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1 Introduction

In long-baseline(LBL) neutrino experiments, the matter effect [1–3] is usually not negligible.

For current LBL accelerator neutrino experiments such as T2K [4, 5], MINOS [6] and

NOvA [7, 8] where the matter densities are almost constant, there is a useful approximate

formula for the transition probability. Taking the same notations as PDG, the formula

is [9]

P (νµ → νe) = 4s2
13c

2
13s

2
23

sin2(1−A)∆

(1−A)2

+8α
JCP
sδ

cos(∆ + δ)
sinA∆

A

sin(1−A)∆

1−A

+4α2s2
12c

2
12c

2
23

sin2A∆

A2
(1.1)

where

A ≡ 2
√

2GFNeE/∆m
2
31, α ≡ ∆m2

21/∆m
2
31 ≈ 0.03, (1.2)

and ∆ ≡ ∆m2
31L/(4E). Ne is the electron number density in matter, about 1.4cm−3NA in

the Earth’s crust.

The formula was originally derived in [10, 11] as a series expansion in α. But the prob-

lem is that due to the non-perturbative behavior near the solar resonance, the expansion

is expected to be valid only when the neutrino energy is well above the solar resonance,

E � 0.34GeV
∆m2

21

7.6× 10−5eV2

1.4cm−3NA

Ne
. (1.3)
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This was emphasized in ref. [11], because the approximation α/A� 1 was used when the

formula was derived. We will reformulate the derivation of the formula in section 2 to show

the problem more explicitly but here we take the solar mixing angle θ12 as a good example

to show the problem. The effective sin 2θ12 in matter, denoted as sin 2θm12, expanded in α

to first order, is [11]

sin 2θm12 ∼ α/A. (1.4)

The solar resonance is at A = α cos 2θ12 ≈ 0.4α so near the solar resonance sin 2θm12 is quite

likely to be larger than 1. As will be shown in section 2, sin 2θm12 > 1 does appear in the

expansion when the energy is lower than 0.34GeV, which makes the calculation invalid.

Originally, sin 2θm12 in the calculation was expected not only less than 1 but also small, i.e.

sin 2θm12 � 1, otherwise the unitarity of the effective mixing matrix will be badly violated,

thereby invalidating the calculation.

Despite the claimed bound (1.3) in [11], in practice this formula works well below the

bound (see figures 6, 7 presented later in this paper). For example T2K has used this

formula in their recent publication [12] because eq. (1.1) exhibits excellent accuracy near

the solar resonance.1

So (1.3) is most likely not the true bound of validity. We would like to know to what

extent the formula is accurate or valid. The main goal of this paper, is to mathematically

demonstrate that there is no lower bound of A for the domain of validity. We will provide

explicit errors of the formula, among which the main error related to the matter effect is

only O(s2
13αA∆2). This implies that the formula is still accurate when A is close to α and

one may apply (1.1) below the bound.

Note that a higher order calculation in the original perturbative approach will not work

since the series in α/A can not converge at the resonance if the branch cut singularity is

not treated carefully. Actually a higher order correction to the formula (1.1) is computed

in ref. [13] but the correction blows up when taking the vacuum limit A→ 0. Thus it can

not give a correct estimation when A is small. This is due to a lack of careful treatment of

the branch cut singularity related to the solar resonance.

Branch cuts in the oscillation system with the matter effect are essentially related

to level crossings [14, 15], but less noticed before. Note that the three eigenvalues of the

oscillation system come from the same cubic equation but they are different. The difference

originates from the different branches in the square roots and cubic roots in the general

solutions of a cubic equation. At a level crossing two of the eigenvalues are very close

to each other which makes the problem quite non-perturbative and this just corresponds

to the starting point of the branch cuts, which are called branch cut singularities. The

branch cut singularities are essentially origins of all non-perturbativities in the oscillation

system. In this paper, we will remove the singularity corresponding to the solar resonance

in our analytic calculation by transformation of the eigenvalues to some singularity-free

variables and compute the S-matrix using the Cayley-Hamilton theorem. In this way the

1Note that for T2K, the energy range is 0.1-1.2 GeV and the spectrum peaks at 0.6 GeV [5]. A part of

the current measured range 0.1-0.34 GeV is below the bound (1.3) which would lead to sin 2θm12 > 1 in the

expansion.
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conventional formula will be proven to be accurate below the bound (1.3). The relation

between the branch cut singularities and level crossings will be discussed in detail and thus

improve our understanding of the matter effect in neutrino oscillation [16–29].

As a byproduct of our analysis, a new approximate formula is derived in this paper,

with better accuracy. Though the exact form is a little more complicated than (1.1), for

practical use in neutrino simulation, it is useful and covers most aspects. This is important

considering that simulation of LBL experiments and performing χ2-fits require a fast and

simple method to compute a large number of oscillation probabilities. Therefore even

though the numerical calculation is always viable, there are still many studies on analytic

approximation formulae for neutrino oscillation in matter [13, 30–41].

This paper is organized as follows. In section 2, we reformulate the original derivation

of the formula (1.1) and numerically show the accuracy of the α-expansion in the case of

T2K. We will see that the α-expansion for some effective parameters is actually invalid

below 0.34GeV in T2K while the final result of the probability is very accurate. Then in

section 3 from the viewpoint of singularities, we show that non-differentiable singularities in

many parameters originate from the branch cut and result in the failure of the α-expansion.

In section 4 we solve the problem rigorously and then compute the analytical error of (1.1).

Based on the calculation in section 4, we also propose an alternative to the conventional

formula. Their accuracies are numerically verified, which will be shown in section 5. Finally

we conclude in section 6.

2 The α-expansion and the accidental accuracy

In this section, we first introduce analytic diagonalization of the 3 × 3 effective Hamilto-

nian, which has early been done by Zaglauer and Schwarzer [42] without any approximation.

Then we show the α-expansion of the result from Freund’s calculation [11] and compare

the approximate result with the exact result (though complicated but numerically pro-

grammable) to see how much it deviates from the exact result. We will show that the

α-expansion result of effective neutrino parameters are quite inaccurate and even invalid

near the solar resonance but the final result (i.e. the assembled oscillation probability) from

these parameters is very accurate.

Neutrino oscillation in matter is subjected to the Schrödinger equation in the flavor

space,

i
d

dL
|ν(L)〉 = H|ν(L)〉, (2.1)

where |ν(L)〉 denotes the flavor state of the evolving neutrino at a distance of L from the

source and H is the Hamiltonian represented by the 3× 3 matrix in the standard neutrino

oscillation framework,

H =
1

2E
U.

m2
1

m2
2

m2
3

 .U † +
√

2GFNe

 1

0

0

 . (2.2)

Here U andmi’s are neutrino mixing matrix and masses in vacuum respectively. The second

term in eq. (2.2) comes from the matter effect. Without the second term (i.e. Ne = 0), the
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solution of (2.1) is quite simple since the first term has already been diagonalized. So in

vacuum, the transition amplitude of να → νβ is just

Sαβ = Uα1U
∗
β1 + Uα2U

∗
β2e

iα∆ + Uα3U
∗
β3e

i∆. (2.3)

Here Sαβ is usually referred to as the S-matrix in neutrino oscillation. For neutrino oscil-

lation in matter, we need to diagonalize (2.2) to obtain the effective mixing matrix Ũ and

the effective neutrino masses m̃k, defined as

H =
1

2E
Ũdiag(m̃2

1, m̃
2
2, m̃

2
3)Ũ †. (2.4)

Then Ũ and m̃k, combined in the way similar to (2.3), gives the S-matrix in matter.

The 3 × 3 matrix H can be analytically diagonalized by solving first the eigenvalues

and then the corresponding eigenvectors, though the computation is complicated.

The process can be a little simplified if we extract a dimensionless matrix M from

H =
m2

1

2E
+

∆m2
31

2E
M, (2.5)

and define

Md = U †MU. (2.6)

Then Md is

Md =

 0

α

1

+AuT .u, (2.7)

where u ≡ (Ue1, Ue2, Ue3) is the first row of U and is real by proper rephasing U . The cubic

equation for the eigenvalues of Md is

λ3 + bλ2 + cλ+ d = 0, (2.8)

with

b = −1−A− α; c = A−Au2
3 + α+Aα−Au2

2α; d = −Aαu2
1. (2.9)

The eigenvalues of Md (Note that M has the same eigenvalues as Md) solved from eq. (2.8)

are

λk+1 = −1

3
(b+ e−2kπi/3∆3 + e2kπi/3∆3), (2.10)

where k = 0, 1, 2 and

∆0 = b2 − 3c; ∆1 = 2b3 − 9bc+ 27d; ∆3 =

(
∆1 + i

√
4∆3

0 −∆2
1

2

) 1
3

. (2.11)

Then the effective neutrino masses defined in eq. (2.4) are given by

m̃2
k = m2

1 + ∆m2
31λk, (2.12)

which can be expressed in terms of α and A explicitly according to eqs. (2.9), (2.10)

and (2.11).
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Then Ũ can be computed by solving the corresponding eigenvectors of λk. The reader

may refer to [42] for the full form of eigenvectors. Once Ũ is computed, we can extract

effective mixing angles from the standard parametrization of Ũ . All effective parameters

(masses and mixing angles) expanded in α are given below [11]:

λ1 =
1

2
(1 +A− C) +

α(C + 1−A cos 2θ13)s2
12

2C
+O(α2), (2.13)

λ2 = αc2
12 +O(α2), (2.14)

λ3 =
1

2
(1 +A+ C) +

α(C − 1 +A cos 2θ13)s2
12

2C
+O(α2), (2.15)

where

C =
√

(1−A)2 + 4As2
13. (2.16)

The effective mixing angles in matter are (we use a superscript m to distinguish them from

vacuum parameters)

sin2 2θm13 ≈
sin2 2θ13

C2
+ α

2A(cos 2θ13 −A)s2
12 sin2 2θ13

C4
, (2.17)

sin 2θm12 ≈
√

2αC sin 2θ12

Ac13

√
C(−A+ C + cos 2θ13)

, (2.18)

sin 2θm23 ≈ sin 2θ23 + α cos δ
2A sin 2θ12s13 cos 2θ23

1 + C −A cos 2θ13
, (2.19)

sin δm ≈ sin δ(1− α cos δ

tan 2θ23

2A sin 2θ12s13

1 + C −A cos 2θ13
). (2.20)

In vacuum it is straightforward to get the expansion

P vac = 4s2
13c

2
13s

2
23 sin2 ∆ + 8

JCP
sδ

α∆ cos(∆ + δ) sin ∆ + 4s2
12c

2
12c

2
23α

2∆2. (2.21)

So one can replace the corresponding vacuum parameters in (2.21) with the effective pa-

rameters in matter given above. This will produce the conventional formula (1.1).

Note that the above α-expansion of effective parameters requires not only α � 1 but

also α/A � 1. If we look at the effective mixing angles in (2.17)–(2.20), we find that the

α-expansion of sin 2θm12 may have a problem at α/A ∼ 1. In (2.18) we see sin 2θm12 ∼ α/A

which implies the correction from α is amplified by 1/A, so the expansion may be not

accurate if A is small. We compare it with the exact value from [42] in figure 1, where

the energy range is 0.1 − 1.2GeV and matter density is 1.3g/cm3 (the case of the T2K

experiment). From figure 1 we see the expansion formula fits the exact solution well only

at E > 0.5 GeV but deviates from it quickly when E < 0.5GeV. More seriously, when the

energy goes below 0.35 GeV then sin 2θm12 will be larger than 1 (the gray region). This is

because the unitarity of Ũ is badly violated.

The other parameters suffering from the same problem are λ1 and λ2. We plot them

with the exact solutions in figure 2. We see that below 0.3 GeV the effective mass square

difference ∆m̃2
21 = m2

3(λ2 − λ1) from the exact solution (solid curves) can be several times

that of the α-expansion (dashed curves), which also implies invalidity of the α-expansion

at low energies.
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Α-expansion

exact

0.10 1.000.500.20 0.300.15 0.70

0.5

1.0

1.5

2.0

EHGeVL

si
n

2
Θ

1
2

m

Figure 1. Compare the approximate formula of sin 2θm12 with the exact solution. This figure shows

the invalidity of the α-expansion of sin 2θm12 in the case of T2K. When E < 0.5GeV, it becomes

inaccurate and for E < 0.35 GeV the result is completely invalid since the sine value should not be

larger than 1(the gray region).

Λ2 HΑ-expansionL

Λ2 HexactL

Λ1 HΑ-expansionL

Λ1 HexactL

0.10 1.000.500.20 0.300.15 0.70

0.02

0.04

0.06

0.08

0.10

EHGeVL

Λ
1
,
Λ

2

Figure 2. Compare the approximate formula of the eigenvalues λ1 and λ2 with the exact solution.

But interestingly, the formula of oscillation probability assembled from these inaccurate

and even invalid pieces is very accurate, as shown in figure 3 where we use the same energy

range and matter density as figure 1 and figure 2.

One argument might be that, the accuracy of P is because sin 2θm12 does not appear

at the leading order (LO) of (1.1), but only at the next-to-leading order (NLO) and the

next-to-next-to-leading order (NNLO) which are of order α1 and α2, respectively. This

suppresses the effect of the inaccuracy from sin 2θm12 shown in figure 1. But in figure 3

we see that at the second and third peaks (from right to left), the NLO and NNLO are

comparable to the LO so the accuracy can not be explained by the NLO suppression.

It might be expected that the calculation at a higher order of α can explain this by

finding some cancellations between errors. However, at a higher order, the accuracy in

figures 1, 2 turns out to be improved very little. Actually, as will be discussed in the

next section, there is an underlying problem that some variables in the calculation are not
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LO HΑ0L

NLO HΑ1L

NNLO HΑ2L

LO+NLO+NNLO

Pnumerical

L=295km HT2KL

0.10 1.000.500.20 0.300.15 0.70

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

EHGeVL

P

Figure 3. The plot shows that the conventional formula (blue solid curve) given by (1.1) is very

accurate when used in T2K, in contrast with figure 1 and figure 2 where those effective parameters

used to compute the probability are very inaccurate. All three order contributions (α0, α1 and α2)

are also plotted (dashed curves) to show that all of them are indispensable to make (1.1) accurate

in T2K.

differentiable at α = A = 0. For these variables, the expansion series including α/A can

not even converge if α/A & 1. That is why a higher order calculation can not solve the

accuracy problem.

3 Non-differentiabilities, singularities and branch cuts in the oscillating

system

To reveal the key problem in the expansion, we start from an oversimplified but heuristic

problem, series expansion of the following function

g(α,A) =
√
α2 +A2. (3.1)

If α is small, but A is relatively not, then we can expand it in α,

g(α,A) = A+
α2

2A
+ αO(

α3

A3
). (3.2)

Here we see α/A � 1 is necessary to make eq. (3.2) accurate. If A is much smaller than

α, then we can expand it in A as g(α,A) = α + A2/(2α) + · · · . But what if A is close to

α? One may think that if A is close to α, then both are small so we can make a double

expansion of the function,

g(α,A) = c0 + c1α+ c2A+O(α2, αA,A2), (3.3)

where c0 = g(0, 0), c1 and c2 are the partial derivatives ∂αg and ∂Ag at α = A = 0.

However, we cannot expand
√
α2 +A2 in this way because the partial derivatives c1 and c2

do not exist (as one can check explicitly). Geometrically this is easy to understand since

g =
√
α2 +A2 is a cone in the α − A − g space. Expansion at the tip of the cone will

certainly fail.

– 7 –
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-1.0 -0.5 0.0 0.5 1.0 1.5 2.0

-2

-1

0

1

2

Α

Λ
k

Figure 4. The three eigenvalues given by eq. (2.10) as a function of α. In the left plot, the matter

effect parameter is A = 0.1, corresponding to E = 1.2GeV. In the right plot we take the limit

A→ 0.

Actually the function (3.1) does exist in the eigenvalues of the oscillation system2 so

in the original derivation of (1.1) α/A� 1 has to be assumed. If we use formulae derived

from such an expansion but simply ignore the condition α/A� 1, then we are at the risk

of getting total wrong results, such as sin 2θm12¿1 shown in figure 1.

So basically the question is why for the oscillation probablity this problematic expan-

sion works very well. This will be answered next by branch cut singularities.

First we look at the functions λk(α) which are defined by the exact solution of eigen-

values (2.10) and vary with α, as shown in figure 4. Note that we consider λ’s as functions

of α rather than A (or E), since they are expanded with respect to α.

The left plot in figure 4 shows that the eigenvalues can be very close to another at level

crossings (corresponding to resonances), but they never really go across another. They turn

to different directions at level crossings which implies the behavior near the resonance is

quite non-perturbative.

As we suppress A close to zero, the curvatures at those turning points in figure 4

become larger and larger. Finally the curvatures go to infinite when A→ 0, which makes

the curves turn suddenly at some points, then some singularities emerge. The right plot

in figure 4 shows the A → 0 limit. In this limit, the eigenvalues are continuous but not

differentiable functions of α.

In the left plot of figure 5, we plot λ1 and λ2 as functions of α and A. It shows that

there is a singularity (here we mean non-differentiable singularity) in the eigenvalues. The

singularity is intrinsic and can not be removed by proper ordering of eigenvalues. So this

implies that double expansion in α and A does not work.

The intrinsic singularity in figure 5 is the kernel of the non-perturbativity problem in

the oscillation system. It actually comes from a branch cut singularity. From eqs. (2.10)

and (2.11) we see that λ1,2,3 can be analytically expressed in terms of b, c and d and then

2The eigenvalues (and thus the corresponding oscillation parameters) contain more complicated square

roots like
√
α2 +A2c213 − 2αAκ where κ ' 1/3 (see, e.g., calculation in [32]), but the problem caused by

α ∼ A in the expansion is essentially the same as the simplified one in (3.1).

– 8 –
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Figure 5. Singularity in the eigenvalues and its origin from branch cut singularity. In the left

plot the eigenvalues λ1 and λ2 from (2.10), as functions of α and A, have a singularity at (0,0).

The singularity originates from the branch cut in (2.11). In the right plot we show the branch cut

singularity of ±
√
z where z = x+ iy.

further in terms of α, A and u according to (2.9). They look like smooth analytic functions

everywhere but they are actually not. Note that there is a square root and a cubic root

in (2.11). Functions like
√
z or z1/3 have branch cut singularities which make them not

analytic3 on the complex plane.

In the right plot in figure 5 we show the two branches of ±
√
z where z ≡ x + iy

connecting with each other at the branch cut (the line y = 0 for x < 0). At x = 0 which is

the end of the branch cut, there is a singularity. As one can check from (2.10) and (2.11),

the branch cut singularity just corresponds to the singularity in the eigenvalues shown in

the left plot.

4 Solution

Identifying that the singularity in the eigenvalues originates from the branch cut singularity

makes a crucial step to solve the problem, since all branch cut singularities can be easily

removed if the multi-branches collapse to one. For example, the branch cut singularity in√
z will disappear when it is squared, i.e. (

√
z)2 makes the two branches collapse and is

singularity-free. Once the singularity is removed, α/A will not appear any more because

1/A will be absorbed by some continuous and smooth functions which we will see below.

3A complex function g(z) is analytic if and only if its Taylor series about z0 converges to the function

in some neighborhood for every z0 in its domain.

– 9 –



J
H
E
P
1
0
(
2
0
1
5
)
0
9
0

After the singularity problem is solved, we will mathematically show the conventional

formula is accurate near the solar resonance.

The solution of the singularity problem can be summarized by the three key steps

below:

1. Use the Cayley-Hamilton theorem [43–45] to express the S-matrix only in terms of

the eigenvalues λ1,2,3. The eigenvectors are not needed.

2. The singularity still exists in the eigenvalues but can be partially removed by the

transformation

λ± =
1

2
(λ1 ± λ2), (4.1)

where it will be shown that λ+ and λ2
− are singularity-free, though the singularity

still exists in λ− since it is a branch cut singularity.

3. It turns out that λ− only appears in cosine function and the following function

f(x) ≡ sinx

x
, (4.2)

where x is proportional to λ−. Note that f(x) is smooth everywhere, even at x = 0.

Since f(x) = 1− x2

6 + x4

120 + . . . and cosx = 1− x2

2 + x4

24 + . . . are actually functions

of x2 ∝ λ2
− which is singularity-free, the singularity is removed.

In short, we will first make the S-matrix only depend on (λ1, λ2, λ3) and then after the

transformation from (λ1, λ2, λ3) to (λ2
−, λ+, λ3), the singularity in the S-matrix will be

explicitly removed. Next we will show the calculation in detail.

The Cayley-Hamilton theorem is a theorem in linear algebra which states that if p(λ) is

the characteristic polynomial of a matrix A [for example the left-handed side of eq. (2.8)],

then substituting the matrix A for λ in this polynomial results in the zero matrix, i.e.

p(A) = 0. Take the example of eq. (2.8), this means M3 + bM2 + cM + d = 0 or

M3 = −(bM2 + cM + d). (4.3)

This implies eM = I +M +M2/2! + . . . can be expressed by a polynomial of M with finite

terms since all Mn with n ≥ 3 can be converted to linear combinations of I,M,M2 by

eq. (4.3). So we have

e−itM = s0I + s1M + s2M
2, (4.4)

where we put a −it to be used later. The coefficient s0, s1 and s2 can be determined in

various methods [43] such as the Lagrange interpolation or the Newton interpolation. They

have been computed in [44, 45],

s0 =
−1

∆λ
[e−itλ3λ1λ2(λ1 − λ2) + e−itλ1λ2λ3(λ2 − λ3) + e−itλ2λ1λ3(λ3 − λ1)], (4.5)

s1 =
1

∆λ
[e−itλ3(λ2

1 − λ2
2) + e−itλ1(λ2

2 − λ2
3) + e−itλ2(λ2

3 − λ2
1)], (4.6)

s2 =
−1

∆λ
[e−itλ3(λ1 − λ2) + e−itλ1(λ2 − λ3) + e−itλ2(λ3 − λ1)], (4.7)

– 10 –
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where

∆λ ≡ (λ1 − λ2)(λ2 − λ3)(λ3 − λ1). (4.8)

From eq. (2.1) and (2.5), the S-matrix is

S = e−iHL = e−i
m2

1L

2E e−2i∆M , (4.9)

where

M = U

 0

α

1

U † +

A

0

0

 . (4.10)

So we can identify t = 2∆ to use eq. (4.4) directly.

Now the transition amplitude of νµ → νe is Seµ = s0I12 + s1M12 + s2(M2)12 but

because I is an identity matrix, Seµ can be written as two terms

Seµ = s1M12 + s2(M2)12, (4.11)

which implies we do not need to compute s0 for the appearance probability.

The denominator ∆λ in s1 and s2 is possible to be zero, but we will show next that s1

and s2 are not divergent at ∆λ = 0 and smooth (differentiable) everywhere. For example

the singularity from λ1 − λ2 = 0 can be removed by the transformation λ± = 1
2(λ1 ± λ2).

This singularity is the only one that confronts us in the energy range of current experiments.

According to Vieta’s formulas for a cubic equation,

λ1 + λ2 + λ3 = −b, λ1λ2λ3 = −d, (4.12)

we have λ1 + λ2 = −b− λ3 and λ1λ2 = −dλ−1
3 . Therefore

λ+ =
1

2
(−b− λ3), λ2

− = λ2
+ + dλ−1

3 , (4.13)

where b, d are apparently free from the singularity [as shown in eq. (2.9)] and λ3 is also

singularity-free (shown in figure 4, see also the proof in the appendix). So λ+ and λ2
− are

singularity-free. Note that, however, λ− has a singularity originating from the branch cut

singularity, which can be seen from figure 5.

After the transformation λ± = 1
2(λ1 ± λ2), s1 and s2 are given by

s1 =
−2λ+e

−itλ3 + e−itλ+ [2λ+ cos(λ−t) + it(λ2
+ + λ2

− − λ2
3)f(λ−t)]

λ2
3 − 2λ+λ3 − dλ−1

3

, (4.14)

s2 =
e−itλ3 + e−itλ+ [− cos(λ−t) + it(λ3 − λ+)f(λ−t)]

λ2
3 − 2λ+λ3 − dλ−1

3

. (4.15)

We see they depend only on λ3, λ+ , λ− and d which are all continuous and smooth

functions except for λ−. But since λ− only appears in cos(λ−t) and f(λ−t) which are

actually functions of λ2
− ( note that cos(x) = 1− x2

2 + x4

24 + . . . and f(x) = 1− x2

6 + x4

120 + . . .),

we come to the conclusion that s1 and s2 are continuous and smooth functions of α and A.

– 11 –
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Now that we have expressed the S-matrix in terms of (λ3, λ+, λ
2
−) and thus removed

the singularity, expansion in α will not suffer from any problems. The α/A appears in

section 2 will not appear any more if we use eqs. (4.14)–(4.15) to compute the probability.

Define

p = Ue3U
∗
µ3, q = Ue2U

∗
µ2, (4.16)

we have

Seµ = p[s1 + s2(1 +A)] + qα[s1 + s2(α+A)]. (4.17)

We call the two terms in eq. (4.17) as p term and q term respectively. From eqs. (4.14)–

(4.15) we have

p term =
p

λ2
3 − 2λ+λ3 − dλ−1

3

[
e−itλ3(λ3 − α)− e−itλ+ cos(λ−t)(λ3 − α)

+ite−itλ+f(λ−t)(λ+λ3 + αλ+ − d− αλ3)
]
, (4.18)

q term =
qα

λ2
3 − 2λ+λ3 − dλ−1

3

[
e−itλ3(λ3 − 1)− e−itλ+ cos(λ−t)(λ3 − 1)

−ite−itλ+f(λ−t)(λ
2
3 − 2λ+λ3 − dλ−1

3 + (λ3 − 1)(λ3 − λ+))
]
. (4.19)

So far we have not taken any approximation. Then we will use the approximation

λ3 = 1 +O(s2
13A), (4.20)

which is derived in the appendix. With this approximation, from eq. (4.13) we have

2λ+ = A+ α+O(s2
13A), λ2

− = λ2
+ −

Aαc2
12c

2
13

1 +O(s2
13A)

. (4.21)

Since the p term and q term have been expressed in terms of singularity-free quantities λ3,

λ+ and λ2
−, we can use (4.20), (4.21) to compute them. The calculation is straightforward

(see the appendix) and the result is

p term = p
e−2i∆ − e−2iA∆

1−A
+O(∆s3

13A) +O(∆2s13αA), (4.22)

q term = −2iqαe−i(A+α)∆ sin(Ā∆)

Ā
+O(∆αs2

13A), (4.23)

where

Ā ≡
√

(A+ α)2 − 4Aαc2
12c

2
13. (4.24)

The oscillation probability is

|p term + q term|2

= |pe
−2i∆ − e−2iA∆

1−A
− 2iqαe−i(A+α)∆ sin(Ā∆)

Ā
+O(∆s3

13A) +O(∆2s13αA)|2

= P (A) +O(s4
13A∆) +O(s2

13αA∆2), (4.25)
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where P (A) is defined as

P (A) = |pe
−2i∆ − e−2iA∆

1−A
− 2iqαe−i(A+α)∆ sin(Ā∆)

Ā
|2. (4.26)

To derive (1.1), we need to expand the modulus squared of (4.26),

P (A) = |p term|2 + 2Re[p term× q term] + |q term|2, (4.27)

where |p term|2, |q term|2 and the cross term are computed in the appendix and the result is

|p term|2 = 4s2
13c

2
13s

2
23

sin2(1−A)∆

(1−A)2
, (4.28)

|q term|2 = 4α2s2
12c

2
12c

2
23

sin2(A∆)

A2
+O(α4∆4) +O(Aα3∆4) +O(α2s13∆2)), (4.29)

2Re[p term× q term] = 8α
JCP
sδ

cos(∆ + δ)
sinA∆

A

sin(1−A)∆

1−A
+O(αs2

13∆) +O(s13α
2∆).

(4.30)

Now the conventional formula (1.1) can be analytically justified near and below the

solar resonance. Here we denote it as P (B) . We can see that the first and last terms of PB

just correspond to eqs. (4.28), (4.29) respectively and the middle term in P (B) corresponds

to the cross term (4.30). Combine the analytic errors, we have

P (B) − P (A) = O(s2
13α∆) +O(s13α

2∆2) +O(α3A∆4) +O(α4∆4), (4.31)

which implies that the conventional formula is accurate up to the O-terms above and the

O-terms in (4.25). We see there is no α/A in all these O’s, so we draw the conclusion that

the bound (1.3) which originally requires α/A� 1 can be safely removed. The conventional

formula is still accurate without this bound, as long as these O-terms are small.

According to eq. (4.25), the error of P (A) is δP (A) = O(s4
13A∆)+O(s2

13αA∆2). Taking

T2K as an example, for E = 0.25GeV which is below the conventional domain of validity,

we have A ' 0.02 and ∆ ' 3.7. This gives s2
13αA∆2 ' 2 × 10−4 and s4

13A∆ ' 4 × 10−5.

The error is very small and the dominant correction would be O(s2
13αA∆2) if we want to

improve the accuracy. Actually, if we only concern ourselves with the ∆ & 1 region, then

O(s2
13αA∆2) is larger than O(s4

13A∆) since s2
13α ' s4

13. Therefore we expect that typically

O(s2
13αA∆2) is the principal source of the error of P (A). For the same set of parameter

values, the four terms in eq. (4.31) have the values, s2
13α∆ ' 3×10−3, s13α

2∆2 ' 2×10−3

and α3A∆4 ' α4∆4 ' 1 × 10−4. So the dominant errors of P (B) are O(s2
13α∆) and

O(s13α
2∆2). Note that they do not depend on A, which implies that the main source of

inaccuracy of P (B) is not due to inadequately accounting for the matter effect contribution,

but rather than due to an insufficient expansion of the small phase α∆. Though the phase

α∆ is small, terms quadratic in α∆ would not be negligible if we want to improve its

accuracy. In conclusion, the dominant errors of P (A) and P (B) are given by O(s2
13αA∆2)

and O(s2
13α∆) +O(s13α

2∆2), respectively.
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Figure 6. A comparison of the approximate oscillation formulae with the numerical solution

to (2.1) in the T2K case. The left plot shows that all these approximate formulae are very accurate

and the errors are negligible for practical use. The right plot shows that the residuals defined as

|δP | = |P−Pnumerical| are consistent with our analytic estimation of the error, which are represented

by green and yellow shades for δP (A) and δP (B) respectively.

5 Numerical verification

As our study of the problem is originally motivated by the fact that T2K covers the solar

resonance, we would like to numerically verify our analysis in that case first. The matter

density in T2K is ρ = 2.6g/cm3 [12] so we take the electron density to be Ne = 1.3NA/cm3

under the assumption that for matter Z/A = 1/2 in average.

Figure 6 shows that both P (A) and P (B) are accurate enough for practical use while the

new formula P (A) has better accuracy than the conventional formula P (B). We also plot the

analytic errors according to (4.25) and (4.31) in the right panel of figure 6, using light green

and yellow shades. The actual residuals defined as |δP | = |P − Pnumerical| where Pnumerical

is the numerical solution are well compatible with analytic estimation, which implies the

errors are correctly estimated. Therefore figure 6 verifies both P (A,B) and δP (A,B) in the

T2K case.

Besides T2K, we also show the accuracies of these formulae in other accelerator neu-

trino experiments. The information of the baselines and neutrino energies are listed in

table 1 and for simplicity we take the same matter density as T2K for all the other ex-

periments, since the neutrino beams in these experiments only go though the earth crust.

We see again that in current or future accelerator neutrino experiments, the formulae are

accurate enough for practical use and the errors are well described by our analytic estima-

tion.

Although computers are becoming more powerful, it is still desirable to have efficient

methods of computation. For example, the χ2-fit in a high dimensional parameter space

(including both oscillation parameters and experiment parameters) is always extremely

time-consuming. When nuisance parameters are being marginalized, the likelihood func-

tion has to be invoked an enormous amount of times to complete a sub-process of mini-

mization (only for the frequentist treatment, the Bayesian approach usually needs much

more computations). The package GLoBES [48, 49] which was designed for simulation of
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Experiments L/km E/GeV A(E/GeV) Refs

MOMENT 150 ∼ 0.3 0.024 [46]

T2K 295 0.6 (0.1→ 1.2) 0.048 (0.008→ 0.096) [4, 5]

MINOS 735 3 (1→ 6) 0.24 (0.08→ 0.48) [6]

NOvA 810 ∼ 2 0.16 [7, 8]

LBNE 1300 ∼ 2.5 0.20 [47]

Table 1. Baseline lengths and neutrino energies of current and future accelerator neutrino ex-

periments. For T2K and MINOS there are both peaks and ranges (in parentheses) of neutrino

energies according to the references while for the other experiments we only show the general ener-

gies. The electron density is Ne = 1.3NA/cm3 in our calculation, so we also show the values of A

corresponding to the energies.

neutrino oscillation experiments has optimized the diagonalization procedure [50] combin-

ing the QL decomposition with additional developed algorithms. This is not necessary for

oscillations in constant density matter, where a simple analytical formula performs better

(GLoBES allows users to replace the probability engine with a user-defined function). In

this case, we recommend the use of P (A) instead. A simple test on Mathematica 8.0 with

Intel Core i7 CPU shows that 105 evaluations of P (A) and P (B) cost4 4.7 and 5.6 seconds,

which implies P (A) can be computed at a speed not slower than P (B).

Finally there is one issue related to the solar resonance to be discussed. Strictly

speaking, the matter effect can be safely regarded as a small perturbative effect only if

2
√

2GFNeE is much less than ∆m2
21 (A� α), i.e. only the region between the vacuum limit

and the solar resonance can be regarded as the truly small-A region, where no physics can

be changed greatly by the matter effect. Typically LBL accelerator neutrino experiments

are in the region between the solar resonance and the atmospheric resonance which we can

refer to as medium-A region. Note that originally A can not be treated perturbatively in

the medium-A region [11]. From the small-A region to the medium-A region, the solar

mixing will experience a resonance. It is interesting that, according to the formulae we

derived , the contribution from the matter effect passes through the resonance gradually

without showing any resonances, despite the solar mixing being affected drastically in that

region (note that the solar mixing has sizable contributions to these experiments). In other

words, the region with a perturbative matter correction can be extended from the small-A

region to the medium-A region for current LBL accelerator neutrino experiments.

6 Conclusion

The conventional formula obtained by an expansion in the mass hierarchy parameter α =

∆m2
21/∆m

2
31 ≈ 0.03 turns out to be very accurate near the solar resonance, as shown

in figure 3 though the effective masses and effective mixing angles computed in the α-

4For compiled languages which are used in practical simulation such as the C-based GLoBES package,

the speed will be about several hundred times faster. But the ratio of the speeds of computing P (A) and

p(B) varies little for different machines or different languages.
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Figure 7. Similar plots to figure 6 but for some other accelerator neutrino experiments. For more

details, see the T2K case in figure 6.

expansion are inaccurate or even invalid at this region, as shown in figure 1 and figure 2. So

it is interesting that the intermediate inaccuracies cancel each other out in the final result.
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We have shown that the inaccuracies are because the expansion is too close to the

branch cut singularity in the eigenvalues. This singularity is inherent in the eigenvalues

so it cannot be removed by interchanging eigenvalues. But certain combinations of them

such as their sum of the eigenvalues λ1 + λ2 do not have the singularity, and the oscilla-

tion probability only depends on these singularity-free combinations. By computing the

probability in this way, we have analytically proven that the conventional formula is still

accurate near the solar resonance.

A new oscillation formula P (A) in (4.26) which might be practically useful is derived

when we try to prove the accuracy of the conventional one. Both the conventional and the

new formulae are very accurate in various accelerator neutrino experiments for baseline

lengths varying from 150km (MOMENT) to 1300km (LBNE), as shown in figures 6 and 7.

We have also estimated the analytic errors for these formulae.

A Some details of analytic calculations

A.1 Simplify the p term and q term

Here we show how to simplify the p term and q term step by step. All the approximations

in the calculation should be analytically treated so we use O() instead of ≈.

The first result we will derive is eq. (4.20). Note that the cubic equation (2.8) has the

following identity

b+ c+ d = As2
13(α− 1)− 1, (A.1)

which provides a fast way to compute λ3 as follow. We assume λ3 = 1 + x with x� 1 and

replace the λ in the cubic equation (2.8) with 1 + x. Then the leading order vanishes and

the next-to-leading order(NLO) gives

3x+ x(2b+ c) +O(x2) = As2
13(1− α), (A.2)

which implies x = O(s2
13A) while the explicit form of x is not important here.

Therefore from eq. (4.13) we have

2λ+ = A+ α+ x, λ2
− = λ2

+ − λ1λ2, λ1λ2 =
Aαu2

1

1 + x
, (A.3)

so the q term can be greatly simplified,

q term =
qα[O(∆x) + ite−itλ+f(λ−t)(λ

2
3 − 2λ+λ3 − dλ−1

3 + x(λ3 − λ+))]

λ2
3 − 2λ+λ3 − dλ−1

3

= −itqαe−itλ+f(λ−t) +O(α∆x)

= −2iqαe−i(A+α+x)∆ sin(Ā∆)/Ā+O(α∆s2
13A), (A.4)
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where Ā ≡
√

(A+ α)2 − 4Aαc2
12c

2
13 or Ā2 = 4λ2

−.

p term =
p

(1−A)(1− α) +O(x) +O(αA)

[
e−it(1− α)− e−itλ+ cos(λ−t)(1− α) +O(x)

+ite−itλ+f(λ−t) ((1− α)(A− α)/2 +O(αA) +O(αx) +O(λ+x))
]

=
p
[
e−it(1− α)− e−itλ+ cos(λ−t)(1− α) + ite−itλ+f(λ−t)(1− α)(A− α)/2

]
(1−A)(1− α)

+p [O(∆x) +O(∆αA)]

=
p

1−A

[
e−it − e−itλ+ cos(λ−t) + ite−itλ+f(λ−t)

A− α
2

]
+p [O(∆x) +O(∆αA)] . (A.5)

Since cos(λ−t) and f(λ−t) only depend on λ2
− = (α−A)2/4− αA(1− u2

1) we have

cos(λ−t)− itf(λ−t)
A− α

2
= cos(

α−A
2

t)− itf(
α−A

2
t)
A− α

2
+O(αA∆2).

So finally we get

p term =
p

1−A
[
e−it − e−itA

]
+O(s3

13A∆) +O(s13αA∆2). (A.6)

A.2 Calculate P (B) − P (A)

After expanding the square in P (A), we see the square term of p equals to the leading term

in P (B). As for the square term of q, since we have

q = s12c13c12c23 +O(s13), (A.7)

so the differences of the corresponding term in P (B) and the q square term is

4α2s2
12c

2
12c

2
23

sin2(A∆)

A2
− (q square term)

= 4α2

[
s2

12c
2
12c

2
23(

sin2(A∆)

A2
− sin2(Ā∆)

Ā2
) +O(s13∆2)

]
= 4α2

[
2∆2 1

6
(Ā2 −A2) +O(s13∆2)

]
= O(α4∆4) +O(Aα3∆4) +O(α2s13∆2)), (A.8)

where we have used the following approximation for f(x) ≡ 1
x sinx

f(Ā∆)− f(A∆) = −1

6
(Ā2∆2 −A2∆2) +O(A4∆4, Ā4∆4).
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The remaining term is the cross term, computed as follows

2Re[p term× q term]

= 2Re[−2iαp̄q
e2i∆ − e2iA∆

1−A
e−i(A+α)∆ sin(Ā∆)

Ā
]

= 2Re[4α(
JCP
sδ

+O(s2
13))ei(∆−α∆+δ) sin[(1−A)∆]

1−A
sin(Ā∆)

Ā
] (A.9)

= 8α[
JCP
sδ

+O(s2
13)][cos(∆ + δ) +O(∆α)]

sin[(1−A)∆]

1−A
[
sin(A∆)

A
+O(αA∆3) +O(∆3α2)]

= 8α
JCP
sδ

cos(∆ + δ)
sin(A∆)

A

sin[(1−A)∆]

1−A
(A.10)

+O(αs2
13∆) +O(s13α

2∆) +
1

6
s13O(α3∆3, α2A∆3), (A.11)

where p = s13c13s23e
−iδ has been used. Combine the result from eqs. (A.8) and (A.10), we

have

P (B) − P (A) = O(s2
13α∆) +O(s13α

2∆2) +O(α3A∆4) +O(α4∆4). (A.12)
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