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1 Introduction

Conformal symmetry imposes powerful constraints on the correlation functions of primary

operators in a conformal field theory. In particular, all two and three-point functions are

fixed up to a small number of normalization constants [1–4]. At the same time the form of

the four-point functions is not universal and depends on functions which encode the CFT’s

dynamics. In case of four scalars there is just one such function of the cross-ratios u, v

〈O(x1)O(x2)O(x3)O(x4)〉 =
f(u, v)

(x1 − x2)2∆(x3 − x4)2∆
, (1.1)

u =
(x1 − x2)2(x3 − x4)2

(x1 − x3)2(x2 − x4)2
, v =

(x1 − x4)2(x2 − x3)2

(x1 − x3)2(x2 − x4)2
.

When the operators have spin Oµ... the four-point correlator depends on many such func-

tions f I(u, v).
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In a general case the expression (1.1), or its generalization when the operators have

spin, solves all Ward Identities1 with arbitrary f I(u, v). But in a special case when the

operator dimension ∆ saturates the unitary bound the operator Oµ... becomes conserved

∂µOµ... = 0 . (1.2)

In this case there are additional Ward identities that require that ∂µOµ... inside any cor-

relator vanishes. At the level of two-point function this condition follows from conformal

algebra and is automatically satisfied. At the level of three-point function conservation pro-

vides a set of linear constraints on the normalization coefficients. In the case of four-point

function conservation of Oµ... yields a set of first order differential equations on f I(u, v)

which further restrict possible form of the correlation function in question.

In this paper we analyze this system of coupled equations and calculate the number of

unconstrained functional degrees of freedom governing the corresponding correlators. We

were not able to solve these constraints explicitly. But we found that the number of the

unconstrained degrees of freedom for the four-point function of the operators of spin `i in d

dimensions matches precisely the number of functions f I(s, t) of the Mandelstam variables

governing most general scattering amplitude of four particles of spin `i in the (d + 1)-

dimensional Minkowski space. Thus our findings support and generalize an interesting

connection between the CFT correlators and scattering amplitudes first observed in [5]

and further generalized in [6].2

Our motivation to identify the degrees of freedom unconstrained by the Ward Identities

is rooted, besides the usual aspiration to solve all available kinematic constraints explicitly,

in the desire to apply the conformal bootstrap approach to the correlators with spin.

The conformal bootstrap has proven to be a powerful tool to constrain CFT dynamics

in various dimensions [9–21]. Yet to this moment the applications were limited to the

four-point functions of the identical scalar operators. Certainly, considering operators

with spin should yield more information, but technically it is much more difficult as the

number of cumbersome constraints grows rapidly with spin. A particularly interesting case

would be to consider the four-point function of the stress-energy tensors because the stress-

energy tensor is the most universal operator present in all CFTs. Hence one might expect

the corresponding constraints to be most fundamental. Although the resulting number

of constraints is large (in a general case there will be 633 coupled equations), due to

conservation ∂µTµν = 0 many of them are not independent. If one succeeds to reformulate

these constraints in terms of only unrestricted degrees of freedom the number of equations

would reduce drastically (e.g. in d = 3 there will be just 5 such equations). To develop

such a formalism is one of the goals of this paper.

This paper is organized as follows. In the next section we discuss general properties of

the system of equations which encode conservation of operators at the level of correlation

function. In particular we find the number of unrestricted degrees of freedom governing

1Namely, Poincaré invariance and covariance under special conformal transformations. Throughout the

paper we keep all xi distinct and do not discuss those Ward Identities which involve coincident points.
2The relation between the CFT correlators and scattering amplitudes is also discussed from the holo-

graphic point of view in [7, 8].
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the four-point function of stress-energy tensors or conserved currents and propose the

way to formulate the conformal bootstrap constraints without degeneracy. In section 3

we discuss Ward Identities in the momentum space and establish an interesting parallel

between imposing special conformal invariance in the coordinate space and conservation

in the momentum space. In section 4 we calculate the number of functions governing

scattering amplitudes of massless particles in an auxiliary Minkowski space and compare

it with the number of unrestricted degrees of freedom calculated in section 2. We conclude

with section 5.

2 Imposing conservation in the coordinate space

In a conformal field theory the full set of Ward Identities can be understood in the fol-

lowing way. The underlying symmetries impose that the correlator of primary operators

〈O1(x1) . . .On(xn)〉 is a covariant function under conformal transformations of xi. Besides,

if the dimension ∆i reaches the unitary bound the corresponding operator is conserved

〈. . . ∂µOiµ... . . . 〉 = 0 . (2.1)

There are other W.I.’s but they are trivially satisfied when all xi are distinct (which we

implicitly assume throughout the paper).

The covariance under conformal transformations (this also includes Poincaré symme-

try) can be solved in a number of ways, in particular using the embedding formalism [6].

An explicit expression for the desired correlator will involve a number of arbitrary func-

tions of the conformal cross-ratios. For the four-point function of the identical operators

of dimension ∆ it takes the form

〈O1
µ1...(x1) . . .O4

µ4...(xn)〉 =
4∏
i<j

(xi − xj)−2∆/3
N∑
I

f I(u, v)QI µ1...µ4... (2.2)

The tensor structures QI are some known expressions made of xµi and the flat space metric

(Kronecker delta-symbol) δµν ,3 while u, v are defined in (1.1). More concretely, each Q
is a product of certain “building block” tensors H

(ij)
µν and V

i[jk]
µ and the total number of

structures N reflects the number of all possible combinations of V ’s and H’s resulting in

the desired tensor structure of Q.4

Now, in a special case when ∆i saturates the unitary bound (for traceless symmetric

operator of spin ` it is ∆ = d + ` − 2), the derivative ∂µOiµ... has the correct property

of a primary field of dimension ∆ + 1. Therefore the correlator with Oiµ... substituted by

∂µOiµ... should have a similar representation to (2.2) albeit with a slightly altered overall

prefactor and the new set of tensors Q̃Ĩ and functions f̃ Ĩ . The new functions f̃ are related

3By default we are working in the d-dimensional Euclidean space Rd, but our results are equally valid in

the Minkowski space Rd−1,1 after a trivial substitution δµν → ηµν . Another important comment: through-

out the paper we focus on the parity-even part of the four-point functions (this does not require the theory

to preserve parity). This explains absence of ε-tensors inside Q.
4In (2.2) we slightly altered the definitions of f I(u, v) (by a factor of (u2/v)∆/3) as well as H and V

compared with [6].
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to the original ones through an action of some first order differential operator in variables

u, v. Thus the conservation of Oi inside the correlator (2.2) is equivalent to f̃ Ĩ = 0 for all

Ĩ which can be rewritten in the following way[
AĨI +B Ĩ

I

∂

∂u
+ C ĨI

∂

∂v

]
f I(u, v) = 0 . (2.3)

Here A,B,C(u, v) are some rectangular matrices which depend on xµi only through u

and v (these matrices also depend on the dimension d and a choice of the basis for Q’s).

Conservation of each Oi inside the correlator leads to (2.3) with its own set of matrices

A,B,C. With some effort these matrices can be calculated in each particular case (in

all cases considered below we calculated A,B,C explicitly using computer algebra). But

unfortunately the resulting equations are complicated enough such that we could not find

an explicit solution or express it in any other self-contained way. In what follows we will

merely analyze these equations with the goal of calculating the number of functional degrees

of freedom unconstrained by (2.3). We will carry on explaining our logic in a particular

case of the correlator of four conserved currents Jµ and return to the four-point function

of the stress-energy tensors in the end of this section.

2.1 Conservation constraints for conserved currents

In a case of four conserved currents5 of dimension ∆ in general d there are 43 corresponding

structures Q and 14 structures Q̃

〈JµJνJρJσ〉 =

4∏
i<j

(xi − xj)−2∆/3
43∑
I

f I(u, v)QI µνρσ , (2.4)

〈OJνJρJσ〉 =

4∏
i<j

(xi − xj)−2∆/3−δi,1/3
14∑
Ĩ

f̃ Ĩ(u, v) Q̃Ĩ νρσ . (2.5)

The scalar operator O in (2.5) is of dimension ∆ + 1. In case ∆ = d − 1 the conservation

condition for the first current Jµ in (2.4) will take the form (2.3) with the 14× 43 matrices

A1, B1, C1. Similarly, the conservation condition for the second current Jν would yield

another 14 equations i.e. another set of matrices A2, B2, C2, etc. All together, there are

four conservation conditions, one for each current. Combining them all together we obtain

a set of 56 equations which can be cast in the form (2.3) with some 56 × 43 matrices

A,B,C. Although there are more equations then unknown functions, these equations are

not independent. As a result there are unrestricted degrees of freedom which we wish to

identity.

2.2 Permutation symmetry I

Our next step is to reduce the number of functions f I by imposing the permutation sym-

metry which changes the order of operators inside the correlator. In case the operators are

5For simplicity we assume that all four currents are identical. It is easy to generalize this by introducing

a color index Jaµ , such that each f I will carry four such indexes f I abcd.
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bosonic, any permutation should be a symmetry. Otherwise in certain cases the correlator

may change sign. For the four point function there are 4! = 24 possible permutations

(including the trivial one). But the following Z2 × Z2 subgroup of S4 that consists of the

following permutations

(1234)→ (2143) , (1234)→ (3412) , (1234)→ (4321) . (2.6)

is of particular importance: these permutations leave the cross-ratios u, v invariant. The

action of these permutations on the functions f I(u, v) is purely algebraic: f I(u, v) →
f Inew(u, v) = SIJ(u, v)fJ(u, v). Invariance of 〈JµJνJρJσ〉 thus reduced to a linear algebra

problem of finding the kernel of (δIJ − SIJ(u, v)). We will use the same notations f I(u, v)

to denote vectors from this kernel in some unspecified basis, although now I would run up

to 19 — the dimension of the kernel in the particular case of four conserved currents.6

Invariance with respect to Z2 × Z2 allows us to reduce the number of the unknown

functions from 43 to 19. Moreover the number of linearly independent equations reduces

to 14. Indeed, the permutations (2.6) are just enough to bring any current out of four to

the first position. Hence it is enough to impose conservation of the first current only, all

other conservation conditions will be linearly dependent. To conclude, imposing invariance

under (2.6) restricts the problem to the set of equations of the form (2.3) with some 14×19

matrices A,B,C and 19 functions f I(u, v). In what follows we will refer to these equations

as the “conservation constraints”.

Let us briefly explain the effect of other permutations. They act on f I by a combination

of linear transformation and a change of variables. For example the permutation

(1234)→ (2134) (2.7)

maps (u, v) into (u′, v′) ≡ (u/v, 1/v) and f I(u, v) into

f Inew(u, v) = SIJ(u, v)fJ(u′, v′) . (2.8)

The square matrix S is such that if f I(u, v) satisfy the conservation constraints, f Inew(u, v)

will also do so.

2.3 Number of unrestricted functional degrees of freedom

Now it is time to return to the conservation constraints (2.3) and calculate the number of

functional degrees of freedom unconstrained by these equations. This can be done using the

following simple trick.7 Let us rename the variables u, v into t, x and think of t as “time”

and x as “space” coordinate. Next, we would like to think of (2.3) as a Cauchy problem,

namely consider (2.3) as a set of algebraic equations on the “time” derivatives ∂f I/∂t which

we need to express in terms of the original functions f I and spatial derivatives ∂f I/∂x.

6Strictly speaking the kernel is parametrized by some new gK(u, v) with K = 1 . . . 19, while the nineteen

permutation-invariant vectors f I(u, v), I = 1 . . . 43, are linear combinations of gK . In order to avoid the

notation clutter in what follows we rename gK into f I and hope this will not cause any confusion.
7We thank Vasily Pestun for suggesting this idea.
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The 14×19 matrix B(t, x) has rank 12 which means the conservation constraints (2.3) can

be rewritten as twelve “time evolution” equations

∂f i

∂t
= F i

[
fJ ,

∂fJ

∂x

]
(2.9)

for certain twelve f i (say, i = 1 . . . 12) and two constraints “without time derivatives”

G1,2

[
fJ ,

∂fJ

∂x

]
= 0 . (2.10)

It can be checked that the constraints (2.10) are of the first type. Now one can think

of (2.9), (2.10) as of Cauchy boundary problem for f i while the remaining fα with α =

13 . . . 19 are unrestricted and should be thought of as the external parameters. The “initial

conditions” are specified by the boundary values f i(t∗, x) at some boundary t = t∗ such

that the constraints (2.10) are satisfied.

Our first conclusion is that the bose symmetric four-point function of the conserved

currents in a general CFT is governed by seven functional degrees of freedom (we called

them fα above). It is important to note that this number is well-defined and will not

change upon a new choice of “time” direction in the (u, v)-plane: the rank of any linear

combination of B and C is always 12.8

Besides seven unrestricted functions, the correlator also depends on the “initial condi-

tions” fi(t
∗, x) at some t = t∗. Furthermore we still have to impose bose symmetry with

respect to the permutations that change (u, v). There are 3! = 6 of those corresponding to

the S3 group that keeps the first operator inside the correlator in its place and permutes

the other three. We will impose this symmetry in the next subsection.

2.4 Permutation symmetry II

Although the equations (2.3) are defined for any u and v, in a Euclidean theory u and v

are non-negative, see (1.1). In fact the physically accessible points must lie inside the curve√
u+
√
v = 1 (this area is highlighted in color in figure 1a). This fact does not invalidate

our previous findings based on the Cauchy problem picture on the whole u, v plane (or a

quadrangle u, v ≥ 0) because we can think of the conservation constraints mathematically,

without worrying about physical origin and hence scope of u and v (it is important to note

that nothing special happens to A,B,C on the boundary
√
u+
√
v = 1).

The “physical” area consists of six patches (each highlighted in its own color in fig-

ure 1a) which are mapped into each other by S3. The permutation symmetry constraints

f I(u, v) = f Inew(u, v) equate f I from different patches. Thus, at least conceptually, it is

enough to know f I just in one patch and require that f I satisfy certain conditions on the

patch’s boundary (which sometimes is mapped into itself under S3) to ensure permutation

symmetry.

Unless the “time” and “space” coordinates are chosen wisely the permutation sym-

metry would mix the unrestricted fα and dependent f i degrees of freedom. Therefore

8This follows from the explicit form of matrices B,C.
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Figure 1: (a) The (u, v)-plane with physically accessible area of cross-ratios highlighted

in color. (b) The same area after a change of variables (u, v)→ ω.

the permutation symmetry constraints f I(u, v) = f Inew(u, v) will necessarily involve all of

them. This is definitely not the most concise and desirable way. This complication can be

avoided if we choose “time” coordinate coordinate t such that all permutations will map

it into itself S3 : (t, x) → (t, x′) where x′ is some function of (t, x). In such a case the

boundary t = t∗ will be mapped into itself, and intuitively we expect the sets of f i’s and

fα’s to remain invariant (although f i’s and fα’s would mix between themselves). Indeed,

let us rewrite the conservation constraints in the following form[
AĨJ + BĨJ

∂

∂t
+ C ĨJ

∂

∂x

]
fJ = 0 . (2.11)

Here we use A,B, C instead of A,B,C to emphasize that we changed variables u, v into

t, x and hence the former are some linear combinations of the latter. For any values of

t, x the matrix B(t, x) has a seven-dimensional kernel which we parametrize by introducing

basis elements ξIα(t, x): BIJ ξJα = 0. We denote other twelve linearly independent vectors

spanning the space of f I(t, x) by ζIi (t, x):

f I = f iζIi + fαξIα . (2.12)

The linear space spanned by ζ’s is not well-defined because one could shift ζ’s by ξ’s. A

good way to remove this ambiguity is to introduce a positive-definite metric gIJ(t, x) and

require orthogonality of all ζ’s and ξ’s (i.e. ζ’s will span the orthogonal complement to the

kernel of B).

Crucially, we will assume that gIJ(t, x) is covariant under the permutation symmetry

(now we switch back from (t, x) to (u, v) to stress that covariance of metric is independent

– 7 –
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of the choice of variables)

SII′(u, v)gIJ(u, v)SJJ ′(u, v) = gI′J ′(u
′, v′) . (2.13)

Going back to (2.12) we define ζ’s such that ζIi (u, v)gIJ(u, v)ξJα(u, v) = 0 for any i, α.

In section 2.2 we explained that f Inew automatically solves (2.11) so far f I does. This

can only happen if the equations resulting from plugging (2.8) into (2.11) are linearly

dependent with the original equations (2.11) upon a change of variables u, v → u′, v′. In

particular this means (this crucially uses that “time” t is mapped into itself: t′ = t)

BĨ(u, v)JS
J
J ′(u, v) = sĨ

Ĩ′
(u′, v′)BĨ′J ′(u′, v′) , (2.14)

for some matrix s. From here it immediately follows that SIJ(u, v)ξJα(u′, v′) is annihilated

by BĨJ(u, v) and hence it can be expanded in a linear combination of ξ’s:

SIJ(u, v)ξJα(u′, v′) = ξIβ(u, v)λβα(u, v) , (2.15)

for some matrix λ. In short, we just derived that the space of ξ’s is invariant under

permutations from S3. Since ζ’s were defined as a basis in the orthogonal complement to

ξ’s and the metric is covariant under S3 we conclude that there is a matrix w such that

SIJ(u, v)ζJi (u′, v′) = ζIj (u, v)wji (u, v).

Now the permutation symmetry constraint f I(u, v) = f Inew(u, v) can be rewritten as

two separate conditions: one for the unrestricted degrees of freedom fα

λαβ(u, v)fβ(u′, v′) = fα(u, v) , (2.16)

and a similar one for f i’s

wij(u, v)f j(u′, v′) = f i(u, v) . (2.17)

2.5 Conformal bootstrap for unrestricted D.O.F.

Conformal bootstrap for a four-point functions is a combination of two basic properties of a

CFT correlator: crossing symmetry and conformal block decomposition. The latter is just

the statement that the corresponding functions f I(u, v) is a linear combination of some

special predetermined functions GI∆,`,...(u, v) universal for all CFTs in a given dimension

d, which are called conformal blocks9

f I(u, v) =
∑

∆,`,...

c∆,`,...G
I
∆,`,...(u, v) . (2.18)

Here coefficients c∆,`,... are the products of the CFT structure constants that fix the value

of the three-point functions. Quantum numbers ∆ and ` denote dimension and Lorentz

representation (called spin for brivety) of the intermediary operators O∆,`. The dots stand

for other quantum numbers counting different possible forms of the three-point functions

of the operator O∆,` with the operators Oiµi... of (2.2). In case Oiµi... are conserved the

9Our definition of conformal blocks could differ from the conventional one by a fixed prefactor.
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corresponding three-point functions are assumed to be conserved as well, restricting the

number of different c∆,`,....

The crossing symmetry is the symmetry of the corresponding correlator under permu-

tations of the operators. In other words crossing symmetry is summarized in two condi-

tions (2.16) and (2.17) derived above. Since f i’s depend on fα’s we suspect the second set

of conditions (2.17) is redundant. Strictly speaking we can not prove that because besides

fα’s functions f i(t, x) also depend on the boundary conditions f i(t∗, x). At the same time

we believe in a physical theory where f I satisfy the conformal block decomposition (2.18)

functions fα(u, v) completely and unambiguously determine f i and hence (2.17) follows

from (2.16). Thus the conformal bootstrap can be conveniently formulated in terms of

only unrestricted degrees of freedom as follows

fα(u, v) =
∑

∆,`,...

c∆,`,...G
α
∆,`,...(u, v) , (2.19)

fα(u, v) = λαβ(u, v)fβ(u′, v′) . (2.20)

Here we introduced ξαI (u, v) such that ξαI ξ
I
β = δαβ , ξαI ζ

I
i = 0 and

fα = ξαI f
I , Gα = ξαI G

I . (2.21)

The covectors ξαI satisfying necessary properties can be constructed from ξIα and gIJ ,

ξαI = gαβgIJξ
J
β , gαβ = ξIαgIJξ

J
β . (2.22)

More generally one can consistently formulate the bootstrap equations (2.19), (2.20), (2.21)

with help of any set of covectors ξαI (u, v) which is closed under permutations, i.e. such that

there is an appropriate λαβ(u, v) satisfying

ξαI (u, v)SIJ(u, v) = λαβ(u, v) ξβJ (u′, v′) . (2.23)

We expect that any additional bootstrap equations would be redundant as soon as the

number of linearly-independent ξαI reaches the number of unrestricted functional degrees

of freedom governing the corresponding correlation function (see table 1).

The permutation-covariant set ξαI can be conveniently constructed through (2.22) start-

ing from any set of vectors ξIα which by itslef is closed under permutations, i.e. which satis-

fies (2.15) for some appropriate λβα(u, v). In section 2.4 we defined ξIα as a basis of kernel of

BĨ′J ′ corresponding to some permutation-invariant coordinate t. Alternatively one could use

a particular form of the CFT correlator in some exactly-solvable (free) theory or the form

of the correlator in special kinematics to construct the permutation covariant set of ξIα’s.

Finally, one can start with arbitrary vector ξI and act by permutations until obtaining a

closed set ξIα.

Certainly our formulation of the bootstrap equations in term of only unrestricted

degrees of freedom (2.19), (2.20), (2.21) would remain just a hypothetical idea unless we

can provide the necessary building blocks: permutation covariant positive-definite metric
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gIJ and a coordinate system t, x such that t is permutation invariant. In fact such a metric

can be easily constructed by contracting all Lorentz indexes of Q’s:

gIJ(u, v) = QI µν...(xi)QJ µν...(xi) . (2.24)

Similarly, finding such t is not very difficult. For example for any function g(u) a sum

over all permutations
∑

a∈S3
g(a(u)) or any function of this expression will be permutation

invariant, for example

t = u+ v +
u

v
+
v

u
+

1

u
+

1

v
. (2.25)

A general t complimented by some x would lead to a very complicated ξ and λ render-

ing our scheme (2.19), (2.20), (2.21) impractical. To deal with this problem we propose

the following coordinate system which incorporates symmetries of the problem in a most

natural elegant way.10 We rename t, x into r, φ and introduce ω = r eiφ through

u =

∣∣∣∣1 + γ ω

1 + ω

∣∣∣∣2 , v =

∣∣∣∣1 + γ̄ ω

1 + ω

∣∣∣∣2 , γ = e−2πi/3 . (2.26)

The new variable ω is related to the canonical variable z defined through u = zz̄, v =

(1− z)(1− z̄) through a Möbius transform

z = (1 + γ̄)
1 + γ ω

1 + ω
. (2.27)

The transformation (u, v) → ω maps the “physical” area in the u, v-plane, figure 1a, into

a “pizza pie” — the unit disk on the complex plane split into six equal patches (“slices”),

figure 1b. The permutation symmetry S3 acts on ω “canonically” according to a naive

geometrical intuition i.e. “slices” are permuted while radius r is left intact. The two

generators of S3 could be chosen to be φ→ −φ and φ→ 2π/3− φ.

2.6 Small d and degenerate tensors

Above we have calculated the number of unrestricted functional degrees of freedom gov-

erning the four-point function of conserved currents 〈JµJνJρJσ〉. The calculation (and the

result — seven kinematically-unrestricted functional D.O.F.) was seemingly independent

on the dimension d. This is not entirely correct: the tensors QI and Q̃Ĩ from (2.4) and (2.5)

as well as matrices A,B,C depend on d. Thus it might happen that some of the properties

used in our calculation, such as rank of B, are different in some specific dimensions from

the generic values. This does not happen in all cases we studied, but there is another

subtlety associated with small d: tensors QI (and/or Q̃Ĩ) could become degenerate. We

discuss when this may occur in appendix A. Here we just note that degeneracy of QI would

mean that certain linear combination(s) ξI0(u, v)QI vanish identically for any values of xµi .

Correspondingly the metric gIJ is degenerate in this case, in particular gIJξ
J
0 = 0. This

is exactly what happens in d = 3: two combinations of QI ’s are identically zero. Hence

two out of seven unrestricted functions are in fact unphysical: they could be chosen to be

10We thank Sungjay Lee for help with finding ω.
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anything (for example zero) without affecting 〈JµJνJρJσ〉. Hence in d = 3 the number of

unrestricted functional degrees of freedom is in fact five, not seven.

Let us briefly discuss how the presence of degenerate QI ’s would affect the bootstrap

equations. Since ξI0QI = 0 identically for all xµi we should choose ξαI in (2.21) such that

it is orthogonal to all degenerate ξI0 , ξαI ξ
I
0 = 0. This would automatically be so if we start

with a set of vectors ξIα closed under permutations and define

ξαI = gIJξ
J
α . (2.28)

The only difference with (2.22) here is that we did not introduce the metric gαβ because

it might be degenerate. If ξIα were closed under permutations so would be ξαI , although

not all of them might be linearly independent. This is what happens for four currents in

d = 3: starting from seven ξIα one finds only five linearly-independent ξαI . To formulate

the bootstrap equations one should take the set of all linearly-independent ξαI and find λβα
satisfying (2.23). Then the bootstrap equations are readily given by (2.19), (2.20), (2.21).

It was important for us above that while some of QI ’s were degenerate, all Q̃Ĩ were

linearly independent. Otherwise instead of equating (2.3) to zero we would have to allow

arbitrary functions of u, v along certain directions in Ĩ in the r.h.s. . This would complicate

counting the unrestricted degrees of freedom and we avoid discussing such cases. To sum-

marize, parity-even part of the correlation function of four conserved currents in a general

CFT is governed by five in d = 3 and seven in d ≥ 4 functional degrees of freedom.11

2.7 Four point function of the stress-energy tensors

Eventually we are ready to return to the four-point function of the stress-energy tensors.

This case is very similar to the four conserved currents discussed above, but the involved

matrices are much larger. Thus generically the four-point function of Tµν ’s involves 633

independent QI ’s:

〈Tµ1ν1Tµ2ν2Tµ3ν3Tµ4ν4〉 =

4∏
i<j

(xi − xj)−2∆/3
633∑
I

f I(u, v)QI µ1...ν4 , (2.29)

〈Jν1Tµ2ν2Tµ3ν3Tµ4ν4〉 =
4∏
i<j

(xi − xj)−2∆/3−δi,1/3
302∑
Ĩ

f̃ Ĩ(u, v) Q̃Ĩ ν1...ν4
. (2.30)

Here Tµν is an abstract spin two traceless symmetric primary of dimension ∆ and Jν is a

primary vector of dimension ∆ + 1. In reality ∆ = d and Tµν is conserved which results in

the equation (2.3) with (4× 302)× 633 matrices A,B,C.

Imposing symmetry under permutations (2.6) results in the space of f I being reduced

from 633 to 201 functions: now the matrices (2.3) are 302× 201. Given that matrix B (or

any linear combination of B and C) has rank 172 the number of unrestricted functions is

29. This a general result valid for d ≥ 6 when all QI ’s and Q̃Ĩ ’s are linearly independent.

In d = 5 while all Q̃Ĩ ’s are distinct one combination of QI ’s vanishes, hence the number

11Throughout this paper we assume d ≥ 3. The case of d = 2 would involve too many degeneracies and

is much easier to analyze using different formalism [22, 23].
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of unrestricted functional D.O.F. reduced to 28. For d = 3, 4 there are many degenerate

Q̃Ĩ ’s (see appendix A) which complicates further analysis. We will calculate the number

of unrestricted functions in this case in the next section using “duality” between the CFT

correlators and scattering amplitudes in an auxiliary Minkowski space.

3 CFT correlators and scattering amplitudes

It was first noticed in [5] in a particular case of stress-energy tensors and further generalized

in [6] that the number of linearly independent three-point functions of any (conserved or

not) primary operators Oi of spin `i (for simplicity we are talking only about traceless

symmetric representations; spin `i is just the number of indexes) in a general d-dimensional

CFT coincides with the number of linearly independent scattering amplitudes of “dual”

particles of spin `i in a d + 1-dimensional Minkowski space. When some operators are

conserved, i.e. when the corresponding ∆i saturate the unitary bound, the dual particles

should be massless p2
i = 0. Otherwise p2

i 6= 0.

In [6] this intriguing coincidence was given the following interpretation. The three-

point scattering amplitudes12 in a flat space Rd,1 can be one-to-one matched with the cubic

interacting vertexes in the Lagrangian. Next, these vertexes are brought into the AdSd+1

space, where through the usual AdS/CFT logic, they give rise to the CFT correlators at

the boundary Rd−1,1 (or Rd upon a Wick rotation). This picture works well for the three-

point functions of any (conserved or not) primaries but its validity and completeness for

the four (and higher)-point functions is not clear. Thus the 2 → 2 scattering amplitude

is not completely determined by the quartic coupling in the Lagrangian, rather it depends

on all cubic couplings in the theory. So is the four-point function on the boundary of AdS

— it also depends on all cubic couplings in the bulk. Hence one can envision a matching

procedure between the four-point scattering amplitudes in Rd,1 and the four-point CFT

correlators in Rd, but at this point this has not been done.

Nevertheless it was proved in [6] that the number of functional degrees of freedom

governing n-point functions of primary operators Oi with all ∆i above the unitary bound

(i.e. no Oi is conserved) is indeed equal to the number of functions governing scattering

amplitudes of n “dual” massive particles in Rd,1. Let us remind the reader how this

was established. When all Oi are non-conserved a general n-point function is given by

some generalization of (2.2) with all functions f I (which depend on n(n− 3)/2 conformal

cross-ratios) being unconstrained. The corresponding tensors QI ’s satisfy certain linear

conditions and can be constructed as all possible products of “building blocks” H
(ij)
µν and

V
i[jk]
µ such that the resulting tensors have the desired set of space-time indexes and satisfy

necessary symmetries.

Similarly the generic scattering amplitude of n massive particles can be expressed in

terms of a sum (2.2)

A =
∑
I

f IAIM... . (3.1)

12In case the involved particles are massless 1→ 2 process is prohibited due to kinematics and scattering

amplitude in the Minkowski space Rd,1 is ill-defined. In such a case the analytic continuaton in momenta

into Rd−1,2 space is assumed. We thank Jared Kaplan and Leonardo Rastelli for discussing this point.
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Here f I are the functions of n(n − 3)/2 Mandelstam variables. The tensors AI are build

of particle momenta pMi and Kronecker delta-symbols δMN ,13 and satisfy the following

equivalence condition (index M corresponds to the i-th operator Oi)

A...M... ' A...M... + piM (. . . ) . (3.2)

It turns out that such AI can be also constructed as all possible products of some H
(ij)
MN and

V
i[jk]
M (which have the same symmetries as H

(ij)
µν and V

i[jk]
µ ). Since AI’s should have the

same index structure as Q’s we conclude that the spaces of QI ’s and AI’s are isomorphic.

Although we started with two different sets of linear algebra constraints acting in two

different linear spaces, they define isomorphic linear spaces spanned by QI ’s or AI’s. As a

result there are as many f I ’s as f I’s (and that’s why we can use I instead of I).

It is only natural now to ask if this relation holds in case when some Oi are con-

served.14 Let us stress that in this case we are no longer comparing two linear algebra

problems. While the number of independent scattering amplitudes (i.e. functions f I) is

still governed by linear algebra, the unrestricted f I ’s are controlled by the differential con-

straint (2.3). We could hardly do the comparison in full generality for n-point functions,

but it is straightforward to cover the correlators of four conserved currents or stress-energy

tensors. Indeed, the number of independent f I ’s was calculated in the previous section

(we covered d ≥ 3 for conserved currents and ≥ 5 for stress-energy tensors). The number

of linearly independent AI can be calculated directly using their definition and properties:

the equivalence condition (3.2) and transversality pMi A...M... = 0. Besides, we also impose

symmetry with respect to all permutations (this condition should be relaxed in case one is

interested non-bose-symmetric CFT correlators). Remarkably, but not totally unexpect-

edly, the results of two calculations perfectly match. Thus we extend and confirm the

conjecture of [5, 6] to include four-point functions of conserved operators. This gives us a

reason to believe the relation between the CFT correlators and scattering amplitudes holds

beyond the four-point function, for any combination of primaries, conserved or not.

Strictly speaking, we have only established that the number of scattering amplitudes

matches the number of CFT correlators. We did not provide any meaningful map between

the two spaces. But we have little doubt the observed duality is not accidental. Rather

it is based on some not yet fully understood physical picture. And therefore such a map

must exist, although we expect it to be nontrivial. This is because it will equate a solution

to some linear algebra problem with a solution to a set of some non-trivial differential

constraints. This prompts us to conjecture that there must be a better formalism to

write down the CFT correlators which would not only automatically solve the conformal

W.I.’s (like the embedding formalism) but also take care of the conservation constraints

(whenever conserved operators are present) reducing them to linear algebra. Presumably

this hypothetical formalism would be the right language to study other properties of CFT

correlators, e.g. impose bootstrap constraints etc.

13Let us remind the reader that we focus on the parity-even part of the correlation functions or scattering

amplitudes. Relaxing this constraint, i.e. allowing Q’s and A’s to include ε-tensors would not change the

conclusion.
14We thank Simone Giombi for posing this question.
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correlator d=3 d=4 d=5 d≥ 6

〈JJJJ〉 5 7 7 7

〈TTTT 〉 5 22 28 29

Table 1: Number of functional degrees of freedom governing bose-symmetric four-point

function of conserved currents or stress-energy tensors in a d-dimensional CFT.

We summarize our findings in table 1 (for the stress-energy tensors in d = 3, 4 the

results are obtained with help of scattering amplitudes only; all other entires are calculated

using both approaches: the CFT correlators and the scattering amplitudes). It is quite

exciting that a very large original number of f I ’s is distilled into a relatively small number

of unrestricted functions. Thus in d = 3 there are just five of those. This strongly suggests

that formulating bootstrap constraints in terms of only unrestricted degrees of freedom

is not only a feasible task but also a more practical approach to bootstrap then working

with all f I ’s.

In conclusion let us briefly discuss yet another method to calculate the number of un-

restricted functional degrees of freedom governing the four-point function in an abstract

CFT.15 The idea is to use the conformal block decomposition (2.18) of the correlator (2.2).

The sum in (2.18) goes over quantum numbers of the “intermediate” primary O∆,`,k, i.e. di-

mension and Lorentz group representation which we schematically denoted by the total

number of space-time indexes ` and other quantum number(s) k (in (2.18) instead of k we

simply put dots). The values of ∆, ` are unbounded from above and schematically the sum

over two discrete variables ∆, ` is responsible for the fact that f I depend on two variables

u, v. For each k and general ∆, ` we denote by n1
k the number of linearly independent three-

point functions the operator O∆,`,k can form with O1,O2 and similarly n2
k for O3,O4. Then

the number of independent functional D.O.F. governing the four-point correlator will be

given by the sum
∑

k n
1
k n

2
k. We illustrate how this formula works in case of four conserved

currents in d = 3 in the appendix B.

4 Two easy ways to solve the conservation constraints

We have seen in section 2 that imposing conservation in the coordinate space after taking

care of the conformal symmetry leads to a complicated differential constraint. At the same

time the intriguing connection with the linear algebra problem of scattering amplitudes

discussed in section 3 suggests there should be a better way of solving the whole set

of Ward Identities, including conservation of operators. In this section we discuss two

straightforward ideas to explicitly solve the conservation constraints.

4.1 Solving all W.I.’s automatically

In section 3 we expressed a hope that there should be a mathematically elegant way to solve

all Ward Identities including conservation. Indeed, below we present a way to accomplish

15We thank Juan Maldacena and João Penedones for explaining this point to us.

– 14 –



J
H
E
P
1
0
(
2
0
1
5
)
0
7
5

that [24].16 The price we pay is that not all CFT correlators can be reproduced in this

way. Hence the problem of finding a better formalism to simultaneously take care of all

W.I.’s remains open.

The key observation is that under certain conditions a derivative of a primary operator

is also a primary. Thus for a completely symmetric traceless tensor with ` indexes its

divergence is a primary when the dimension saturates the unitary bound ∆ = d + ` − 2.

Similarly for a completely antisymmetric tensor with ` indexes its divergence is a primary

if ∆ = d − `. Say, there is an antisymmetric primary Fµν of dimension ∆ = d − 2. Its

divergence Jµ = ∂νFµν is a primary vector field of dimension ∆ = d − 1. Besides, Jµ is

automatically conserved!

Let’s say we wish to find the general form of 〈Jµ . . . 〉, where Jµ is a conserved current of

dimension d−1 and dots stand for some other primaries. Instead of first solving conformal

W.I.’s and then imposing conservation, as we did in section 2, we can use embedding

formalism to find the most general form of 〈Fµν . . . 〉 and then simply take a derivative. The

result will automatically solve the full set of W.I.’s! It does not matter if there is such an

operator Fµν in the CFT in question, or that its dimension may violate the unitary bound.

Calculating 〈Fµν . . . 〉 is just a mathematical trick and prior to taking the derivative it does

not correspond to anything physical. Similarly, one can construct the correlators involving

the stress-energy tensor starting with the correlators of a fictional primary C([µµ′][νν′]) of

dimension ∆ = d − 2 which has the symmetries of the Weyl tensor (this is discussed in

more detail in [24]).

Despite simplicity and obvious advantages, unfortunately not all correlators can be

obtained this way. Say, we want to calculate the folllowing three-point function 〈JµJνJρ〉
(to make sure this is non-zero we can further assume the currents carry an extra color index

Jaµ which we will suppress below). One can readily find there are four linearly independent

correlators of this sort, assuming Jµ is a primary of certain dimension (which we assumed

to be ∆ = d−1). After imposing conservation ∂µJµ = 0 only two combinations survive (we

are talking about parity even correlators in a general d). Can we reproduce them using the

trick with Fµν outlined above? It is easy to show that there are four linearly-independent

correlators 〈Fµµ′Fνν′Fρρ′〉. But after taking the derivatives all of them become linearly

dependent i.e. there is only one 〈∂µ′Fµµ′ ∂ν′Fνν′ ∂ρ′Fρρ′〉, which means the second structure

of 〈JµJνJρ〉 can not be reproduced this way.

To make the problem even sharper let us consider the two-point function. Conformal

symmetry fixes a unique 〈Fµµ′Fνν′〉, but 〈∂µ′Fµµ′ ∂ν′Fνν′〉 simply vanishes and can not

reproduce the standard two-point function for conserved currents 〈JµJν〉. We did not

find a practical way to describe those correlators that can be obtained using the Fµν
trick. Certainly for two and three-point functions this question can be answered by a

direct calculation. For a four and higher-point function involving Jµ = ∂νFµν this is more

complicated. Say, the correlator of the form 〈Fµν . . . 〉 has a decomposition (2.2) with the

functions f I which we prefer to denote f IFF . The corresponding correlator 〈Jµ . . . 〉 will

have a similar decomposition parametrized by some other functions f I (this time we keep

16We thank Hugh Osborn for sharing this idea with us.
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the original notation). Which correlators 〈Jµ . . . 〉 can be obtained from 〈∂νFµν . . . 〉? In

terms of f IFF and f I this means there is a first order differential operator

D̂I
IF

= AI
IF

+ BI
IF

∂

∂u
+ CI

IF

∂

∂v
(4.1)

which represents taking divergence of Fµν . It would be interesting to understand which

f I ’s can be obtained through f I = D̂I
IF
f IF . In case of many Jµ’s such operators D̂ should

be combined leading to a differential operator of higher degree. Its nice property is that

this operator will be automatically annihilated by the conservation condition (2.3) for any

f IFF ’s, but describing the space of possible resulting f I ’s is not an easy task.

In case of correlators with the stress-energy tensors obtained through C([µµ′][νν′]) the

reason why not all possible structures can be obtained this way is more transparent. The

resulting divergence ∂µTµν is zero identically, even at the coincident points. Hence the

resulting correlator 〈Tµν . . . 〉 would not be able to satisfy Ward Identities which include

certain contact terms whenever ∂µTµν inside the correlator is present. As a result the trick

with C([µµ′][νν′]) can only reproduce a part of the answer, as explained in [24].

4.2 Solving Ward Identities in the momentum space

In section 2 we saw that imposing conservation in the coordinate space after taking care

of conformal symmetry led to a complicated problem. What if we invert the order and

take care of conservation first and worry about conformal symmetry later? This could be

naturally done in the momentum space: conservation of an operator ∂µOµ... = 0 would

imply a linear constraint pµ Pµ... = 0 for the correlation function 〈Oµ...(p) . . . 〉 = Pµ....
Such linear constraints can be easily solved explicitly.17

We were a little bit hasty to declare that we would need to solve the homogeneous

constraints pµ Pµ... = 0. The Ward Identities responsible for the conservation of Oµ...
equate the correlator 〈∂µOµ... . . . 〉 not to zero, but to a contact term. Upon taking the

Fourier transform the contact term turns into a polynomial in one (or more) of the external

momenta (for a simple derivation of Ward Identities in the momentum space see e.g. [29]).

Thus the conservation constraint is taking the form of a system of non-homogeneous linear

equations with the known right-hand-side. To illustrate this we turn to the example of the

n-point function of the conserved currents

〈Jµ1(p1) . . . Jµn(pn)〉 = Pµ1...µn(pi) . (4.2)

The conservation constraints then take the form on n equations pµii P...µi... = Pi
...µ̂i...

(hat

means a skipped index). The right-hand-side Pi is some known combination of the (n−1)-

point functions. Usually one can find a particular solution of this system explicitly (for

example this was done in [28]) or at least this can be done in principle. The main challenge

is to find a special homogeneous solution such that the full answer satisfies the conformal

17We will see below that in general solving W.I.’s in the momentum space is more challenging than in

the coordinate one. Still it has some advantages. This calculation was done for the three-point function of

the stress-energy tensors in d = 3 in [25], of scalars in [26, 27], and more generally of scalars, currents and

stress-energy tensors in [28].
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Ward Identities. To this end one can write the most general solution of the conservation

constraints

〈Jµ1(p1) . . . Jµn(pn)〉 = Pparticular
µ1...µn (pi) +

∑
I

f I(pi · pj)PI µ1...µn . (4.3)

Here PI(pi) is the basis in the space of completely transverse Lorentz-invariant tensors

pµii P...µi... = 0 made of external momenta pi and functions fI depend on all possible Lorentz

invariants pi · pj .
We deliberately used the same notation for the functions f I in (4.3) to make it look

similar to (2.2), although at this point there is not much in common. Indeed f I ’s from (2.2)

depend on n(n − 3)/2 conformal cross ratios and f I ’s from (4.3) depend on n(n − 1)/2

Lorentz invariants. Next, the tensor structures QI ’s live in the coordinate space and

transform covariantly under conformal transformations, while the tensor structures PI ’s
live in the momentum space and are transverse. Yet, quite unexpectedly the space of QI ’s is

isomorphic to the space of PI ’s! Without transversality the tensor structures P’s are just the

general Lorentz-covariant tensor structures TI made of n−1 external momenta pµi (here we

take into account momentum conservation
∑n pi = 0) and the flat space metric (Kronecker

delta-symbol) δµν . As everywhere else in the paper, the ε-tensors are excluded because of

parity. The tensors Tµ1...µn can be rewritten as a function T (zi) = Tµ1...µnz
µ1
1 . . . zµnn as is

done in [6]. All such functions can be built of H(ij) = zi · zj and Vi[jk] = zi · (pj − pk).
This is already very similar to the makeup of Q’s in the embedding formalism or scattering

amplitudes, but at this point there is no constraint that all three indexes i, j, k in Vi[jk]

must be distinct. Now, we would like to impose transversality. This can be done by

multiplying each index by a projector, namely i-th index is contracted with a projector

Πµiµ̃i
i = δµiµ̃i − pµii p

µ̃i
i /p

2
i (the same method was also used in [28])

Pµ1...µn =
n∏
i=1

Π µ̃i
i µi

Tµ̃1...µ̃n . (4.4)

Clearly, such projectors will annihilate all tensors which include zi · pi and therefore the

space of linearly independent Vi[jk]’s should include only those with i 6= j 6= k. Besides,

Vi[jk]’s trivially satisfy

Vi[jk] + Vi[kl] + Vi[lj] = 0 , (4.5)

which precisely coincides with the constraint satisfied by Vi[jk]’s of the embedding for-

malism, after a trivial redefinition of Vi[jk]’s. Thus, we have established an isomorphism

between the space of P’s and Q’s (or scattering amplitudes of massive particles).

The same logic continue to work if the correlator (4.2) also includes stress-energy

tensors or conserved operators of higher spin. For example in case of stress-energy tensor (a

conserved traceless symmetric tensor with two indexes) the tensor structures PI (µ1ν1)(µ2ν2)...

are not only transverse but also traceless. The corresponding projector then is (see also [28])

Πµνµ′ν′ = Πµµ′Πνν′ −
1

d− 1
ΠµνΠµ′ν′ , (4.6)
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where Πµν is defined above. Clearly this projector also annihilates all Vi[jk] unless i 6= j 6= k,

hence establishing isomorphism between P’s and Q’s.

We have to note that the argument above is not completely rigorous unless d is large

enough such that the dimension of space does not affect the total number of linearly

independent tensor structures P’s and Q’s. But for small d there could be degenerate

tensors (of the sort discussed in appendix A) when some combinations of P’s are zero while

their counterparts made of Q’s are non-trivial (or vice versa). This possible complication

can be avoided if we compare P’s in the d-dimensional space with the scattering amplitudes

of massive particles A’s in the same space. The scattering amplitudes are equivalent classes

A...µ... ∼ A...µ... + piµ(. . . ) (4.7)

in the space of covariant tensors made of (n − 1) external momenta pi. The tensors P’s

span the linear subspace defined through

pµi P...µ... = 0 (4.8)

in the same space of of covariant tensors made of (n − 1) external momenta pi and δµν ’s

(this is the space spanned by T’s). The isomorphism between the space of the equivalence

classes (4.7) and the linear subspace (4.8) is established with help of the orthogonal pro-

jector (Πµν or (4.6)) which maps A’s into P’s. The opposite map is trivial. This method

works in any d as it takes care of the null tensors: a null tensor A is mapped into a null P.

Since scattering amplitudes in d dimensions in one-to-one correspondence with the confor-

mal structures in d − 1 we arrive at the following result: the space of Q’s in d dimensions

is isomorphic to the space of P’s in d + 1.

Now let us return to (4.3) and discuss the conditions on functions f I such that (4.3)

is conformal. These are the Ward Identities imposing the covariance under dilatation and

special conformal transformations. The former is easy to satisfy as it simply requires f I

to be homogeneous functions of certain degree in momenta (it is possible to choose a basis

PI such that each element has a definite dimension). The main complexity comes from the

special conformal transformations which give rise to a system of second order differential

equations. Thus, solving W.I.’s in the momentum space is significantly more involved than

in the coordinate space: while the number of unknown functions in both cases f I is the

same (in the momentum space it could be slightly smaller for small d), in the momentum

space these functions depend on more variables (n(n − 1)/2 vs. n(n − 3)/2) and satisfy

a system of second (rather than first) order PDEs. For example, the problem of finding

the three-point function of the stress-energy tensors in the coordinate space is reduced to

a simple linear algebra problem (finding a kernel of 21 × 11 matrix). In the momentum

space the same problem requires solving a bunch of second order PDEs to determine eleven

functions of three variables f I(p2
1, p

2
2, p

2
3). This was only done recently in [28].

The observed connection between Q’s and P’s suggest that solving W.I.’s in the co-

ordinate and momentum spaces bear in common much more than was realized before.

We schematically illustrate this idea in figure 2. In both coordinate and momentum

space one starts by imposing Poincaré invariance i.e. representing the correlator of in-

terest Pµ... ≡ 〈Oµ... . . . 〉 as a sum of all possible Lorentz-covariant tensors TI’s made of
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Coordinate space Momentum space

P(x) =
∑
f I(x)TI(x) P(p) =

∑
f I(p)TI(p)

P(x) =
∑
f I QI P(p) =

∑
f I PI + Ppart.

P(x) = 〈O(x1) . . . 〉CFT P(p) = 〈O(p1) . . . 〉CFT

T/T
Fourier

Q/P

Fourier

Poincaré invariance Poincaré invariance

Special conformal transformations

Conservation constraints

Conservation constraints

Special conformal transformations

Figure 2: Parallel between solving W.I.’s in the coordinate and momentum space.

(n− 1) linearly independent differences xi − xn (or (n− 1) linearly independent momenta

pi) and Kronecker delta-symbols. The functions f I’s multiplying T’s depend on all Lorentz-

invariant combinations of xi−xn or pi. Thus, at this point coordinate and momentum space

representations are isomorphic. Another way to establish this isomorphism is through the

Fourier transform.

The final results in the coordinate and momentum spaces, after all W.I.’s are im-

posed, are obviously related by the Fourier transform as well. What is interesting the

intermediate results happens to be related as well. Namely the solution to the special

conformal transformations constraints in the coordinate space is related to the solution of

the conservation constraints in the momentum space. Strictly speaking this relation (the

isomorphism between Q’s and P’s) connects the d + 1-dimensional coordinate space with

the d-dimensional momentum space, but this difference is unimportant for a sufficiently

large d (for concrete values see appendix A). This relation strongly suggests imposing the

remaining constraints, covariance under conformal transformations in the momentum space

and conservation constraints in the coordinate space, should go in parallel. It is given that

the conformal constraints in the momentum space are more comprehensive, as the corre-

sponding functions f I depend on more variables than their counterparts in the coordinate

space. But it should be possible to split the conformal constraints into two groups, such

that the first group would reduce the remaining degrees of freedom in f I to their coor-

dinate space counterpart, while the second group would essentially be equivalent to the

analog of (2.3). It would be particularly interesting to try this logic with the three point

functions of conserved currents or stress-energy tensors and explicitly isolate the group of

conformal constraints which would be equivalent to the linear algebra constraints imposing

conservation in the coordinate space.
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5 Conclusions

In this paper we have calculated the number of functional degrees of freedom surviving after

imposing the full set of Ward Identities on a four-point function of stress-energy tensors

or conserved currents in a d-dimensional conformal field theory. The results are presented

in table 1. These numbers precisely match the number of functional degrees of freedom

governing the most general scattering amplitude of four gravitons or gauge bosons in d + 1

dimensions. Thus our findings support the conjecture that the CFT correlators of primary

operators in d dimensions are one-to-one related to the scattering amplitudes of “dual”

particles in the d +1 dimensional space. Quite remarkably this relation connects the linear

algebra problem of scattering amplitudes with the differential equations problem of CFT

correlators. Hence, we conjecture existence of a new formalism for the CFT correlators

which would “take care” of all Ward Identities reducing them to a number of linear algebra

constraints.

The number of kinematically unrestricted functions governing the 4pt functions of the

stress-energy tensors or conserved current is relatively small, much smaller than the full

number of functions before the conservation of operators is taken into account. Therefore

we expect that formulating and solving the conformal bootstrap constraints in term of only

unrestricted degrees of freedom will have significant advantages over the naive approach

which would involve many redundancies. We outlined a way to formulate the conformal

bootstrap constraints in terms of only unrestricted degreed of freedom in (2.19), (2.20).

Eventually, we observed an interesting parallel between solving the full set of Ward

Identities in the momentum and coordinate spaces. These findings are illustrated in figure 2.
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A Degenerate tensors in various dimensions

The main ingredient in our analysis was the linear space of all Lorentz-covariant tensor

structures TI made of several vectors pµi and Kronecker delta-symbols δµν . Tensor struc-

tures PI or QI satisfying transversality or covariance under special conformal transforma-

tions form a subspace in the linear space of all covariant tensors T’s. Naively the space of

T’s does not dependent on the dimension of the space d. For example for one vector pµ

there are two linearly independent structures with two indexes

T 1
µν(p) = pµpν , T 2

µν(p) = δµν (A.1)
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in any d > 1. But this is not alway the case. Whenever there are several vectors pµi ,

1 ≤ i ≤ n, certain tensors will be degenerate (i.e. identically zero for any values of pµi )

for d ≤ n. In fact degenerate tensors may appear for d larger than n. For example the

following tensor is zero in d = 2

δµνpµ̃pν̃ + pµpνδµ̃ν̃− (A.2)

(pµδνµ̃pν̃ + pνδµµ̃pν̃ + pµδνν̃pµ̃ + pνδµν̃pµ̃)/2+

p2(δµµ̃δνν̃ + δµν̃δνµ̃ − 2δµνδµ̃ν̃)/2 .

This means transverse tensors P(µν)(µ̃ν̃)(p) or conformal tensors Q(µν)(µ̃ν̃)(p) in two dimen-

sions might be degenerate as well (a reader should not be confused by our notations Q(p)

because p is an abstract vector in Rd, not a momentum). We do not know an analytic

method to find for which d the degenerate tensors would be present. Therefore we ap-

proached this problem empirically and using computer algebra we calculated the scalar

product matrix by contracting all Lorentz indexes

gIJ(p) = TIµ...TJµ... (A.3)

Thus, we found the scalar product matrix for the tensors TIµνρ(p1, p2) the resulting scalar

product is non-degenerate for all d ≥ 3. Hence all 14 TIµνρ(p1, p2) are linearly independent

and correspondingly all 4 PI µνρ(p1, p2) and 4 QI µνρ(p1, p2) are non-degenerate. Similarly

we analyzed the scalar product for 5 tensors TĨµν(p1, p2) which also turns out to be non-

degenerate for d ≥ 3 implying linear independence of two Q̃Ĩ µν . Hence one does not have

to worry about degenerate tensors while solving Ward Identities for 〈JµJνJρ〉 neither in

momentum nor in coordinate space.

Similarly we analyzed TIµνρσ(p1, p2, p3) and TĨµνρ(p1, p2, p3) “responsible” for the 4pt

function of currents 〈JµJνJρJσ〉. Here I runs up to 138, but in d = 3 only 81 and in d = 4

only 136 are linearly independent. For d ≥ 5 there are no degeneracies. Therefore all 43

transverse tensors PI ,µνρσ(p1, p2, p3) in d ≥ 5 are distinct, while there are only 41 of those

in d = 4 and 14 in d = 3. Using the isomorphism between P’s in d + 1 and Q’s in d

dimensions we conclude that all 43 conformal structures QI ,µνρσ are linearly independent

when d ≥ 4, and there are two degenerate structures in d = 3. These two degenerate

structures are responsible for the difference between the number of unrestricted functions

governing 〈JµJνJρJσ〉 in d = 3 and all other dimensions d ≥ 4 (see section 2.6). It is

important to note that all 14 Q̃Ĩ µνρ in d ≥ 3 are independent and therefore the analysis

of section 2 in coordinate space is valid. At the same time not all 36 T̃Ĩµνρ(p1, p2, p3) are

independent in d = 3, in fact there are 9 degenerate tensors of this kind. That is why

solving Ward Identities for 〈JµJνJρJσ〉 in d = 3 in the momentum space would require

extra care: the r.h.s. of the conservation constraint Pi introduced the section 4.2 may

include extra terms which is just zero in disguise.

Before we turn to discussing the tensor structures relevant for correlators of the stress-

energy tensors let us explain the origins of (A.2). Let’s introduce an auxiliary metric gµν(x)

on an asymptotically flat R2 space. The functional W [gµν ] =
∫√

g R in d = 2 is trivial
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— it calculates Euler characteristic which is a topological quantity and hence does not

depend on gµν(x). Thus, the first variational derivative δW/δgµν(x) calculated in a flat

space gµν = δµν is just zero. Yet the second derivative

δ2W

δgµν(x) δgµ̃ν̃(y)

∣∣∣∣
gµν=δµν

(A.4)

will give a non-trivial expression which is zero in disguise. Upon the Fourier transform

with respect to x − y one obtains (A.2) which explains why it is degenerate in d = 2.

The Euler characteristic exists in any even-dimensional space d = 2m. Written in terms

of local metric it is proportional to m-th power of Riemann curvature. Therefore first

m variational derivatives with respect to metric will vanish identically, while the m + 1-

th (and all higher derivatives) upon the Fourier transform would lead to a degenerate

tensor in a d = 2m-dimensional space. We observed that it would be the only degenerate

tensor T(µ1ν1)...(µm+1νm+1)(p1, . . . , pm) with m + 1 symmetric pairs of indexes depending on

m independent vectors in R2m. Moreover there would be no degenerate tensors of this

kind in d > 2m and several (or many) in d < 2m. Furthermore there are no degenerate

tensors with one index less Tµ1(µ2ν2)...(µm+1νm+1)(p1, . . . , pm) in d ≥ 2m and several (or

many) d < 2m.

This simple observation can help up understand when one has to worry about degen-

erate tensor structures while dealing with the n-point function of the stress-energy tensors.

Let us start with the 2pt function. The corresponding general Lorentz-covariant tensors

TI (µν)(µ̃ν̃)(p) depend on one vector pµ and are symmetric with respect to µ↔ ν and µ̃↔ ν̃.

We do not require TI’s to be traceless. There are 6 of those overall and as we discussed

above exactly one becomes degenerate in d = 2. We have already mentioned that all tensor

structures T̃Ĩµ(µ̃ν̃)(p) are non-degenerate in d ≥ 2 (and so obviously would be any tensor

with less number of indexes). Therefore the unique zero structure in d = 2 is traceless

and transverse i.e. it is one of those which we called PI above. In fact there is just one

traceless transverse tensor P(µν)(µ̃ν̃)(p) in any d and the fact that it is degenerate in d = 2

is directly responsible for the conformal anomaly: as soon as Tµν is conserved the 2pt func-

tion 〈Tµµ(p)Tνν(−p)〉 can not be zero. Since Q’s in d dimensions are isomorphic to P’s in

d + 1, nothing pathological happens with the unique conformal structure Q(µν)(µ̃ν̃)(x− y)

in d ≥ 2. Hence the 2pt of the stress-energy tensors in coordinate space is uniquely fixed

and is well-defined in all d.

Similarly, there is no degenerate tensor structures with three symmetric pairs of indexes

that depend on p1, p2 in d > 4 (there are 137 of them in total). In d = 4 exactly one traceless

transverse tensor becomes zero. There are already 25 zero TI’s in d = 3. Therefore the

number of transverse traceless P’s drops from 11 in d > 4 to 10 in d = 4 and 4 in d = 3.

These degenerate tensor in d = 3, 4 should be taken into account while solving the Ward

Identities in the momentum space [28, 29]. Eventually, the degenerate tensor P in d = 4

implies there is exactly one degenerate conformal structure Q in d = 3. And that is why

there is one less linearly independent parity-even 3pt functions of the stress-energy tensors

in d = 3: 2 instead of 3.
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Finally, let us discuss the 4pt function of Tµν ’s. In d ≥ 6 there is no degenerate Q’s but

there is exactly one zero Q (out of 633) in d = 5 (which is “dual” to the unique degenerate

P in d = 6). This degenerate conformal tensor is the reason why the number of unrestricted

functional D.O.F. governing the 4pt in d = 5 is by one smaller than in d = 6 (see table 1).

We conclude this section with a technical note. To calculate the scalar product matrix

gIJ for the 633 conformal structures QI (µ1ν1)...(µ4ν4)(p1, p2, p3) discussed above is not quite

trivial because it requires first calculating a larger matrix gIJ for the most general tensors

TI (µ1ν1)...(µ4ν4)(p1, p2, p3). The problem is that gIJ is rather large, namely 6536 × 6536.

Thus it would be desirable to find a way to calcualte the scalar product of Q’s directly,

without defining it in the larger space of T’s first. This is in fact easy to do for the

tensor structures Q which correspond to any four-point function i.e. which depend on three

vectors. The tensor structure of Q’s i.e. spin of corresponding operators is unimportant.

Indeed, using conformal symmetry one can bring four vectors xµi to a “canonical” form

when the first one vanishes, the fourth is at infinity, and the third is at unite distance

along some direction ~e1. The remaining freedom is the location of the second point in

a plane spanned by two vectors ~e1, ~e2: ~x2 = a~e1 + b~e2. Hence the space of conformal

structures QI(p1, p2, p3) is isomorphic to the space of all covariant tensors which depend

on two vectors p1 = a~e1 and p2 = a~e2. Since in case of the stress-energy tensors we require

Q’s to be traceless, we should impose this condition on T’s as well. Finally we obtain that

the space of 633 conformal structures QI (µ1ν1)...(µ4ν4)(p1, p2, p3) is isomprohic to the space

of general traceless tensors Ttraceless
I (µ1ν1)...(µ4ν4)(p1, p2). Similarly the 43 conformal structures

QI µνρσ(p1, p2, p3) corresponding to the four-point function of currents are isomorphic to

TIµνρσ(p1, p2).

B Conformal block decomposition in d = 3

In this section we will calculate the number of unrestricted functional degrees of freedom

governing the four-point function of the conserved currents in d = 3 using the conformal

block decomposition.18 The general idea was explained in the end of section 3. Since in

d = 3 dimensions the only possible operators are traceless symmetric tensors with ` indexes

the number of unrestricted degrees of freedom governing a correlator of four conserved

currents is given by n2 where n is a number of three-point functions 〈JJOµ1...µ`〉. This

number was found in [30] to be 4. Hence there are 42 = 16 functional degrees of freedom

governing 〈JJJJ〉 in d = 3. Since 2 out of 4 three-point functions 〈JJOµ1...µ`〉 are parity-

even and the other two are parity odd the 16 functions split into 8 + 8 responsible for the

parity-even and parity-odd parts of 〈JJJJ〉 correspondingly. Now we would like to analyze

the action of the permutation group Z2 × Z2 (2.6). Depending on ` the two parity-even

three-point functions are both symmetric or antisymmetric under the exchange of two J ’s.

The resulting parity-even 4 functions contribute to the completely Z2×Z2-symmetric part

of 〈JJJJ〉. Two parity-odd three-point functions have opposite symmetry with respect to

permutation of J ’s for the given `. Hence the corresponding 4 functions split as follows:

one is completely Z2 ×Z2-symmetric, while the other three are odd with respect to two of

18This calculation was done together with João Penedones.
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the three generators (2.6) and invariant with respect to the remaining one. Eventually we

have 5 functions governing the parity-even Z2 × Z2-symmetric part of 〈JJJJ〉 and three

functions each governing a non-trivial representation of Z2 × Z2. This counting matches

our findings from section 2.6 (including non-trivial representations of Z2×Z2, although we

did not mention them there explicitly).
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