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1 Introduction

Supersymmetric (SUSY) theory has been studied as a possible candidate of new physics, a
solution for the naturalness problem, and an effective theory of superstring. Phenomeno-
logical and cosmological SUSY models have been proposed in many kinds of literature so
far. In such models, the SUSY breaking in the early and the present universe is important
to realize e.g. inflation and dark energy.

Recently, the SUSY breaking model by introducing a nilpotent chiral multiplet X,
which is called the Volkov-Akulov (VA) multiplet [1-3], attracts attention. VA multiplet
satisfies the superfield constraint X2 = 0 [2, 3] and its scalar component X becomes X ~
GG/ FX where G, and F¥X are the fermionic and auxiliary components of X respectively.
Such a multiplet breaks SUSY spontaneously, however, the absence of the scalar component
avoids some problems associated with SUSY breaking scalar fields (sGoldstino) [4-12].
For example, the destabilization of a so-called stabilizer during inflation, and also the
moduli problem caused by the oscillation of sGoldstino can be avoided in models with
a VA multiplet. The VA multiplet is also regarded as an effective action of the anti-D3
brane [13-16], which plays an important role in models of moduli stabilization in superstring
theory, such as KKLT model [17] and LARGE volume scenario [18]. In the context of
the phenomenology, the system with a VA multiplet coupled to minimal supersymmetric
standard model (MSSM) has been also studied in refs. [19-23]

The properties of the VA multiplet has also been studied from the theoretical view-
point [24, 25]. In refs. [26, 27], it is shown that the VA multiplet is an effectively realized
in the decoupling limit of the sGoldstino. Constrained complex linear multiplet has also
been investigated as a Goldstone multiplet [28-30)].

In this work, we construct the action of the VA multiplet coupled to a matter multiplet
and supergravity (SUGRA). There are some literatures in which the action of the VA



multiplet coupled to matter has been studied [19-23], however, most of them are models
in global SUSY, and the action of a VA multiplet in SUGRA is known only in the SUSY
gauge G, = 0 [31-33], which is not suitable for the case where SUSY is broken by some
scalar fields, that is, the Goldstino is a linear combination of the VA fermion G, and
fermionic components of other SUSY breaking multiplets. Therefore, we construct the
action in SUGRA without any SUSY gauge conditions, which would be useful for e.g. an
investigation of the reheating and the gravitino production in inflation models with the
VA multiplet. As we will show, in the case without any SUSY gauge conditions, higher
order interactions associated with the VA fermion appear, which may affect the high scale
phenomena, such as reheating processes in the early universe.

The remaining parts of this paper are as follows. First, in section 2, we show a system-
atic way to construct the action with the VA multiplet, which is somewhat complicated
because of the unusual structure of equation of motion (E.O.M) of the auxiliary field F'X.
As demonstrations of our method, we show the VA action with and without a matter mul-
tiplet in global SUSY case and find that the VA action is reproduced. Then, we construct
the VA multiplet action coupled to SUGRA and a matter multiplet in section 3. Finally,
we conclude in section 4.

2 VA multiplet action in global SUSY

2.1 Case without matter multiplets

First, we discuss the action of the VA multiplet as a demonstration of our systematic
way to construct it. In this section, we use the notation in ref. [34]. The VA multiplet
X = X(y)+v20G(y)+00FX (y), where y* = 2°4i05°0 and a is the index of the Minkowski
spacetime, satisfies a superfield constraint

X2 =o. (2.1)
The constraint can be solved in terms of the scalar component X and we obtain
G2
X=—. 2.2

The action we discuss is

L= /d495(f( + (/ d20fX + h.c.>

= i0,G6°G + FXFX — 0,X0°X + (fFX +h.c.)

- o G2 G2
. _ X =X X
=i0,Ga*G + F* F* — 0, <2FX>8“ <2FX> + (fF* 4+ h.c.) (2.3)
where f is a complex constant.! To obtain the on-shell action, we have to solve the E.O.M
of FX, which can be obtained by the variation of F'X;

G? G? .
FX - 2@5{)282 <2FX> +f=0. (2.4)

!The Lagrangian (2.3), which is realized with K = |X|? and W = fX, describes a general system with
a single nilpotent superfield in global SUSY, because X? =0 and other possible Kéhler and superpotential
terms given by AK = a + (X + X) and AW = «, where o, 3,v are constants, do not contribute to
Lagrangian.



This equation is nonlinear with respect to FX and F X, and then it is difficult to solve
the equation. However, without loss of generality, we can assume that the solution of the
equation takes a form

= A+ BG? + CG* + DG*G?, (2.5)

where A, B, C and D are the complex function of quantities other than G? and G?. The
ansatz can be confirmed by the fact that G, and Gy are the Grassmann number, and the
indices a and & run over only 1 and 2. Then, e.g. G, G® vanish identically. Thus, the
ansatz (2.5) is a general expression of the solution. By substituting the ansatz (2.5) into
the E.O.M (2.4), we obtain the following equation,

A+ BG? + CG? + DG*G?
_ 92G? Co%G? Co%G? _
= —— _G*_ _ G2G2
ARV IV ( aar * 2A2|A|2>
8a(G2)(9aA ~9 OA 9 A2 O, A0 A 9 A2
- - GalC 2 9.
TRy TELCA SR 7115 R (2.6)

Comparing the coefficients of the series of G? and G? on the left-hand side with one of the
right-hand side, we obtain the following set of the solution,

7 o0 3f 220070
A=—-f, B=0, C=- 0°G*, D= 0G0 G-, 2.7
I 17 161" 20
and, therefore, we obtain the exact solution of FX as
—fl1+ G?0*G? - G2G2320282G2> 2.8
(1 a7 T 25

Using the solution, we obtain the on-shell Lagrangian in eq. (2.3),

G?9°G? —

L =1i9,G5°G — | f|* +
el 4|fr2 16|f|6

G*G*0*G?0°G?, (2.9)

which is the same with the result in ref. [24], which is equivalent to the original VA action [1]
as shown in ref. [35].

2.2 Case with a matter multiplet

We extend the VA action given by eq. (2.9) to the one coupled to matter multiplet ® =

d(y) + vV20x(y) + 00F°(y);

L= /d4 (XX + D) + [/CF X+g(<I>))+h.c.]

G2
2FX

= — 0,00 — O, ( ) o® (;;X> +i0,X0%x + 10,G5°G
1
_ {2(f”X + g”)x2 + f'Gx + h.c.}

+ PR 4 FXFX — (FXf 4+ FO(f'X +¢) +hel, (2.10)



where f(®) and g(®) are holomorphic functions of ®, and the primes on f and g denote
the derivative with respect to ¢. In this case, for a technical reason, we first solve the
E.O.M of F? before solving that of FX. Taking a variation for F'?, we obtain

=fX+7 (2.11)
and substituting the solution into eq. (2.10), simplified Lagrangian is written as follow

GZ
2FX

~2
) 0 <2iX) +i0,X0%x + 10,G7*G

L=— aagi)aaé5 — O <
1
—{gﬂX+¢n”hﬂh+hn}—WX+dP
+ FXFX 4+ (FXf 4+ he). (2.12)

To obtain the on-shell action, we next have to solve the E.O.M of FX which can be obtained
by a variation of F'X;

C_TY2 G2 1- _ B GZGvZ |fl’2
FX_ il 2 =2 g o A Y 21
2(FX)2 [8 <2FX) LR fg} = arxp px 7O (2.13)

Performing the same method used to solve eq. (2.4), we obtain the solution of eq. (2.13);

X _ 7 1 (G? G2\ 1l 5 &
=g g (G )12 (5) a7 7 )

GQC_;Q ! £12 =2 w12 "2
“a {ise -+ rar - (o (5) o+ 1) +ne) |
“T6//]F GQGQ@?GQ@QGQ] (2.14)

Substituting the solution into eq. (2.12), we obtain the on-shell Lagrangian in eq. (2.10);
L=—(fP+19') = 0a00"d + i0ax0"x + i0.G5"C

1 //
<f/GX+29HX2 ffG2+h >

62 GQ |f/‘2 , _ f//
782 <_> o 2 2 GZGQ < G2 2 h. >
P17 200, 1T 000200 )
- G“G G*“G*0“G* + h.c.
< T ST e

29292292 ~2 ’fll,z 2/~42. 22 ff” 2,92 2922
wﬂﬁeaacaa 16|f’4GGXX— 16’f’6GGx8G The ).

(2.15)

The Lagrangian (2.15) has not only the higher order terms of G* as in the previous case
but also the higher order interactions between G and the matter fermion x. Such higher
order corrections are suppressed by /|(f)|, which would be the order parameter of the
SUSY breaking. If SUSY breaking scale is sufficiently high compared to the energy scale



of collider experiments, the effects of those interactions are not important, as discussed in
ref. [19]. However, in the early universe, such as the reheating era, the energy scale of the
momenta is much higher than /[(f)|. In such a case, the higher order terms shown in
eq. (2.15) may become important.

3 VA multiplet action in SUGRA

3.1 Case without matter multiplets

In the previous section, we have derived the action of the VA multiplet in global SUSY. In
the following, we discuss the one coupled to SUGRA. Even in such a case, we can derive
the on-shell action through the same procedure we did in the previous section.

To construct the action, we use the conformal SUGRA formulation [36-39],2 with
which we can avoid tedious field redefinition procedure associated with Poincaré SUGRA.
In this section, we use the notation in the ref. [40]. In conformal SUGRA, the constraint
on the VA multiplet can be written as in the global SUSY case:

X% =0, (3.1)

where X is the chiral VA multiplet whose Weyl and chiral weights, denoted by w, and n
respectively, are (w,n) = (0,0).> We can solve eq. (3.1) and obtain

GPLG
X =
2FX 7

(3.2)

where X, PrG, and FX are the scalar, the fermion, the auxiliary components of X re-
spectively, and Py, is a chirality projection operator. The action of the chiral multiplet is
generically given by

S = —3505'0e*K/3]D + [SS’W]F, (3.3)

where Sy denotes the chiral compensator with (w,n) = (1,1), [---]p r denote the D- and
F-term density formulae respectively. K and W are Kahler and superpotential respectively.
Here we choose the following K and W,

K =|x]?, (3.4)
W =fX + Wy,

where f and Wy are complex constants. To fix unphysical parts of the superconformal
symmetry, we put the following conventional gauge conditions [41] on the action (3.3),

_ 1 _
So =S8y =¢eX%  PyY— geK/ﬁXPLG =0, b,=0 (3.6)

*For review, see ref. [40].
3The Weyl and the chiral weights are the charges under the dilatation and U(1)7, which are parts of
the superconformal symmetry.



where we use the Planck unit convention (Mp ~ 2.4 x 10'8 GeV = 1), the first condition
corresponds to the dilatation and U(1)7 ones, the second corresponds to the S-SUSY one,
Prx° denotes the fermionic component of S, b, is the gauge field of dilatation, and the last
condition corresponds to the special conformal boost one. Under these gauge conditions,
the action (3.3) contains the auxiliary fields A4, and F® which are the U(1)r gauge field
and the auxiliary component of Sy respectively. We can eliminate them by E.O.M of them,
and then we obtain the following action:

c :%(R _ G RN + Lsor) — 0 XMX — %(GPLé?G + GPRiG) — H(GPLIXGX + hic.)

1
4
1, = ~ eK/2 - -

- 3(GPLG)(GPRrG) — ——{(2f X + X*W) +h.e.}

3K W | FXP2 1 <eK/2DXWFX n h.c.)

" \}i (0, 0X7"PLG + he.} — %(%PLG)(JJ“PRG)

{ - - 1 - _ _
+ 76ab6d(wa7b¢c)GPR7dG + geade(wa’Vb@Z)c)(XadX - XadX)

16
1 _ 1 _
+ {\/QeK/ 2DxWib,y"PLG + iemwwupmﬂwy + h.c.} , (3.7)
where
1
RI =P <6y + 4ng7ab> Vo, (3.8)

1 _ _ _ _ _ _
Lsar = 16 [‘(¢u%¢p)(¢“7ywp) - 2(¢u7va)(¢“7ljwy) + 4(#’#7“71)1/)(@%7’)@0”)] (3.9)

Taking into account the fact that X = GP.G/ (2FX), we obtain the following E.O.M by
the variation of FX,

_ _ 3 -
FX+f+WoX+§f]X\2—

OX + 3Wof + 3|f°X — fGPLG + (Wg + ;fX> FX

3 1 B . B . B
o FXFX — V(0" PLG) + =P D00 X+ = Vo (P70 X)

2 V2 8 8
_,_LW@/_JM PG+1WXQZP Wlb —Fl(]?—I—WX)’lEP MV¢ ifo
\/§ oY Yud'L B 0 uwl R vy 0 ul LY viFx =Y

(3.10)

As in the case of section 2, we can substitute the ansatz (2.5) to the E.O.M, and obtain

the following set of equations from the each coefficient of the series of GP;,G and GPrG,

A=—f, (3.11)
= —‘jfl’, (3.12)

C= 211212 <G2PIZG) +3Wof + WoA - %VVWWVWPLG)
+ 3Gt Vo (CPEE) + Wb PaG o+ SRR P 0. (319



CWo  COV,.GPrV*G  BWq

P e g o
C?|Vv,GPL,VIG _ B 1 -
— | aa WS+ Wof + Wod — —oth ' VUPLG + wa#m“”wy]
1 3 f 2 fA 7 . _ W — , W B )
CAlAP | ‘A‘ o1 A Velbunts) = 27(—1)%1’1%’7“ by — 273;%1%7“ wV].

(3.14)

These equations uniquely determine the value of A, B, C, and D. Thus, we can obtain the
solution of the E.O.M (3.10). The explicit solution for F*X is complicated, and so we omit
it here.

By substituting the on-shell expression of FX into eq. (3.7), we obtain the on-shell
Lagrangian as

1 - 1 _ _ 1 - _
L=5(R=4R"+ Lscr) - Q(GPLWG + GPrYG) — | f|* + 3[Wo|* — g(GPLG)(GPRG)

Wo ~ 1 .- Wo -
——GP — Hp — ), Pry"" ), + h.c.
+[ fGLGJrﬁf%’Y LG+2% =Y )y, + C]
_ _ 1 _ _ i _ _
- WVM(GPLG)V“(GPRG) - 5(%PLG)(¢“PRG) + Ee“l’p“(%%%)(GPR%G)
— < o GPRGJ}M’}/MPLG—{— LGP[,G(Z“PRW“V@&, +h.C.>
22 f 4f
1 1 - _
— |2, Y(GPrRG)NVPLG + h.c.
m[fwm WGPy c]
n 32|Z ﬂQeWW(@EW@z}p) (GPrGV,(GPLG) — GPLGY ,(GPRG))
GP;.G)(GPrG .
(CRLENCTRO) | Al I + 411 + 2o (3.15)
where C' on the fifth line is defined as
A L F VuGPLVEG 1 -, [
C= 372 [ZWof oF \/5%7 YV, PLG + 27/JuPL'7 Py . (3.16)

The fermion PrG is the Goldstino in this system, and therefore, we take the unitary
gauge PG = 0. Under the gauge condition, the Lagrangian (3.15) takes a very simple
form given by

1 . Wo -
L=5(R=4R + Lsar) — |7+ 3[Wol? + 701%131%7“”% + h-C-] : (3.17)

The Lagrangian (3.17) corresponds to the one in ref. [31] if we set W = 0. This Lagrangian
describes the pure supergravity system containing a graviton, a massive gravitino with
[myo| = [Wol, and a cosmological constant A = —|f[* + 3[Wp|?.



3.2 Case with a matter multiplet

Let us extend the result shown in the previous subsection to the matter coupled one.
Although, in principle, we can construct a system with multiple chiral matter multiplets
and gauge multiplets, we discuss a simple case where there is a single chiral matter multiplet
®. We assume the following Kéahler and superpotential,

K =K(®,®)+|X|% (3.18)
W = f(®)X + g(®), (3.19)

where K (®, ®) is a real function of ® and ®, f(®) and g(®) are holomorphic functions of .
We can obtain the off-shell Poincaré SUGRA action by substituting K and W into eq. (3.3)
with the following superconformal gauge conditions, instead of the ones in eq. (3.6),

_ 1 _ .
So =S8y =ef6 P\ — geK/‘)’(XPLG + KoPrx) =0, b,=0, (3.20)

where K¢ denotes the derivative of K with respect to .
The off-shell Lagrangian is

1 - -1 _ _
L=5(R—§R" + Lar) — K1V V'3 = DK (X PLYx + X7 Pr¥ )
1 ~ 1
+ {QXJPLV’ZIXK(K]JK — §K[KJ[<) -+ h.c.}

e 1
*(X Prx”)(x" Prx*t) <KIJKL - QKIKKJL>

,p

1
76% W[J + KW;+ K;Wr+ KrgW + K[KJW)}ZIPLXJ + h.C.}

/—/‘\
[\3

+ { KV b = TP 0 P

T - 5 i _ e
EE“ paKIj(¢u7V¢p)XJPRVUXI + geﬂypa(@bu'yu@bp)([(lvozl - KJZJ)

1 : 1 ,
+ {2612(D1W1/J,/WPLXI + 56%W¢“PR’W”¢V + h.c.}
_ = 1 _~
+ 3N W[ 4+ Ky P T — S(FRY P Ky + e + (e D;WF),  (3.21)

where I,J---=®, X, 22 =¢, 2X =X, x® =, and x¥ =G and D;W = W; + K;W.
As in the same way performed in section 2 and 3.1, we can solve the E.O.M of the auxiliary
field FX straightforwardly. Therefore, we just show the resultant on-shell action:

1 . -1
L :i(R — Qb,ﬂe“ + Lsar) — Kq,@au(bc‘)“cb — iK{)é(XPLWX + XPRWX)
1 - N -
- §(GPLY7G + GPRYG) — |fI? +3|g]> — K*® |y |

1 1 1 _
+ {2XPLW¢X <K<1><1><1> - 2K<I>Kq>q>> — ZK@GPL&q)G + h.c.}

1

_ _ 1 5
+ Z(XPLX)(XPRX) (Kq»cpci»ci» — 5 BeaKes — Kooa K ®K¢&>&>>



- qu)@(GPLX)(GPRX) - é(GPLGxGPRG)

1

_ f 1 .
= 5 (M XPLx +meyGPrx +hee.) + —= K5 (1u @y Prx + h.c.)

V2

1 - _ 1 - _
- §K¢<I>(¢uPLX)(¢“PRX) - i(quLG)W)“PRG)

i e < P
+ Eeu r Ke3umVpXPrRYo X + EGH p %%%GPR%—G
+ éeﬂw’%/?#%%(K@aUq) ~ K30,®)

T3] f|26“”””<wmuwp> (GPRGV,(GPLG) — GPLGV(GPRG))

1 - 1 .- 1. -
+ 9 —=m -YPrx + —=fv - yPLG + =g, Pry"" 4, + h.c.
{ Jiond aPix+ S50 APLG + a0, + e

4 16

f f

+ ( ngPLG + *mxxXPLXGPLG + 4fmeGPLXGPRG + h.c.
f 4f

1 GP.G - GP
{mGX;¢‘7PLX+g ~

S 2/2

G& : wPLG + h.C.}

DD

— ("}GPLGJJMPRW”% + h.c.) +
4

(GPLG)(GPRG)
41fP?

GPRrG
{mGXmGXJ? + h.C.}

UTPICR + 29 + 4P - K - |

1 _ 1. -
7 AP ~ gab,, Pry™ h.c.
+{2ﬁmcxw Y Lx+4g% rRY! )y, + CH

where

f=eR2y,
— oK/2

Na )Y

g,

Myy = e"?[g" + 2Kag' + Koag + Ko Kog — T3s(g' + Kag),
may = " (1" + Kaf),

e — K20 oK P K P KoK f -T2 (F + K-
Myy = e [f"+2Kef + Kgaf + Ke K f 3o+ Ksf)],
MGy = 6K/2(g’+K<1>9),

1

C=—
22

V,.GPLV'G

17 )
+ §fw,uPL’YM z/}V -
2f

1 7P, oP 1 P
- =V, <G fG> vH <G ?G) {fGPRGxRLv XV <G LG
f

) +h.c.}

= 1 - 1 B
2§ m Y P KAV, Pr.G) + —m -~P
Gf — =1 XPrX — 2\/§¢V77(ML) e ax¥ - vPrx

1
—(myyxPrx +h.c.)

(3.22)



4 Summary

In this work, we have constructed the action of the VA multiplet coupled to matter multiplet
in global SUSY and SUGRA. The scalar component of the VA multiplet is related to its
fermionic and auxiliary components as shown in eq. (2.2) due to the nilpotent condition
X2 = (. Such a constraint makes the E.O.M of the auxiliary field complicated, however,
nonlinear terms in E.O.M are coupled to the fermion bilinear GP,G and (or) GPgrG.
Because of such a special structure of E.O.M, we can solve it in a systematic way, which
we have performed in section 2 and 3.

As shown in egs. (2.15) and (3.22), in cases with a matter multiplet, the higher order
interactions between the VA fermion and the matter fermion appear, which are suppressed
by not the Planck mass but /|(f)|. As we mentioned, such couplings may become impor-
tant for high scale physics, such as the reheating after inflation and the gravitino production
during it. We expect that our construction is useful for a study of the phenomenological
and cosmological consequences of the VA multiplet. For example, the action coupled to
SUGRA enable us to discuss the perturbative and non-perturbative productions of grav-
itino as discussed in refs. [42, 43]

The Dirac-Born-Infeld type action in 4 dimensional A/ = 1 SUGRA is also described
by the system with the VA and gauge multiplets [44]. Our method is also applicable to
constructing the component expression of such an action, which contain the higher order
terms of gaugino. We will study such a system elsewhere.

Note added. While we were completing this work, the paper [45] by Bergshoeff et al.
appeared. They also discussed the model in section3.1 of this paper. In ref. [45], they used
the superconformal gauge condition which is different from ours (3.6). With our choice
of the gauge conditions, the coupling between Ricci scalar and the VA fermion is absent,
while the Lagrangian shown in ref. [45] contains such a non-minimal coupling, therefore
the form of the Lagrangian seems different.
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