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1 Introduction

The AdS/CFT correspondence has emerged as an important tool in the analysis of strongly

coupled systems, especially for the study of transport properties of such systems. Neither

analytical nor numerical methods are convenient for calculating these properties on the

field theory side since they require an understanding of the real time response at finite

temperature. In contrast, they can be calculated with relative ease on the gravity side,

often by solving simple linear equations. An important insight which has come out of these

studies pertains to the behaviour of the viscosity. It was found in KSS [1–3], that for

systems having a gravity description that can be well approximated by classical Einstein

gravity, the ratio of the shear viscosity, η, to the entropy density, s, takes the universal value

η

s
=

1

4π
. (1.1)
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This is a small value, compared to weak coupling where the ratio diverges. It was also ini-

tially suggested that this value is a bound, and the ratio can never become smaller. We now

know that this is not true [4–7], see also [8, 9], but in all controlled counter-examples the

bound is violated at best by a numerical factor, and not in a parametric manner. Attempts

to produce bigger violations lead to physically unacceptable situations, e.g., to causality

violations, for example, see [10, 11]. However, there is some discussion of a violation of

the bound in metastable states, see [12]. Also, see [13] for a discussion of violations in a

superfluid phase described by higher derivative gravity.

The behaviour of the viscosity discussed above refers to isotropic and homogeneous

phases, which on the gravity side at finite temperature are described by the Schwarzschild

black brane geometry. More recently, gravitational backgrounds which correspond to

anisotropic phases in field theory have also been studied in [8, 14–21] and the behaviour

of the viscosity in some of these anisotropic phases has also been analysed, see [22, 23]

and [24–29]. The viscosity in the anisotropic case is a tensor, which in the most general

case, with no rotational invariance, has 21 independent components (when the field theory

lives in 3 + 1 dimensions). In [22, 23, 27], where some simple cases were considered, it was

found that some components of the viscosity tensor can become much smaller, paramet-

rically violating the bound in eq. (1.1). For example, in [27], a gravitational solution was

considered where the rotational invariance of the three space dimensions in which the field

theory lives was broken from SO(3) to SO(2), due to a linearly varying dilaton. In the

solution, the dilaton varies along the z direction and rotational invariance in the remaining

x, y, spatial directions was left unbroken. The component of the viscosity, called η|| in [27],

which measures the shear force in the x − y plane, was still found to satisfy the relation,

eq. (1.1). However, other components of the viscosity did not satisfy it. In particular, it

was found that a component called η⊥, which measures the shear force in the x−z or y−z
plane, could become much smaller, going like

η⊥
s

=
8π

3

T 2

ρ2
, (1.2)

where T is the temperature and ρ is the anisotropy parameter. The result, eq. (1.2) is

valid in the extremely anisotropic limit, when T � ρ. A detailed study was also carried

out in [27] of this extreme anisotropic regime and no instabilities were found to be present.

In this paper we study many other examples where anisotropic phases arise and show

that in all of them components of the viscosity can become parametrically small, in units

of the entropy density, when the anisotropy becomes sufficiently large compared to the

temperature. Depending on the example, the factor of T 2 in eq. (1.2) can be replaced by

some other positive power of T .

A common feature of all our examples is that the breaking of anisotropy is due to an

externally applied force which is translationally invariant. For example, the linearly varying

dilaton considered in [27], and also in section (2) gives rise to such a spatially constant

forcing function. This follows from the fact that the boundary theory stress tensor is no

longer conserved in the presence of the dilaton and instead satisfies the equation

∂µ〈Tµν〉 = 〈Ô〉∂νφ, (1.3)

– 2 –
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where Ô is the operator dual to the dilaton, see eq. (6.9) of [27]. Similarly, we consider

linearly varying axions in section 4.3 and 4.4, and a constant magnetic field in section 4.2.

Another common feature in our examples is that some residual Lorentz symmetry

survives, at zero temperature, after incorporating the breaking of rotational invariance.

Fluid mechanics then corresponds to the dynamics of the goldstone modes associated with

the boost symmetries of this Lorentz group which are broken at finite temperature.

In the second half of this paper we give an argument, based on a Kaluza Klein decom-

position of modes, which shows quite generally that in all situations sharing these features,

in particular where the forcing function does not break translational invariance, appropri-

ate components of the viscosity tensor become parametrically small. These components

correspond to perturbations of the metric which carry spin 1 with respect to the surviving

Lorentz symmetry. Let z be a spatial direction in the boundary theory along which there

is anisotropy and x be a spatial direction along which the boost symmetry is left unbroken,

then we show that the viscosity component ηxz, which couples to the hxz component of the

metric perturbation, satisfies the relation,

ηxz
s

=
1

4π

gxx
gzz

∣∣∣
u=uh

, (1.4)

where gxx|u=uh , gzz|u=uh refer to the components of the background metric at the horizon.

Eq. (1.4) is one of the main results of the paper. It also agrees with the behaviour seen

in all the explicit examples we consider. This result was first derived for an anisotropic

axion-dilaton-gravity system in [22].

In the isotropic case the ratio gxx
gzz

∣∣∣
u=uh

is unity and we see that the KSS result is

obtained. However, in anisotropic cases this ratio can become very different from unity

and in fact much smaller, leading to the parametric violation of the bound, eq. (1.1).

Note that the result, eq. (1.4), is true for conformally invariant systems, as well as

systems with a mass gap, when subjected to a constant driving force. Examples of massive

systems include, for example, gravitational duals of confining gauge theories, [30] and [31].

For these cases the temperature should be bigger than the confining scale so that the gravity

dual is described by a black brane. Also, for some components of the viscosity to become

significantly smaller than the bound, the anisotropy must be bigger than the temperature.

Physically a component like ηxz measures the resistance to shear. For example, if the

fluid is enclosed between two parallel plates which are separated along the z direction and

moving with a relative velocity vx along the x direction in a non-relativistic fashion, they

will experience a friction force due to the fluid, proportional to ηxz∂zvx. See figure 1 and

the more extensive discussion in section 6 of [27]. Thus the parametrically small values

obtained here correspond to a very small resistance to shear in anisotropic systems.

Our results which are quite general, open up the exciting possibility that in nature

too, strongly coupled anisotropic systems may have a very small value for components of

the viscosity. It would be very exciting if this behaviour can be probed in experimental

situations, realised perhaps in cold atom systems, or in the context of QCD.

This paper is structured as follows. In section 2 we review the earlier discussion of a

system with one linearly varying dilaton. Some general aspects involved in the calculation

– 3 –
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Figure 1. Picture showing flow of fluid enclosed between two parallel plates separated along the

z-direction.

of viscosity are discussed in section 3. Several examples of anisotropic systems realised in

gravity are then discussed, including the case with two dilatons in section 4.1, a magnetic

field in section 4.2, and axions and dilatons, section 4.3 and section 4.4. The general

argument based on a Kaluza Klein truncation is given in section 5. We end with conclusions

in section 6. The appendices A, B and C contain additional important details.

2 Brief review of the system with one dilaton

Here we briefly summarise some of the key results in [27] which considered a linearly varying

dilaton φ = ρ z in asymptotically AdS5, for a theory with action

Sbulk =
1

2κ2

∫
d5x
√
−g

(
R+ 12Λ− 1

2
(∂φ)2

)
. (2.1)

Here 2κ2 = 16πG is the gravitational coupling and G is the Newton’s Constant in 5-

dimensions. At zero temperature the near horizon solution was found to be AdS4 ×R,

ds2 = −4

3
u2dt2 +

du2

4
3u

2
+

4

3
u2(dx2 + dy2) +

ρ2

8
dz2. (2.2)

The radius of AdS4, R2
4 = 3/4, in units where Λ = 1. We see in eq. (2.2) that the metric

component gzz becomes constant due to the extra stress energy provided by the linearly

varying dilaton. The AdS4 × R solution is in fact an exact solution to the equations of

motion.

– 4 –
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At small temperature, T � ρ, the geometry is that of a Schwarzschild black brane in

AdS4×R. The viscosity is related, using linear response, to the retarded two point function

of components of the stress tensor, and the latter, using Ads/CFT, can be calculated from

the behaviour of appropriate metric perturbations in the bulk. The answer for ηxy, which

is denoted as η|| and for ηxz, ηyz, which are equal and denoted as η⊥, is given in eq. (2.3)

and eq. (2.4) below:

η‖

s
=

1

4π
, (2.3)

η⊥
s

=
8πT 2

3ρ2
, (2.4)

with s being the entropy density.

We see that η⊥ in units of the entropy density becomes parametrically small in the limit

of high anisotropy. The fluid mechanics in this high anisotropy limit was also systematically

set up in [27] and it was shown that, as expected, this small viscosity component results

in a very small shear force on two suitably oriented parallel plates which are moving with

a relative velocity and enclose the fluid.

3 More details on the calculation of viscosity

Before proceeding it is worth giving some more details on the calculation of the viscosity

for the one dilaton system above. These features, as we will see, will be shared by all the

examples we consider subsequently in this paper. The analysis that follows will also reveal

the central reason for why the viscosity in units of the entropy density can become so small

in anisotropic systems.

With anisotropy, the viscosity is a tensor, ηijkl, in general with 21 components. Using

the Kubo formula these can be related to the two point function of the stress energy tensor

as follows,

ηij,kl = − lim
ω→0

1

ω
Im
[
GRij,kl(ω)

]
, (3.1)

where

GRij,kl(ω, 0) =

∫
dt dx eiωt θ(t) 〈[Tij(t,x), Tkl(0, 0)]〉, (3.2)

and Im denotes the imaginary part of the retarded Green’s function.

From the AdS/CFT correspondence the two point function of Tij can be calculated

in terms of the behaviour of metric perturbations, and in this way the viscosity can be

obtained.

In the one dilaton system considered in section 2, the solution has an SO(2) rotational

invariance in the x− y plane, as is evident from the metric (2.2). For simplicity we denote

the ηxz,xz component as ηxz, and ηyz,yz as ηyz etc. Due to the SO(2) invariance we get that

ηxz = ηyz ≡ η⊥. These components are related to the behaviour of the hxz, hyz components

of metric perturbations, which carry spin 1 with respect to SO(2) symmetry.

– 5 –
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We now proceed to introduce the hxz perturbation in the metric as follows

ds2 = −gtt(u)dt2 + guu(u)du2+gxx(u)dx2 + gyydy
2 + gzz(u)dz2

+ 2e−iωtZ(u)gxx(u)dx dz,
(3.3)

where Z(u) is the required perturbation of interest. We can show that the other modes

decouple from Z(u) and hence we can consistently set them to zero. Here we follow

closely [32].

One finds that the mode Z(u) obeys an equation of the form

∂u
(√
−gP (u)guu∂uZ(u)

)
− ω2N(u)gttZ(u) = 0, (3.4)

The functions P (u), N(u) are given in terms of the background metric, with

P (u) = gzzgxx. (3.5)

In effect, eq. (3.4) arises from an action

S = −
∫ √

−g 1

16πG

[
P (u)

1

2
guu(∂uZ)2 − 1

2
N(u)gtt(∂tZ)2

]
(3.6)

(we are neglecting the dependence on the spatial xi coordinates here). Using AdS/CFT

we can find the response in terms of the canonical momentum

Π(u, ω) = − 1

16πG

√
−gP (u)guu∂uZ(u). (3.7)

The retarded Green’s function is then given by the ratio of the response over the source,

Gret = −Π(u, ω)

Z(u, ω)

∣∣∣∣∣
u→∞

. (3.8)

leading to the result from eq. (3.1)

η⊥ = lim
ω→0

Π(u, ω)

iωZ(u, ω)

∣∣∣∣∣
u→∞

. (3.9)

We now show that the r.h.s. of eq. (3.9) can also be evaluated near the horizon, u = uH ,

instead of u → ∞. Since we are interested in the limit ω → 0 we can neglect the second

term in eq. (3.4) leading to

∂uΠ = 0 (3.10)

upto O(ω)2. This gives

Π = C, (3.11)

where C is independent of u. Next, it is easy to see that there is a solution of eq. (3.4)

in the ω → 0 limit in which Z is simply a constant. This solution also meets the correct

boundary condition at u → ∞, since, as can be seen from eq. (3.3), the non-normalisable

mode must go to a constant at u → ∞. Putting all this together we find that to leading

– 6 –



J
H
E
P
1
0
(
2
0
1
5
)
0
2
8

order in the ω → 0 limit both Π and Z are constant and thus the ratio in eq. (3.9) being

independent of u can also be evaluated at the horizon.

As a result we get

η⊥ = lim
ω→0

Π(u, ω)

i ω Z(u, ω)

∣∣∣∣∣
u→uH

. (3.12)

Demanding regularity at the future horizon, we can approximate the behaviour of Z

as follows

Z ∼ e−iω(t+r∗), (3.13)

where r∗ is the tortoise coordinate,

r∗ =

∫ √
guu
gtt

du. (3.14)

It then follows that

η⊥ =
1

16πG
P (uH)

√
−g
gttguu

∣∣∣∣∣
u→uH

. (3.15)

The entropy density is

s =
1

4G

√
−g

√
guugtt

∣∣∣∣∣
uH

. (3.16)

Using the value of P(u) from (3.5) and using eq. (3.15) and eq. (3.16) this finally leads to

η⊥
s

=
1

4π

gxx
gzz

∣∣∣∣∣
uH

. (3.17)

We now see why anisotropic systems will generically be different from isotropic ones.

For an isotropic system rotational invariance makes the ratio gxx
gzz

= 1, leading to the KSS

bound, eq. (1.1). However in the anisotropic case in general this ratio will not be unity and

thus the ratio of η/s can become smaller than 1
4π . In the one dilaton system this is what

happens leading to the result, eq. (3.17). In the rest of this paper we will find many more

examples of this type, where anisotropy will allow different metric components to shrink

at different rates and attain different values at the horizon, thereby leading to violations

of the KSS bound.

4 Additional examples with anisotropy

4.1 Anisotropic solution in two dilaton gravity system

To generalise the example in section 2, we consider next the case of gravity, with a negative

cosmological constant, two massless scalar fields, φ1 and φ2, both of which we now call

dilatons, in 5 spacetime dimensions with action,

Sbulk =
1

2κ2

∫
d5x
√
−g

(
R+ 12Λ− 1

2
(∂φ1)2 − 1

2
(∂φ2)2

)
. (4.1)

– 7 –
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Both the dilatons are turned on to be linearly varying, but along different directions:

φ1 = ρ1y, φ2 = ρ2z. (4.2)

The zero temperature near horizon solution is now given by AdS3×R×R (we have set Λ=1):

ds2 = −2u2dt2 +
1

2u2
du2 + 2u2dx2 +

ρ2
1

8
dy2 +

ρ2
2

8
dz2. (4.3)

We see that there are now two different mass scales, ρ1, ρ2 which characterise the

anisotropy. In appendix A we show that this near horizon geometry interpolates smoothly

to asymptotically AdS5. The SO(2, 2) symmetry of AdS3 is preserved all along this inter-

polation.

At small temperature, T � ρ1, ρ2, the near-horizon solution is given by:

ds2 = −2u2

(
1− π2T 2

u2

)
dt2 +

1

2u2(1− T 2π2

u2 )
du2 + 2u2dx2 +

ρ2
1

8
dy2 +

ρ2
2

8
dz2. (4.4)

The horizon lies at

u = uh = πT. (4.5)

The computation of the shear viscosity follows the discussion in [27] quite closely. The

near-horizon AdS3 has SO(1, 1) Lorentz invariance in the t, x directions. The metric pertur-

bations can be classified in terms of different spins with respect to this SO(1, 1) symmetry.

The viscosity component ηxz, given by,

ηxz = − lim
ω→0

1

ω
Im
[
GRxz,xz(ω)

]
, (4.6)

can be calculated by considering a metric perturbation Z(u) defined so that the full metric

with the perturbation takes the form,

ds2 = −gtt(u)dt2 + guu(u)du2+gxx(u)dx2 + gyydy
2 + gzz(u)dz2

+ 2e−iωtZ(u)gxx(u)dxdz.
(4.7)

This component has spin 1 with respect to the SO(1, 1) symmetry. It turns out that

resulting analysis is quite similar to that in section 3 and this perturbation satisfies an

equation of the type given in eq. (3.4), with P (u) given by eq. (3.5). The conjugate

momentum Π is also given by eq. (3.7) with P (u) given by eq. (3.5). As a result ηxz is

given by eq. (3.15).

The entropy density is given by

s =
1

4G

√
−g

√
guugtt

∣∣∣∣∣
uH

. (4.8)

This gives,

ηxz
s

=
1

4π

gxx
gzz

∣∣∣∣∣
uH

. (4.9)

– 8 –
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which using eq. (4.4) becomes
ηxz
s

=
4πT 2

ρ2
2

. (4.10)

Similarly, for ηxy we get

ηxy
s

=
1

4π

gxx
gyy

∣∣∣∣∣
uH

=
4πT 2

ρ2
1

. (4.11)

We see from eq. (4.9), eq. (4.11) that the relative ratio of η/s for these components is

determined by the ratio of the metric components as one approaches the horizon.

4.2 Viscosity in the presence of a uniform magnetic field

Here, for completeness, we briefly review a situation where the anisotropy is generated due

to a magnetic field which has been studied in considerable depth in [28]. We refer to [28]

for details. We start with a system with the action

S =

∫
d5x
√
−g
(
R+ 12Λ− 1

4
F 2

)
, (4.12)

and consider a solution where the magnetic field

Fyz = B, (4.13)

with B being a constant. Such a system was also considered in [33].

The resulting near horizon solution at zero temperature is now again AdS3 × R × R,

just as in the two dilaton system, with rotational invariance also preserved in the yz plane.

The metric is (we have set Λ=1)

ds2 = −3u2dt2 +
1

3u2
du2 + 3u2dx2 +

1

2
√

3
|B|dy2 +

1

2
√

3
|B|dz2. (4.14)

The radius of AdS3, R2
3 = 1/3, in units where Λ = 1.

At small temperature, T � B the solution is a black brane in AdS3 × R × R with

metric

ds2 = −3u2

(
1− c

u2

)
dt2 +

1

3u2(1− c
u2 )

du2 + 3u2dx2 +
1

2
√

3
|B|dy2 +

1

2
√

3
|B|dz2, (4.15)

where c is given in terms of T as follows

c =
4π2T 2

9
. (4.16)

The horizon lies at

u = uh =
2

3
πT. (4.17)

The viscosity components ηxy = ηxz ≡ η⊥. To calculate η⊥ we consider the hxz
component of metric perturbation, so that the full metric is of the form

ds2 = −gtt(u)dt2 + grr(u)dr2+gxx(u)dx2 + gyy(u)dy2 + gzz(u)dz2

+ 2e−iωtZ(u)gxx(u)dxdz,
(4.18)

– 9 –
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with Z(u) being the perturbation that we need to study. One can easily show that the

other modes decouples from Z(u) and so can be consistently set to zero.

We find that the resulting analysis is again quite similar to that in section 3. This

perturbation satisfies an equation of the type given in eq. (3.4), with P (u) given by eq. (3.5).

The conjugate momentum Π is also given by eq. (3.7) with P (u) given by eq. (3.5).

The resulting value for the viscosity is given by

η⊥
s

=
1

4π

gxx
gzz

∣∣∣∣∣
uH

. (4.19)

Substituting the metric components from (4.15) above we get that

η⊥
s

=
2√
3
π
T 2

|B|
. (4.20)

As discussed in [28], this example may be relevant in the study of QCD, perhaps for

heavy ion collisions, and also in the core of neutron stars where strong magnetic fields can

arise.

4.3 The dilaton-axion system

In the examples considered so far, the near horizon geometry was of the form, AdS ×Rn,

with the metric components along the Rn directions not contracting as one gets to the

horizon. It is worth considering other situations where the near horizon geometry is of

Lifshitz type instead, with metric components along all the directions contracting as one

approaches the horizon but at different rates.

An easy way to construct such an example involves a system consisting of gravity with

an axion and dilaton with action,

Sbulk =
1

2κ2

∫
d5x
√
−g

(
R+ 12Λ− 1

2
(∂φ)2 − 1

2
e2αφ(∂χ)2

)
, (4.21)

containing the parameter α which enters in the dilaton dependence of the axion kinetic

energy term. Earlier work in [22] considered the case with α = 1. The case α = −1 has

SL(2, R) invariance.

It is easy to see that by turning on a linear profile for the axion one obtains an extremal

solution whose near horizon limit is given by ( setting Λ=1)

ds2 = R2

(
−u2dt2 +

du2

u2
+ u2dx2 + u2dy2 + ρ2 u

4α2

1+2α2 dz2

)
, (4.22)

χ = c1 ρ z, (4.23)

φ =
2α

1 + 2α2
log(u), (4.24)

c1 =

√
2(3 + 8α2)

(1 + 2α2)
, (4.25)

R2 =
3 + 8α2

4 + 8α2
. (4.26)
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This solution breaks rotational invariance along the z direction due to the linearly vary-

ing axion, and ρ is the mass scale which characterises this breaking of anisotropy. We see

that all components of the metric along the spatial directions now shrink as one approaches

the far IR, but the rate at which the gzz component vanishes is different from the other spa-

tial components, gxx, gyy. Let us also note that for α = 1 the solution above agrees with [15].

At small temperature T � ρ the resulting solution has a metric given by

ds2 = R2

(
−u2f(u)dt2 +

du2

u2f(u)
+ u2dx2 + u2dy2 + ρ2u

4α2

1+2α2 dz2

)
, (4.27)

where R2 is as given in eq. (4.26) above and f(u) is given as

1−
(

16πT

p2u

)p
, (4.28)

where p = 3+8α2

1+2α2 . The axion continues to be linear as in the solution eq. (4.23) and the

dilaton is given by eq. (4.24).

The horizon in eq. (4.27) is at

u = uh =
16πT

p2
. (4.29)

Let us now turn to computing the viscosity. The shear viscosity component ηxy satisfies

the KSS bound in eq. (2.3). Next consider the component ηxz = ηyz. To compute this

component we can consider the hxz component of metric perturbation, so that the full

metric is of the form

ds2 = −gtt(u)dt2 + guu(u)du2+gxx(u)dx2 + gyy(u)dy2 + gzz(u)dz2

+ 2e−iωtZ(u)gxx(u)dxdz,
(4.30)

where Z(u) is the perturbation that we need to study. The dilaton and axion are unchanged

and are given by eq. (4.24) and eq. (4.23) respectively. One can easily show that the other

modes decouples from Z(u) and so can be consistently set to zero.

We again find that resulting analysis is similar to that in section 3 and the perturbation

satisfies an equation of the type given in eq. (3.4), with P (u) given by eq. (3.5). The

conjugate momentum Π is also given by eq. (3.7) with P (u) given by eq. (3.5). As a result

ηxz is given by eq. (3.15).

Thus, substituting the metric components for the finite temperature solution (4.27) we

get

η⊥
s

=
1

4π

gxx
gzz
∼
(
T

ρ

) 2
1+2α2

. (4.31)

The dependence on T in eq. (4.31) follows from the metric eq. (4.27) and the dependence

on ρ is then obtained on dimensional grounds. Let us note that the temperature T which

appears in eq. (4.28) could be related to the temperature as measured in the asymptotic

AdS coordinates by a rescaling. By the asymptotic AdS coordinates we mean those in

which the metric takes the standard form:

ds2 =

[
− u2dt2 +

du2

u2
+ u2(dx2 + dy2 + dz2)

]
, (4.32)
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This is also true for the x, y coordinates in eq. (4.27) and the corresponding coordinates

which appear in eq. (4.32). and also for the z coordinate in eq. (4.27) which is related to

the corresponding coordinate in eq. (4.32) by a ρ dependent rescaling in general. These

rescaling factors have to be determined if the coefficient in eq. (4.31) is to be fixed. To do

so, one needs to find the full interpolating geometry from the near horizon region, described

by eq. (4.27), to the asymptotic AdS region, eq. (4.32).

We have carried out such a numerical interpolation for α = ±1, for which, eq. (4.31)

becomes,

η⊥
s
∼
(
T

ρ

)2/3

. (4.33)

We find, within the accuracy of our numerical calculation, that there is no rescaling of the

T, x, y coordinates while the z coordinate is rescaled by a non-trivial ρ dependent factor.

One consequence is that the temperature T which appears in eq. (4.31) is the same as the

temperature measured in the field theory.

4.4 The two axion-one dilaton system

For good measure, as another example, we consider a system consisting of gravity with two

axions and one dilaton described by the action

Sbulk =
1

2κ2

∫
d5x
√
−g

(
R+ 12Λ− 1

2
(∂φ)2 − 1

2
e2αφ(∂χ1)2 − 1

2
e2αφ(∂χ2)2

)
. (4.34)

In this case we will see that for a suitable profile for the two axions, the AdS4 symme-

try of the near-horizon geometry is broken further to AdS3, with now two of the spatial

directions, y, z, being characterised by non-trivial Lifshitz exponents.

The linear profiles for the two axons and resulting near horizon solution is given by

(setting Λ=1)

ds2 = R2

(
−u2dt2 +

du2

u2
+ u2dx2 + ρ2 u

8α2

1+4α2 dy2 + ρ2 u
8α2

1+4α2 dz2

)
, (4.35)

χ1 = c ρ y, (4.36)

χ2 = c ρ z, (4.37)

φ =
4 α log(u)

1 + 4α2
, (4.38)

c =
2

1 + 4α2

√
1 + 8α2, (4.39)

R2 =
1 + 8α2

2 + 8α2
. (4.40)

This metric in this solution has AdS3 invariance, and also a scaling symmetry under

which y, z transform with a non-trivial exponent. The linearly varying axions break this

scaling symmetry, and also the rotational invariance along the y and z directions, with ρ

being the mass scale which characterise the breaking.

At small temperature T � ρ the resulting solution has a metric

R2

(
−u2f(u)dt2 +

du2

u2f(u)
+ u2dx2 + ρ2 u

8α2

1+4α2 dy2 + ρ2 u
8α2

1+4α2 dz2

)
, (4.41)
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where R2 is as given in eq. (4.40) above and f(u) is given as

1−
(

16πT

p2u

)p
, (4.42)

where p = 2(1+8α2)
1+4α2 .

The two axions continue to be linear as in the solution eq. (4.36), eq. (4.37) and the

dilaton is given by eq. (4.38).

The horizon in eq. (4.41) is at

u = uh =
16πT

p2
. (4.43)

The ηxy and ηxz components of the viscosity are the same., we denote them by η⊥. To

calculate these components we consider the hxz component of metric perturbation, so that

the full metric is of the form

ds2 = −gtt(u)dt2 + guu(u)du2+gxx(u)dx2 + gyy(u)dy2 + gzz(u)dz2

+ 2e−iωtZ(u)gxx(u)dxdz,
(4.44)

where Z(u) is the perturbation that we need to study.

The dilaton and axions are unchanged and are given by eq. (4.38) and eq. (4.36),

eq. (4.37) respectively. One can easily show that the other modes decouples from Z(u) and

so can be consistently set to zero.

As in the previous cases, the analysis here is similar to that in section 3 and this

perturbation satisfies an equation of the type given in eq. (3.4), with P (u) given by eq. (3.5).

The conjugate momentum Π is also given by eq. (3.7) with P (u) given by eq. (3.5). As a

result ηxz is given by eq. (3.15).

Thus, substituting the metric components for the finite temperature solution (4.41) we

get

η⊥
s

=
1

4π

gxx
gzz
∼
(
T

ρ

) 2
1+4α2

. (4.45)

For the case α = ±1, eq. (4.45) becomes,

η⊥
s
∼
(
T

ρ

)2/5

. (4.46)

Interestingly, both in eq. (4.31) for the one axion case, and in eq. (4.45) above we see

that the maximum value the exponent governing the temperature dependence can take is

2, and the minimum value, for α =∞, is 0.

5 Kaluza Klein reduction

The previous sections dealt with a number of examples where anisotropic situations gave

rise to small values for the viscosity to entropy ratio. One common feature of all these

examples was that the breaking of isotropy was due to a spatially constant driving force.
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For example, the dilaton considered in section 2, gives rise to a force proportional to the

gradient of the dilaton which is a constant since the dilaton varies linearly. One way to see

this is by noting that the stress tensor is no longer conserved and satisfies the equation

∂µ〈Tµν〉 = 〈Ô〉∂νφ, (5.1)

as discussed in eq. (6.9) of [27]. Similarly, we consider linearly varying axions in section 4.3

and 4.4, and a constant magnetic field in section 4.2.

In this section we will present a general argument which should apply to all such situa-

tions where the breaking of isotropy occurs due to matter fields which give rise to a spatially

constant driving force. We will also assume that a residual AdS symmetry is preserved

in the bulk, and a corresponding Lorentz symmetry is left intact in the boundary theory.

Fluid mechanics then corresponds to the dynamics of the goldstone modes associated with

the boost symmetries of this Lorentz group. The components of the viscosity which give

rise to the violation of the KSS bound in the examples considered above correspond to

metric perturbations which have spin 1 with respect to the surviving Lorentz symmetry.

Let z be a spatial direction in the boundary theory along which there is anisotropy and x

be a spatial direction along which the boost symmetry is left unbroken then we will present

a general argument below showing that the viscosity component ηxz, which couples to the

hxz component of the metric perturbation. satisfies the relation,

ηxz
s

=
1

4π

gxx
gzz

∣∣∣
u=uh

. (5.2)

where gxx|u=uh , gzz|u=uh refer to the components of the background metric at the horizon.

Eq. (5.2) is the main result of this section and one of the main results of this paper. We note

that it also agrees with all the examples considered above. This result was first obtained

for an anisotropic axion-dilaton-gravity system in [22]. An analysis using RG flow and KK

reduction, for this system, was carried out in [26] along the lines of [2, 32].

For a case with a residual AdSd+1 factor in the metric, the basic idea behind the general

analysis will be to consider a dimensionally reduced description, starting from the original

D+1 dimensional theory and going down to the AdSd+1 space-time. Different Kaluza Klein

(KK) modes in the extra dimensions will not mix with each other since the effects breaking

rotational invariance are in effect spatially constant. For example, for cases where there are

linearly varying fields, like axions or dilatons, this will be true since the equations of motion

involve only gradients of these fields which are spatially constant. The non-mixing of the

KK modes will greatly ease in the analysis, since we can use the standard formulae of KK

reduction and moreover truncate the analysis to the zero modes in the extra dimensions.

The off diagonal components of the metric, whose perturbations carry spin 1 and which

are related to the viscosity components of interest, will give rise to gauge fields in the

dimensionally reduced theory. By studying the conductivity of these gauge fields, which

can be related easily to the spin 1 viscosity components we will derive the result in eq. (5.2).

The study of more complicated situations where the breaking of rotational invariance

is due to a driving force that also breaks translational invariance is left for the future.
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5.1 The dimensionally reduced theory

To start, we will consider the case where D = 4 and d = 3, so that a residual AdS4

symmetry survives, and the asymptotic geometry, towards the boundary, is AdS5. In this

case we start with 5 dimensions with a gravitational action:

S =
1

2κ̂2

∫
d5x
√
−ĝ (R̂+ 12Λ). (5.3)

Here 2κ̂2 = 16πĜ is the gravitational coupling with Ĝ being Newton’s Constant in 5-

dimension and we set Λ=1.

Parametrising the 5 dimensional metric by

(ĝAB) =

(
e−ψ(u)gµν + e2ψ(u)AµAν e2ψ(u)Aµ

e2ψ(u)Aν e2ψ(u)

)
, (5.4)

and taking all components to be independent of the z direction which we take to be the

compactification direction, gives

S =
1

2κ2

∫
d4x
√
−g
(
R− 3

2
(∂ψ)2 − e3ψ

4
F 2 + 12e−ψ

)
, (5.5)

where we have dropped total derivatives.

We also note that in our choice of parametrisation,

ĝzz = e2ψ. (5.6)

The coefficient of the first term in the matrix in eq. (5.4) was taken to be e−ψ so that the

resulting 4 dimensional action is in the Einstein frame. κ which appears above is related

to the 5 dimensional gravitational coupling κ̂ by

L

2κ̂2
=

1

2κ2
, (5.7)

where L is the length of the compactified z direction.

So far we have neglected any matter fields. Consider for concreteness the case of the

axion-dilaton system considered in section 4.3 with action eq. (4.21) with α=1. Inserting

the background solution for the axion

χ = a z, (5.8)

and taking the dilaton to be independent of z we get from the kinetic energies of the dilaton

and axion,

S =
1

2κ2

∫
d4x
√
−g
(
−a

2e2φA2

2
− 1

2
(∂φ)2 − 1

2
a2e2φ−3ψ

)
. (5.9)

We see that there is an extra term which depends on the gauge field and which gives rise

to a mass for it. This term arises due to the linearly varying axion, eq. (5.8) and is tied to

the breaking of translational invariance due to this linear variation. We see that the terms

– 15 –



J
H
E
P
1
0
(
2
0
1
5
)
0
2
8

in eq. (5.5) and eq. (5.9) involving the gauge field are quadratic in this field and can be

written as

S =
1

2κ2

∫
d4x
√
−g
(
−1

4g2
eff(u)

F 2 − 1

4
m2(u)A2

)
, (5.10)

where

m2(u) = 2a2e2φ(u), (5.11)

and
1

g2
eff(u)

= e3ψ = (ĝzz(u))
3
2 . (5.12)

The solution in the near horizon region for this dilaton-axion system was given in

eq. (4.22) with α=1. It is easy to see from this solution that

1

g2
eff

(u) = ρ3u2, (5.13)

and

m2(u) =
44

9
ρ2u

4
3 , (5.14)

and therefore that the gauge coupling and mass vary with the radial coordinate.

Similarly, in other cases where there is also a breaking of translational invariance we

will get both a kinetic energy term and a mass term, and in general both the gauge coupling

and the mass will vary in the radial direction. For the subsequent analysis we will analyse

the perturbations of the gauge fields in the 4 dimensional theory given in eq. (5.10). Such

a system was considered in [34, 35] and our subsequent discussion closely follows this

reference. As we will see later, the conductivity of these gauge fields can be related easily

to the spin 1 viscosity components using which we will derive the result in eq. (5.2). Let

us mention for now that the essential reason for this is that the two-point correlator of

the current operator gives the conductivity of the gauge field, while the two-point stress

tensor in the higher dimensional theory is related to the viscosity. Since the gauge field is

obtained from the spin 1 component of the metric in the higher dimensional theory, these

two correlators are closely related.

The 3+1 dimensions, include time, t, the radial direction u, and additional space direc-

tions, one of which we denote by x. To study the conductivity we consider a perturbation

for the x component of the gauge field,

Ax(~x, t, u) =

∫
dωd3~k

(2π)4
e−iωt+

~k.~xZ(u, ω). (5.15)

This gauge field perturbation decouples from the rest (we have set perturbations of the

axion to vanish even before the KK reduction in the example above, this turns out to be

a consistent thing to do). Z(u, ω) satisfies the equation

d

du

(
N(u)

d

du
Z(u, ω)

)
− ω2N(u) guug

ttZ(u, ω) +M(u)Z(u, ω) = 0, (5.16)

with

N(u) =
√
−g 1

g2
eff

gxxguu, (5.17)
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and

M(u) = −m
2(u)
√
−g

2 gxx
. (5.18)

Treating the radial coordinate u as the analogue of time we can read off the “momen-

tum” conjugate to Z from eq. (5.10) to be

Π(u, ω) =
δS

δZ ′(u,−ω)
= − 1

2κ2
N(u)Z ′(u, ω), (5.19)

where Z ′ = d
duZ(u, ω) and N(u) as given in eq. (5.17).

The conductivity is given by

σ(u, ω) =
Π(u, ω)

iωZ(u, ω)

∣∣
u→∞,ω→0

, (5.20)

where Z and Π are the asymptotic values of the perturbation and conjugate momentum

defined in eq. (5.19) in the region u→∞.

We assume that the underlying higher dimensional geometry is asymptotically AdS5

space and that the back reaction due to the matter fields which break the rotational

invariance dies out compared to the cosmological constant in this asymptotic region. This

is true in all the examples studied above where the geometry becomes AdS5 when u→∞.

It is then easy to check, as discussed in appendix B that the ratio on the r.h.s. in eq. (5.20)

becomes independent of u when u→∞.

We can write σ(u, ω) as the sum of real and imaginary parts as <(σ(u, ω))+i =(σ(u, ω)).

We will be interested in the real part <(σ) since that is related to the viscosity components

of interest. It is easy to see from our definition, eq. (5.20) that

<(σ(u, ω)) = =

(
Π(u, ω)Z(u,−ω)

ωZ(u, ω)Z(u,−ω)

)∣∣
u→∞, ω→0

. (5.21)

where Π(u, ω) is defined in eq. (5.19).

To evaluate the r.h.s. in the limit ω → 0, it will be sufficient to consider the leading

order behaviour of the denominator. Since Z(u, ω) is real to leading order when ω → 0 we

obtain

<(σ) =
=(Π(u, ω)Z(u,−ω))

ω Z2(u)

∣∣
u→∞, ω→0

. (5.22)

The numerator of r.h.s. of eq. (5.22) is independent of u (appendix C) and can therefore

be evaluated at u = uh instead of u→∞. After some more simplification this gives

<(σ) = σH

(
Z(uh)

Z(u→∞)

)2∣∣
ω→0

, (5.23)

where σH is the conductivity evaluated at the horizon and its expression is given by,

σH =
1

2κ2g2
eff

∣∣∣
u=uh

. (5.24)

See appendix C for more details.
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To proceed we need to evaluate the ratio Z(uh)
Z(u→∞) . For this purpose we go back to

the underlying higher dimensional theory with which we started in which the gauge field

is actually an off diagonal component of the metric, eq. (5.4). The background about

which we are calculating the behaviour of the perturbation is diagonal in the metric with

all components being only a function of u. Now consider a coordinate transformation

x→ x+αz, with all the other coordinates remaining the same. It is easy to see that under

this transformation the metric now acquires an off-diagonal component

δĝxz = αĝxx, (5.25)

with all the other components of the background metric staying the same. Note that in

our notation the hatted metric refers to the 5 dimensional one while the unhatted metric

refers to the 4 dimensional Einstein frame metric, see eq. (5.4).

Since we have merely carried out a coordinate transformation it is clear that δĝxz in

eq. (5.25) must satisfy the equations of motion for small perturbations about the starting

background. Comparing with eq. (5.4) we find that this corresponds to turning on a gauge

field

Ax = α
ĝxx
e2ψ

, (5.26)

which must therefore solve the equation (5.16) in the limit ω → 0 with

Z(u) = α
ĝxx
e2ψ

. (5.27)

In this way we can exploit the co-ordinate invariance of the underlying higher dimensional

theory to obtain a solution for Z(u) in the ω → 0 limit. More over it is easy to see that this

solution meets the correct boundary condition at u→∞. As was mentioned above, we are

assuming that the higher dimensional metric is asymptotically AdS5 space. The ratio ĝxx
e2ψ

therefore goes to unity and Z(u) goes to a constant which is the correct behaviour needed,

as is also discussed in appendix B.

With the solution eq. (5.27) at hand we can now evaluate the ratio Z(uh)
Z(u→∞) . The

arbitrary constant α drops out and we get that

Z(uh)

Z(u→∞)
=
ĝxx
e2ψ

∣∣∣
u=uh

. (5.28)

Substituting in eq. (5.23) and using eq. (5.24) we get that the conductivity is given in

terms of g2
eff and various metric opponents at the horizon by

σ =
1

2κ2g2
eff

(
ĝxx
e2ψ

)2 ∣∣∣
u=uh

. (5.29)

From eq. (5.12) and using eq. (5.6) from our parametrisation eq. (5.4), we finally get that

σ =
1

2κ2

ĝ2
xx√
ĝzz

. (5.30)

Note that we have been able to obtain an expression independent of m2 that only

depends on the metric components ĝxx, ĝzz in the 5 dimensional theory. In the subsequent

discussion we somewhat loosely denote Re(σ) by σ itself.
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5.2 The viscosity to entropy ratio

The next step is to relate the conductivity obtained above to the viscosity. This is in fact

straightforward. Kubo’s formula relates the components of the viscosity to the two point

function of corresponding components of the stress tensor Tij in eq. (3.1). This two point

function is obtained by calculating the response to turning on suitable metric perturba-

tions in the bulk. We will be assuming, as was mentioned above, that asymptotically the

background metric is AdS5. Thus as u → ∞, ĝµν → u2δµν for all components other than

along the u direction, as discussed in appendix B. The off - diagonal metric perturbations

required for the shear viscosity then behave like

δĝµν = u2hµν

as u→∞, where hµν is independent of u. The viscosity component ηxz is then given by

ηxz = − 1

ω
=
(
〈Txz( ~k1, ω)Txz( ~k2, ω)〉′

) ∣∣
~k1, ~k2→0,ω→0

, (5.31)

where the prime subscript on the r.h.s. means that the overall energy momentum conserving

delta function has been removed. From AdS/CFT we have that

〈Txz( ~k1)Txz( ~k2)〉 =
δ2S

δhxz( ~k1)δhxz( ~k2)
. (5.32)

The conductivity in an analogous way is given by

σ = − 1

ω
=
(
〈Jx( ~k1, ω)Jx( ~k2, ω)〉′

) ∣∣
~k1, ~k2→0,ω→0

, (5.33)

which in turn can be calculated from the bulk response since

〈Jx( ~k1)Jx( ~k2)〉 =
δ2S

δAx( ~k1) δAx( ~k2)
. (5.34)

On comparing with eq. (5.4) we see that the zero mode of hzx in the z direction is in

fact Ax. This shows that ηxz and σ are essentially the same upto one minor factor of L

the size of the z direction. This factor arises because the prime subscript in eq. (5.31) and

eq. (5.33) are different, in the first case the momentum conservation delta function removed

includes a delta function in the z direction, whereas in the case of the conductivity it does

not include this delta function. Accounting for the difference gives

ηxz =
σ

L
. (5.35)

The entropy density in the 5 dimensional theory is given by

s =
2π

κ̂2
A =

2π

κ̂2

√
ĝxxĝyy ĝzz, (5.36)

(this is also the same as the entropy density in the 4 dimensional theory divided by L).

From eq. (5.35), eq. (5.29), eq. (5.6), eq. (5.36) and eq. (5.7), we can now write the ratio

ηxz
s

=
σ
L

s
=

1

4π

1
g2
eff

(
ĝxx
ĝzz

)2

√
ĝxxĝyy ĝzz

∣∣∣
u=uh

. (5.37)
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Using eq. (5.12), eq. (5.6) in the above expression and using isotropy along x and y, we

arrive at the following result
ηxz
s

=
1

4π

ĝxx
ĝzz

∣∣
u=uh

. (5.38)

This general result agrees with the ones we obtained in all the examples we studied in the

previous sections. We see that independent of the details of the matter fields which were

responsible for the breaking of the rotational symmetry we get a general result in eq. (5.37).

This result shows that when the ratio of the metric components ĝxx
ĝzz

at the horizon becomes

smaller than unity the KSS bound will be violated.

5.3 Generalisation to case with additional directions

In the preceding discussion of this section we have considered the dimensional reduction

from 5 to 4 dimensions. However, it is easy to generalise these results for the case where we

start with D+1 dimensions and KK reduce to d+1 dimensions. In fact, this generalisation is

needed for the situation discussed earlier with a magnetic field where the residual symmetry

arises due to an AdS3 factor instead of an AdS4 in the geometry. Our analysis closely

follows [36]. The dimensional reduction in this case will give rise to D − d gauge fields.

Following [36], we parametrize the higher dimensional metric as:

(ĝAB) =

(
gµν +A

(1)γ
µ A

(1)
νγ A

(1)
µβ

A
(1)
να Gαβ

)
, (5.39)

where the D + 1 dimensional vielbein is given by(
êr̂µ̂

)
=

(
erµ A

(1)β
µ Eaβ

0 Eaα

)
, (5.40)

with Gαβ = EaαδabE
b
β and gµν = erµηrse

s
ν . Here α, β = 1, . . . D − d denote the directions

over which the reduction has been carried out and µ, ν = 0, 1, · · · d are the ones left in the

lower dimensional theory. It also follows from the parametrisation that√
−ĝ =

√
−g
√
G, (5.41)

where G is the determinant of the internal metric Gαβ . Additional matter fields required

for breaking rotational invariance which also break the translational invariance in the com-

pactified directions give mass terms for the gauge fields, which will vary in general in the

radial direction. Neglecting these additional matter fields for now we start with the action

Sĝ =
1

2κ̂2

∫
dD+1x

√
−ĝ

[
R̂+ Λ

]
As shown in [36] the dimensionally reduced action in d+ 1 dimensions becomes

S =
1

2κ2

∫
dd+1x

√
−g e−φ

(
R+ Λ + gµν∂µφ∂νφ+

1

4
gµν∂µGαβ∂νG

αβ

−1

4
gµρgνλGαβF

(1)α
µν F

(1)β
ρλ

)
,

(5.42)
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where

φ = −1

2
log det (Gαβ)⇒ e−φ =

√
G, (5.43)

where G is the determinant of the internal metric Gαβ ,

F (1)α
µν = ∂µA

(1)α
ν − ∂νA(1)α

µ , (5.44)

and κ which appears above is related to the 5 dimensional gravitational coupling κ̂ by

LD−d

2κ̂2
=

1

2κ2
, (5.45)

where LD−d is the volume of the compactified directions.

For simplicity we assume that the internal metric Gαβ is diagonal and focus on the

ĝxz component of the metric perturbation (where x represents a spatial direction along

which the boost symmetry is left unbroken and z represents an anisotropy direction in the

boundary field theory). Comparing the last term in the action eq. (5.42) with the kinetic

energy term,
√
−g
(
−1

4g2
eff(u)

F 2
)

, as given in eq. (5.10), we then find the effective gauge

coupling, for the corresponding gauge field A is

1

g2
eff

= e−φgzz. (5.46)

As mentioned above, additional matter fields give rise to mass terms for the gauge

fields. We will also take these mass terms to be diagonal for simplicity. The resulting

equation for the x component of the gauge field Ax is then of the form given in eq. (5.16),

where we have expanded Ax as given in eq. (5.15). It can then be argued (see appendix C

for details) that the conductivity in the lower d+ 1 dimensional theory1 is given by

<(σ) =
1

2κ2

(√
guu
gtt

N(u)

)
u=uh

(
Z(uh)

Z(u→∞)

)2

=
1

2κ2

(√
guu
gtt

√
− g

1

g2
eff

gxx guu

)
u=uh

(
Z(uh)

Z(u→∞)

)2

Thus we find

<(σ) = σH

(
Z(uh)

Z(u→∞)

)2

, (5.47)

where σH is the conductivity evaluated at the horizon and its expression is given by,

σH =
1

2κ2 g2
eff

g
d−1

2
xx

gxx

∣∣∣
u=uh

, (5.48)

1With our choice, eq. (5.39), the dimensional reduction results in an action which is not in Einstein

frame. We could have performed a conformal transformation to bring the lower dimensional action back to

the Einstein frame. Our end result however will be independent of this choice.
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where we have used isotropy along the spatial directions (besides u) in the lower dimensional

theory. Using eq. (5.47), eq. (5.46), eq. (5.43) we get

<(σ) =
1

2κ2g2
eff

g
d−1

2
xx

gxx

∣∣∣
u=uh

(
Z(uh)

Z(u→∞)

)2

=
1

2κ2
e−φgzz

g
d−1

2
xx

gxx

∣∣∣
u=uh

(
Z(uh)

Z(u→∞)

)2

=
1

2κ2

√
G g

d−1
2

xx
gzz
gxx

(
Z(uh)

Z(u→∞)

)2

. (5.49)

We can now repeat the analysis done in the previous section to evaluate the ratio Z(uh)
Z(u→∞) ,

by using general coordinate invariance in the underlying higher dimensional theory and

noting that the gauge field is an off-diagonal component of the metric, eq. (5.39) (for

details see eq. (5.28)).

Thus we get

<(σ) =
1

2κ2

√
G g

d−1
2

xx
gzz
gxx

Z(uh)2
∣∣∣
u=uh

=
1

2κ2

√
G g

d−1
2

xx
gzz
gxx

g2
xx

g2
zz

∣∣∣
u=uh

=
1

2κ2

√
G g

d−1
2

xx
gxx
gzz

∣∣∣
u=uh

. (5.50)

The higher dimensional entropy density is

s =
2π

κ̂2

√
G g

d−1
2

xx . (5.51)

Hence we arrive at the result

σ

s
= LD−d

1

4π

gxx
gzz

∣∣∣
u=uh

. (5.52)

Finally, the arguments given in subsection 5.2 allows us to connect ηxz computed in

the higher dimension to σ in the following way

ηxz =
σ

LD−d
. (5.53)

Thus we find
ηxz
s

=
σ

LD−d

s
=

1

4π

gxx
gzz

∣∣∣
u=uh

, (5.54)

which agrees with the examples we have studied in the previous sections.

6 Conclusion

In this paper we have considered a variety of anisotropic examples, and have shown that

suitable components of the viscosity can become very small in the highly anisotropic case
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and can parametrically violate the bound, eq. (1.1). All our examples have the feature

that the breaking of rotational invariance is due to an externally imposed forcing function

which is translationally invariant. E.g. due to linearly varying scalars which give rise

to a constant forcing function, or due to a spatially constant magnetic field, which was

studied earlier in [28]. Another common feature in all our examples is that some residual

Lorentz symmetry survives at zero temperature. In the second half of the paper we show

in considerable generality that for all cases with these two features, the components of the

viscosity tensor, which correspond to metric perturbations which carry spin 1 with respect

to the unbroken Lorentz symmetry, satisfy the relation eq. (1.4). In the anisotropic case

the ratio of the metric components on the r.h.s. of eq. (1.4) can become very small as

T → 0, resulting in a parametrically large violation of the KSS bound. This is indeed true

for the examples we consider, all of which satisfy eq. (1.4).

Besides allowing for a computation of the viscosity with relative ease, the gravitational

description also provides an intuitive understanding of why such violation of the KSS

bound may arise. In the absence of isotropy the different metric perturbations break

up into components with different values of spin with respect to the remaining Lorentz

symmetry. Spin 2 components, if present, give rise to viscosity coefficients which satisfy

the KSS bound. But spin 1 components can violate it. In fact the spin 1 components

are akin to gauge fields, and the corresponding calculations for these components of the

viscosity therefore becomes similar to those for conductivity. These are well known in

several AdS/CFT examples, and also in nature, to sometimes become very small.

In weakly coupled theories, with well defined quasi particles, we would expect, [37, 38],

that
η

s
∼
lmfp
λdB

, (6.1)

where lmfp, λdB refer to the mean free path and the de Broglie wave length for the quasi

particles. This leads to the intuitive expectation that at strong coupling the ratio η/s ∼
O(1). However, here we see that at strong coupling, where the gravity description is valid,

some components of the viscosity tensor in the anisotropic case violate this relation and

can become parametrically smaller.

The generality of our result suggests the possibility that this behaviour might happen

in nature too. It would be very exciting if this can be probed in experiments, perhaps on

cold atom systems, or in QCD.

Ordinarily, QCD at finite temperature is described by a homogeneous and isotropic

phase for which the calculations discussed here are not relevant. This is true even when we

consider situations which come about due to anisotropic initial conditions, as might arise

in heavy ion collisions. The behaviour of the QCD fluid in these situations is still governed

by rotationally invariant Navier Stokes equations with appropriate viscosity coefficients.

However, this could change if a sufficiently big magnetic field is turned on breaking rota-

tional invariance.2 The resulting equilibrium phase could then be highly anisotropic and

our results, and earlier work, [28], hint that suitable components of the viscosity might be-

2A magnetic field of order 1016 Tesla or so is needed in order to contribute an energy density comparable

to the QCD scale ∼ 200 Mev.
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come small. It has been suggested that such an intense magnetic field might perhaps arise

in the interior of some highly magnetised neutron stars,3 see [39, 40] and [41]. It has also

been suggested that strong magnetic fields might actually arise in the highly relativistic

heavy ion collisions (see [42, 43] and [44]), although in this case the transitory nature of

these fields must also then be taken into account.

Turning to cold atom systems, the unitary Fermi gas has also been observed to have

a value of η/s close to the KSS bound. Perhaps some way to introduce the breaking of

rotational invariance can be found in this system. It would then be very interesting to

examine the resulting behaviour of the viscosity tensor. Even at small anisotropy one

might be able to see a trend where some components start getting smaller than the bound.

A natural way to incorporate anisotropy in this case might be to consider the effects of an

asymmetric trap.4

It is worth mentioning that the spin 1 viscosity components, which become very small

in our work, govern the diffusion of the momentum components oriented transverse to

the direction in which the initial inhomogeneity is set up. For example, take a case with

anisotropy in the z direction. If the momentum along the x direction, px, is now taken to

have an initial gradient along the z direction, then its diffusion is governed by the viscosity

component ηxz, with diffusion length

D⊥ =
ηxz
sT

, (6.2)

where s is the entropy density. A small value of ηxz
s then gives rise to a small value for the

diffusion constant5 D⊥ in units of temperature.

It is perhaps worth mentioning in this context that there have been some recent mea-

surements of spin diffusion in the unitary fermi gas system.6 In three space dimensions, with

rotational invariance intact, the transverse spin diffusion constant is measured to be close to

the bound which arises from standard Boltzmann transport theory based on quasi particles,

see [45]. However, in a quasi-two space dimensions [46], it was found that the transverse

spin diffusion constant is about three orders of magnitude smaller than this bound. It

would be worth exploring if these observations can be related to the results presented here.

We have not analysed the stability of the anisotropic solutions discussed in this paper

in any detail. For the one dilaton case this question was analysed at considerable length

in [27] and no instabilities were found. This suggests that some examples studied here,

e.g., the two dilation case, also could be stable. We leave a more detailed analysis of this

question for the future. It is worth noticing that if an instability appears, it will be when

the temperature T ∼ ρ, where ρ is the scale of the anisotropy. As a result one expects O(1)

violations of the bound for such systems as well, although not violations where the viscosity

3We thank Gergely Endrödi and Gunnar Bali for a discussion on this issue.
4We thank Mohit Randeria for very helpful discussions in this regard and also for his comments about

the spin diffusion experiments.
5The anisotropy force in this case would act in the z direction. This force does not directly enter in

the diffusion equation for px. For significant anisotropy, ρ/T � 1, the force is big, and as a result the

fluid cannot move in the z direction at all. This follows from the bulk geometry, e.g. AdS4 ×R in the case

considered in section 2, where Lorentz invariance along the z direction is manifestly broken.
6We thank Sean Hartnoll for bringing these experiments to our notice.
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becomes parametrically small. On a more theoretical note, it would be worth obtaining

string theory embeddings of the anisotropic systems we have studied here and examining if

they are stable. Some embeddings for the axion dilaton system were studied in [15] and for

the one dilaton case in [27] and were found to be unstable, since they contained fields which

lay below the BF bound of the near horizon geometry. In another instance, e.g. [23], though,

a stable supersymmetric system with anisotropy was found where suitable components of

the viscosity become vanishingly small at low temperatures, just as in our analysis here.

We have discussed situations where the breaking of rotational invariance is explicit,

due to an externally applied source. It would also be interesting to extend this analysis to

cases where the breaking is spontaneous. Examples are known on the gravity side of such

phases in the literature, see, e.g., [47–56]. Another direction is to consider Bianchi spaces

which have been discussed in [57, 58], and which describe homogeneous but anisotropic

phases in general. Some discussion of transport coefficients in such phases using the gravity

description can be found in [59].
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A Numerical interpolation from the near horizon AdS3×R×R to asymp-

totic AdS5

Our action consists of gravity, a massless dilaton φ and a cosmological constant Λ, in 5

space time dimensions,

Sbulk =
1

2κ2

∫
d5x
√
−g

(
R+ 12Λ− 1

2
(∂φ)2

)
. (A.1)

Here 2κ2 = 16πG is the gravitational coupling (G is the Newton’s Constant in 5 dimensions)

and we set Λ=1.

It is easy to show that this system admits an AdS5 solution with metric given by

ds2 =

[
− u2dt2 +

du2

u2
+ u2(dx2 + dy2 + dz2)

]
, (A.2)

and the dilaton is kept constant.
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Figure 2. Log-log plot showing the numerical interpolation of near horizon AdS3 × R × R to

asymptotic AdS5, with ρ1 = 1, ρ2 = 1.

We now show that starting with the near horizon geometry given by eq. (4.3), one

can add a suitable perturbation which grows in the UV such that the solution matches

asymptotically to AdS5 metric as provided in eq.(A.2).

This perturbation is given as follows-

gtt(u) = 2u2 (1 + δA(u)) ,

guu(u) =
1

2u2 (1 + δA(u))

gxx(u) = 2u2 (1 + δA(u)) ,

gyy(u) =
ρ2

1

8
(1 + δC(u))

gzz(u) =
ρ2

2

8
(1 + δD(u))

(A.3)

with

δA(u) = a1 u
ν , δC(u) = c2 u

ν , δD(u) = c3 u
ν (A.4)

a1 =
1

5
(−5 + 2

√
5)(c2 + c3), ν =

√
5− 1. (A.5)

The numerical analysis is carried out using NDSolve in mathematica. For the case ρ1 = 1,

ρ2 = 1 the suitably chosen values for c2 and c3 are as follows

c2 = 85, c3 = 85. (A.6)

By adjusting the coefficients c2, c3 to the above values one can ensure that the asymp-

totic behaviour of the metric eq.(A.3) agrees with eq. (A.2) at large u, say u=100000;

The plots in figure 2 show the metric components as a function of u. These plots were

obtained by numerical interpolation for the case ρ1 = 1, ρ2 = 1 and c2 = 85, c3 = 85.

B Ratio of normalizable over non-normalizable mode near boundary

Here we check that asymptotically the canonical momentum Π goes to a constant indepen-

dent of u. To see this, we consider the action

Sbulk =
1

2κ̂2

∫
d5x
√
−ĝ

(
R̂+ 12Λ

)
. (B.1)
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we get the following solution for AdS5 (setting Λ=1).

ds2 =

(
−u2dt2 +

du2

u2
+ u2dx2 + u2dy2 + u2dz2

)
. (B.2)

The metric perturbations go like u2(1 + C1
u4 ) where C1 is constant.

Hence, using eq. (5.19) and eq. (5.17) we find that

Π(u) = − 1

2κ2
N(u)Z ′ = − 1

2κ2

√
−g 1

g2
eff

gxxguu∂u

(
C1

u4

)
= − 1

2κ2

√
−g e3ψgxxguu∂u

(
C1

u4

)
.

(B.3)

Plugging in the higher dimensional metric components from (B.2)we get Π(u) = 2
κ2C1

which is independent of u. Thus asymptotically, the ratio of the normalizable to the non -

normalizable mode behaves like 2
κ2C1.

C Conductivity formula in terms of horizon quantities

In this appendix, we show the derivation of (5.23) following [35]. The electrical conductivity

is defined in (5.20) as

σ(u, ω) =
Π(u, ω)

iωZ(u,w)

∣∣
u→∞,ω→0

. (C.1)

The real part can be written as

<(σ) = <

(
Π(u, ω)

iωZ(u, ω)

)∣∣
u→∞,ω→0

= <

(
Π(u, ω)Z(u,−ω)

iωZ(u, ω)Z(u,−ω)

)∣∣
u→∞,ω→0

= =

(
Π(u, ω)Z(u,−ω)

ωZ2(u)

)∣∣
u→∞,ω→0

=

=

(
Π(u, ω)Z(u,−ω)

)
ωZ2(u)

∣∣
u→∞,ω→0

. (C.2)

Here we used the fact that Z(u, ω) ∼ Z(u) is real to leading order when ω → 0.

We now proceed to show that7

d

du
=[Π(u, ω)Z(u,−ω)] = 0, (C.3)

This can be seen as follows

d

du
=
(
N(u)

d

du
Z(u, ω)Z(u,−ω)

)
= =

[
d

du

(
N(u)

d

du
Z(u, ω)

)
Z(u,−ω)

+N(u)
d

du
Z(u, ω)

d

du
Z(u,−ω)

]
. (C.4)

Using (5.16), r.h.s. of above equation reduces to

=
[
−M(u)Z(u, ω)Z(u,−ω) +N(u)

d

du
Z(u, ω)

d

du
Z(u,−ω)

]
, (C.5)

7Π(u, ω) = δS
δZ′(u,−ω)

= − 1
2κ2N(u) d

du
Z(u, ω), hence =[Π(u, ω)Z(u,−ω)] behaves like a current.
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which is equal to zero since the quantity in the bracket is real. Thus =[Π(u, ω)Z(u − ω)]

can be evaluated at the horizon i.e. at u = uh.

Demanding regularity at the future horizon, we can approximate the behaviour of

Z(u, ω) as follows

Z ∼ e−iω(t+r∗), (C.6)

where r∗ is the tortoise coordinate,

r∗ =

∫ √
guu
gtt

du. (C.7)

Using eq. (5.19) and

lim
u→uh

d

du
Z(u, ω) = −iω lim

u→uh

√
guu
gtt

Z(u) +O(ω2). (C.8)

we get (in the limit ω → 0)

<(σ) =
1

2κ2

(√
guu
gtt

N(u)

)
u=uh

(
Z(uh)

Z(u→∞)

)2

=
1

2κ2

(√
guu
gtt

√
−g 1

g2
eff

gxxguu

)
u=uh

(
Z(uh)

Z(u→∞)

)2

= σH

(
Z(uh)

Z(u→∞)

)2

, (C.9)

where σH is the conductivity evaluated at the horizon and its expression is given by,

σH =
1

2κ2g2
eff

∣∣∣
u=uh

. (C.10)

where we used isotropy along the spatial directions in the lower dimensional theory.

Open Access. This article is distributed under the terms of the Creative Commons
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any medium, provided the original author(s) and source are credited.
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