it was in the striped case, the boundary parameters of the ψzx field do

not have a meaning of the source and VEV of any separate operator. They are completely defined by the

boundary data of ψtx which is dual to ∆tx component of the order parameter.
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Ât(zh) =
At
f(z)

∣∣∣∣
z→zh

= C2 − C2

(
1 +

9C2
1

8m2

)
z − zh
zh

+O
(
(z − zh)2

)
.

For a given value of temperature, which defines zh via (2.2) we use a shooting method

to find (C1, C2) which would lead to the appropriate boundary conditions at the AdS

boundary z = 0

At(0) = µ, ψtx(0) = 0. (4.3)

Similarly to the d-wave superconducting case we find that below certain temperature

T = T ∗ the nontrivial solution to the equations of motion exist and describes the phase

with nonzero value of ∆tx order parameter, see figure 5. It is instructive to check whether

the value of the order parameter in the homogeneous phase with m2 = 4 agrees with the

amplitude of the oscillating ∆tx component in the striped type A phase discussed above.

On figure 2a the plateau of ∆tx in the solution with low ky is located at ∆txz
4
h = 68. This

solution is obtained for µzh = 14 and the mean value of the charge density is ρ̄z2
h = 20.34.

Hence in the normalization, which is used for the plot figure 5, one obtains µ
ρ̄∆

1/4
tx = 1.98.

This value agrees perfectly with the one which is observed on figure 5 at µzh = 14 i.e. T =

0.6T ∗. This check provides an additional support to our claim that the striped type A phase

is smoothly connected to the homogeneous anapole phase in the limit of large wavelengths.

It is interesting to study the physical features of the ∆tx order parameter. From the

nonrelativistic point of view the time component of the tensor is seen as a vector (i.e. the

time component of the energy-momentum tensor is a vector of momentum). Thus the

phase, which we are describing, is characterized by a polar in-plane vector order parameter

which is also odd under the time reversal transformation

P (∆tx) = −∆tx, T (∆tx) = −∆tx. (4.4)

These features are very different from the d-wave superconducting order parameter which

is parity and time-reversal even. In condensed matter literature one can find a discus-

sion of similar order parameter which is claimed to be present in the pseudogap phase of

cuprates [5] and it is called “anapole moment”. This is a reason why we adopt this name

for the new homogeneous phase of holographic model of d-wave superconductor. There is

though one important difference. Our order parameter is complex and breaks U(1) symme-

try similarly to the superconducting order parameter. Contrary to that there are no indi-

cations that the anapole moment is charged and brakes U(1) electromagnetic group as well.

As we observed in the previous section, the critical temperature of the new phase for

m2 = 4 is larger then that of the SC phase. It is interesting to study whether this is always

the case at any values of m2. One can study the critical temperatures in a perturbative

approach using the fact that the values of the tensor field are small near the transition

point [18]. Taking this fact into account we reduce the problem to the solution of linear

ODE and find the critical temperatures of the anapole phase at various values of m2 as it is

shown on figure 6 (Note that it is inverse temperature which is plotted here). The transition

temperature of the new phase is always higher then that of the d-wave superconducting

phase. Curiously enough it goes to infinity when m2 = 0. One can explain it by noting
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the critical temperature T ∗ when the anapole phase sets in. The normalization of ∆tx is chosen in

analogy with the plots of [16].
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Figure 6. The inverse transition temperatures of the two homogeneous phases: d-wave supercon-

ductor and anapole. The critical temperature of the anapole phase is higher for all allowed values

of m2. The grid line shows m2 = 4, used for calculations in section 3.

that at m2 = 0 the gauge symmetry of the tensor field is restored and the mode which

constitutes the anapole phase reduces to the gauge translation.

If the anapole phase has higher transition temperature, one can expect that it will re-

main thermodynamically preferred even when the temperature is lowered. Nonetheless the

TD potential of the d-wave phase can decrease fast enough to make the SC phase preferred

at some low enough temperature. We check this possibility by calculating the TD potentials

of anapole and d-wave phases in the range of temperatures below transition. For m2 = 4,

as one can see on figure 7, anapole phase remains preferred even for low T and the d-wave

phase just tries to catch up. Similar behavior is seen for m2 = 1.75, 10 and 16 and there are
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Figure 7. The thermodynamic potential density of the homogeneous phases: anapole, d-wave

superconductor and normal (counting from top) depending on the temperature for m2 = 4. The

anapole phase is always thermodynamically preferred.

no signs for any conceptual change in it at lower or higher masses. So we have to conclude

that the d-wave superconducting phase is never stable in the model under consideration.

5 Conclusion

In this work we found several new solutions to the equations of motion of the holographic

model of d-wave superconductor. It is interesting to compare the basic symmetry properties

of the phases of the dual theory associated with these solutions. Firstly recall that the d-

wave superconducting phase with order parameter ∆xy studied in [16] is time reversal

and parity even and homogeneous. The complex order parameter breaks the rotation

symmetry to the discrete set of rotations on π/2 and breaks global U(1) symmetry leading

to the superfluid (superconducting) phase.

The striped phases, which we study in section 3, break the translational symmetry

spontaneously. Each solution describes the phase which is modulated only in one spatial

direction, but one should recall that because the Lagrangian is symmetric upon rotation

interchange of the coordinates x↔ y, the stripes in two transverse directions (i.e. along x-

or y-axis) are completely degenerate. Thus in generic configuration one should expect to

find different domains with the different orientation of the stripes. The mean properties

of such configuration would have discrete symmetry under rotations on π/2, even though

each given domain is symmetric only under rotation on π.

The nonzero values of the component ∆xt in the striped phases break P - and T -

symmetry locally. But one should note that the discrete set of translations remains the

symmetry of the stripes. The action of the parity or time-reversal transformation is equiva-

lent to the overall shift of the stripe on half-period (combined with the gauge transformation

in case of T), i.e. the striped state is symmetric under the combination of P or T and half-

period shift. Hence its response to any macroscopic (insensitive to the shifts of the order

of the wavelength) probe will still be time-reversal and parity even.

– 13 –



J
H
E
P
1
0
(
2
0
1
5
)
1
2
3

As it was already mentioned in section 3, in the striped phases there are no points

where the modulus of the tensor order parameter would vanish. Thus the phase of the

tensor components ∆xy and ∆tx remains correlated along the whole wave profile. This

suggests that such a phase would support at least some features of superconductivity. On

the other hand, the gap in the quasiparticle spectrum should be proportional to the VEV

of the tensor field. As the VEVs of different tensor components oscillate spatially with

zero mean value, it is not clear whether any gap can be observed in the spectrum and this

question certainly deserves further study.

In contrast to the striped phases the anapole phase preserves translations and the mean

value of the order parameter ∆tx is nonzero. Thus parity and time-reversal symmetries

are spontaneously broken even on the macroscopic scales. The in-plane anapole moment

picks a certain direction breaking the rotations symmetry. But similarly to the case with

the stripes, the phases with two perpendicular directions are degenerate, so in the anapole

phase one should expect to observe a number of the domains with different orientation of

the anapole moment with the overall π/2 rotational symmetry.

One important difference between the anapole moment observed in this work and

anapole moment, or loop current order, claimed to be present in cuprates [7] is that the

former is complex. Condensation of this order parameter breaks the global U(1) group

similarly to the superconducting order. On the other hand the loop current order, if it can

be understood as the specific molecular current inside the unit cell, is not expected to be

complex and should preserve U(1).

Our thermodynamic treatment shows that in the present model the anapole phase has

the lowest thermodynamic potential among all studied solutions at all values of the model

parameters. The two types of charge density wave solutions describe the transient phases

which interpolate between the normal phase and two types of the homogeneous condensed

phases. The d-wave SC phase possess dynamical instability which drives the transition to

the anapole phase. Even though this situation is phenomenologically unsatisfactory, we

find it very encouraging that the simple model that we use encompass this wide range of

solutions just due to the nontrivial kinematics of the charged massive symmetric tensor

field. It would be interesting to study possible modifications of the model (i.e. by expanding

the gauge field sector) and observe whether the competition between phases can be induced

by additional interaction and be driven by some parameters of the system. We should also

note here that in more realistic models the interaction with the underlying crystal lattice

could promote the striped phases to be thermodynamically stable and that would make

the phenomenology much more interesting. In this case it would be natural to expect the

charge density waves to be commensurate with the lattice.

We find that generically at large, but finite, wavelengths the given striped phase decays

into the domains of the corresponding homogeneous phase separated by the domain walls.

This shows clearly, that the domain wall exists as a solution to the equations of motion.

One can expect such defects to be formed in the nonequilibrium phase transition processes

by the Kibble-Zurek mechanism. Thus even though the striped phases, that we observed

here, are not thermodynamically stable, they can in principle leave an imprint on the

ground state by being involved in the transition processes. In view of this fact it would be

especially interesting to study the features of the domain walls which are produced this way.
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A Numerical setting for the calculation of the striped phase

Before proceeding to the numerical calculations we rescale the coordinates and the functions

in order to work with dimensionless quantities. The coordinates are rescaled as

z → zh z̃, y → λy ỹ ≡ λ̂zh ỹ. (A.1)

After this redefinition the domain of computation reduces to the unit square. By redefining

the functions we aim to achieve two goals: scale out the charge q and get simple Dirichlet

boundary conditions at the AdS boundary and finite values on the horizon. These are

achieved by the rescaling

ψxy → q−1z̃(3−
√

9+4m2)/2ψ̃xy, (A.2)

ψtx → q−1z̃(3−
√

9+4m2)/2f(z̃)ψ̃tx,

ψxz → q−1z̃(5−
√

9+4m2)/2ψ̃xz,

At →
µ

qzh
f(z̃)Ãt ≡ µ̂f(z̃)Ãt.

With the above redefinitions the boundary conditions (3.5) reduce to the Dirichlet type

ψ̃xy(0, y) = ψ̃tx(0, y) = ψ̃zx(0, y) = 0, Ãt(0, y) = 1 (A.3)

and regularity on the horizon means

ψ̃xy(1, y), ψ̃tx(1, y), ψ̃zx(1, y), Ãt(1, y)− finite. (A.4)

By expanding the equations of motion (3.2) near the horizon and making use of the con-

straint (3.3) we get the following system of nonsingular differential equations on the fields

and their first z−derivatives

1

λ̂2
∂2
ỹ ψ̃xy − 3∂z̃ψ̃xy −

1

2

(
9 + 2m2 − 3

√
9 + 4m2

)
ψ̃xy −

27µ̂

2m2λ̂
∂ỹ(ψ̃txÃt) = 0, (A.5)

1

λ̂2
∂2
ỹ ψ̃tx − 6∂z̃ψ̃tx −

(
9 +m2 − 3

√
9 + 4m2

)
ψ̃tx +

µ̂

2λ̂
∂ỹ(ψ̃xyÃt)−

3

2
µ̂ψ̃xzÃt = 0,
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1

λ̂2
∂2
ỹ ψ̃xz −m2ψ̃xz −

1

2

(
3−

√
9 + 4m2

) ∂ỹψ̃xy
λ̂
− ∂ỹ∂z̃ψ̃xy

λ̂
− 9

2
µ̂ψ̃txÃt = 0,

1

λ̂2
∂2
ỹÃt − 6∂z̃Ãt − (6 + ψ̃2

xy)Ãt +
1

2λ̂µ̂

(
ψ̃tx∂ỹψ̃xy − ψ̃xy∂ỹψ̃tx

)
+

3

2µ̂
ψ̃txψ̃xz = 0.

In the end of the day there are three dimensionless parameters: m2, µ̂ = µzh and λ̂ =

λyzh = 2πzh
ky

, which enter the problem. And we get the solutions for different choices of all

three.

We construct the numerical procedure by approximating derivatives with finite differ-

ences. We use pseudospectral approximation for the derivatives hence we are forced to use

Chebyshev grid in z dimension and equal spacing grid in y-dimension, because y-dimension

is periodic [30]. The grid covers the boundaries of the integration domain, because the

boundary conditions that we use are regular. The grid of the size 20y × 25z proved to be

sufficient for the study of general behavior and free energies of the striped solutions .

We make use of NDSolve’FiniteDifferenceDerivative function in Wolfram Math-

ematica 9 [31] in order to obtain the differentiation matrices. At each step of the Newton-

Raphson procedure we linearize the equations of motion and construct a matrix of the

linear differential operator which acts on the function increments. Being the functional of

the current field values this operator must be recalculated after each step. The resulting

linear algebraic system is solved by means of LinearSolve function. At the final stages of

convergence the operation of inverting the matrix of the linear operator start to introduce

significant numeric errors, so it proved to be more efficient to use LeastSquares func-

tion instead of LinearSolve, which minimizes the mean square value of the equations of

motion at the nodes. Finally, we repeat the Newton-Raphson procedure until the largest

value of the equations of motion becomes numerically small (∼ 10−9) and check whether

the constraint (3.3) is satisfied.

In order to obtain the boundary data we interpolate the discretized functions with

maximal interpolation order and apply then compare the interpolated functions with (3.5).
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