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1 Introduction

Inflation has emerged as one of the most promising paradigms for the evolution of the early

universe [1, 2]. Similarly, supersymmetry (SUSY) is a leading candidate for solving many

theoretical issues surrounding the Standard Model, including the hierarchy problem and the
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possible unification of couplings. Much work has gone into developing concrete models of in-

flation [3] and their embedding into supergravity [4] and string theory [5–7] (which necessar-

ily requires SUSY). Each model gives definite predictions for physical observables, but ab-

sent smoking-gun evidence for any particular model, it is worth investigating the most gen-

eral consequences of the simultaneous presence of inflation and SUSY in the early universe.

This can be accomplished with an effective field theory (EFT). EFTs for inflation were orig-

inally developed in the non-SUSY case in ref. [8] and in the SUSY case in refs. [9–11].

A convenient way to identify the appropriate low-energy degrees of freedom of an EFT

is through an analysis of broken symmetries. In the presence of SUSY, inflation sponta-

neously breaks two symmetries of nature. First, inflation picks out a preferred “direction”

in time (set by the nonzero value of 1
2 ϕ̇

2, the inflaton kinetic energy), spontaneously break-

ing the diffeomorphisms corresponding to time translations. Second, the positive vacuum

energy of the quasi-de Sitter background necessarily breaks SUSY. Goldstone’s theorem

and its SUSY generalization thus imply the existence of two massless modes, the gold-

stone π for time translation breaking and the goldstino ξ for SUSY breaking. These two

modes are tied together in an interesting and nontrivial way due to the fact that the

spontaneous breaking of Lorentz symmetry (inherited from the breaking of time diffeo-

morphisms) also breaks SUSY. The fields π and ξ are the minimal degrees of freedom

necessary for a SUSY EFT of inflation.1 They capture the leading low-energy dynamics

of any UV-complete model of SUSY single-field slow-roll inflation, describing fluctuations

about a fixed Friedmann-Robertson-Walker (FRW) background.

In this paper, we show that the goldstone and the goldstino, and no other fields, are

sufficient to parameterize the minimal degrees of freedom for a SUSY version of the EFT

of inflation. Throughout this paper we focus on slow-roll inflation for simplicity, though

in principle the formalism can be adapted for more general inflationary scenarios. Since

SUSY requires chiral multiplets to be organized in terms of complex scalars rather than

real scalars, an extra scalar partner of the inflaton seems to be a generic consequence of

SUSY (as well as a fermionic partner of the inflaton if the inflaton multiplet is separate

from the SUSY-breaking multiplet). For example, ref. [10] constructs a (non-minimal)

SUSY EFT of inflation and studies the interplay between the inflaton and the extra scalar.

Here, however, we demonstrate how to consistently decouple the expected extra states,

leading to a parametrization of the low-energy degrees of freedom using the constrained

supermultiplet formalism of ref. [12].2 This gives a consistent EFT of π and ξ alone.

Since the dynamics of the goldstone mode is well-studied in the inflation literature,

we will take a particular interest in the dynamics of the goldstino. Recall that the scale of

inflation is set by the Hubble parameter H. The scale H is unknown, although it is less than

the Planck scale, H < Mpl, possibly even much less. Thus, one should be skeptical that the

effects of the goldstino ξ could be observable, since fermions only contribute to inflationary

1In the context of supergravity (SUGRA), the goldstino is eaten by the gravitino to become its longitu-

dinal mode. The goldstino equivalence theorem implies that at energies E � m3/2, the gravitino couplings

will be dominated by the longitudinal mode, which do not suffer from Planck suppression.
2Nonlinear multiplets were also introduced in ref. [13] in the context of multiple goldstini. For other

work involving constrained superfields during inflation, see refs. [14–23].
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observables at loop level. Indeed, we estimate that the effect of goldstino loops on the

inflaton 2-point function are suppressed by H2/M2
pl, and therefore extremely small. There

are potentially observable non-Gaussian signatures in the inflaton 3-point function from

goldstino loops, including non-analytic power law dependences and oscillatory behavior, but

these are slow-roll suppressed and possibly exponentially suppressed for large m3/2 [24].

Very optimistically, if the scale of inflation were large (as was suggested by the recent

BICEP-2 B-mode detection [25], though an inflationary interpretation has now been ruled

out [26]), goldstino loop corrections could be measured alongside parametrically similar

contributions from graviton loops [27], and the behavior of the 3-point function could

confirm the goldstino nature of the exchanged fermions. This could provide a model-

independent diagnostic of the presence of SUSY in our universe, independently of the

scale of SUSY breaking today. SUSY could thus be observable cosmologically even if

superpartners are too heavy to be produced at terrestrial colliders. This point of view has

been emphasized in refs. [24, 28–34], which focus on distinctive signatures of Hubble-scale

particles during inflation.

The main result of our formalism is the leading-order Lagrangian describing interac-

tions of the goldstone and goldstino in minimal slow-roll inflation, whose Kähler potential

K and superpotential W are given by

K = X†NLXNL +B2
NL, W = M2

ple
−iαANL/2M

2
pl |m3/2|+ fXNL. (1.1)

Here and throughout, boldface symbols will indicate superfields. XNL is the standard

constrained chiral supermultiplet from ref. [12] containing only the goldstino. ANL is a

constrained chiral superfield containing the goldstino and goldstone, and BNL is a real su-

perfield defined byBNL = 1
2i(ANL−A†NL). XNL andBNL form nonlinear representations

of SUSY through the constraints

X2
NL = XNLBNL = B3

NL = 0. (1.2)

Evaluated on an inflating background, the contribution of XNL to the vacuum energy is

positive, while the contribution of BNL is negative. Both supermultiplets are necessary

for a consistent EFT and their individual contributions to the vacuum energy correspond

to the inflaton potential and kinetic energy, respectively. The vacuum expectation value

(vev) of B2
NL is proportional to Ḣ and parameterizes the breaking of time-translation

invariance; since no UV completion of spontaneous time translation breaking is known,

〈BNL〉 = θσ0θ〈ϕ̇〉 must be imposed by hand.3

The Lagrangian in eq. (1.1) contains three free parameters beyond 〈ϕ̇〉,

{f, |m3/2|, α}. (1.3)

3Other theories of spontaneous time translation breaking include the (gauged) ghost condensate [35–38]

(see also [39, 40] for extensions to supersymmetry and SUGRA) and time crystals [41, 42] (see also [43]).

These theories describe fluctuations around a fixed vacuum state that spontaneously breaks time transla-

tions, whereas the EFT of inflation describes fluctuations around the classical solution for the slowly-rolling

inflaton. Despite the mismatch between a fixed vacuum and a slowly-rolling “vacuum”, the inflaton fluctu-

ations can still be described by the goldstone π from spontaneous symmetry breaking.
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π

π

ξ

ξπ

ξ

ξ

√
ε

π ππππFigure 1. Schematic Feynman diagrams for the leading goldstone-goldstino interactions. 3-point

vertices are suppressed by the slow-roll parameter
√
ε compared to 4-point vertices when the

inflaton leg is put to its vev. It is analogous to the way vertices in the Standard Model with

one Higgs boson have an additional factor of the Higgs vev v compared to vertices with two

Higgs bosons. Since fermions are unobservable during inflation, these interactions contribute to

correlators of π through loops of ξ.

f fixes the positive contribution to the vacuum energy from the inflaton potential, and

m3/2 = e−iα〈ϕ̇〉t/2M
2
pl |m3/2| is the mass of the gravitino.4 In the case where |m3/2| � H,

the minimal EFT of inflation is parameterized only by f and 〈ϕ̇〉, and the leading effects of

the theory can be captured in the framework of rigid SUSY. However, in the case where the

gravitino mass is large compared to the other scales in the EFT, the theory must be coupled

to SUGRA. In that case, in addition to the new scale |m3/2|, we find an additional free

parameter α. To our knowledge, α represents a previously unknown inflationary parameter,

absent in the rigid SUSY limit.5 Through an analysis of the goldstone-goldstino couplings,

we argue that the natural scale to suppress additional higher-dimension operators in the

EFT is

Λ =
√
MplH. (1.4)

This minimal EFT of inflation contains a Lorentz-violating kinetic term for the gold-

stino, and derivative interactions between ξ and π, shown schematically in figure 1. The

goldstino has a relativistic dispersion relation ω = csk, with a nontrivial speed of sound

cs = 1− 2

3
ε, (1.5)

where ε is the slow-roll parameter

ε ≡ − Ḣ

H2
=
〈ϕ̇〉2

2M2
plH

2
. (1.6)

This reduced speed of sound is known in the literature as the “slow gravitino” [44, 45], which

we relate to inflationary dynamics and which can be derived directly from our formalism.

4We will be doggedly insistent on writing |m3/2|, rather than m3/2, for the magnitude of the gravitino

mass. The reason is that time diffeomorphism breaking makes possible a nontrivial time-dependent phase

on m3/2.
5As discussed in section 5.1, α can related to a non-zero vev for the vector auxiliary field bµ of SUGRA.
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We use the goldstone-goldstino interactions derived from eq. (1.1) to estimate the loop

contributions to the two-point function 〈ππ〉, which is related to the correlation function

of primordial curvature perturbations. These loop effects are suppressed compared to the

tree-level result by a factor of
δ〈ππ〉
〈ππ〉0

∼ H4

Λ4
=

H2

M2
pl

, (1.7)

similar to expectations from non-SUSY gravitational contributions [27]. The contributions

from ξ are thus extremely small unless H is large. As noted in ref. [24], the mass and spin

of ξ may give distinctive signatures to the 3-point function 〈πππ〉, and in particular the

non-standard dispersion relation for ξ may signal its goldstino nature and stand out from

the effects of loops of other fermions.

The rest of this paper is organized as follows. In section 2, we briefly review the stan-

dard EFT of single-field inflation. In section 3, we build the minimal EFT of SUSY inflation

in the rigid flat-space limit, first constructing the nonlinear fields XNL and BNL, and then

constructing the lowest-order Lagrangian, which describes minimal slow-roll inflation. We

also show how the constraints on BNL can be derived by integrating out the extra states

at the cutoff scale Λ from a generic chiral multiplet containing the inflaton. In section 4,

we investigate the dynamics of the goldstino in rigid flat space, including the goldstino

dispersion relation and the leading goldstone-goldstino interactions. As a nontrivial check

of our formalism, we show that the goldstino kinetic term matches existing results on SUSY

broken by a fluid background. In section 5, we relax from the rigid SUSY limit and write

down our EFT in SUGRA. We estimate the leading effects of the new parameter α, and

following ref. [46], we work out the gravitino mode equations in an FRW background and

match to the goldstino results. Finally, we estimate the goldstino contribution to loop

corrections of inflationary observables. We conclude in section 6. Some technical details

are left to the appendices. We follow the conventions of ref. [47] throughout, with the

exception of the Ricci scalar, where we pick the opposite sign.

2 Review of EFT of inflation

Here we present a brief summary of the EFT of inflation. Readers already familiar with this

subject may wish to skip to section 3. Readers unfamiliar with this subject are encouraged

to consult ref. [8] for more details.

The idea is to construct an EFT of fluctuations about a fixed FRW background, pa-

rameterized by H and Ḣ, sourced by an inflaton ϕ. Since we are interested in evaluating

inflationary observables at horizon crossing, ω ∼ H, the IR cutoff of the theory should be H.

The time dependence of the background, parameterized by Ḣ, spontaneously breaks time

diffeomorphisms t→ t+λ(t, ~x), while the spatial homogeneity of the background preserves

time-dependent spatial diffeomorphisms. The action for such an EFT can contain terms

invariant under time-dependent spatial diffeomorphisms but not time diffeomorphisms, for

example g00. It was shown in ref. [8] that the most general action is a polynomial in two

objects, g00 + 1 and δKµν , where the latter is the perturbation of the extrinsic curvature

of surfaces of constant time compared to the extrinsic curvature of the background. All

– 5 –



J
H
E
P
1
0
(
2
0
1
5
)
0
0
1

coefficients quadratic and higher in these objects are free parameters of the EFT, but the

constant and linear terms are fixed by the Friedmann equations:

S = M2
pl

∫
d4x
√−g

[
1

2
R− (3H2 + Ḣ) + Ḣg00 + · · ·

]
. (2.1)

In this unitary-gauge action, the propagating degrees of freedom are those of the metric,

which has acquired a longitudinal mode by eating the scalar perturbation δϕ, in analogy to

the ordinary Higgs mechanism for spontaneously-broken gauge theories. Said another way,

we have chosen a gauge where at all times the inflaton takes its homogeneous background

value, so all variations about the background are described by gµν .

The longitudinal mode π of the metric can be isolated by performing a broken time

diffeomorphism on the unitary gauge action. For simplicity, we only deal with slow-roll

inflation in this discussion. The goldstone equivalence theorem implies that at sufficiently

high energies, the interactions of a massive gauge field are dominated by its longitudinal

mode. In the inflationary case, “sufficiently high energies” means at scales above ω ∼ √εH,

where ε is the slow-roll parameter in eq. (1.6). Since our EFT has an IR cutoff at ω ∼ H, we

are parametrically well within the goldstone equivalence regime during slow-roll inflation

with ε � 1, and the interactions of the metric are dominated by π; mixing terms such as

π̇δg00 can be dropped.6 In an inflationary context, this is known as the decoupling limit.

Performing the broken time diffeomorphism on eq. (2.1) gives

S = M2
pl

∫
d4x
√−g

[
1

2
R− (3H2 + Ḣ)− Ḣ − 1

2
∂µπ∂

µπ + · · ·
]
. (2.2)

The first term is the gravity action, and the second and third terms correspond to the

inflaton potential and kinetic energy, respectively. Crucially, the term Ḣg00 in eq. (2.1)

also generates a kinetic term for π, which is evaluated with respect to the background FRW

metric. Additional interactions for π are encoded in higher-dimensional operators in the

unitary gauge action.

As an example of this formalism applied to slow-roll inflation [8, 10], consider the

Lagrangian for the inflaton ϕ:

L = −1

2
gµν∂µϕ∂νϕ− V (ϕ). (2.3)

Since the gauge choice required for unitary gauge is a spacetime-dependent shift in t, we

can apply the broken time diffeomorphism directly to eq. (2.3) by

ϕ→ 〈ϕ̇〉t+ π(x). (2.4)

Unitary gauge here corresponds to π(x) = 0 identically, where ϕ follows its background

solution at all times and all fluctuations are in the metric. The Friedmann equations fix

V (ϕ) = M2
pl(3H(ϕ)2 + Ḣ(ϕ)), (2.5)

6In more general models of inflation, the mixing with gravity can become relevant at a higher scale and

such terms may not be neglected, see e.g. [8, 9, 48].
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〈ϕ̇〉 = Mpl

√
2|Ḣ(ϕ)|, (2.6)

for a given choice of FRW background parameterized by H and Ḣ. In the decoupling limit,

we can evaluate the ϕ kinetic term on the background metric. Under the further assumption

that any time variation in H or Ḣ is slow-roll suppressed, we can replace H2(ϕ) and Ḣ(ϕ)

by their background values H2 and Ḣ. This brings the action to the form of eq. (2.2).7

3 Minimal EFT of supersymmetric inflation

Generalizing the approach in the previous section, we wish to construct a SUSY EFT

valid at scales H . ω < Λ whose low-energy degrees of freedom are a single real scalar

and a Weyl fermion: the inflaton fluctuations π and the goldstino ξ. As anticipated in

eq. (1.4), we find the natural cutoff scale is Λ =
√
HMpl. Clearly there is a mismatch

between bosonic and fermionic degrees of freedom, but this is not an obstacle to building

a SUSY theory; the constrained superfield formalism of ref. [12] allows the construction

of composite superfields using the goldstino and its bilinears as components, which evades

the problem. Our formalism will demonstrate that two logically distinct sources of SUSY

breaking, namely Lorentz breaking and vacuum energy, can be viewed as coming from a

single SUSY-breaking sector, the inflaton background. In this and the following section, we

consider the theory in the rigid flat-space limit, but in section 5 we will couple the theory

to SUGRA in an FRW background.

3.1 Constrained superfields

As noted in ref. [10], the positive vacuum energy of the inflaton potential spontaneously

breaks SUSY, and thus there must be a goldstino. We parameterize it by a chiral superfield

XNL =
ξ2

2F
+
√

2θξ + θ2F (3.1)

satisfying

X2
NL = 0. (3.2)

Here F is not fixed but is an auxiliary field whose vev we will want to set dynamically to

〈F 〉 = −f . We take F to be real, since we can absorb any relative phase in 〈F 〉 with a

field redefinition, as we will demonstrate in eq. (3.13) below.

To parametrize the inflaton, we start with the constrained “axion” superfield ANL of

ref. [12], which describes a single real scalar ϕ with a shift symmetry ϕ→ ϕ+ c. Its lowest

component is

ANL| = ϕ+
i

2F 2
ξσµξ∂µϕ; (3.3)

note that it contains both the inflaton ϕ and the goldstino ξ. The constraint equation for

ANL is

XNL(ANL −A†NL) = 0 (3.4)

7A term Ḣπ̇ can be dropped because it is a total time derivative, under the assumption that Ḣ is

constant.

– 7 –



J
H
E
P
1
0
(
2
0
1
5
)
0
0
1

which also implies

(ANL −A†NL)3 = 0. (3.5)

In what follows, we demand that our EFT exhibits manifest shift symmetry for ϕ (and

hence for the goldstone π), and so we will express them as a function of the real superfield

BNL ≡
1

2i
(ANL −A†NL), (3.6)

satisfying

B3
NL = 0, XNLBNL = 0. (3.7)

The expression of BNL in terms of its component fields is given in appendix A. The precise

form is not particularly illuminating, so we refrain from writing it out in full here and refer

to its components when necessary. The component of BNL containing only the inflaton is

BNL|ϕ = θσµθ ∂µϕ. (3.8)

When we introduce broken time diffeomorphisms by

∂µϕ→ 〈ϕ̇〉δ0µ + ∂µπ, (3.9)

with 〈ϕ̇〉 = Mpl

√
2|Ḣ| as before, a term B2

NL in the Kähler potential will generate a

canonically normalized kinetic term for π.

Implicit in the above discussion is that we are working in the slow-roll limit where the

constraints in eqs. (3.2) and (3.7) can be regarded as being independent of the space-time

background. To treat more general inflationary scenarios, we would need to account for

the possibility that these constraints depend on the gravity multiplet as well. We leave

such generalizations to future work.

The reader may wonder why, in the spirit of minimality, we need the extra multiplet

XNL in the Lagrangian in addition to BNL, which already contains both of our low-

energy fields. A Lagrangian built solely out of BNL is actually pathological, for two

related reasons. First, when we impose a vev for ϕ̇ to obtain an inflationary background,

the Kähler potential B2
NL which gives the π kinetic term also contributes a vacuum energy

L ⊃
∫
d4θ 〈BNL〉2 = −1

2
〈∂µϕ〉〈∂µϕ〉 = +

1

2
〈ϕ̇〉2. (3.10)

This positive contribution to the Lagrangian is a negative contribution to the Hamiltonian,

and thus the vacuum energy from Lorentz breaking is negative. This is already pathological

at the level of the flat-space SUSY algebra, which requires all states to have non-negative

energy. Second, one can see from the component expansion of BNL that any kinetic

structure for the goldstino will be proportional to ∂µϕ∂
µϕ, and hence will vanish in the

pure de Sitter limit of 〈ϕ̇〉 = 0.8,9

8Note that in general inflationary scenarios beyond slow-roll, 〈ϕ̇〉 = 0 does not correspond to a pure de

Sitter limit [8].
9One can attempt to dispense with the constraint XNLBNL = 0 and solve only the constraint B3

NL = 0

directly. Unlike the BNL above, this gives a pure fermion θξ in the θ component. However, this theory is

plagued by its own pathologies, including kinetic terms which are necessarily nonlocal in superspace, and

superluminal goldstino propagation.

– 8 –
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3.2 Lowest-order Lagrangian

Thanks to the constraints in eq. (3.7), the possible Lagrangians we can write down are

extremely restricted. To lowest order in derivatives, the most general Lagrangian in terms

of XNL and BNL is

L = f

∫
d2θXNL + h.c.+

∫
d4θ

{
X†NLXNL +B2

NL + αBNL + βXNL + β∗X†NL

}
.

(3.11)

The dimension-1 coefficients α and β are free parameters; we include them even though

they multiply linear terms which integrate to zero in flat space because they can contribute

after coupling to SUGRA.10 As we will see in section 5, β can be removed by a Kähler

transformation in SUGRA, but α gives qualitatively new effects which are absent in rigid

SUSY.

The coefficient of X†NLXNL is fixed by requiring canonical normalization for the gold-

stino when 〈ϕ̇〉 = 0. By eq. (3.10), in this limit the Lagrangian (3.11) is simply the Polonyi

model, where the goldstino must be canonically normalized. The breaking of time dif-

feomorphisms offers the possibility of a time-dependent phase of the term fXNL in the

superpotential, of the form

L ⊃
∫
d2θ feiγANL/M

2
plXNL. (3.12)

However, this phase can be absorbed into a field-dependent redefinition of XNL,

XNL → e−iγANL/M
2
plXNL, (3.13)

which is compatible with the constraints of eqs. (3.2) and (3.4) and leaves the Kähler po-

tential X†NLXNL invariant. Thus the phase γ is unphysical, and without loss of generality,

we can take f to be real. On the other hand, we will see in section 5.2 that α gives rise to

an analogous phase on the constant term in the SUGRA superpotential, which cannot be

removed.

The remaining coefficients in eq. (3.11) are fixed to ensure that we get the correct

inflaton Lagrangian during inflation. A canonically normalized inflaton kinetic term fixes

the coefficient of B2
NL to be unity from eq. (3.10). Finally, we identify

f =
√
V (ϕ), (3.14)

where it is understood that ϕ is evaluated on its background slow-roll solution. In terms

of the FRW parameters, we can also write

f = MplH
√

3− ε, (3.15)

which comes from eq. (2.5). Note that f is proportional to Λ2 = HMpl, as expected since f

is the goldstino decay constant. The relation (3.14) always holds in SUGRA for arbitrary

10Note in particular that we cannot get rid the linear term in BNL by completing the square and shifting

BNL by a constant, because that would be inconsistent with the constraint B3
NL = 0.
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m3/2, but eq. (3.15) is only true in SUGRA when m3/2 = 0. When we discuss goldstino

dynamics in section 4, we consider this theory in the rigid flat space limit, where Mpl →∞
and the nonzero background value of the inflaton stress-energy tensor does not back-react

on the geometry.

3.3 Higher-order effects

It is simple to extend the lowest-order Lagrangian, eq. (3.11), to include higher-order ef-

fects in the EFT by adding terms with superspace or spacetime derivatives. Such terms

are expected to be suppressed by powers of Λ and can be important for inflationary phe-

nomenology, as emphasized in refs. [10, 11, 39, 49, 50]. For example, a nontrivial speed

of sound cπ for the goldstone can be obtained by adding self-interactions. A good can-

didate higher-derivative operator is B2
NL∂µANL∂

µA†NL, whose top component contains

(∂µϕ∂
µϕ)2. However, such an operator contributes to the vacuum energy, so adding it by

itself will shift the vacuum energy — or, in field theoretic terms, will reintroduce a tadpole

for π. To avoid this, we may only add higher-order terms to the action in the combination(
1 +

1

〈ϕ̇〉2∂µϕ∂
µϕ
)k

= O(π2), (3.16)

for some power k > 1, since that combination is quadratic in the fluctuations.

In the original EFT of inflation, to get a nontrivial speed of sound for π, one adds [8]

∆L = M4
(

1 +
1

〈ϕ̇〉2∂µϕ∂
µϕ
)2
, (3.17)

where the speed of sound is given in terms of the new mass parameter M and the parameters

of the background as

cπ =

(
1 +

4M4

M2
pl|Ḣ|

)−1/2
. (3.18)

Such an operator, however, does not exist by itself in a SUSY theory [10]. Expanding out

eq. (3.17) and comparing with eq. (3.11), we see that the operator we must add to shift

the speed of sound as (3.18) while preserving the background is

∆L = − M4

2MplH
√

3− ε

∫
d2θXNL + h.c.

− M4

M2
pl|Ḣ|

∫
d4θ

{
B2
NL

(
2 +

1

2M2
pl|Ḣ|

∂µANL∂
µA†NL

)}
. (3.19)

This is very similar to the operator used in ref. [10] to construct a SUSY theory with

small sound speed, with the constrained superfield ANL here playing the role of the chiral

multiplet where the inflaton resides. However, since the inflaton multiplet of ref. [10] is

not constrained, the structure of the operator here is a little different. Note that these

operators are indeed suppressed by powers of Λ.
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3.4 Connection to previous literature

We can make an even more direct connection between the theory we study here and that of

ref. [10] by showing how to derive the ANL constraints. In particular, we can think of our

constraints as arising from integrating out the additional real scalar and Weyl fermion of a

chiral inflaton multiplet. Consider two chiral multiplets, A and XNL, as in ref. [10]. XNL

is a constrained superfield of F -term breaking, containing only the goldstino and satisfying

X2
NL = 0, and A is a priori unconstrained. A contains the inflaton ϕ and a scalar partner

σ in its lowest component, as well as an additional fermion ψ:

A = ϕ+ iσ +
√

2θψ + θ2FA. (3.20)

Much of the focus of ref. [10] was on the effects of σ, though such a mode is not

necessary in our minimal EFT. From a Planck-suppressed coupling of the form

λσ
24M2

pl

∫
d4θ (A−A†)2X†NLXNL ⊃ −

1

2
λσH

2
(

1− ε

3

)
σ2, (3.21)

σ receives a mass m2
σ = λσH

2 (plus slow-roll corrections), where λσ is a dimensionless

constant. For λσ of order unity, the mass of the extra scalar is at the EFT scale H. For

λσ � 1, however, σ decouples and we may integrate it out. In particular, if we rewrite

λσ
M2

pl

⇒ λ′σ
Λ2
, (3.22)

then for λ′σ being order 1, mσ is order Λ =
√
MplH as suggested by eq. (1.4). Thus, Λ is

the natural cutoff scale to suppress higher-dimension operators in our SUSY EFT.

In ref. [10] it was also noted that ψ acted as an additional goldstino, interpreting A

and XNL as separate sources of SUSY-breaking for Lorentz breaking and vacuum energy,

respectively. Here, we can consistently decouple ψ with the higher-dimension operator

− λψ
12M3

pl

∫
d4θ

{
Dα̇A

†D
α̇
A† +DαADαA

}
X†NLXNL ⊃ −

1

2
λψ

H2

Mpl

(
1− ε

3

) (
ψ2 + ψ̄2

)
(3.23)

for sufficiently large λψ. From the power counting of ref. [10], this fermion mass is expected

to be Planck-suppressed, so a heavy fermion from large λψ is not natural in that context.

For the present EFT, though, A is not a fundamental degree of freedom in the theory

below Λ. In particular, making the replacement λψ/M
3
pl ⇒ λ′ψ/Λ

3, then the additional

fermion is again at the cutoff scale Λ for λ′ψ being O(1).

Together, the higher-dimensional operators in eqs. (3.21) and (3.23) impose the con-

straint

XNL(A−A†) = 0 (3.24)

when λσ, λψ � 1. Solving this constraint for A as in ref. [12], we recover our nonlinear

superfield ANL with the constraint in eq. (3.4). Note that the requirement of manifest shift

symmetry in ϕ protects the mass of ϕ, but not the mass of any other components of A.
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4 Goldstino dynamics in rigid flat space

The nonzero vev 〈ϕ̇〉 spontaneously breaks Lorentz invariance, and we expect this Lorentz

breaking to appear in the goldstino kinetic term as well as in the goldstone-goldstino inter-

actions. To derive these effects, we work in the rigid flat-space limit for simplicity, taking

Mpl →∞ and considering only modes ω � H, such that the background is approximately

flat. This corresponds to ignoring any Hubble friction terms in the goldstino dispersion

relation.

The key result we will derive from our EFT is that the goldstino has a linear dispersion

ω = csk with a speed of sound

cs =
1− κ
1 + κ

= 1− 2

3
ε, (4.1)

where

κ =
〈ϕ̇〉2

2〈F 〉2 =
ε

3− ε (4.2)

is a dimensionless parameter characterizing the relative size of the two sources of SUSY

breaking: Lorentz breaking and vacuum energy. The relationship between κ and the slow-

roll parameter ε comes from eqs. (2.6) and (3.15). This same parameter cs will appear in

section 5.4 when we include the effects of the gravitino mass term.

4.1 Relevant scales and goldstino equivalence

We begin with some comments about the relevant scales in our EFT. The theory we de-

scribed in section 3 has a single sector responsible for SUSY breaking, namely the inflaton

background. This sector breaks SUSY through both an F -term and Lorentz violation.

However, we know that SUSY is also broken today, corresponding to a positive vacuum en-

ergy F 2
0 for a SUSY-breaking scale F0. To compensate for the fact that the vacuum energy

is vanishingly small today, we would need to add a negative cosmological constant [51, 52].

The tuning of the cosmological constant to obtain flat space gives a well-known relation

between the gravitino mass and the scale of SUSY breaking, m3/2 = F0/
√

3Mpl. In the

following, we assume that |m3/2| does not change during or after inflation and we use |m3/2|
as a proxy for F0 when comparing different scales in the EFT. We emphasize, though, that

|m3/2| is not an order parameter for SUSY breaking during inflation.

If F0 is much less than the other scales in the EFT,

F0 � 〈ϕ̇〉 � Λ2, (4.3)

or equivalently (dividing by Mpl)

|m3/2| �
√
εH � H, (4.4)

then we can neglect it. This corresponds to the goldstino equivalence limit, where even loop

diagrams in the EFT are dominated exclusively by the goldstino because all momentum

scales in the loop are well above the gravitino mass. Indeed, we are already neglecting
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terms of O(
√
ε) mixing π with metric fluctuations by working in the decoupling limit, so

the effects of F0 are an even smaller perturbation on top of these terms.

If instead F0 ' Λ2, the goldstino equivalence limit is no longer appropriate, and

we would need to consider the interactions of the goldstone with the gravitino, as well

as goldstino-gravitino mass mixing.11 Below we will work exclusively in the goldstino

equivalence limit given by eqs. (4.3) and (4.4), leaving a discussion of the case of large

|m3/2| for section 5.

4.2 Goldstino dispersion relation from EFT Lagrangian

The Kähler potential terms in eq. (3.11) give kinetic terms for the goldstino after perform-

ing the superspace integral. The X†NLXNL term gives the canonical kinetic term for ξ,

but when BNL acquires a vev 〈BNL〉 = θσ0θ〈ϕ̇〉, the B2
NL term gives Lorentz-violating

corrections to the ξ kinetic term. By inspection, we see that B2
NL does not contain any

goldstino bilinears with no derivatives in its top component, so there is no mass term, as

expected for a goldstino.

The remaining goldstino bilinears are all one-derivative terms arising from expanding

the θ, θ components of BNL, given in appendix A:

B2
NL|kin =

−i〈ϕ̇〉2
2F 2

[
θ
2
(∂νξσ

0σνθ)(θσ0ξ) + θ2(∂νξσ
0σνθ)(θσ0ξ)

]
. (4.5)

Simplifying using the definition of κ in eq. (4.2), we find

L ⊃ −iκ∂µξσµξ + 2iκ∂0ξσ
0ξ. (4.6)

Including the canonical kinetic term originating from
∫
d4θX†NLXNL,

L ⊃ i∂µξσµξ, (4.7)

we have the goldstino kinetic structure

Lkin = (1− κ)i∂µξσ
µξ + 2κi∂0ξσ

0ξ. (4.8)

One can then read off that the goldstino satisfies the dispersion relation ω = |cs|k with

cs =
1− κ
1 + κ

. (4.9)

Clearly, eq. (4.9) is pathological when κ ≥ 1, but κ < 1 is automatically satisfied

during inflation. Indeed, since ε � 1 during inflation and ε = 1 ends inflation, our EFT

of inflation is only valid when κ = ε/(3 − ε) is much less than 1/2. However, in a more

general context, requiring a goldstino sound speed which does not cross zero can be read

as a constraint that the vacuum energy from F -term breaking must be larger than the

vacuum energy from time diffeomorphism breaking (see eq. (3.10)).

11If F0 ' 〈ϕ̇〉, slow-roll suppressed effects are parametrically similar to effects proportional to m3/2, and

some care would be required in including the leading effects of both.
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4.3 Cross-check: Goldstino dispersion relation from a fluid background

An alternate way to derive eq. (4.1) is to use results from the literature on SUSY breaking at

finite temperature [53] and in a fluid background [44, 45]. In both cases, there is a massless

fermionic excitation, the “phonino”, with a linear dispersion and speed of sound equal to

cs = |w| =
∣∣∣∣pρ
∣∣∣∣ , (4.10)

where p, ρ, and w are the pressure, density, and equation of state of the background

fluid, respectively. Both the existence of this mode and its dispersion relation follow from

extremely general considerations, namely applying the Ward-Takahashi identity for the

supercurrent, which contains the vev of the stress tensor on the right-hand side.

In our case, we simply plug in the stress tensor of the inflaton background:

pϕ =
1

2
ϕ̇2 − V (ϕ), ρϕ =

1

2
ϕ̇2 + V (ϕ). (4.11)

This gives

cs =
V (ϕ)− 2ϕ̇2

V (ϕ) + 2ϕ̇2
=

1− κ
1 + κ

(4.12)

after making the identifications in eqs. (3.14) and (4.2). As expected, this agrees with our

EFT derivation.

4.4 Leading goldstino-goldstone interactions

Beyond just dispersion relations, our EFT allows us to derive the leading goldstino-

goldstone interactions in a model-independent way. We seek terms in B2
NL containing

at most two goldstinos and two ϕ fields. Using the expansion of BNL in appendix A, we

find the following:

L ⊃ i

4F 2
∂ρϕ∂ν(ξ∂µϕ)σµσνσρξ + h.c. (4.13)

After the replacement in eq. (3.9), the terms where one factor of ∂ϕ is replaced by 〈ϕ̇〉 give

3-point interactions,

L3-pt =
〈ϕ̇〉
4F 2

(
i ∂ρπ ∂νξ σ

0σνσρ ξ + i ∂ν(ξ∂µπ)σµσνσ0 ξ
)

+ h.c. (4.14)

Using 〈ϕ̇〉 = HMpl

√
2ε and Λ =

√
MplH, we can express the coefficient of this operator in

terms of inflationary parameters,

L3-pt =
1

2
√

2Λ2

√
ε

3− ε
(
i ∂ρπ ∂νξ σ

0σνσρ ξ + i ∂ν(ξ∂µπ)σµσνσ0 ξ
)

+ h.c. (4.15)

As expected from eq. (1.4), this dimension-6 operator is naturally suppressed by the cutoff

scale Λ instead of Mpl, and it includes the expected slow-roll suppression factor
√
ε. Simi-

larly, the term where both factors of ∂ϕ are replaced by ∂π leads to 4-point interactions,

L4-pt =
i

12Λ4(3− ε)∂ρπ(∂µπ ∂νξ + ∂µ∂νπ ξ)σ
µσνσρξ + h.c. (4.16)

This dimension-8 operator is suppressed by 1/Λ4 as expected, but is not slow-roll suppressed

to leading order. Both of these vertices were shown schematically in figure 1.
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5 Supergravity EFT of inflation

Up to this point, we have worked out the leading-order effects of our theory in the rigid

SUSY limit (Mpl → ∞). This let us focus on the goldstone and goldstino fluctuations

without worrying about the complications inherited from the inflating FRW background.

In this limit, we were still able to see the reduced speed of sound of the goldstino and derive

the leading goldstino-goldstone interactions of the EFT.

In this section, we work out the minimal SUGRA EFT of inflation by coupling our

nonlinear chiral multiplets ANL and XNL to SUGRA. The goldstino and gravitino become

fluctuations on an FRW background with metric

ds2 = −dt2 + a(t)2d~x2, (5.1)

where a(t) = eHt is the scale factor. As in the EFT of inflation, the relationship between

the FRW parameters H and Ḣ and the components of the inflaton stress-energy tensor is

set dynamically by the Friedmann equations. In addition to having a dynamical metric,

SUGRA introduces the spin-3/2 gravitino field as the superpartner to the graviton. Just

as the metric eats the inflaton fluctuation in unitary gauge, the gravitino eats the goldstino

via the super-Higgs mechanism, leading to a spin-1/2 longitudinal mode. We will find that

the mode equation for the spin-1/2 mode will reduce to precisely that of the goldstino

computed in the rigid limit, giving a speed of sound cs = 1− 2ε/3.

Additionally, we allow a negative cosmological constant Λ0 = −3M2
pl/`

2
AdS. This term

gives the gravitino a SUSY-preserving mass in pure SUGRA, with |m3/2| = 1/`AdS. As

discussed in section 4.1, goldstino equivalence no longer holds for large |m3/2|, and we

cannot ignore the couplings to the transverse polarizations of the gravitino in the EFT. In

this section, we depart from the goldstino equivalence limit and allow the case of |m3/2| &
H. This hierarchy of scales is interesting because in the case where |m3/2| is the same

during and after inflation, it corresponds to extremely high-scale SUSY breaking, where

masses of superpartners today are well above the Hubble scale during inflation. In this

case, superpartners would almost certainly be unobservable at terrestrial colliders, but

could still give observable signatures during inflation [32].

We work in the chiral superspace formalism, where the minimal SUGRA action is

S = M2
pl

∫
d4x d2Θ 2E

{
3

8
(D2 − 8R)e−K[XNL,X

†
NL,BNL]/3M

2
pl +

1

M2
pl

W [XNL]

}
+ h.c.,

(5.2)

where K[XNL,X
†
NL,BNL] is the Kähler potential, W [XNL] is the superpotential, and

E , R, and D are the chiral density, chiral superspace curvature, and superspace covariant

derivative, respectively.12 Additionally, Θ is the chiral superspace variable, which carries

local Lorentz indices.

12The expressions for E and R will not be needed here, but are written out in eq. (21.8) of ref. [47].
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5.1 Linear Kähler frame

The most general Kähler potential and superpotential without derivatives were found pre-

viously in eq. (3.11), which we repeat here for convenience:

K[XNL,X
†
NL,BNL] = X†NLXNL +B2

NL + αBNL + βXNL + β∗X†NL,

W [XNL] = M2
pl|m3/2|+ fXNL, (5.3)

where we have added a constant term to the superpotential to give an additional cosmolog-

ical constant Λ0. Higher-order polynomial terms in XNL and BNL in the Kähler potential

vanish by the constraints X2
NL = B3

NL = XNLBNL = 0. Because we are working in the

chiral superspace formalism, eq. (5.3) should be understood as depending on the chiral

superfield ANL, which can be found by substituting eq. (3.6).

In the superpotential, |m3/2| = |〈W 〉|/M2
pl is the gravitino mass in pure SUGRA. We

recall the standard result from SUGRA that the contribution to the vacuum energy from

the superpotential is nonpositive, so the positive vacuum energy during inflation must

come from the Kähler potential. Note that for nonzero m3/2, it is no longer true that

f = MplH
√

3− ε as there is an additional contribution to H in the Friedmann equations

from the cosmological constant Λ0.

The term proportional β in eq. (5.3) can be removed by a Kähler transformation, which

reshuffles terms between the Kähler potential and the superpotential as

K →K + Ω + Ω†, W → e−Ω/M
2
plW , (5.4)

where the Kähler transformation parameter Ω is a (dimension-2) chiral superfield.13 Taking

Ω = −βXNL removes the terms proportional to β from eq. (5.3), but it adds no new

terms to the superpotential thanks to the constraint X2
NL = 0 and it instead just shifts

f → f + β|m3/2|. Thus we can work in the Kähler-transformed frame and absorb the

effects of β into a redefinition of f .

After removing β, the Kähler potential and superpotential are

K[XNL,X
†
NL,BNL] = X†NLXNL +B2

NL + αBNL,

W [XNL] = M2
pl|m3/2|+ fXNL. (5.5)

We refer to this as the “linear” Kähler frame due to the presence of the linear term αBNL.

From eq. (5.5), we can see that α is technically natural in the sense of ’t Hooft, since when

α = 0 the Kähler potential has the enhanced Z2 symmetryBNL → −BNL, or ∂µπ → −∂µπ
at the Lagrangian level. Thus α may be expected to be small, but as a new parameter it

is still worthwhile to investigate its effects.

In this linear Kähler frame, the vector auxiliary field bµ obtains a vev in the time

component b0. As shown in appendix B, the value of the vev is

〈b0〉 =
iα

2M2
pl

〈ϕ̇〉
(
〈Ẇ 〉 = 0

)
. (5.6)

13Since our EFT has no gauge multiplets, there is no Kähler anomaly to worry about.
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The Lorentz-violating b0 vev gives rises to a Lorentz-violating gravitino bilinear,

L3/2 ⊃
iα

4M2
pl

〈ϕ̇〉ε0µνκψµσνψκ. (5.7)

This establishes the connection between 〈bµ〉 and Lorentz-breaking of SUSY as suggested

in ref. [10].14 We discuss the role of this α term in section 5.3.

5.2 Canonical Kähler frame

Using another Kähler transformation, we can also remove the linear term αBNL from the

Kähler potential, at the expense of making the superpotential non-polynomial. Taking

Ω = iα
2 ANL, the Kähler transformation of eq. (5.4) gives

K = X†NLXNL +B2
NL,

W = e−iαANL/2M
2
plM2

pl|m3/2|+ fXNL. (5.8)

Here, we have used the result from eq. (3.13) that allows us to absorb any ANL-dependent

phase of f into a redefinition of XNL. We refer to this as the “canonical” Kähler frame.15

At first glance, the phase in W seems to break the manifest shift symmetry we had

previously imposed by writing the Kähler potential as a function of BNL only.16 However,

the lowest component of ANL does not obtain a vev as long as we assume there is no

Lorentz-breaking goldstino condensate (see eq. (A.3)), so the vev of the superpotential still

respects the shift symmetry, 〈W 〉 = M2
pl|m3/2|. Instead, the effect of α is to give Ẇ a

nonzero imaginary vev,

〈Ẇ 〉 = − iα

2M2
pl

〈ϕ̇〉|m3/2|
(
〈bµ〉 = 0

)
. (5.9)

We emphasize that in the canonical Kähler frame, the vector auxiliary field of SUGRA bµ
does not obtain a Lorentz-violating vev. 〈Ẇ 〉 can be interpreted as time-dependent phase

of the gravitino mass,

m3/2 = e−iα〈ϕ̇〉t/2M
2
pl |m3/2|. (5.10)

This can be understood as a local (in time) redefinition of the left- and right-handed Weyl

spinors which are coupled through the mass term, a point of view we will return to in

section 5.3.

Alternatively, one can remove the time-dependent mass phase with a field redefinition

of the gravitino. Consider the unitary gauge Rarita-Schwinger Lagrangian,

L3/2 = εµνρκψµσνDρψκ −m3/2ψµσ
µνψν −m∗3/2ψµσµνψν , (5.11)

14Note that 〈M〉, the vev of the SUGRA scalar auxiliary field, is nonvanishing. Our formalism differs

from that of ref. [10] by the addition of the R-symmetry breaking parameter |m3/2| (see appendix B).
15In the minimal SUGRA formalism, there is no kinetic mixing between the gravitino and the goldstino

even for nonzero background values of the auxiliary fields, so the choice of canonical frame or linear frame

is simply one of convenience. See ref. [54], however, for a discussion of frame-dependent subtleties which

arise in the conformal compensator formalism.
16Note that ANLXNL 6= 0 and ANL is not nilpotent in contrast to XNL, so the exponential prefactor

is non-trivial.
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where Dρ is the covariant derivative for a gravitino. The field redefinition

ψµ → eiαϕ/4M
2
pl ψµ, ψµ → e−iαϕ/4M

2
pl ψµ (5.12)

restores a real and time-independent m3/2 = |m3/2|. However, the Rarita-Schwinger kinetic

term now generates an extra term proportional to ε0µνκψµσνψκ, which is (not surprisingly)

the same Lorentz-violating term from eq. (5.7) we found in the linear Kähler frame.

5.3 The role of α

The presence of the parameter α can potentially lead to interesting phenomenological

consequences. From eq. (5.10), the gravitino obtains a Lorentz-violating, time-dependent

phase proportional to α (or equivalently, the bilinear term in eq. (5.7)). For a fermion

with a Dirac mass, a 〈ϕ̇〉-dependent mass phase would source a chemical potential for

the fermion in the inflationary background, similar to refs. [55–58]. For a fermion with

a Majorana mass, the effect of this phase is somewhat less intuitive, so in appendix C

we work out a toy example with a Majorana spin-1/2 fermion before deriving the phase-

modified dispersion relations for a Rarita-Schwinger field. In addition, there are 3- and

4-point vertices arising from eq. (5.7) and related terms, so scattering amplitudes and loop

diagrams will contain contributions proportional to α.

That said, effects proportional to α are expected to be extremely small. Parametrically,

the coefficient in eq. (5.7) is
α〈ϕ̇〉
4M2

pl

=
α

2
√

2Mpl

√
εH. (5.13)

Since α < Λ for the validity of the EFT and ε � 1 during slow-roll inflation, the effects

of α are doubly suppressed compared to H. In the case where |m3/2| is of order H, the

effects of the expanding universe (i.e. Hubble friction) will dominate the effects of α. In

the opposite limit where |m3/2| can be neglected, α is unphysical. This fact is clear in the

canonical Kähler frame (without redefining the gravitino), since α only appears as a phase

in the gravitino mass, which is therefore irrelevant when |m3/2| → 0. Thus, in the EFT of

inflation, there is no parametric regime where α gives the leading corrections to the rigid

flat space mode equations. Apart from an interesting calculation in appendix C.2, we will

set α = 0 from now on, though we still leave |m3/2| arbitrary.

5.4 Revisiting the slow gravitino

Having dispensed with α, the leading-order SUGRA effects arise from the gravitino equa-

tions of motion. To derive the mode equations, it is simplest to perform this analysis in

unitary gauge, where the goldstino is eaten by the gravitino. With α = 0, the unitary-gauge

gravitino Lagrangian is

L3/2 = εµνρκψµσνDρψκ − |m3/2|
(
ψµσ

µνψν + ψµσ
µνψν

)
. (5.14)

With a real mass, we can combine the two Weyl spinors ψµ and ψµ into a 4-component

Majorana spinor Ψµ, decoupling the equations of motion for Ψµ and Ψµ ≡ Ψ†µγ0. Further-

more, since the Lagrangian coefficients are manifestly time-independent, the identification

of the propagating polarization spinors is straightforward.
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In fact, ref. [46] already worked out the gravitino equations of motion in an FRW back-

ground in four-component fermion notation, so we can simply recall the results here.17 Af-

ter considering general |m3/2|, we will examine the |m3/2| → 0 limit to see how the gravitino

equations of motion map onto the goldstino modified speed of sound result from section 4.

First, it is convenient to write the FRW metric in conformal time,

ds2 = a2(η)(−dη2 + d~x2), (5.15)

with η defined by the relation dt = a(t(η))dη. In terms of conformal time, the FRW

parameters are given by

H =
a′

a2
, Ḣ + 2H2 =

a′′

a3
, (5.16)

where primes denote derivatives with respect to conformal time, a′ = da/dη. We also make

use of the vierbein

eµa = a−1δµa (5.17)

and curved-space objects

γ̂µ ≡ eµaγa, εµνρσ ≡ eeµaeνb eρceσdεabcd. (5.18)

Here, Latin indices denote tangent-space indices and Greek indices are space-time indices.

Next, we rewrite the equation of motion for Ψσ as the condition that a 4-vector of

spinors Rµ vanish identically

Rµ ≡ εµνρσγ5γ̂µD̂ρΨσ = 0, (5.19)

where the covariant derivative

D̂µ = ∂µ −
a′

4a2
(
γ̂µγ

0 − γ0γ̂µ
)
− i

2
|m3/2|γ̂µ (5.20)

is defined to include the mass term. We can use the spatial isometries of the FRW metric

to Fourier transform the spatial dependence of the gravitino field,

Ψµ(η, ~x) ∼
∫
d3k ei

~k·~xΨµ
~k
(η). (5.21)

The Rarita-Schwinger equation (5.19) implies two algebraic constraints on Ψµ
~k
. The equa-

tion for R0 contains no time derivatives thanks to the antisymmetry of the Levi-Civita

tensor, and so gives an algebraic constraint relating the components Ψi
~k
, i = 1, 2, 3. The

second constraint comes from operating on eq. (5.19) with D̂µ. Ref. [46] showed that one

can solve for Ψ0 as

Ψ0
~k

= c

3∑
i=1

γ̂iΨ
i
~k
, (5.22)

with c a matrix in spinor space which reduces to c = γ0 in flat space, recovering the familiar

Rarita-Schwinger constraint γ ·Ψ = 0.

17For similar work along these lines, see refs. [59–62].
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Using these constraints, one can work out the mode equations for each of the po-

larizations [46]. The mode equations for the spin-1/2 component Ψ
1/2,~k

and the spin-3/2

component Ψ
3/2,~k

(which are linear combinations of the two spinors remaining after solving

the two constraints) are[
iγ0∂0 + i

5a′

2a
γ0 − |m3/2|a+ (A+ iBγ0)~k · ~γ

]
Ψ

1/2,~k
= 0, (5.23)[

iγ0∂0 + i
5a′

2a
γ0 − |m3/2|a+ ~k · ~γ

]
Ψ

3/2,~k
= 0, (5.24)

with

A =
1

3
(
(a′)2

a4
+|m3/2|2

)2[2a′′a3
(
|m3/2|2−

(a′)2

a4

)
+

(a′)4

a8
−4|m3/2|2

(a′)2

a4
+3|m3/2|4

]
, (5.25)

B =
2|m3/2|

3
(
(a′)2

a4
+ |m3/2|2

)2 [2a′′a′a5
− (a′)3

a6
+ 3|m3/2|2

a′

a2

]
. (5.26)

We see that Ψ3/2 has a canonical kinetic term, but the spatial part of the kinetic term for

Ψ1/2 is modified by the coefficients A and B. The term proportional to a′/a is the Hubble

friction term, which affects all four polarizations equally.

The above results are valid for any value of |m3/2| in any FRW background. This means

that we can perform a third (and final) cross check of the modified speed of sound result

of section 4 by isolating the longitudinal spin-1/2 polarization in the |m3/2| → 0 limit.

Looking at modes ω > H to compare to flat space, we find that Ψ
1/2,~k

has a dispersion

relation ω/k = |A|, with

A =
1

3
− 2a′′a

3(a′)2
. (5.27)

Plugging in using eq. (5.16) and the definition of the slow roll parameter, we find

cs = |A| = 1− 2

3
ε =

1− κ
1 + κ

, (5.28)

exactly reproducing our earlier results obtained from the goldstino equivalence regime.

It is intriguing that the nontrivial speed of sound is here a consequence of the FRW

background, whereas in section 4 it was due to the nontrivial vev of the inflaton energy-

momentum tensor, evaluated on a flat background. This is a direct consequence of SUSY

and the structure of SUGRA. In the rigid flat limit, 〈Tµν〉 cannot back-react on the ge-

ometry, but due to the Ward-Takahashi identity for the supercurrent, it is 〈Tµν〉 which

determines the goldstino dispersion relation. For finite Mpl, 〈Tµν〉 sources the curvature R

of the background, and the gravity multiplet containing both R and ψµ communicates the

nontrivial goldstino dispersion to the longitudinal component of the gravitino through the

super-Higgs mechanism. Finally, note that in flat space with unbroken SUSY (m3/2 = 0

and a = 1), A = B = 0. In this limit, the spin-1/2 mode does not propagate, and we

recover the two physical polarizations appropriate for unbroken SUSY.
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5.5 Loop corrections to inflationary observables

It would be rather surprising if there were large observable consequences of the goldstino of

SUSY inflation. Cosmologically, fermions are only observable through loop effects. Loop

corrections in inflation were explored in ref. [63] for reasons of considering (even potentially

unobservable) theoretical consequences of the theory. This was followed up in refs. [27, 64,

65], in which the authors investigated an unphysical logarithmic running claimed in ref. [63],

and also recently revisited in refs. [24, 66–68].

The main cosmological observable is the dimensionless curvature mode ζ, which in the

EFT of inflation is proportional to π [8],

ζ = − H

〈ϕ̇〉π. (5.29)

The simplest observable is the two-point function, the form of which is fixed by conformal

symmetry. In momentum space, this is given by

〈ζζ〉 ∼ 1

k3−ns
, (5.30)

where ns = −4ε is the spectral tilt.18 In the de Sitter limit (ε = 0), conformal invariance is

exact and eq. (5.30) is the two-point function for a three-dimensional conformal operator

dual to a massless scalar in de Sitter space. In the slow roll limit (ε > 0), ns characterizes

the deviation from exact scale invariance.

In our EFT, there will be corrections to the two point function from goldstino loops

shown in the left side of figure 2. In general, such “self-energy” type corrections compute

the anomalous dimensions of the three-dimensional conformal operator dual to the the

inflaton fluctuation. The leading corrections from goldstino loops will be proportional to

the 4-point ππξξ vertex, which is given by eq. (4.16) and scales like 1/Λ4. By dimensional

analysis (i.e. using factors of H from the derivatives in the interaction vertices to make up

the dimensions in the numerator), the size of loop corrections is expected to be [27, 64–66]

〈ζζ〉 ∼ 1

k3−ns

(
1 + #

H4

Λ4
log

k

aµ

)
, (5.31)

where we have thrown away an expected UV-divergence [69], and the exact relation will be

scheme-dependent. Here µ is the renormalization scale, and the scale factor a is implicitly

determined by k/a = H, where all quantities are evaluated at horizon crossing.19 However,

the form of the answer is constrained due to conformal symmetry and so we expect this to

be expressed as [70, 71]

〈ζζ〉 ∼ 1

k3−ns+2γ
, (5.32)

where γ ∼ H4/Λ4 = H2/M2
pl is the shift due to the goldstino loop. This highlights a bug

(or feature) of the two-point function: the symmetry is so constraining that we cannot

distinguish between the effects of the gravitino and effects due to inflaton self-interactions

or gravitational effects (for example, graviton loops). The form of the two-point function

is restricted to be a power law decay in k and can have no other features.

18In this section, as in the rest of the paper, we have set the second slow roll parameter η to zero.
19We thank Tarek Anous for a discussion of this point and the anonymous referee for further clarifications.
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π π πππ

Figure 2. Leading diagrams with loops of goldstinos. Left: contribution to the goldstone two-point

function. Right: contribution to the goldstone three-point function.

A recent program in inflation attempts to exploit the high energy scale H set by

inflation and use cosmological observations to provide evidence for new particles. This

was first done in the context of indirect effects on the goldstone π [28], and in many other

scenarios by refs. [9, 11, 24, 29–32, 34]. Such observables require going beyond the two-

point function. In de Sitter space, the three-point function at late times is also highly

constrained by conformal symmetry, and the first nontrivial correlation function is the

four-point function. In inflation, the three-point function can be thought of as a de Sitter

four-point function with one of the legs set to the inflationary background.

The leading goldstino contribution to the inflaton three-point function is shown in

the right side of figure 2. As emphasized in ref. [24], only new particles can lead to non-

analyticities in the three-point function. These effects are necessarily nonperturbative in

the H/Mpl power counting, so cannot be detected in the usual power-expanded EFT of

inflation.20 In our SUSY EFT, however we have two low energy modes, the goldstone and

the gravitino. Therefore, even though goldstone self-interactions are expanded in powers

of H/Mpl in the EFT, we still expect to see resonances of the gravitino in the three-point

function of the goldstone.

In general, loop contributions to the goldstone three-point function will depend on

properties of the particle in the loop, such as its mass and spin. Ref. [24] identifies two

different observable signatures of a new particle. For heavy particles m & H, the corre-

lation function exhibits an oscillatory interference effect. This signature would be present

for gravitino loops if m3/2 is comparable to H. For light particles, the correlation function

exhibits a power-law decay with the exponent sensitive to the mass of the particle. This is

the case for m3/2 � H, where we expect inflationary observables to depend primarily on

the goldstino (equivalently, longitudinal gravitino). Optimistically, there might even be ob-

servable consequences from the different dispersions of the two gravitino modes (eqs. (5.23)

and (5.24)).21 We leave a detailed calculation of these effects to future work.

20We thank Nima Arkani-Hamed for a discussion of these points.
21Of course, there will also be contributions from goldstone loops, but one may hope that these could be

disentangled from the goldstino/gravitino loops because of the different spins of these particles.
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6 Conclusion

In this paper, we have established that the minimal low energy degrees of freedom in a

consistent SUSY model of inflation are a real scalar goldstone π and a Weyl fermion gold-

stino ξ. These correspond to the two symmetries spontaneously broken by the inflationary

background: time translation invariance and SUSY. Realistic models may of course have

other states between the IR cutoff H and the UV cutoff Λ =
√
MplH, such as the extra

scalar emphasized in ref. [10], but π and ξ are the irreducible degrees of freedom present

in every SUSY inflationary scenario.

Our theory can be regarded as the minimal SUSY extension of the EFT of inflation of

ref. [8], in the context of slow-roll inflation. By using nonlinear multiplets, we can express π

and ξ compactly within two constrained superfields, XNL and BNL. We have also shown

how to relate our theory to the SUSY EFT studied in ref. [10], which includes the scalar

partner of the inflaton and an extra fermion in the inflaton multiplet. We recovered the

nonlinear constraints on BNL by pushing up the mass of the extra states above the EFT

scale and integrating them out.

This theory lets us compute the model-independent irreducible SUSY contribution to

inflationary observables in the slow-roll approximation. Of course, this formalism predicts

that there will probably be no such observations in the near future, since the loop-induced

effects of the goldstino are quite small. We expect the one-loop contribution of the goldstino

to the scalar two-point function to contribute parametrically as H2/M2
pl compared to the

tree level contribution, which is extremely small unless H is very large. Similarly, the

contribution of goldstino loops to the scalar three-point function will carry signatures of

the mass and spin of the goldstino, but these will be slow-roll, power-law, and possibly

even exponentially suppressed. Nevertheless, it could be interesting to actually compute

the goldstino one-loop contribution by continuing a perturbative calculation in EAdS space

to de Sitter space as in refs. [69, 72–74]. Also, it is worth noting that goldstino dynamics

might be relevant for (p)reheating (see e.g. [46, 60–62, 75]), though that era is strictly

speaking outside of the range of validity of the present EFT.

Finally, we speculate about the effects of extremely high-scale SUSY breaking. If

|m3/2| does not change during or after inflation, the gravitino mass during inflation is re-

lated to the scale of SUSY-breaking today. After coupling our EFT of inflation to SUGRA,

we have identified an additional free parameter α, parameterizing a time-dependent phase

for the gravitino mass m3/2. If |m3/2| > H, there are additional interaction vertices pro-

portional to the new parameter α. The effects of α are parametrically both Planck- and

slow-roll suppressed, but nevertheless calculable with our EFT. Since this is also the region

of parameter space where the scale of SUSY-breaking is so high as to never be directly

observable at terrestrial colliders, one can hope that the universe can be used as a “cosmo-

logical collider” [8, 9, 11, 24, 28–32, 34] to probe the effects of SUSY in the early universe.

We leave an investigation of these potentially interesting effects to future work.
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A Components of BNL

The “axion” superfield ANL of ref. [12] is a chiral superfield whose lowest component is

ANL| ≡ a = ϕ+
i

2|F |2 ξσ
µξ∂µϕ+

1

8|F |4
(
ξ2∂νξσ

µσνξ − c.c.
)
∂µϕ (A.1)

− i

32|F |6 ξ
2ξ

2
∂µξ(σ

ρσµσν + σµσνσρ)∂νξ∂ρϕ.

In particular, Re(ANL|) = ϕ. The full superfield ANL has components

ANL = a+
i
√

2

F
θσµξ∂µa+

1

F
2 θ

2

(
−∂νξσµσνξ∂µa+

1

2
ξ
2
∂2a

)
, (A.2)

where all fields are understood to be functions of yµ = xµ + iθσµθ.22

We define the real superfield BNL = 1
2i(ANL−A†NL) as in eq. (3.6), whose components

can then be obtained by Taylor-expanding eq. (A.2) in y. We will be primarily interested

in the components of BNL at most quadratic in ξ and ξ:

BNL| =
1

2|F |2 ξσ
µξ∂µϕ, (A.3)

BNL|θ =
1

F
√

2
σµξ∂µϕ, (A.4)

BNL|θ2 =
i

2F
2

(
∂νξσ

µσνξ∂µϕ−
1

2
ξ
2
∂2ϕ

)
, (A.5)

BNL|θσµθ = ∂µϕ, (A.6)

BNL|θ2θ =
i

2F
√

2
σνσµ

(
∂νξ∂µϕ+ ξ∂µ∂νϕ

)
, (A.7)

BNL|θ2θ2 =
1

4|F |2�
(
ξσµξ∂µϕ

)
, (A.8)

where the θ, θ
2
, and θ

2
θ components are obtained by complex-conjugating eqs. (A.4), (A.5)

and (A.7) respectively.

22In SUGRA, ∂µξ should be understood to mean ∇µξ.
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B Lorentz breaking and auxiliary fields

As mentioned in section 5.1, in the linear Kähler frame there is a nonzero value of 〈b0〉.
Here we calculate the values of all the SUGRA auxiliary fields in this frame. We repeat

the Kähler potential and superpotential in this frame for convenience:

K = X†NLXNL + αBNL +B2
NL, W = M2

pl|m3/2|+ fXNL. (B.1)

Following ref. [47], we begin with the equations of motion for F and M (the scalar auxiliary

field), dropping terms involving BNL for now:

F = −f∗
(

1 +
2

3
|x|2
)
− xM2

pl|m3/2|, (B.2)

M =
9M2

pl|m3/2|+ 3F ∗x+ 9fx

|x|2 − 3M2
pl

, (B.3)

where x is the Θ = 0 component of XNL and will eventually be replaced by x = ξ2/2F as

in eq. (3.1). Taking vevs of both sides, we find

〈F 〉 = −f∗, (B.4)

〈M〉 = −3|m3/2|, (B.5)

under the assumption that 〈x〉 = 0; that is, there is no goldstino condensate. Note that

because every piece of the F -term of BNL contains two or more goldstinos, restoring BNL

would not change eqs. (B.4) and (B.5).

The auxiliary vector equation of motion can be read from eq. (21.15) of ref. [47]:

bµ = −3i

2
(ΩA∂µA− ΩA∗∂µA

∗ + Ωx∂µx− Ωx∗∂µx
∗) Ω−1 + fermions, (B.6)

where Ω = K−3M2
pl is evaluated on the lowest components A and x of the chiral superfields

ANL and XNL, respectively, and ΩA = ∂Ω/∂A, Ωx = ∂Ω/∂x. Taking vevs of both

sides, we see that only the linear terms in the Kähler potential contribute to the term in

parentheses. Once again assuming no goldstino condensates, we have

〈bµ〉 =
iα

2M2
pl

〈∂µϕ〉, (B.7)

as advertised in eq. (5.6).

It is interesting to compare our results to the class of theories studied in ref. [10].

There, the authors claim the EFT of inflation implies 〈M〉 = 0 exactly, because the action

has an R-symmetry, but no R-symmetry breaking parameters are available. We see from

eq. (B.5) that the required R-symmetry breaking parameter is |m3/2|. Of course, ref. [10]

considers the |m3/2| � H limit, so 〈M〉 ' 0 is still consistent. In principle, including

a nonzero |m3/2| is important for phenomenological reasons: SUSY remains broken after

inflation ends, and to obtain a nearly-vanishing vacuum energy today, the positive vacuum

energy from SUSY breaking must be offset by a fine-tuning of the negative vacuum energy

from 〈W 〉 = M2
pl|m3/2|.
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C Fermions and time-dependent mass phases

As discussed in section 5.3, we consider here the effect of time-dependent phases for fermion

masses. We first work out a toy example of a single Majorana fermion in section C.1,

followed by the analysis for a gravitino in flat space in section C.2.

C.1 Majorana fermion

Consider a single Majorana fermion with a time-dependent mass phase,

L1/2 = iξ̄σµ∂µξ −
m

2
(e−2iα̃tξξ + e+2iα̃tξ̄ξ̄), (C.1)

where m is a real parameter.23 Under a field redefinition ξ → eiα̃tξ, the Lagrangian goes to

L1/2 → L′1/2 = iξ̄σµ∂µξ − α̃ξ̄σ0ξ −
m

2
(ξξ + ξ̄ξ̄). (C.2)

The second term is a Lorentz violating fermion bilinear, similar to the one considered in

section 5. If ξ were a Dirac fermion, this term would be an ordinary chemical potential

proportional to α̃. From eq. (C.1) and our field redefinition, it should be clear that such

a bilinear can be eliminated if the fermion mass is vanishing.

However, for a massive field, the phase is physical. Computing the equation of motion

for ξ̄, we can solve for ξ in terms of ξ̄. Substituting that expression into the equation of

motion for ξ, we find

∂2ξ̄ −m2ξ̄ − α̃2σ0σ0ξ̄ + iα̃(σ0σµ − σµσ0)∂µξ̄ = 0. (C.3)

Expanding in modes ξ̄(t, ~x) ∼
∫
dω d3k eiωt−i

~k·~xξ̄(ω,~k), we find that they must satisfy the

dispersion relation

ω2 = (|~k| ± α̃)2 +m2. (C.4)

The time-dependent phase acts as a uniform shift in the magnitude of the wavevector

for each mode, with left- and right-handed eigenspinors shifting in opposite directions.

Amusingly, this allows for a negative group velocity for one of the modes at small |~k|.
Indeed, the opposite shifts for left- and right-handed spinors is similar to the effect expected

from a chemical potential, which shifts the energy levels of particles and antiparticles in

opposite directions.

If we express the eigenspinors as functions of ~k, then they are independent of α̃,

in contrast to the frame of eq. (C.1), where the eigenspinors would have explicit time

dependence. We emphasize that we are considering ~k as the independent variable when

constructing the eigenspinors, with ω related to ~k by the dispersion relation in eq. (C.4).

23We denote the phase α̃ here to differentiate from the α used in the text, which has a specific interpre-

tation in terms of the SUGRA Kähler potential.
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C.2 Gravitino

We now consider the case of a gravitino, with the same time-dependent mass phase. For

simplicity, we work in flat space:

L3/2 = εµνρκψµσν∂ρψκ −m
(
e−2iα̃tψµσ

µνψν + e+2iα̃tψµσ
µνψν

)
. (C.5)

Similar to the Majorana fermion, a field redefinition ψµ → eiα̃tψµ removes the phase at the

cost of a Lorentz-violating fermion bilinear.

L3/2 → L′3/2 = εµνρκψµσν∂ρψκ + iα̃ε0µνκψµσνψκ −m
(
ψµσ

µνψν + ψµσ
µνψν

)
. (C.6)

As in section 5.4, it is simplest to combine the two Weyl spinors ψµ and ψµ into a 4-

component spinor Ψµ.

The modified Rarita-Schwinger equation (C.6) changes the two algebraic constraints on

Ψµ
~k

in a rather complicated way. Rather than solve the constraints to derive the equations of

motion algebraically, we simply Fourier transform and use the equations of motion implied

by eq. (C.6) to find the eigenvalues and eigenspinors of the mode matrix. Isolating the four

physical degrees of freedom, we find four dispersions:

ω2 = (|~k| ± α̃)2 +m2, (C.7)

ω2 = |~k|2
(

1 +
16α̃2

9m2

)
± 2

3
α̃|~k|+m2 + α̃2. (C.8)

The first pair roughly correspond to the ψ3/2 spin polarizations, and the shift in |~k| is

identical to the dispersion for the Majorana fermion in appendix C.1. The second pair

roughly correspond to the ψ1/2 spin polarizations.

This second dispersion relation is rather unusual, and these modes eventually have a

superluminal group velocity for large enough momentum. However, it is worth remember-

ing that the flat-space case worked out in this appendix is just a simplified toy example.

In an expanding universe, this relation will be modified, since these modes already have a

reduced speed of sound given by eq. (5.28), and the parameter α of our EFT is both slow-

roll and Planck suppressed. In particular, α̃ = α
√
εH/2

√
2Mpl, so if one naively combines

the effect of α with the reduced sound speed, one only finds superluminal propagation if

α &Mpl � Λ, which violates the EFT power counting.
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