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1 Introduction

In the past few years, there have been many exciting developments in the program of find-

ing black hole microstate geometries. These are solitonic solutions to supergravity theories

which have the same asymptotic behavior as a given black hole (or black ring), including

mass, charge, and angular momentum, and yet in the bulk remain totally smooth and

free of horizons. Instead, the pathological parts of the would-be black hole are resolved

by a collection of smooth, topological bubbles, threaded by cohomological fluxes which

hold the whole thing up against gravitational collapse. It is conjectured that such geome-

tries may provide the “hair” necessary to store the entropy of the black hole (or black

ring) [1, 2], and can be interpreted as supergravity approximations to the stringy states

(or “fuzzballs”) thought to resolve the information paradox [3]. Beyond specifically finding

smooth microstate geometries, this program is of general interest for providing numerous

examples of stationary supergravity solutions containing arbitrary collections of charged,

rotating black holes and rings balanced by their mutual electromagnetic interactions.

Of central importance to this program is the discovery that the BPS equations for

5-dimensional, N = 2 supergravity coupled to vector multiplets can be cast as a linear

system [4]. From this came a whole body of work on BPS solutions, extending previously-

known families of solutions and uncovering new ones; especially leading to the construc-

tion of the “bubbling microstate geometries”, or solitons made of pure topological bubbles

and fluxes [5–8]. These solutions are constructed with a time fiber over a hyper-Kähler

Gibbons-Hawking (GH) base [9], which contains topologically non-trivial 2-cycles sup-

ported by harmonic fluxes. In particular, one finds a set of “bubble equations”, which arise

from demanding the absence of closed timelike curves. The bubble equations relate the

cohomological fluxes to the sizes of the homological bubbles to which they are linked; thus,

the bubbles are literally held open by the fluxes.

More recently, there have been several attempts to get away from BPS. A few isolated

examples exist [10–13] of truly non-BPS, non-extremal smooth geometries, but no infinite

familes are yet known (which are necessary for entropy counting). However, in the non-

BPS extremal case, there are linear systems which can be solved to obtain infinite families

of solutions. One such family are the so-called “almost BPS” solutions [14–16], where

supersymmetry is broken by inverting the orientation of the Gibbons-Hawking base relative

to the fluxes. These solutions have been shown to exhibit a rich variety of phenomena not

seen in the BPS case [17–19].

A further avenue of attack was revealed with the “floating brane” ansatz in 5 dimen-

sions, which dispenses with supersymmetry, but still imposes a generic balance between

gravitational and electromagnetic forces. It was found that this leads to yet another linear

system of equations, this time on a Euclidean-signature Einstein-Maxwell base [20]. A few

– 1 –



J
H
E
P
1
0
(
2
0
1
4
)
1
6
8

solutions are known based on various Euclidean-Einstein-Maxwell geometries analytically

continued from classical GR ones [21], as well as an infinite family given in [20] based on

the Israel-Wilson metric.

In a pair of recent papers [22, 23], the author and collaborators have presented an

infinite family of “floating brane” non-BPS solutions based on a family of Kähler Einstein-

Maxwell metrics studied by LeBrun [24, 25]. These metrics are determined by two functions

which solve the SU(∞) Toda equation and its linearization. By choosing an extremely

simple solution to the Toda equation, one obtains the subclass of LeBrun-Burns metrics,

which are Kähler analogues to Gibbons-Hawking metrics with a hyperbolic base instead

of flat R3. On the LeBrun-Burns base, the floating brane equations are solvable and one

obtains an infinite family of solutions.

These solutions were shown to have a few desirable properties. The LeBrun-Burns

metrics have the structure of a U(1) fiber over H3. In much the same way as Gibbons-

Hawking metrics, this U(1) fiber pinches off at controlled points, which allows one to

construct solutions with several “bubbles” threaded with cohomological fluxes. It was also

shown that with appropriate choices of parameters, the solutions could be made regular

and free of CTC’s.

However, these solutions also had a few shortcomings. The Maxwell field of the LeBrun-

Burns metrics is topologically trivial. Hence, while one can use the U(1) fiber to form 2-

cycles, only two of the three fluxes thread those 2-cycles. The resulting “bubble equations”

turn out to be independent of the sizes of the bubbles, and thus the interplay between

bubbles and fluxes is gone. Furthermore, the solution is very degenerate, because it effec-

tively has only two types of dipole charges. As a result, the regularity conditions actually

demand that most of the parameters be set to zero. Finally, the solutions are not asymp-

totically flat; in fact, it was shown that the floating brane equations on a Kähler base have

no asymptotically-flat solutions in general [22]. This last shortcoming should not be all too

great a concern. One does obtain solutions whose asymptotics are like the near-horizon

limit of a BMPV black hole [26]. So it is not too far a stretch to say that these are BMPV

microstate geometries, and probably the asymptotic region can be restored by relaxing the

assumptions of the floating brane ansatz.

Yet another linear system of equations was discovered by re-organizing the BPS equa-

tions in the 6-dimensional IIB frame [27–29], which makes a curious connection to the

5-dimensional story: the 5-dimensional non-BPS, floating brane equations on a Kähler

base are identical to the 6-dimensional BPS equations where all functions are made in-

dependent of the 6th coordinate [23]. Therefore the exact same family of solutions plays

two roles, both supersymmetric and non-supersymmetric. The apparent discrepancy is

explained in the KK reduction from 6 to 5 dimensions: the Killing spinor in 6 dimensions

can be charged under the U(1) on which the reduction occurs, which causes it to vanish

in 5 dimensions. This is reminiscent of the Scherk-Schwarz mechanism [30, 31], or also

“supersymmetry without supersymmetry” [32].

In this paper, we improve upon the results of [22] and overcome its major issues.

Despite the 5d-6d link mentioned, we work strictly in the 5-dimensional frame, as it is the

simpler of the two. This paper is organized as follows: in section 2, we briefly describe the

– 2 –
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5d N = 2 theory, the floating brane ansatz, and the equations that result. In section 3,

we describe the basic features of LeBrun metrics in general, and the system that results

from putting the floating brane equations on the LeBrun base. We show how the system

is solved generically. In section 4, we solve the SU(∞) Toda equation explicitly under the

assumption of an additional U(1) isometry. We determine the boundary conditions needed

for the solutions we wish to build, and we analyze the resulting base manifold in detail to

explore its geometric and topological properties. In section 5, we solve the floating brane

equations on this base manifold explicitly, thus giving the full supergravity solution. We

determine the conditions needed to make solutions regular in 5 dimensions. We derive the

no-CTC conditions, or “bubble equations” and analyze them. Finally, we give an explicit,

solved example of a 3-center solution. In section 6, we present our conclusions.

2 Non-BPS solutions from floating branes

It is simplest to present our solutions in the context of N = 2 ungauged supergravity in

5 dimensions coupled to two vector multiplets (thus having three U(1) gauge fields). One

can also see this theory as a truncation of eleven-dimensional supergravity on T 6. The

5-dimensional action is

S =
1

2κ5

∫ (
?
5
R−QIJ dXI ∧ ?

5
dXJ −QIJ F I ∧ ?

5
F J − 1

6
CIJK F

I ∧ F J ∧AK
)
, (2.1)

where R is the Ricci scalar, XI , I ∈ {1, 2, 3} are scalar fields, F I ≡ dAI are three Maxwell

fields, and the kinetic terms are coupled via the matrix

QIJ ≡
1

2
diag

(
(X1)−2, (X2)−2, (X3)−2

)
. (2.2)

The scalar fields are subject to the constraint X1X2X3 = 1, which we parametrize in terms

of a new set of scalars ZI as

X1 =

(
Z2 Z3

Z2
1

)1/3

, X2 =

(
Z1 Z3

Z2
2

)1/3

, X3 =

(
Z1 Z2

Z2
3

)1/3

. (2.3)

These new scalars ZI are very convenient in the ansätze to follow.

We begin with the usual 5d metric ansatz,

ds2
5 = −Z−2 (dt+ k)2 + Z ds2

4, Z ≡ (Z1Z2Z3)1/3, (2.4)

with 4d base manifold ds2
4. Following [20], the Maxwell fields are then given by the “floating

brane” ansatz,

AI ≡ −Z−1
I (dt+ k) +BI , (2.5)

and it is convenient to introduce the magnetic 2-forms given by

Θ(I) ≡ dBI . (2.6)

– 3 –
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For completeness, we also give the embedding into 11-dimensional supergravity. The 11-

dimensional metric and 3-form potential are given by

ds2
11 = ds2

5 +

(
Z2 Z3

Z2
1

)1/3

(dy2
1 + dy2

2) +

(
Z1 Z3

Z2
2

)1/3

(dy2
3 + dy2

4)

+

(
Z1 Z2

Z2
3

)1/3

(dy2
5 + dy2

6),

(2.7)

C(3) = A1 ∧ dy1 ∧ dy2 +A2 ∧ dy3 ∧ dy4 +A3 ∧ dy5 ∧ dy6, (2.8)

where we see that the three scalars XI (2.3) come from the sizes of three T 2’s inside the T 6

spanned by the coordinates yi. In particular, for the T 6 to remain compact, the ZI must

be everywhere finite and nonzero; or, if any of the ZI → 0 or ZI →∞, they must all do so

with the same behavior.

Returning to the 5-dimensional theory, as was shown in [20], we then need a 4-

dimensional base manifold that solves the Euclidean-signature Einstein-Maxwell equations,

R(4)
µν =

1

2

(
FµρFνρ −

1

4
gµνFρσFρσ

)
, (2.9)

where F is a Maxwell 2-form determined by the base geometry, and unrelated to the F I .

We decompose F as

F ≡ Θ(3) − ω(3)
− , (2.10)

where Θ(3) is self-dual, and ω
(3)
− is anti-self-dual. The Maxwell equations dF = d ?4F = 0

imply that Θ(3) and ω
(3)
− are harmonic. As the notation implies, this defines the magnetic

2-form field strength Θ(3).

The equations of motion of (2.1) then reduce to the linear system [20]:

d ?
4

dZ1 = Θ(2) ∧Θ(3), Θ(2) − ?
4

Θ(2) = 2Z1 ω
(3)
− , (2.11)

d ?
4

dZ2 = Θ(1) ∧Θ(3), Θ(1) − ?
4

Θ(1) = 2Z2 ω
(3)
− , (2.12)

and

d ?
4

dZ3 = Θ(1) ∧Θ(2) − ω(3)
− ∧ (dk − ?

4
dk), (2.13)

dk + ?
4

dk =
1

2

∑
I

ZI (Θ(I) + ?
4

Θ(I)). (2.14)

We solve the equations of motion by the following steps: first, find a Euclidean-Einstein-

Maxwell base. The Maxwell 2-form defines the 2-forms Θ(3) and ω
(3)
− via (2.10). We then

solve the first layer of coupled linear equations (2.11) and (2.12) for Z1, Z2,Θ
(1), and Θ(2).

These enter as sources in the second layer of coupled linear equations (2.13) and (2.14),

which we solve finally for Z3 and k. Next we follow [22, 23] and implement this solution

for the LeBrun metrics.

– 4 –
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3 LeBrun metrics

The LeBrun family of metrics [24] is given by

g ≡ 1

w
(dτ +A)2 + weu (dx2 + dy2) + w dz2, (3.1)

where τ is periodic with period 4π. The functions u and w are independent of τ and solve

the SU(∞) Toda equation and its linearization, respectively:

uxx + uyy + (eu)zz = 0, (3.2)

wxx + wyy + (euw)zz = 0, (3.3)

and the 1-form A satisfies

dA = wx dy ∧ dz + wy dz ∧ dx+ (euw)z dx ∧ dy. (3.4)

Under the conditions (3.3) and (3.4), the metric (3.1) is Kähler, with Kähler form

J ≡ (dτ +A) ∧ dz − euw dx ∧ dy. (3.5)

The condition (3.2) further implies that the Ricci scalar vanishes [24].

We choose to introduce the frames,

e1 = w−1/2 (dτ +A), e2 = eu/2w1/2 dx, e3 = eu/2w1/2 dy, e4 = w1/2 dz, (3.6)

with orientation

vol4 ≡ e1 ∧ e2 ∧ e3 ∧ e4 = euw dτ ∧ dx ∧ dy ∧ dz, (3.7)

such that J is anti-self-dual. It will also be helpful to define the (anti)-self-dual 2-forms

Ω
(1)
± = e−u/2

(
e1 ∧ e2 ± e3 ∧ e4

)
= (dτ +A) ∧ dx± w dy ∧ dz, (3.8)

Ω
(2)
± = e−u/2

(
e1 ∧ e3 ± e4 ∧ e1

)
= (dτ +A) ∧ dy ± w dz ∧ dx, (3.9)

Ω
(3)
± = e1 ∧ e4 ± e2 ∧ e3 = (dτ +A) ∧ dz ± weu dx ∧ dy, (3.10)

such that J = Ω
(3)
− .

3.1 Topological structure

The LeBrun metrics (3.1) have the structure of a U(1) fiber over a 3-dimensional base with

metric

h = eu(dx2 + dy2) + dz2, (3.11)

which in turn can be thought of as a Riemann surface fibered over a line. If eu is everywhere

finite and non-singular, then the (x, y, z) coordinates can be extended to a topological R3.

In this case, the topology of the 4-manifold can be analyzed in terms of the U(1) fiber

parametrized by τ , much like the topology of Gibbons-Hawking manifolds [9].

– 5 –
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Figure 1. Homological 2-cycles in the LeBrun metric. The τ fiber pinches off at the points

~ai. Sweeping the fiber along a path between any two points forms a homological 2-sphere. Two

intersecting 2-cycles are shown.

The function w solves a second-order Laplace-like equation, whose solutions are char-

acterized by a number of points we will call “Gibbons-Hawking points” or “geometric

charges”, where locally (provided that eu is smooth),

w ∼ 1

r
, (3.12)

for some local radial distance r. At these points the τ fiber pinches off to zero size. Hence,

if one takes any curve in the 3-dimensional base h that joins two geometric charges, the

surface described by the τ fiber over this curve is a homological 2-sphere, as in figure 1.

If eu is not smooth, it is still possible that g is smooth. One possibility is that z is a

radial coordinate, and eu(dx2 +dy2) describes a sphere (or perhaps a quotient of a sphere).

Another possibility is that eu(dx2 + dy2) is a higher-genus Riemann surface, in which case

one can have topological cycles that do not involve the τ fiber. Some of these additional

topological features will appear in the solutions presented in this paper.

3.2 As Euclidean-Einstein-Maxwell solutions

One can show [22, 23] that self-dual, harmonic 2-forms on LeBrun spaces can be written

Θ ≡
3∑

a=1

∂a

(
H

w

)
Ω

(a)
+ = (dτ +A) ∧ d

H

w
+ w ?

3
d
H

w
, (3.13)

where H solves (3.3) and ?3 is taken with respect to the 3-metric

h = eu(dx2 + dy2) + dz2. (3.14)

By differentiating (3.2) with respect to z, one can show that uz solves (3.3). So define the

Maxwell 2-form

F ≡ Θ + αJ, with H = − uz
2α
. (3.15)

Then (g,F) solve the Euclidean-Einstein-Maxwell equations [25].

For simplicity in matching with the linear system found in [20], we choose α = −1,

and hence

Θ(3) =
1

2
(dτ +A) ∧ d

uz
w

+
1

2
w ?

3
d
uz
w
, ω

(3)
− = J. (3.16)

– 6 –
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3.3 Floating branes on a LeBrun base

Next we solve the system (2.11), (2.12), (2.13), (2.14) on the LeBrun base. We will find it

convenient to define

K3 ≡ uz
2
, such that Θ(3) = (dτ +A) ∧ d

K3

w
+ w ?

3
d
K3

w
. (3.17)

To solve the first layer, one makes the ansätze

Θ(1) = (dτ +A) ∧ d
K1

w
+ w ?

3
d
K1

w
+ Z2 (Ω

(3)
− − Ω

(3)
+ ), Z2 =

K1K3

w
+ L2, (3.18)

Θ(2) = (dτ +A) ∧ d
K2

w
+ w ?

3
d
K2

w
+ Z1 (Ω

(3)
− − Ω

(3)
+ ), Z1 =

K2K3

w
+ L1. (3.19)

This leads to the linear equations

∂2
xL1 + ∂2

yL1 + ∂2
z (euL1) = 0, ∂2

xL2 + ∂2
yL2 + ∂2

z (euL2) = 0, (3.20)

and

∂2
xK

1 + ∂2
yK

1 + ∂z(e
u∂zK

1) = 2 ∂z(e
uwL2), (3.21)

∂2
xK

2 + ∂2
yK

2 + ∂z(e
u∂zK

2) = 2 ∂z(e
uwL1). (3.22)

To solve the second layer, make the ansätze

k = µ (dτ+A)+ω, Z3 =
K1K2

w
+L3, µ = −K

1K2K3

w2
− 1

2

3∑
I=1

KILI
w

+M. (3.23)

Then the new functions M and L3 satisfy the equations

∂2
xM + ∂2

yM + ∂z(e
u∂zM) = ∂z(e

uL1L2), (3.24)

∂2
xL3 + ∂2

yL3 + eu ∂2
zL3 = 4euwL1L2 − 4euw ∂zM − 2eu(L1 ∂zK

1 + L2 ∂zK
2), (3.25)

and the 1-form ω satisfies

dω = w ?
3

dM −M ?
3

dw − uzwM ?
3

dz − 2wL1L2 ?
3

dz

+
1

2

∑
I

(LI ?
3

dKI −KI ?
3
LI)−

1

2
uz(K

1L1 +K2L2) ?
3

dz +
1

2
uzK

3L3 ?
3

dz.
(3.26)

Therefore, to solve the “floating brane” system on the LeBrun base, one first finds a function

u that solves the SU(∞) Toda equation, which also defines the function K3 ≡ 1
2uz. Then

one solves (3.3), (3.20)–(3.22), (3.24) and (3.25), in this order, for the seven remaining

functions w,K1,K2, L1, L2, L3, and M . Finally, one must solve (3.26) for the 1-form ω.

– 7 –
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4 Axisymmetric Kähler base spaces

Before we discuss solutions to the full system, we will explore the base space g in detail.

Our task is to solve the SU(∞) Toda equation which, while known to be integrable, is also

notoriously hard. However, if we impose an additional U(1) symmetry, there is a known

method of attack [33–37].

First let us write the LeBrun metric in an explicitly U(1)×U(1)-invariant form,

g =
1

w
(dτ +A)2 + weu (dr2 + r2 dφ2) + w dz2, (4.1)

where now all functions depend on r, z only. For completeness, the equations to be solved

in these coordinates become

1

r
∂r(rur) + (eu)zz = 0, (4.2)

1

r
∂r(rwr) + (euw)zz = 0, (4.3)

and

dA = rwr dφ ∧ dz + (euw)z r dr ∧ dφ. (4.4)

At this point, we can solve (4.3) and (4.4) generically. To accomplish this, note that the

Laplacian on the 3-dimensional base h is given by

eu ∆h(ϕ) =
1

r
∂r(rϕr) + (euϕz)z, (4.5)

and hence the Laplacian is related to the linearized Toda equation via ∂z:

∂z
(
eu ∆h(ϕ)

)
=

1

r
∂r(r∂rϕz) + (euϕz)zz. (4.6)

Therefore if we take some ŵ which solves the Laplace equation on h

1

r
∂r(rŵr) + (euŵz)z = 0, (4.7)

then it is easy to show that (4.3) and (4.4) are solved by

w = ŵz, A = −rŵr dφ. (4.8)

One can think of ŵ as a “potential” that gives us the solutions for w and A.

4.1 Solving the axisymmetric Toda equation

Now let us focus on the Toda equation with an axial symmetry (4.2). The additional U(1)

symmetry allows one to make a Bäcklund transformation to new coordinates ρ, η [33–37]:

r2eu = ρ2, log r = Vη, z = −ρVρ. (4.9)

– 8 –
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The Toda equation can then be mapped1 onto the axisymmetric Laplace equation2 in R3

in cylindrical coordinates:
1

ρ
∂ρ(ρVρ) + Vηη = 0. (4.10)

In principle, one must then invert the transformation (4.9) to obtain u. But in practice, for

most functions V this is intractable. It is easier to change the metric to the new coordinates

ρ, η, which results in

g =
1

w
(dτ +A)2 + w h, (4.11)

h = ρ2(V 2
ρη + V 2

ηη)(dρ
2 + dη2) + ρ2 dφ2. (4.12)

We should note that as a result of the transformations (4.9), the cylindrical coordinates

ρ, η, φ inherit the orientation opposite to the usual:

volh = ρ2(V 2
ρη + V 2

ηη) dρ ∧ dη ∧ dφ. (4.13)

We must also change (4.3) and (4.4) into the new coordinates. The Laplacian ∆h

becomes, up to an overall factor, the cylindrically-symmetric Laplacian on R3,

ρ2(V 2
ρη + V 2

ηη) ∆h(ϕ) =
1

ρ
∂ρ(ρϕρ) + ϕηη, (4.14)

and so the potential ŵ solves
1

ρ
∂ρ(ρŵρ) + ŵηη = 0, (4.15)

whose solutions we know well. Then w and A are given by

w = ŵz =
1

ρ(V 2
ρη + V 2

ηη)

(
Vηη ŵρ − Vρη ŵη

)
. (4.16)

and

A = −rŵr dφ = − 1

V 2
ρη + V 2

ηη

(
Vρη ŵρ + Vηη ŵη

)
dφ. (4.17)

Therefore, the geometric data of the base space are determined in terms of two functions

V, ŵ that solve the axisymmetric Laplace equation in R3.

1We note that the mapping (4.9) from Toda onto Laplace is not one-to-one. The Toda equation maps

onto a nonlinear equation in V containing up to 3rd-order derivatives. That V solves the Laplace equation

is sufficient, but not necessary, for the solution of this nonlinear equation. Hence the family of Laplace

solutions does not capture all possible Toda solutions under the inverse Bäcklund transformation.
2Strictly speaking, this is a Poisson equation and we have ignored subtleties involving source terms

(supported on a locus of measure zero) on the right-hand side of (4.2). We avoid these subtleties by

transforming the whole metric (taken as a local expression on an open chart) to the new coordinates (ρ, η),

while forgetting the old coordinates. In section 4.2 we will discuss the source terms in the new coordinates

which should appear in the right-hand-side of (4.10). We remain agnostic about the exact form of the

source terms as they would appear in the original coordinates (4.2), as this information is not necessary for

constructing supergravity solutions.
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4.2 Boundary conditions

The task of writing an explicit base space is then reduced to solving cylindrically symmetric

electrostatics problems in R3 [33]. The question is what kinds of electrostatic problems

give interesting solutions.

By analogy with BPS solutions on Gibbons-Hawking bases [7], we expect to specify a

collection of points along the η axis where w and K3 ≡ 1
2uz have poles. The poles of w con-

trol where the τ fiber pinches off, thus creating a series of homology 2-cycles (provided that

the 3-dimensional base h remain smooth at these points). The poles of uz control sources of

Θ(3). If uz has a pole where w does not, we expect a singularity in the metric. But if uz has

poles coincident with poles of w, we expect that the base geometry be smooth (up to orbifold

identifications), and such poles should control the fluxes of Θ(3) on the adjacent 2-cycles.

In the simplest case, we consider where w and uz each have a single, coincident pole.

Since both w and uz solve the same elliptic linear PDE (3.3) (with the same boundary

condition at infinity) and have only one “source point”, it follows that w and uz are

proportional. Hence Θ(3) = 0 and the metric is Ricci-flat (and therefore hyper-Kähler)

— thus the metric (4.1) should be a Gibbons-Hawking metric, in alternative coordinates.3

Looking at (4.1), we identify z as the radial coordinate from the source point, and take r, φ

to be stereographic coordinates on an S2. Hence we can write

eu =
4z2

(1 + r2)2
, uz =

2

z
, w =

q

z
, (4.18)

where q is any integer. Then as z → 0, the metric (4.1) is simply the flat metric on R4/Zq.
This gives the canonical example of coincident poles in w, uz. We expect that near any

location where w, uz both blow up, the metric will locally have this form.

To get a function uz with many poles, we should choose a cylindrically-symmetric

Laplace solution V that gives rise to the behavior in (4.18), and then use linearity to

combine several solutions at centered at different points. Using the Bäcklund transforma-

tion (4.9), we have

uz =
2Vηη

ρ2(V 2
ρη + V 2

ηη)
= − 2

ρVρ
=

2

z
, (4.19)

where the center equality is the boundary condition we need to satisfy near the source

point in order for uz to have the appropriate singular behavior. We see that while the

cylindrically-symmetric Laplace equation for V (4.10) is linear, the boundary condition for

V is nonlinear. To solve this boundary condition, one can guess a few known possibilities

for V . It turns out the appropriate choice is also the most obvious one to give a pole in

the numerator:

Vηη =
1√

ρ2 + η2
. (4.20)

3In the general LeBrun ansatz, taking w ∼ uz gives not a Gibbons-Hawking metric, but a more general

hyper-Kähler manifold. However, if we set w ∼ uz in the U(1) × U(1)-invariant ansatz of (4.1), there is

always some linear combination of the U(1)’s which is tri-holomorphic, hence the manifold must in fact be

Gibbons-Hawking but written in unusual coordinates.
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Figure 2. The electrostatics problem corresponding to V . λ(η) is a line charge density profile

along the η axis, which is piecewise linear with “kinks” at each of the ηi.

Integrating this twice with respect to η and choosing appropriate integration constants, we

find

V = −
√
ρ2 + η2 + η log

η +
√
ρ2 + η2

ρ
. (4.21)

Then we have

z = −ρVρ =
√
ρ2 + η2, Vρη = −η

ρ

1√
ρ2 + η2

, (4.22)

and hence

ρ2(V 2
ρη + V 2

ηη) = 1, which implies uz =
2

z
, (4.23)

and the boundary condition is satisfied. So we can write a solution with N such poles as

V = k3
0 η log ρ+

N∑
i=1

k3
i Hi(ρ, η), (4.24)

Hi(ρ, η) = −
√
ρ2 + (η − ηi)2 + (η − ηi) log

η − ηi +
√
ρ2 + (η − ηi)2

ρ
, (4.25)

where ηi are the locations of the poles on the η axis.

Interpreted as an electrostatics problem, this corresponds to the potential of a line

charge along the η axis of varying charge density λ(η). The charge density profile λ(η) is

piecewise linear, with a “kink” at each ηi as in figure 2, such that

λ′′(η) =
N∑
i=1

k3
i δ(η − ηi). (4.26)

where the parameters k3
i represent the amount by which the slope jumps as one moves

across the kink at ηi:

k3
i ≡

dλ

dη

∣∣∣
ηi+ε
− dλ

dη

∣∣∣
ηi−ε

. (4.27)

In V (4.24), we have also put an additional parameter k3
0, which represents the freedom to

choose the value of λ′(η) at infinity.4

4Specifically, 2 k30 is the sum λ′(∞) + λ′(−∞), while the difference λ′(∞)− λ′(−∞) is given by the sum

of all the jumps k3i .
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Figure 3. The electrostatics problem corresponding to ŵ. The line charge profile λ(η) is piecewise

constant, with “jumps” at each ηi.

We also choose ŵ such that w = ŵz has 1/z type behavior at the Gibbons-Hawking

points. It is easy to show that correct choice is

ŵ = q0 log ρ+
N∑
i=1

qiGi(ρ, η), (4.28)

Gi(ρ, η) = log
η − ηi +

√
ρ2 + (η − ηi)2

ρ
. (4.29)

As an electrostatics problem, this corresponds to a line charge profile λ(η) which is piecewise

constant, with “jumps” at each ηi as in figure 3. The parameters qi give the amount of

each jump:

qi ≡ λ(η)
∣∣∣
ηi+ε
− λ(η)

∣∣∣
ηi−ε

, (4.30)

(where this λ(η) is the one in figure 3).

For completeness, it is helpful to write out the η- and ρ-derivatives of these, which

appear in all other formulas:

Vηη =
N∑
i=1

k3
i

Σi
, Vρη =

k3
0

ρ
− 1

ρ

N∑
i=1

k3
i (η − ηi)

Σi
, (4.31)

ŵη =

N∑
i=1

qi
Σi
, ŵρ =

q0

ρ
− 1

ρ

N∑
i=1

qi (η − ηi)
Σi

, (4.32)

where Σi ≡
√
ρ2 + (η − ηi)2. We note that this is essentially the same construction as

in [38] for scalar-flat toric Kähler 4-manifolds (which can always be written in LeBrun

form). Thus the base space is defined via the functions (4.31) and (4.32) and the 2N + 2

parameters k3
0, k

3
i , q0, qi.

4.3 Near the singularities

The base space is constructed out of N points where the functions V and w are singular.

In this section we look in the neighborhood of these points and show that the manifold is

perfectly smooth, up to orbifold identifications, in a similar manner to Gibbons-Hawking
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metrics [9]. Specifically we will find that the metric (4.11) at these points locally approaches

the orbifold R4/G, where G ' Zm × Zn is a finite subgroup of the maximal torus5 U(1)×
U(1) ⊂ SO(4).

Taking the limit as (ρ, η)→ (0, η`) for some η`, we can define new coordinates

ρ = R sin θ, η − η` = R cos θ. (4.33)

We will find it convenient to define the quantities

K̄3
` ≡

∑
i
i 6=`

k3
i sign(η` − ηi), Q̄` ≡

∑
i
i 6=`

qi sign(η` − ηi), (4.34)

and also the functions

K̃(θ) ≡ (k3
` )

2 + (K̄3
` − k3

0)2 + 2 k3
` (K̄

3
` − k3

0) cos θ, (4.35)

Q̃(θ) ≡ q2
` + (Q̄` − q0)2 + 2 q`(Q̄` − q0) cos θ, (4.36)

K̃Q(θ) ≡ k3
` q` + (K̄3

` − k3
0)(Q̄` − q0) +

(
k3
` (Q̄` − q0) + q`(K̄

3
` − k3

0)
)

cos θ. (4.37)

Then for small R, we have

ρ2(V 2
ηη + V 2

ρη)→ K̃(θ), w → 1

K̃(θ)

q̃`
R
, A→ −K̃Q(θ)

K̃(θ)
dφ, (4.38)

where we define the determinant:

q̃` ≡ q`(K̄3
` − k3

0)− k3
` (Q̄` − q0). (4.39)

The metric becomes

ds2 =
K̃(θ)R

q̃`

(
dτ − K̃Q(θ)

K̃(θ)
dφ

)2

+
q̃`
R

(
dR2 +R2 dθ2

)
+

q̃`R

K̃(θ)
sin2 θ dφ2, (4.40)

which, surprisingly enough, is flat. Setting R = %2/(4 q̃`), this can be rearranged into the

more convenient form

ds2 = d%2 +
%2

4

[
dθ2 +

1

q̃`2

(
K̃(θ) dτ2 − 2K̃Q(θ) dτ dφ+ Q̃(θ) dφ2

)]
. (4.41)

We compare this to a flat metric6 on R4:

ds2 = d%2 +
%2

4

[
dθ2 + 2

(
1 + cos θ

)
dα2 + 2

(
1− cos θ

)
dβ2

]
, (4.42)

where both α, β are (ordinarily) identified modulo 2π and θ ∈ [0, π]. The metrics (4.41)

and (4.42) are then related by a coordinate transformation

τ = (q` − Q̄` + q0)α− (q` + Q̄` − q0)β, (4.43)

5We note that the factors Zm,Zn ⊂ U(1)×U(1) are not necessarily rotations in a plane (i.e. fixing every

point in the orthogonal plane). One can have, for example, Zm acting in the first U(1) and Zn acting in

the diagonal U(1). Rotations in the diagonal U(1) fix only the origin.
6This metric is related to the standard spherical coordinates on R4 by θ = 2ϑ.
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φ = (k3
` − K̄3

` + k3
0)α− (k3

` + K̄3
` − k3

0)β. (4.44)

To discover the precise geometry in the neighborhood of the origin, we must carefully

follow the identifications of the angular coordinates. It is natural to identify the coordinates

(τ, φ) on the “diamond” lattice ΓLB, given by the identifications

(τ, φ) : (0, 0) ∼ (4π, 0) ∼ (2π, 2π) ∼ (2π,−2π), (4.45)

whose basis can be written as a matrix ΛLB of column vectors which represent the coordi-

nates where (τ, φ) are identified:

ΛLB = 2π

(
1 1

1 −1

)
, or ΛLB = 2π

(
2 1

0 1

)
. (4.46)

We are free to choose any pair of column vectors that generate the same lattice of identifi-

cations; alternatively, ΛLB is defined only up to right action by GL(2,Z).7 Then applying

the coordinate transformation (4.43) and (4.44), we find that the (α, β) coordinates should

be identified on the lattice Γ̃, generated by the basis

Λ̃ = 2π · 1

2q̃`

(
k3
` + K̂3

` + q` + Q̂` k3
` + K̂3

` − q` − Q̂`
k3
` − K̂3

` + q` − Q̂` k3
` − K̂3

` − q` + Q̂`

)
, (4.47)

where for ease of legibility we have defined

K̂3
` ≡ K̄3

` − k3
0, Q̂` ≡ Q̄` − q0. (4.48)

We should then compare this lattice to a “reference” lattice Γ, generated by the basis

Λ = 2π

(
1 0

0 1

)
, (4.49)

which represents the ordinary 2π identifications that (α, β) would take if there were no

conical singularity. In order for the LeBrun metric to approach a proper orbifold R4/G at

the source point, one requires that the lattices Γ, Γ̃ be compatible — that is, one must have

that Γ is a sublattice of Γ̃. Otherwise, one has a conical point that is not an orbifold.8

The condition that Γ ⊆ Γ̃ as lattices is equivalent to requiring that Λ̃−1Λ be an integer

matrix. We want this to be true at every η`, in principle giving N conditions; however, all

of these conditions are equivalent to a single parity condition:(
k3

0 +

N∑
i=1

k3
i + q0 +

N∑
i=1

qi

)
∈ 2Z, (4.50)

that is, the sum of all the parameters k3
0, k

3
i , q0, qi must be even. If we impose this condition,

then at every η` the metric will approach an orbifold singularity.

7We define GL(2,Z) as the group of 2 × 2 matrices with integer entries and determinant ±1, hence

invertible over Z. This group is sometimes also called S∗L(2,Z) or SL±(2,Z).
8An analogous situation with orbifolds of R2 is that the angular coordinate must be identified modulo

2π/n, but not modulo 2πm/n for some m > 1 (m,n relatively prime), as this would fail to be a quotient.
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At a given η`, we can then compute the group G that describes this orbifold singularity.

The details are given in appendix A. The general procedure is as follows: given the lattices

Γ̃,Γ generated by (4.47) and (4.49), one can find the group G by reducing Λ̃−1Λ to Smith

normal form, where one diagonalizes Λ̃−1Λ by left and right GL(2,Z) actions:

R = P̃−1Λ̃−1ΛP, R =

(
r1 0

0 r2

)
, where P, P̃ ∈ GL(2,Z). (4.51)

Given the parity condition (4.50), it is always true that Λ̃−1Λ = 2πΛ̃−1 has integer entries.

Then the numbers r1, r2 are integers, and determine G via

G = Zm × Zn, where m = r1, n = r2. (4.52)

4.3.1 Specific details of the groups G

We then find a number of interesting facts (whose detailed derivation can be found in ap-

pendix A.2).

First, at every orbifold point one has, as mentioned, that Γ ⊆ Γ̃ as a sublattice, and

the group G is formally given by the quotient G ' Γ̃/Γ. The order of the group G is

#G = |det(Λ̃−1Λ)| = |det(2πΛ̃−1)| = |q̃`|, (4.53)

and thus the group G is trivial exactly when q̃` = ±1. At such points, the metric approaches

flat R4 with no conical singularity.

Second, we can ask when the orbifold point at η` is similar to the orbifold point of a

charge m > 1 Gibbons-Hawking metric. These are points where G ' Zm and the action of

Zm is in the diagonal U(1) of the maximal torus U(1)× U(1) ∈ SO(4). We find that such

orbifold points occur whenever:

q̃` = ±m,
2(K̄3

` − k3
0)

q̃`
∈ Z, and

2(Q̄` − q0)

q̃`
∈ Z. (4.54)

One can also consider G ' Zm acting in the anti -diagonal U(1), which results in similar

conditions:

q̃` = ±m,
2 k3

`

q̃`
∈ Z, and

2 q`
q̃`
∈ Z. (4.55)

More generally, G ' Zm × Zn where each Zk acts in some linear combination of the

two U(1)’s. In the simplest case, the Zk act by rotation within a plane; i.e. by rotating

(x1, x2) and leaving (x3, x4) fixed. However, the “diagonal” rotations discussed above act

in both planes and do not fix any point aside from the origin. One can also obtain more

general rotations that rotate both (x1, x2) and (x3, x4) planes by unequal amounts.

In any case, an orbifold singularity with a finite group action such as R4/G is benign

in string theory [39], so in the context of microstate geometries, we will count such points

as regular.
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4.4 At infinity

In the asymptotic region of the base metric, let us define

ρ = R sin θ, η = R cos θ. (4.56)

Then as R→∞, we have

ρ2(V 2
ρη + V 2

ηη)→ (k3
0)2 + (K3

? )2 − 2 k3
0K

3
? cos θ, (4.57)

w →
(

q0K
3
? − k3

0Q?
(k3

0)2 + (K3
? )2 − 2 k3

0K
3
? cos θ

)
1

R
, (4.58)

A→
(
k3

0q0 +K3
?Q? − (q0K

3
? + k3

0Q?) cos θ

(k3
0)2 + (K3

? )2 − 2 k3
0K

3
? cos θ

)
dφ, (4.59)

where the quantities K3
? , Q? are defined as

K3
? ≡

N∑
i=1

k3
i , Q? ≡

N∑
i=1

qi. (4.60)

We see that (4.57)–(4.59) have the same structure as (4.38). So at infinity, the base metric

approaches a metric with the same structure as (4.40). We can define the determinant

q̃∞ ≡ q0K
3
? − k3

0Q?, (4.61)

and then the conditions (4.53) and (4.54), (4.55) apply in the same way. In particular, one

has smooth R4 at infinity whenever

q̃∞ = ±1. (4.62)

One can obtain R4/Zm, where Zm acts on the diagonal U(1) via

q̃∞ = ±m, 2K3
?

q̃∞
∈ Z, and

2Q?
q̃∞
∈ Z, (4.63)

or where Zm acts on the anti-diagonal U(1) via

q̃∞ = ±m, 2 k3
0

q̃∞
∈ Z, and

2 q0

q̃∞
∈ Z. (4.64)

In general, the geometry approaches R4/G∞, where again G∞ ' Zm × Zn.

4.5 Ambipolar bases

If the base space is considered in isolation, then we must restrict the “charges” q̃` at each

point to be positive. Otherwise, the function w will change sign,9 and the signature of the

metric (4.1) will flip from (+ + + +) to (−−−−).

However, in the context of supergravity solutions, the metric (4.1) appears multiplied

by the warp factor Z = (Z1Z2Z3)1/3 in the full 5-dimensional metric,

ds2
5 = −Z−2 (dt+ k)2 + Z ds2

4. (4.65)

9Caveat: this is not quite true, as we will show in section 4.6.
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Therefore, we can allow w to change sign, so long as each of the Z1, Z2, Z3 changes sign along

the same locus, such that the 5-dimensional metric retains the signature (−+ + + +). We

call such a base space “ambipolar”, where the signature is allowed to flip from (+ + + +) to

(−−−−), as has been discussed at length in [7, 8]. This justifies the use of q̃`, q̃∞ = ±1,±m
in (4.54), (4.55) and (4.62)–(4.64).

With this allowed flexibility in the charges q̃`, we can construct a wide variety of

base spaces. In particular, it should be possible to have both q̃` = ±1 at every point

and q̃∞ = ±1 at infinity, thus allowing us to write down supergravity solutions with an

arbitrary number of bubbles and no orbifold points anywhere.

4.6 Engineering solutions

Here we will describe a simple algorithm for generating solutions with an arbitrary number

of points η`, each of which has trivial orbifold group (and thus is smooth). We will assume

that each q̃` = +1 in order to show an interesting result. It is simple to generalize this

algorithm to the more flexible ambipolar case where q̃` = ±1.

To derive this algorithm, we first observe that

Q̄i+1 − Q̄i = qi + qi+1, (4.66)

and hence one has

(Q̄i+1 + qi+1) = (Q̄i + qi) + 2qi+1, (4.67)

and similarly for K̄3
i . The parity condition (4.50) can also be written

k3
0 + q0 + (Q̄i + qi) + (K̄3

i + k3
i ) ∈ 2Z, (4.68)

where i ∈ {1 . . . N} is any of the N points. Since the qi are integers, (4.67) guarantees that

if (4.68) is true for any given i, it is true for all i. Therefore without explicitly writing

down the sum of all the parameters, we can describe a recursive algorithm for constructing

solutions starting at i = 1 and adding as many points as we like.

A second observation we will need is that

q̃i+1 ≡ qi+1(K̄3
i+1 − k3

0)− k3
i+1(Q̄i+1 − q0) (4.69)

= qi+1(K̄3
i+1 + k3

i+1 − k3
0)− k3

i+1(Q̄i+1 + qi+1 − q0) (4.70)

= qi+1(K̄3
i + k3

i + 2k3
i+1 − k3

0)

− k3
i+1(Q̄i + qi + 2qi+1 − q0)

(4.71)

q̃i+1 = qi+1(K̄3
i + k3

i − k3
0)− k3

i+1(Q̄i + qi − q0), (4.72)

where the third line (4.71) follows from (4.67). Since we wish to set each q̃i = 1, the last

line (4.72) gives us a recurrence relation for the parameters qi, k
3
i . Then the algorithm

proceeds as follows:

1. Define

ai ≡ K̄3
i + k3

i − k3
0, bi ≡ Q̄i + qi − q0, (4.73)

and choose any a1, b1, k
3
1, q1 such that

q̃1 ≡ q1 a1 − k3
1 b1 = 1, a1 + b1 + k3

1 + q1 ∈ 2Z. (4.74)
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2. Next, find some k3
2, q2 such that (using (4.72))

q̃2 = q2 a1 − k3
2 b1 = 1, (4.75)

and such that

a2 = a1 + 2 k3
2, b2 = b1 + 2 q2 (4.76)

are relatively prime.10

3. Repeat this as many times as desired, finding some k3
i+1, qi+1 such that

q̃i+1 = qi+1 ai − k3
i+1 bi = 1, (4.77)

and

ai+1 = ai + 2 k3
i+1, bi+1 = bi + 2 qi+1 (4.78)

are relatively prime.

4. After choosing N such k3
i , qi, plug them all back into the definitions (4.73) along with

a1, b1 from the initial step, and solve for the remaining parameters k3
0, q0.

It is simple to generalize this algorithm to produce a sequence of points with any desired q̃i.

In this case, the requirement that each ai, bi be relatively prime can be weakened, noting

that in general, gcd(ai, bi) must divide both q̃i and q̃i+1.

We also note that in the final step of the algorithm, there is no longer any freedom to

choose parameters, and k3
0, q0 must be solved for, from (4.73). Therefore once we have laid

down a sequence of N points with given q̃i, the orbifold structure at infinity is fixed.11

If a specific behavior at infinity is required, one can re-write the algorithm to work

backwards. The “reverse” algorithm is not identical to the one written here, but it is simple

to work out from the reasoning in (4.67) and (4.68) along similar lines.

Using this algorithm it is easy to obtain some interesting solutions. We will give only

the solutions and not the details of the algorithm used to obtain them. These two examples

show some surprising features which emphasize the difference between LeBrun metrics and

Gibbons-Hawking metrics regarding the types of allowed orbifold points:

4.6.1 Example 1: every interior q̃i = 1, but at infinity q̃∞ = −1

The first example has three points, and is given by the parameters:

q1 = 4, q2 = −3, q3 = 2; q0 = −2, (4.79)

k3
1 = 5, k3

2 = −4, k3
3 = 1; k3

0 = −1. (4.80)

For this example, one has

q̃1 = 1, q̃2 = 1, q̃3 = 1, q̃∞ = −1. (4.81)

10This is required in order for the next constraint q̃i+1 = 1 to have a solution.
11However, the orbifold structure at infinity depends on the specific k3i , qi of the solution, and the same

sequence of q̃i can result in different asymptotics!
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Hence at all the source points ηi one has smooth R4 with trivial orbifold group. However,

the minus sign in q̃∞ reveals that it is possible for a LeBrun metric to flip signature

(+ + + +) to (−−−−) at infinity even if all the interior points have positive “charges”!

This also implies that the näıve positivity condition mentioned at the beginning of sec-

tion 4.5 is not quite correct, and requires that one also take into account the numerator

of (4.58) to have a metric with positive signature everywhere. Since in the context of

higher-dimensional supergravity solutions we do not require the signature of the base to

remain (+ + + +) everywhere, we will not worry about this.

4.6.2 Example 2: every interior q̃i ≥ 1, but at infinity q̃∞ = +1

A second important example is also given by three points:

q1 = −1, q2 = 2, q3 = 2; q0 = 2, (4.82)

k3
1 = 0, k3

2 = 1, k3
3 = 1; k3

0 = 1. (4.83)

and this example has

q̃1 = 3, q̃2 = 1, q̃3 = 1, q̃∞ = 1. (4.84)

In this case the metric does not unexpectedly flip signature. However, we do see that it is

possible for a LeBrun metric to be asymptotically flat (and not just locally flat) even if the

interior “charges” are all positive and some of them are greater than 1. This is in contrast to

Gibbons-Hawking metrics, where it is a mathematical theorem that the only asymptotically

(globally) flat hyper-Kähler metric in 4 dimensions is R4 [40]. Because LeBrun metrics are

merely Kähler and not hyper-Kähler, they are not subject to this restriction, and the set

of parameters (4.82) and (4.83) give an explicit example to this effect.

It does not, however, appear to be possible to choose parameters such that all the q̃i =

+1 and q̃∞ = +1, although we have not found a way to prove this impossibility in general.

4.7 A topological ménagerie

We have shown that the base metric approaches R4/G, for G ' Zm ×Zn, near each of the

geometric charges where the τ fiber pinches off. As explained in section 3.1, these points

control the appearance of homology 2-spheres as the τ fiber sweeps along a path between

any two such points.

There are also additional phenomena which appear when we look more carefully at

the axis in the 3-dimensional base h:

ρ2(V 2
ρη + V 2

ηη)(dρ
2 + dη2) + ρ2 dφ2. (4.85)

Along the axis, but away from the Gibbons-Hawking points, one has

ρ2(V 2
ρη + V 2

ηη)→
(
k3

0 −
N∑
i=1

k3
i sign(η − ηi)

)2

≡ a2, (4.86)
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which is a piecewise-constant function with jumps at each ηi. Whenever a2 = 1, then as

ρ → 0, the φ circle pinches off smoothly. If instead a2 6= 1 and a2 > 0, then the φ circle

pinches off in a conical singularity R2/Za.
But it is also possible that a = 0. Expanding to the next order in ρ2, and imposing

k3
0 =

N∑
i=1

k3
i sign(η − ηi), (4.87)

one has, as ρ→ 0,

ρ2(V 2
ρη + V 2

ηη)→ ρ2f(η)2, w → 1

ρ2

g(η)

f(η)2
, A→ − h(η)

f(η)2
dφ, (4.88)

where the functions f(η), g(η), h(η) are given by

f(η) =
N∑
i=1

k3
i

|η − ηi|
, (4.89)

g(η) =

(
q0 −

N∑
i=1

qi sign(η − ηi)
)
f(η), (4.90)

h(η) =

N∑
i=1

qi
|η − ηi|

f(η)

+
1

2

(
q0 −

N∑
i=1

qi sign(η − ηi)
) N∑
j=1

k3
j sign(η − ηj)

(η − ηj)2
.

(4.91)

Then as ρ→ 0, the 4-metric can be rearranged to give

g → g(η)

f(η)2
dφ+

f(η)2

g(η)

[
g(η)2

f(η)2
(dρ2 + dη2) + ρ2 dτ2

]
, (4.92)

where the coordinates τ, φ have now exchanged roles. Notably, along the entire segment

over which a (defined in (4.86)) vanishes, the φ circle remains a finite size as ρ→ 0, whereas

the τ circle pinches off. In particular, we have

g(η)2

f(η)2
=

(
q0 −

N∑
i=1

qi sign(η − ηi)
)2

≡ 4b2, (4.93)

so the τ circle is pinching off in a conical singularity R2/Zb (the factor of 4 in (4.93) is

to account for the fact that the period of τ is 4π rather than 2π). This sort of homology

2-cycle, in which φ remains finite while τ pinches off along a finite portion of the axis, is

illustrated in figure 4.

We also point out that the axisymmetric LeBrun metrics we consider here are toric

Kähler manifolds, and there is possibly a more elegant description of what is going on with

the various types of 2-cycles using the techniques of toric geometry [38].
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Figure 4. Homology 2-cycles in the axisymmetric base space. ∆ij and ∆k` are cycles formed

by sweeping the τ fiber between source points. ∆jk is a cycle formed by the φ circle. In the ρ, η

coordinates, the φ-cycle appears as a line segment between ~aj and ~ak. However, φ does not pinch

off there, but approaches a finite size as ρ→ 0.

4.8 Magnetic flux through cycles

A desired property of these new solutions is that the magnetic 2-form Θ(3) have non-trivial

flux through the homological 2-cycles in the base. The 2-form Θ(3) is given by

Θ(3) =
1

2
(dτ +A) ∧ d

uz
w

+
1

2
w ?

3
d
uz
w
, (4.94)

but it will be more helpful to write it as

Θ(3) = dB3 = −1

2
d

[
uz
w

(dτ +A) + rur dφ

]
(4.95)

where

1

2
uz =

Vηη
ρ2(V 2

ρη + V 2
ηη)

,
1

2
rur = −1 +

1

ρ(V 2
ρη + V 2

ηη)
Vρη, (4.96)

w =
1

ρ(V 2
ρη + V 2

ηη)

(
Vηη ŵρ − Vρη ŵη

)
. (4.97)

On a 2-cycle ∆ij swept out by the τ fiber, the flux can be computed via

Π
(3)
ij =

1

4π

∫
∆ij

Θ(3) =
1

4π

∫
∆ij

dτ ∧ d
K3

w
=
kj
q̃j
− ki
q̃i
, (4.98)

where q̃i ≡ qi(K̄
3
i − k3

0) − k3
i (Q̄i − q0). This is very reminiscent of the fluxes in the BPS

case [7], and in stark contrast to previous non-BPS work [22, 23] where Θ(3) had no topo-

logical fluxes.

On a 2-cycle formed by the φ circle, one has to be considerably more careful. Along a

line segment of the η axis between ηi and ηj where the φ circle has a finite size, one can

show that as ρ→ 0,

Θ(3) → 1

g0
d

[
− dτ +

f̃(η)

f(η)
dφ

]
, (4.99)

where

f(η) =

N∑
i=1

k3
i

|η − ηi|
, f̃(η) =

N∑
i=1

qi
|η − ηi|

, g0 =

(
q0 −

N∑
i=1

qi sign(η − ηi)
)
, (4.100)
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and we note that along this single line segment between two GH points, g0 is constant. Out-

side this line segment, the approximation (4.99) no longer holds; in particular, we should

not be concerned about the sign(η − ηi) in g0, because the full Θ(3) (4.94) is continuous

everywhere and has no jumps. Then using (4.99), the flux of Θ(3) through a φ cycle is

given by

Π
(3)
ij =

1

4π

∫
∆ij

1

g0
d
f̃(η)

f(η)
∧ dφ =

1

2g0

(
qj
k3
j

− qi
k3
i

)
, (4.101)

which, interestingly, has a very different structure to (4.98).

Therefore we have succeeded in constructing a useful base space. It has the homological

2-spheres we expected, swept out by τ ; these have cohomological fluxes which can be ad-

justed in any desired way by choosing parameters. As a bonus, we also obtain homological

2-spheres swept out by φ, which also have cohomological flux.

Interestingly, the fluxes of each type take different forms. If we assign units to the

parameters of the solution, then τ fluxes have units of “1/q” and φ fluxes have units of

“1/k”. This is consistent with the coordinate transformation (4.43), (4.44); if we assume

the angles ψ, χ are dimensionless, then the the fluxes Π
(3)
ij will have the same units through

both τ cycles and φ cycles.

5 Multi-centered supergravity solutions

Now that we have an appropriate base space, we must solve the sys-

tem (3.20), (3.21), (3.22), (3.24), (3.25), and finally (3.26). The route to the solutions is

tedious and not particularly illuminating, so we refer the reader to appendix B for the

details, including the full, explicit solutions themselves. In this section, we will focus on

analyzing the solutions.

The solutions are described by N number of points ηi along the axis in the base space,

and by the 8N+10 parameters {q0, k
1
0, k

2
0, k

3
0, `

0
1, `

0
2, `

0
3,m0, ω0, `

z
3, qi, k

1
i , k

2
i , k

3
i , `

i
1, `

i
2, `

i
3,mi}.

The following sections make frequent reference to these parameters as they appear in the

solutions of appendix B.

5.1 Asymptotics of the 5d metric

We should first look at the behavior of the 5-dimensional metric (2.4) at infinity. We leave

the details to section B.1, and summarize the main results here.

We define the coordinates R, θ via

ρ = R sin θ, η = R cos θ, (5.1)

and look at the various metric functions as R → ∞. First, we find that the warp factors

Z1, Z2 go as 1/R:

Z1 ∼
1

R
, Z2 ∼

1

R
. (5.2)

The functions µ, ω(φ) ∼ (const) at infinity, but to avoid CTC’s, we must choose parameters

such that these constants vanish. At the 1/R order, these functions pick up an angular
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dependence12 on θ:

µ ∼ 1

R
f5(θ), ω(φ) ∼

1

R
f6(θ). (5.3)

Next one is interested in Z3, and one has a choice. The leading order behavior is

constant:

Z3 ∼ `03 −
∑
ij
i 6=j

k1
i `
j
1 + k2

i `
j
2 − k3

i `
j
3 + 2miqj

ηi − ηj
+O

(
1

R

)
. (5.4)

However, as mentioned in section 2, the ZI must all have the same asymptotic behavior to

allow an M-theory lift. Hence we should choose `03 to make the constant term vanish in (5.4).

Alternatively, one can keep the constant term, allowing Z3 to have different behavior to

Z1, Z2 — as was pointed out in [23], this can be lifted naturally to the 6-dimensional theory

obtained by reducing IIB supergravity on T 4.

5.1.1 Asymptotics for lifting to 11d SUGRA

We first consider the case that all three ZI have the same asymptotic behavior. Therefore

the leading order constant Z3 (B.19) must vanish, hence we set:

`03 =
∑
ij
i 6=j

k1
i `
j
1 + k2

i `
j
2 − k3

i `
j
3 + 2miqj

ηi − ηj
. (5.5)

The 5-dimensional metric (2.4) then becomes

ds2
5 = − R2

f4(θ)2

[
dt+

1

R
f5(θ) dτ +

1

R

(
f5(θ)f3(θ) + f6(θ)

)
dφ

]2

+
f4(θ)

f2(θ)

(
dτ + f3(θ) dφ

)2

+
f2(θ)f4(θ)

R2

[
f1(θ)(dR2 +R2 dθ2) +R2 sin2 θ dφ2

]
,

(5.6)

where generically speaking,

ρ2(V 2
ρη + V 2

ηη) ∼ f1(θ), w ∼ 1

R
f2(θ), A ∼ f3(θ) dφ (5.7)

Z ∼ 1

R
f4(θ), µ ∼ 1

R
f5(θ), ω ∼ 1

R
f6(θ) dφ, (5.8)

and simplifications likely occur in (5.6) if one works these out in more specificity. Due

to the dR2/R2 term, this metric is something related to AdS2 × S3. Specifically, it is a

warped, rotating quotient AdS2 × S3/G∞, where G∞ is a finite group acting on the S3

factor as described in section 4.4.

If we choose parameters such that q̃∞ = ±1 as defined in (4.61), then the base space

approaches R4 without orbifold identifications, as described in section 4.5. One can then

choose parameters such that

Z3 ∼
1

R
, µ ∼ 1

R
(c1 + c2 cos θ), ω ∼ O(R−2), (5.9)

12The reason for labelling these functions “5, 6” will become apparent in the next subsection.
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and therefore Z ≡ (Z1Z2Z3)1/3 ∼ 1/R, without angular dependence. Then changing

coordinates via

R =
1

4
%2, θ = 2ϑ, τ = ψ + χ, φ = ψ − χ, (5.10)

(up to shifts in t and τ), one obtains a 5-dimensional metric of the form

ds2
5 = −%4

(
dt+ J1

sin2 ϑ

%2
dψ + J2

cos2 ϑ

%2
dχ

)2

+
d%2

%2
+ dΩ2

3, (5.11)

which is the metric of the near-horizon region of a BMPV black hole [26].

5.1.2 Asymptotics lifting to IIB on T 4

Alternatively, we can choose to allow Z3 ∼ (const) at infinity while Z1, Z2 ∼ 1/%2, and

therefore not impose (5.5). Then the 5-dimensional metric will generically be of the form

ds2
5 = −%8/3 (dt+ k)2 + %−4/3 (d%2 + %2 dΩ2

3), (5.12)

which looks somewhat strange. As shown in [23], however, there is a natural lift into 6-

dimensional N =1 supergravity coupled to one anti-self-dual tensor multiplet [27–29]. The

metric ansatz in 6 dimensions can be written in terms of the 5-dimensional quantities as

ds2
6 = − 2√

Z1Z2

(
dv +B3

)(
du+ k − 1

2
Z3

(
dv +B3

))
+
√
Z1Z2 ds2

4, (5.13)

where B3 is the 1-form potential such at Θ(3) = dB3 as in (4.95). In this context, applying

the asymptotics at infinity where Z3 ∼ (const) and Z1, Z2 ∼ 1/%2 gives the result

ds2
6 = −2%2 dv

(
du+ k − 1

2
Z3 dv) +

d%2

%2
+ dΩ2

3, (5.14)

which is a momentum wave propagating on AdS3 × (S3/G∞). Furthermore, nothing pre-

vents us from imposing Z3 ∼ 1/%2 in this lifted metric; in such a case, one would obtain

the 6-dimensional lift of the near-horizon BMPV metric (5.11), which is the near-horizon

metric of a BPS, rotating D1-D5-P black string [41].

Summarizing asymptotics. Generally speaking, we see that our solutions are asymp-

totic to a warped, rotating version of AdS2 × (S3/G∞), and for special choices of parame-

ters, to near-horizon BMPV. Alternatively, one can lift to IIB supergravity on T 4, giving

a 6-dimensional metric which allows Z3 to have different asymptotics to Z1, Z2. In this

case, one can impose Z3 ∼ (const) to obtain a momentum wave solution propagating on

AdS3 × (S3/G∞); or, imposing Z3 ∼ 1/%2, one obtains the near-horizon metric of a BPS,

rotating black string.

We should note from constraints derived in [22], that the “floating brane” equations [20]

on a Kähler base do not have asymptotically flat solutions, and solutions must generically

have nonzero rotation parameters at infinity. The reason for this is that the T00 component

of the 5-dimensional energy-momentum tensor is a manifestly positive-definite function of

the ZI ,Θ
(I). If we have ZI ∼ 1 at infinity, then Θ(1),Θ(2) still contain a term proportional

to the Kähler form J , which contributes a constant to T00 and prevents asymptotic flatness.

The rotation at infinity comes from the off-diagonal terms T0a, which also do not vanish.
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5.2 Regularity conditions

The solutions we have obtained generically have a number of singularities at each ηi which

act as sources of the electric potentials ZI and magnetic field strengths Θ(I). However,

in the context of black hole microstate geometries, we are interested in solutions that are

everywhere smooth, with no singular sources. This can be accomplished by choosing the

parameters in such a way that singularities are eliminated. The necessary condition for

smoothness is that each of the functions Z1, Z2, Z3, µ, ω(φ) remain non-singular as the GH

points are approached.

Looking near a point η`, we again define a local radial coordinate via

ρ = R sin θ, η − η` = R cos θ. (5.15)

Then as R→ 0, we have

Z1 →
1

R

(
k2
`k

3
` + q``

`
1

q`
(
K̄3
` − k3

0

)
− k3

`

(
Q̄` − q0

)), (5.16)

Z2 →
1

R

(
k1
`k

3
` + q``

`
2

q`
(
K̄3
` − k3

0

)
− k3

`

(
Q̄` − q0

)), (5.17)

where again,

K̄3
` ≡

∑
i
i 6=`

k3
i sign(η` − ηi), Q̄` ≡

∑
i
i 6=`

qi sign(η` − ηi). (5.18)

Therefore, the singular parts of Z1, Z2 will vanish if

``1 = −
k2
`k

3
`

q`
, ``2 = −

k1
`k

3
`

q`
, (5.19)

at every GH point. Next, imposing (5.19), we have

Z3 →
1

R

[
k1
`k

2
`

q2
`

(
q`(K̄

3
` − k3

0)− k3
` (Q̄` − q0)

)
− ``3(K̄3

` − k3
0) + 2m`(Q̄` − q0)

−
(
k3
` `
`
3 + 2m`q`

)
cos θ

]
,

(5.20)

and hence the singular part of Z3 vanishes if

``3 =
k1
`k

2
`

q`
, m` = −

k1
`k

2
`k

3
`

2q2
`

. (5.21)

Together, (5.19) and (5.21) are also sufficient to guarantee µ→ (const) and ω(φ) → (const)

near η`; hence we will have a regular solution if we impose these conditions at every GH

point.

We note that these conditions appear exactly the same (up to signs that result from

differing conventions) as those in the original BPS story [7]. However, there is a key

difference: in these solutions, the parameters q` do not directly control the singularities of

w, but as in (4.38), the singularities in w are controlled by the determinants

q̃` ≡ q`(K̄3
` − k3

0)− k3
` (Q̄` − q0). (5.22)
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5.3 Fluxes through cycles

It will be useful to have expressions for the magnetic flux threading 2-cycles formed by

sweeping the τ fiber between GH points in the 4-dimensional base space. We have already

calculated the flux of Θ(3) on these cycles (4.98):

Π
(3)
ij ≡

1

4π

∫
∆ij

Θ(3) =
kj
q̃j
− ki
q̃i
. (5.23)

Before computing the remaining two fluxes, we will impose the regularity condi-

tions (5.19), (5.21). Then as we approach a GH point η`, we have

K1

w
→

k1
` (K̄

3
` − k3

0)

q`
− `02 + L̄`2,

K2

w
→

k2
` (̄K

3
` − k3

0)

q`
− `01 + L̄`1, (5.24)

where we have defined new quantities

L̄`1 ≡
∑
i
i 6=`

`i1 sign(η` − ηi), L̄`2 ≡
∑
i
i 6=`

`i2 sign(η` − ηi). (5.25)

Then the flux through τ cycles can be computed in a way similar to (4.98):

Π
(1)
ij ≡

1

4π

∫
∆ij

Θ(1) =
k1
j (K̄

3
j − k3

0)

qj
+ L̄j2 −

k1
i (K̄

3
i − k3

0)

qi
− L̄i2, (5.26)

Π
(2)
ij ≡

1

4π

∫
∆ij

Θ(2) =
k2
j (K̄

3
j − k3

0)

qj
+ L̄j1 −

k2
i (K̄

3
i − k3

0)

qi
− L̄i1. (5.27)

One can in principle also compute the fluxes through the 2-cycles swept out by φ, as was

done in section 4.8. However, this is tedious and of no special benefit to the rest of this

analysis, so we omit it.

5.4 Causality conditions: the “bubble equations”

We have determined the conditions that a solution is smooth as one approaches the various

Gibbons-Hawking points in the base manifold. However, to construct sensible supergravity

solutions, one must also ensure that there are no closed timelike curves.

Looking at the metric (2.4) on a surface of constant t, we can rearrange it as follows:

ds2
5 =

Q
w2Z2

(
dτ +A− w2µ

Q
ω

)2

+ Zw

(
ρ2 dφ2 − ω2

Q

)
+ Zw ρ2(V 2

ρη + V 2
ηη)(dρ

2 + dη2),

(5.28)

where

Q ≡ Z1Z2Z3w − w2µ2, Z ≡ (Z1Z2Z3)1/3. (5.29)

In order for CTC’s to be absent everywhere, (5.28) must be positive-definite. This requires

Q ≥ 0, Zw ≥ 0, ρ2 dφ2 ≥ ω2

Q
. (5.30)
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It is generally impractical to enforce these global conditions from the local point of view

of choosing parameters in the solution; one must write down a solution and then explore

it numerically to look for CTC’s. However, one can look at local causality conditions near

the GH points, and this leads to a system of equations that must be solved as a necessary

(but not sufficient) condition that a solution be causally sensible.

In the BPS context [7], this leads to a system of so-called “bubble equations” that

relate the distances between the GH centers (as measured in the R3) to the product of

the fluxes of the Θ(I) through the various 2-cycles described by the GH centers. Thus

the size of each “bubble” is governed by the amount of flux trapped on it. Importantly,

the bubble equations depend upon the product of all three fluxes. In previous work on

non-supersymmetric solutions derived from floating branes [22, 23], the third flux Θ(3) was

topologically trivial and contributed no fluxes to the bubble equations. The result was that

the causality conditions did not constrain the sizes of the homological 2-cycles. In these

new solutions, however, Θ(3) has non-trivial fluxes on the 2-cycles (as in section 4.8), so we

expect to find non-trivial bubble equations.

Looking at (5.28) near the GH points, one finds two potential sources of CTC’s coming

from the two angular coordinates τ, φ. To eliminate CTC’s near the GH points, we must

require that

µ→ 0, ω → 0 (5.31)

at these points. While these appear to be two different conditions, they are really the same.

To see this, we can rearrange the ω equation (3.26) as follows:

dω = wZ1 ?
3

d
K1

w
+ wZ2 ?

3
d
K2

w
+ wZ3 ?

3
d
K3

w
− 2wZ1Z2 ?

3
dz

+ w ?
3

dµ− µ dA.
(5.32)

We choose parameters such that ω vanishes at infinity (as in (B.22), (B.23)), so for ω to

be non-vanishing somewhere on the axis would require Dirac-Misner strings. Given the

regularity conditions (5.19), (5.21), the only term in (5.32) that can source Dirac-Misner

strings is −µdA. Therefore, to eliminate local CTC’s near the GH points, it is enough

to demand that µ vanish at each GH point. The vanishing of µ results in the following

“bubble equations” at each η`:

−2m0q̃` + k3
0`

0
3 = (k3

0 − K̄3
` )
∑
i
i 6=`

Π̂
(1)
`i Π̂

(2)
`i Π̂

(3)
`i

q`qi
r`i

+
1

2
k3
`

∑
ij
i 6=j

Π̂
(1)
ij Π̂

(2)
ij Π̂

(3)
ij

qiqj
rij

s(i, j) s(`, i) s(`, j)
(5.33)

where we have defined

rij ≡ |ηi − ηj |, Π̂
(I)
ij ≡

(
kIj
qj
− kIi
qi

)
, s(a, b) ≡ sign(ηa − ηb), (5.34)

q̃` ≡ q`(K̄3
` − k3

0)− k3
` (Q̄` − q0). (5.35)
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The combinations of parameters Π̂
(I)
ij which appear in the bubble equations are not the

physical fluxes Π
(I)
ij calculated in (4.98), (5.26) and (5.27). However, with a little algebra

one can show that they are related linearly and homogeneously:13

Π
(1)
`i = (−k3

0 + K̄3
` ) Π̂

(1)
`i +

N∑
j=1

k3
j Π̂

(1)
ij

(
s(`, j)− s(i, j)

)
, (5.36)

Π
(2)
`i = (−k3

0 + K̄3
` ) Π̂

(2)
`i +

N∑
j=1

k3
j Π̂

(2)
ij

(
s(`, j)− s(i, j)

)
, (5.37)

q̃`q̃i Π
(3)
`i = q`qi(−k3

0 + K̄3
` ) Π̂

(3)
`i + k3

`

N∑
j=1

qiqj Π̂
(3)
ij

(
s(`, j)− s(i, j)

)
. (5.38)

These look tantalizingly like they might allow a simpler expression of the right-hand side

of (5.33); however, the presence of 1/r`i, 1/rij in the sums complicates the algebra, and

the expression we have written in (5.33) is probably the simplest.

We have thus succeeded in finding a family of non-BPS solutions with non-trivial

bubble equations which constrain the bubble diameters rij in terms of the fluxes trapped

on the bubbles. We also observe that there is a significant, important difference between

these non-BPS bubble equations and the well-known BPS version [7]. The term on the

second line of (5.33) is entirely new: in order to avoid CTC’s at η`, the equations depend

not only on the diameters r`i of the 2-cycles adjacent to η`, but also on the diameters rij of

each of the other 2-cycles. This is telling us about new physics: these non-supersymmetric

solutions exhibit a richer variety of E×B interactions than previously known BPS solutions.

However, while these bubble equations differ from the BPS ones in a few ways, they

are similar in a particularly striking way: they are linear in the inverse bubble diameters

1/rij . This stands in contrast to the so-called “almost BPS” family of solutions where the

bubble equations are cubic in the inverse distances [16–18]. So although these solutions

lack supersymmetry, they are in some sense closer to BPS than the “almost BPS”

solutions. This is because they are trivial KK reductions of 6-dimensional geometries

which are BPS in the IIB frame [23].

Number of independent bubble equations. Ultimately, there are only N − 1 inde-

pendent rij , so we expect there to be N − 1 independent bubble equations. This is easiest

to demonstrate by looking directly at the Dirac-Misner strings in ω. This results in the

same bubble equations as above, each multiplied by a constant (which is different at each

η`). Near η`, the Dirac-Misner string part of ω is given by the jump that occurs in crossing

from one side of η` to the other:

ω
∣∣∣
θ=0
− ω

∣∣∣
θ=π

= −
(
A
∣∣∣
θ=0
−A

∣∣∣
θ=π

)
µ =

2 q̃`(
K̄3
` − k3

0

)2 − (k3
`

)2 µ dφ. (5.39)

Since ω contains a sequence of Dirac-Misner string sources along the η axis, and vanishes at

both positive and negative infinity, then the sum of all the jumps must be zero. Therefore,

13Here we again assume the regularity conditions (5.19), (5.21) are imposed.
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the weighted sum of all the bubble equations (5.33), each multiplied by the coefficient

in (5.39), must give zero. This weighted sum gives

m0 =
1

2

K3
?

q0K3
? − k3

0Q?

(
`03 −

∑
ij
i 6=j

k1
i `
j
1 + k2

i `
j
2 − k3

i `
j
3 + 2miqj

ηi − ηj

)
. (5.40)

which is the condition we have already imposed (B.22) in order that µ → 0 at infinity.

Hence as expected, the bubble equations constitute N − 1 independent equations in the

N − 1 independent variables rij .

Hints of scaling solutions. Finally, there is a curious thing that happens if we impose

all of the conditions derived in section 5.1 for near-horizon BMPV-like (i.e. warped, rotating

AdS2 × S3) asymptotics. First we note that the value of `03 in (5.5) is entirely a linear

combation of the inverse bubble diameters 1/rij . Second, when (5.5) is imposed, then

m0 = ω0 = 0 as in (B.22), (B.23). Therefore if we insist on near-horizon BMPV-like

asymptotics, the bubble equations will take the form, schematically,∑
Π̂(1)Π̂(2)Π̂(3) qq

r
= 0. (5.41)

If we instead think of this equation as a limiting process where we replace the right-hand

side with some δ and let δ → 0, then the solutions, as we follow this process, are scaling

solutions [17, 42, 43]. The right-hand side roughly scales as (Π)3/r, and thus if we adjust the

dipole charges while simultaneously shrinking the bubble diameters, such that Π ∼ λ, r ∼ λ
for λ small, this tends toward zero. In such solutions, the overall size of the bubbled region

shrinks (as measured in the 3-dimensional base), while the ratios between the bubble sizes

becomes constant. In the full 5-dimensional metric, this represents the appearance of an

arbitrarily deep throat, smoothly capped off by topological bubbles at some finite depth.

Thus one can see the near-horizon BMPV geometry, and the related rotating-AdS-like

metrics with angular dependence as in (5.6), as the result of this limiting procedure.

More generally, if we consider asymptotic conditions where Z3 behaves differently from

Z1, Z2 (thus naturally lifting to the 6d IIB metric (5.14) rather than to 11d supergravity),

we can set the constant `03 to anything we like. In this case, one can find finite, non-trivial

solutions to the bubble equations without subjecting them to a limiting procedure. We

demonstrate this in section 5.5.

5.5 An explicit numerical example

In this section we will give an explicit, solved example with three source points, illustrating

how a smooth, CTC-free solution can be constructed. The solution will be in the class

asymptotic to (5.14), where Z3 ∼ (const) and Z1 ∼ 1/ρ2, Z2 ∼ 1/ρ2. We will focus on

satisfying the local conditions near the points, and not delve into exactly what asymptotics

result.

We begin by choosing three source points along the η axis and assigning them geometric

charges. The parameters of the solution are ordered in the manner drawn in figure 5; thus
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Figure 5. Setup for a 3-center example. Geometric charges q1, q2, q3 are put at the points ~a1,~a2,~a3
along the η axis. One must then solve the bubble equations to find r12, r23.

by hypothesis the bubble diameters r12, r23 are positive. At the points ~a1,~a2,~a3 we put the

following charges:

q0 = 2, q1 = 3, q2 = 2, q3 = 6,

k1
0 = 0, k1

1 = 5, k1
2 = 2, k1

3 = 3,

k2
0 = 0, k2

1 = 5, k2
2 = 4, k2

3 = 3,

k3
0 = 1, k3

1 = 2, k3
2 = 2, k3

3 = 2,

`01 = 0, `02 = 0, `03 = 10, `z3 = 0.

(5.42)

Our particular choices are made to satisfy a few constraints: 1) the parity condi-

tion (4.50) such that each point will be an orbifold point; 2) the condition that all the Π̂
(I)
ij

are nonzero; 3) the condition that the q̃i are all “nice” numbers; 4) the condition that the

bubble equations yield real, positive solutions for the rij ; and 5) the condition that Q > 0

in order to be free of CTC’s. Choosing parameters (5.42) to satisfy all of these properties

is a bit of an art, and it would be interesting to better understand the moduli space of

physical solutions.

The value of `03 sets the overall scale of the solution, as it is the only unconstrained

constant sitting on the left-hand side of (5.33). Since we have put `03 6= 0, this solution will

have asymptotics best described in the 6d IIB frame as in (5.14). Most of the functions

w,KI , LI ,M that make up the solution are too lengthy to write out, but as an example,

we have

ŵη =
3√

ρ2 + η2
+

2√
ρ2 + (η − r12)2

+
6√

ρ2 + (η − r12 − r23)2
, (5.43)

ŵρ =
2

ρ
− 3 η

ρ
√
ρ2 + η2

− 2 (η − r12)

ρ
√
ρ2 + (η − r12)2

− 6 (η − r12 − r23)

ρ
√
ρ2 + (η − r12 − r23)2

, (5.44)

and so on. There are two remaining constants m0, ω0 which we have not set in (5.42).

To meet the regularity conditions at infinity, these constants will be set equal to (B.22)

and (B.23), and then their numerical values will be determined after the rij are known via

solving the bubble equations (5.33).

At each source point, the base metric approaches R4/G`, where the order of G` at the

source point η` is given by #G` = |q̃`|, and for the parameters (5.42) these q̃` are given by

q̃1 = 5, q̃2 = 8, q̃3 = 12, q̃∞ = 1. (5.45)

Therefore we see that this is another example of the phenomenon described in section 4.6,

where the base metric can be asymptotically globally flat, despite having orbifold points on

the interior, and without resorting to making it “ambipolar” as described in section 4.5.
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Figure 6. The unit cells Λ̃` of each lattice Γ̃` and their corresponding groups G` ' Γ̃`/Γ. The

small parallelograms represent the lattice generators (5.46) (where Λ̃1 has been shifted by a right

GL(2,Z) action in order to make it fit in the figure). The heavy red dots represent the members of

each group G`. The corners of the large squares are to be identified; they represent the lattice Γ of

the natural 2π identifications of the (α, β) coordinates in R4.

We will first analyze the groups at these orbifold points. We find that the lattice

generators Λ̃`, calculated from (4.47), are given by

Λ̃1 =
1

5

(
2 −5

−3 10

)
, Λ̃2 =

1

8

(
2 −1

−2 5

)
, Λ̃3 =

1

12

(
−2 7

−2 1

)
, (5.46)

and the corresponding groups are

G1 ' Zdiag
5 , G2 ' Z8, G3 ' Z12 ' Z3 × Z4, (5.47)

where G1 at point η1 acts in the diagonal U(1) of SO(4), which one can check using (4.54).

These lattice generators Λ̃`, and the groups given by G` ' Γ̃`/Γ, are illustrated in figure 6.

Next, we put the general expression for m0 (B.22) into the bubble equations (5.33)

and solve them for the rij , subject to the triangle constraint

r12 + r23 = r13. (5.48)

At this point in the process it is quite possible to fail to find a solution. The rij should be

strictly positive (they do not enter the equations in a way that allows them to be treated

as “directional”). The bubble equations are linear in 1/rij , and (5.48) is linear in rij ,

hence one is solving a system of quadratic equations. Thus it is possible to get negative

or imaginary rij , and if this happens, one must adjust some of the dipole charges in (5.42)

and try again. For the particular charges used here, we obtain two solution sets of real,

positive rij , from which we select (via hindsight) the following:

r12 = 2.45827, r23 = 0.891937, r13 = 3.35021. (5.49)

From this solution and the expressions (B.22) and (B.23), we then find

m0 = 1.96384, ω0 = −3.60037, (5.50)
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Figure 7. The function Q ≡ Z1Z2Z3w − w2µ2 plotted near the source points at three different

levels of magnification. Q is everywhere non-negative, and therefore the solution is free of CTC’s.

which will then guarantee that there are no CTC’s at infinity.

Finally, to show there are no CTC’s anywhere, we plot

Q ≡ Z1Z2Z3w − w2µ2 (5.51)

in figure 7. We see that it is positive near the centers as we expect, and appears to

be positive everywhere, giving us a supergravity solution which is globally free of closed

timelike curves.14

6 Conclusions

Using the floating brane ansatz of [20] we have obtained a new, infinite family of solutions

to 5-dimensional N =2 ungauged supergravity coupled to two vector multiplets. To build

the solutions, we start with a LeBrun metric for the 4-dimensional base. These metrics

are Kähler and solve the Euclidean-Einstein-Maxwell equations, and are specified by two

functions that solve the SU(∞) Toda equation and its linearization. The full supergrav-

ity solution is then constructed by solving the “floating brane equations” on this base

space. To these equations we obtain general, explicit solutions which generically represent

a collection of concentric black rings stabilized by their angular momentum and electro-

magnetic charges. Under appropriate regularity conditions, the black rings are replaced by

topological “bubbles”, and the solutions are smooth and horizon-free. Imposing causality

conditions, we obtain “bubble equations” which dictate the sizes of topological bubbles in

terms of the cohomological fluxes trapped on them.

The 4-dimensional Kähler base space is interesting in its own right, and we spend some

time analyzing its properties. Choosing a subclass of LeBrun metrics with U(1) × U(1)

symmetry, we are able to solve the Toda equation and write down an explicit metric. Like

the Gibbons-Hawking metrics, these metrics have an explicit U(1) fiber that pinches off

at various points along the axis to create a series of homological 2-spheres. However, a

new feature of the LeBrun metrics is that homological 2-spheres can also be formed by the

other angular coordinate, and we obtain the specific boundary conditions that allow this

to happen. We also find a new feature as we approach the Gibbons-Hawking points, or

14Naturally, it is not enough just to look at graphs. It is also helpful to plot Q − |Q|, which quickly

reveals any place Q might go negative. This was checked in this example, and Q ≥ 0 everywhere.
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“geometric charges.” In the GH metric, the U(1) near these points fibers over the S2 in the

base to give S3/Zq, which makes the local metric an orbifold R4/Zq. In the LeBrun metric,

however, one generically has R4/G at these points, where G ' Zm × Zn acts on the two

angular coordinates in R4 ' R2 × R2. Finally, and perhaps most importantly, the explicit

LeBrun metrics obtained have a Maxwell field which is non-trivially threaded through its

various 2-cycles. This allows rich new phenomena in the full supergravity solution that

were not present in previous work by the author and collaborators [22, 23].

Looking at the full supergravity solution, we see a striking similarity between these non-

supersymmetric solutions and the previous, well-known BPS solutions [7]. The regularity

conditions take virtually the same form. By demanding the absence of CTC’s, we also

obtain “bubble equations” which have largely the same features as in the BPS solutions: a

2-cycle is held open by the product of the three flavors of fluxes threading it. However, the

non-BPS bubble equations at a given point involve not only the fluxes on cycles adjacent

to that point, but also involve all the fluxes on the nonadjacent cycles (which is a radical

departure from the BPS bubble equations). This indicates new physics that was not present

in the BPS case, involving a richer variety of E ×B type interactions.

It is known from previous work that these 5-dimensional non-supersymmetric solutions

on a Kähler base are actually trivial KK reductions of BPS solutions in the 6-dimensional

IIB frame [27–29]. This explains some of the features we see, and yet makes others more

mysterious. It seems clear that the 5-dimensional solutions are force-balanced by a kind of

“supersymmetry without supersymmetry” [32], and in fact might be closer to BPS than

the so-called “almost BPS” solutions [14–16]. For example, the bubble equations here and

in the traditional 5d BPS solutions are both linear in the inverse distances 1/rij , whereas

the “almost BPS” bubble equations are cubic in the inverse distances. Still, there are

important differences between these bubble equations and the 5d BPS bubble equations

that must be explained if we are to think of these as “secretly BPS.”

Having found the non-BPS bubble equations, we also find that imposing the asymp-

totics of the near-horizon BMPV metric [26] precludes the existence of any finitely-sized

bubbled solutions. However, one can see the near-horizon BMPV-like metrics as the result

of a limiting process of scaling solutions [17, 42, 43]. Alternatively, one can lift to the 6d

IIB frame where one can allow different asymptotic behavior in one of the warp factors,

and in this case one can find an infinite family of smooth geometries, with finitely-sized

bubbles held open by their cohomological fluxes, which are asymptotic to a momentum

wave solution on AdS3 × S3.

It would be interesting to explore further the lift to the 6d IIB frame, as was done

with the LeBrun-Burns metrics in [23]. In 6 dimensions, one has the possibility of regular

supertubes, and one might also get a better handle on why the bubble equations differ

between here and the traditional setting (particularly in containing non-local interactions).

It would also be interesting to look for an asymptotically-flat completion of these

solutions in 5 dimensions by relaxing the simplifying assumptions used in the floating

brane ansatz [20]. This is certainly a non-trivial thing to do, as one will likely be forced to

address the full Einstein equations.
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Finally, we also point out that while this work has focused on smooth solutions, one also

has within the same solution set an infinite family of singular solutions, representing various

collections of non-supersymmetric, yet force-balanced, spinning 3-charge black rings.

We have presented here a number of results and techniques which we hope yield in-

sight into supergravity and black hole microstates. Recent progress in the ability to find

supergravity solutions is very exciting and full of possibilities, and it is clear that there are

many avenues waiting to be explored.
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A Groups at conical points from lattices in SO(4)

In this section we discuss how to compute the orbifold structure at the conical singularities

of the LeBrun metrics. We stress that not every conical singularity is an orbifold singularity.

For a point to be an orbifold singularity, the geometry must approach R4/G for some finite

group G ⊂ SO(4); however, for generic values of the parameters, one can also obtain more

general conical singularities that cannot be locally modeled as a quotient space of R4. To

illustrate the difference, consider two different 2-dimensional cone metrics:

ds2
A = dr2 + r2 dθ2

n2
, ds2

B = dr2 + r2m
2 dθ2

n2
, θ ∼ θ + 2π, (A.1)

for m,n > 0 ∈ Z relatively prime. In the first metric ds2
A, a circuit around the tip of the

cone subtends 2π/n radians; hence an n-fold cover of this space will fill out the standard

R2, and this is the quotient space R2/Zn. In the second metric ds2
B, however, a path

enclosing the origin subtends 2πm/n radians, and there is no p-fold cover of this space that

gives us R2; hence it is not a quotient of R2, and not, strictly speaking, an orbifold. A

similar phenomenon affects LeBrun metrics, except that there are two angular coordinates

involved rather than one.

A.1 Orbifold points and more general conical singularities

Near each conical point in the LeBrun metric, one finds that the (local) metric approaches

that of flat R4, but with the U(1) × U(1) coordinates identified on a lattice Γ̃ different

from the usual one Γ. One can define a group structure G, which is a finite subgroup of

U(1)×U(1) ⊂ SO(4), by comparing the two lattices Γ, Γ̃. The conical point is an orbifold

point precisely when Γ ⊆ Γ̃ as a sublattice, and then the local geometry approaches R4/G.

In this section we will compute G.
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Figure 8. The lattice bases ΛP and Λ̃P̃ are parallel. There exist rational numbers r1, r2 such that

~a1 = r1 ~e1 and ~a2 = r2 ~e2. In this case r1 = 3 and r2 = 4/3.

Let Γ be the standard lattice on which to identify the U(1)×U(1) coordinates of R4.

In the coordinates

ds2(R4) = dρ2 + ρ2
(

dθ2 + cos2 θ dα2 + sin2 θ dβ2
)
, (A.2)

one has (α, β) ∼ (α+ 2π, β) ∼ (α, β + 2π), and hence the basis Λ of Γ can be written

Λ = 2π

(
1 0

0 1

)
, (A.3)

where the columns are the two basis vectors. We note that Λ is only defined up to right

action by GL(2,Z), because we are free to choose any two column vectors that generate

the same lattice.

We should then compare this lattice Γ to the lattice Γ̃ of coordinate identifications

obtained from the near-singularity limit of the LeBrun metric (after transforming it into

the same R4 coordinates as above).

A.1.1 Reduction to Smith normal form

The lattices Γ, Γ̃ have unit cells which are parallelograms of any dimensions and oriented in

any directions. Let Λ, Λ̃ be a choice of basis for each of Γ, Γ̃. Since the lattices are rational

to each other, we can always make a change of basis via right action by P, P̃ ∈ GL(2,Z)

such that the new bases ΛP, Λ̃P̃ are parallel, by which we mean

Λ̃P̃R = ΛP, where R =

(
r1 0

0 r2

)
, (A.4)

for some rational numbers r1, r2 > 0. This is shown in figure 8.

The rational numbers r1, r2 give the factors by which each leg of ΛP is larger than the

same leg of Λ̃P̃ . It is easy to see that each leg of Λ̃P̃ generates a cyclic group modulo the

unit cell ΛP , and hence one has

G ' Zm × Zn, where m =
r1

gcd(1, r1)
, n =

r2

gcd(1, r2)
. (A.5)
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An orbifold point occurs precisely when r1, r2 are integers, in which case the lattice

cell Λ̃ “fits into” Λ evenly. Then (A.5) can be written simply

G ' Zm × Zn, where m = r1, n = r2. (A.6)

That is, at an orbifold point, the entries in the diagonal matrix R give the orders of Zm,Zn.

What is left is to find r1, r2 in the first place. To do this, one takes (A.4) and isolates

the diagonal matrix R:

R = P̃−1Λ̃−1ΛP. (A.7)

We do not need to know P, P̃ ∈ GL(2,Z) explicitly; we merely need to describe an algorithm

for diagonalizing Λ̃−1Λ by independent actions of GL(2,Z) from both the left and the right.

This is precisely the algorithm for finding the Smith normal form of a matrix. Since we have

available both left and right GL(2,Z) actions, we may apply any sequence of elementary

row or column operations which are invertible over Z.

Hence to obtain R we diagonalize Λ̃−1Λ via the following process. At every step of the

algorithm, we may

1. Swap any two rows or any two columns, or

2. Multiply any row, or any column, by −1, or

3. Add an integer multiple of any row (column) to another row (column).

The objective is to reach a diagonal matrix (this is always possible). The full algorithm

for the Smith normal form continues until the matrix is not only diagonal, but each entry

along the diagonal divides the next, i.e. r1|r2 in this case. For our purposes, however, any

diagonal matrix will do (and the result may not be unique).

In the case where the result is not unique, different possible results R yield different

ways of writing the same group G. For example, a given matrix might be diagonalized in

two different ways to give G ' Z4 × Z6 or G ' Z2 × Z12, but these groups are isomorphic.

The same matrix cannot also be diagonalized to give, e.g. Z3 × Z8 — the algorithm as

constructed preserves the group structure.15

Once we have obtained R, we can then calculate the group G via (A.5). We note that

the order of G is

#G = mn =
r1

gcd(1, r1)
× r2

gcd(1, r2)
≥ r1r2

gcd(1, r1r2)
. (A.8)

But r1r2 = detR = det(Λ̃−1Λ). Hence in terms of our lattice bases, we can put a lower

bound on #G:

#G ≥ det Λ

gcd(det Λ, det Λ̃)
, (A.9)

15Specifically, the reduction to Smith normal form of a square matrix M preserves the sequence of

invariant factors r1|r2| . . . |rn such that detM = r1r2 . . . rn and each ri|ri+1. It is precisely this sequence

that distinguishes when the direct product of cyclic groups Zr1 × Zr2 × . . .× Zrn is isomorphic to another

direct product of the same order.
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where we assume, without loss of generality, that det Λ,det Λ̃ > 0 (which can always be

arranged by the right action of GL(2,Z)). We note further that, at an orbifold point where

r1, r2 ∈ Z, the inequality (A.9) is saturated, and then we can calculate the order of the

group G directly from the invariants det Λ,det Λ̃.

A.2 The conical points of LeBrun metrics

In this section we will find the groups G at the conical points of the LeBrun metric using

the methods outlined in the previous section.

Near the conical points, the LeBrun metric approaches the form (4.41)

ds2(LB) = d%2 +
%2

4

[
dθ2 +

1

q̃`2

(
K̃(θ) dτ2 − 2K̃Q(θ) dτ dφ+ Q̃(θ) dφ2

)]
, (A.10)

and one must then compare it to a standard flat metric on R4,

ds2(R4) = d%2 + %2
(

dϑ2 + cos2 ϑ dα2 + sin2 ϑ dβ2
)
, (A.11)

where θ = 2ϑ. From the LeBrun coordinates (τ, φ), one can go to (α, β) via

α =
1

2q̃`

(
(k3
` + K̄3

` − k3
0) τ − (q` + Q̄` − q0)φ

)
, (A.12)

β =
1

2q̃`

(
(k3
` − K̄3

` + k3
0) τ − (q` − Q̄` + q0)φ

)
. (A.13)

We need to define a “standard” lattice ΓLB on which the LeBrun coordinates (τ, φ)

should be identified in the first place. This is actually an arbitrary choice (it will merely

affect how we interpret the various parameters q`, k
3
` ). But it is natural to borrow the

standard “diamond lattice” from Gibbons-Hawking metrics:

(τ, φ) : (0, 0) ∼ (4π, 0) ∼ (2π, 2π) ∼ (2π,−2π). (A.14)

By following the identifications (A.14) along the coordinate transforma-

tion (A.12), (A.13), we obtain the lattice Γ̃ in the coordinates (α, β) given by the

basis

Λ̃ = 2π · 1

2q̃`

(
k3
` + K̂3

` + q` + Q̂` k3
` + K̂3

` − q` − Q̂`
k3
` − K̂3

` + q` − Q̂` k3
` − K̂3

` − q` + Q̂`

)
, (A.15)

where for ease of legibility we have defined

K̂3
` ≡ K̄3

` − k3
0, Q̂` ≡ Q̄` − q0. (A.16)

The standard lattice Γ in the coordinates (α, β) is given simply by the basis

Λ = 2π

(
1 0

0 1

)
, (A.17)

which makes the calculations easy, as Λ̃−1Λ is just 2πΛ̃−1.

From (A.9), we see that the order of the group G is at least |q̃`|:

det(Λ̃−1Λ) = −q̃`, and hence #G ≥ |q̃`|, (A.18)

And if r1, r2 ∈ Z, we have simply

#G = |q̃`| at orbifold points. (A.19)
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A.2.1 When is a conical point an orbifold point?

As we have pointed out, an orbifold point occurs when r1, r2 ∈ Z, or alternatively, when

Λ̃−1Λ ∈ Mat2(Z), the set (not group) of 2 × 2 matrices with integer entries. This yields

the condition

1

2

(
k3
` − K̂3

` − q` + Q̂` −k3
` − K̂3

` + q` + Q̂`
−k3

` + K̂3
` − q` + Q̂` k3

` + K̂3
` + q` + Q̂`

)
∈ Mat2(Z), (A.20)

where notably the 1/q̃` in (A.15) has dropped out. Thus a LeBrun metric contains only

orbifold points, and no generic conical points, when the sum of all the parameters is even:(
k3

0 +
N∑
i=1

k3
i + q0 +

N∑
i=1

qi

)
∈ 2Z. (A.21)

Conversely, none of the conical points have the quotient structure R4/G if the sum of

parameters is odd. We will assume this sum is even such that each conical point is an

orbifold point with structure R4/G.

A.2.2 When is the group G trivial?

The group G is trivial whenever Γ̃,Γ are the same lattice. This happens whenever Λ̃−1Λ ∈
GL(2,Z). That is,

1

2

(
k3
` − K̂3

` − q` + Q̂` −k3
` − K̂3

` + q` + Q̂`
−k3

` + K̂3
` − q` + Q̂` k3

` + K̂3
` + q` + Q̂`

)
∈ GL(2,Z), (A.22)

The factor of 1/2 imposes the parity condition (A.21). Furthermore, the determinant of

this matrix is q̃` ≡ q`K̂
3
` − k3

` Q̂`. Therefore for the metric to locally look like R4 with no

conical singularity requires

q̃` = ±1. (A.23)

A.2.3 When is the group G like a Gibbons-Hawking orbifold group?

A 1-center Gibbons-Hawking metric with “charge” m, written

ds2(GH) =
r

m

(
dψ +m cos θ dχ

)2
+
m

r

(
dr2 + r2 dθ2 + r2 sin2 θ dχ2

)
, (A.24)

is a metric on the orbifold R4/Zm, where Zm acts in the diagonal U(1) of the maximal torus

U(1)×U(1) ∈ SO(4). In (α, β) coordinates, this corresponds to the lattice ΓGH with basis

ΛGH = 2π

(
1 p
m

0 p
m

)
, (A.25)

where p and m are relativaly prime. The LeBrun metric then has a “diagonal” orbifold

point whenever Λ̃−1ΛGH ∈ GL(2,Z), or equivalently, whenever Λ−1
GHΛ̃ ∈ GL(2,Z), since

the determinant is ±1 in any case. This requires first that

det(Λ−1
GHΛ̃) = − m

pq̃`
= ±1, or m = ±pq̃`. (A.26)
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But since p and m are relatively prime, we must have p = 1 and q̃` = m. Next, writing

out Λ−1
GHΛ̃ we have

1

2q̃`

(
2(K̂3

` + Q̂`) 2(K̂3
` − Q̂`)

q̃`(k
3
` − K̂3

` + q` − Q̂`) q̃`(k
3
` − K̂3

` − q` + Q̂`)

)
∈ GL(2,Z). (A.27)

So again, the sum of all the parameters must be even, and one gets a “diagonal” orbifold

point wherever
2(K̄3

` − k3
0)

q̃`
∈ Z and

2(Q̄` − q0)

q̃`
∈ Z. (A.28)

One may also consider Zm acting in the “anti-diagonal” U(1), which in (α, β) coordinates

corresponds to the lattice ΓGH with basis

ΛGH = 2π

(
1 − 1

m

0 1
m

)
. (A.29)

One can similarly show that these points occur for q̃` = m and

2 k3
`

q̃`
∈ Z and

2 q`
q̃`
∈ Z. (A.30)

B Solutions to the Floating Brane system

In this section we will solve the Floating Brane equations on the axisymmetric LeBrun base.

First, the L1, L2 equations (3.20) are simply the linearized Toda equation, which we

have already solved to obtain w. We define “potentials” in the same way as in (4.7),

L1 = ∂zL̂1, L2 = ∂zL̂2, (B.1)

such that L̂1, L̂2 solve the cylindrically-symmetric Laplace equation:

L̂1 = `01 log ρ+
∑
i

`i1Gi(ρ, η), L̂2 = `02 log ρ+
∑
i

`i2Gi(ρ, η), (B.2)

Gi(ρ, η) = log
η − ηi +

√
ρ2 + (η − ηi)2

ρ
, (B.3)

where sums are understood to run from 1 to N . Then L1, L2 can be written

L1 =
1

ρ(V 2
ρη + V 2

ηη)

(
Vηη L̂1,ρ − Vρη L̂1,η

)
, (B.4)

L2 =
1

ρ(V 2
ρη + V 2

ηη)

(
Vηη L̂2,ρ − Vρη L̂2,η

)
. (B.5)

The K1,K2,M equations (3.21), (3.22), (3.24) are all similar to each other. On the

left-hand side is the cylindrically-symmetric Laplace operator on R3, and on the right-hand

side is a product of two functions that solve the linearized Toda equation. Writing down
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the obvious homogeneous part, and then making an appropriate guess to match the source

terms, the solutions are

K1 = k1
0 +

∑
i

k1
i

Σi
+

1

V 2
ρη + V 2

ηη

(
Vηη

(
ŵηL̂2,η − ŵρL̂2,ρ

)
+ Vρη

(
ŵηL̂2,ρ + ŵρL̂2,η

))
, (B.6)

K2 = k2
0 +

∑
i

k2
i

Σi
+

1

V 2
ρη + V 2

ηη

(
Vηη

(
ŵηL̂1,η − ŵρL̂1,ρ

)
+ Vρη

(
ŵηL̂1,ρ + ŵρL̂1,η

))
, (B.7)

M = m0+
∑
i

mi

Σi
+

1

2

1

V 2
ρη+V 2

ηη

(
Vηη

(
L̂1,ηL̂2,η−L̂1,ρL̂2,ρ

)
+Vρη

(
L̂1,ηL̂2,ρ+L̂1,ρL̂2,η

))
, (B.8)

where Σi ≡
√
ρ2 + (η − ηi)2.

The L3 equation offers no shortcuts. After a tedious exercise, one can show its

solution is

L3 = `03 − `z3 ρVρ +
∑
i

1

Σi

(
k3

0`
i
3 + `01k

1
i + `02k

2
i + 2q0mi

)
+
∑
ij
i 6=j

1

ηi − ηj
Σi

Σj

(
k3
i `
j
3 + `i1k

1
j + `i2k

2
j + 2qimj

)
−
∑
i

η − ηi
Σi

(
k3
i `
i
3 + `i1k

1
i + `i2k

2
i + 2qimi

)
+

ρ

V 2
ρη + V 2

ηη

[
Vρη

(
− ŵηL̂1,ηL̂2,η + ŵρL̂1,ρL̂2,η + ŵρL̂1,ηL̂2,ρ + ŵηL̂1,ρL̂2,ρ

)
+ Vηη

(
− ŵρL̂1,ρL̂2,ρ + ŵρL̂1,ηL̂2,η + ŵηL̂1,ρL̂2,η + ŵηL̂1,ηL̂2,ρ

)]
,

(B.9)

where the parameter `z3 multiplies z = −ρVρ. It is important to note here that the pair

k3
i , `

j
3 behaves oppositely to the pairs `i1, k

1
j and `i2, k

2
j .

Finally, one must solve the ω equation (3.26). If we write

ω = ω(φ) dφ, (B.10)

then (3.26) reduces to the two equations

r∂r
(
ω(φ)

)
=

1

2

(
ρ2L1 ∂zK

1 −K1 ∂z(ρ
2L1)

)
+

1

2

(
ρ2L2 ∂zK

2 −K2 ∂z(ρ
2L2)

)
+

1

4

(
L3 ∂

2
z (ρ2)−∂z(ρ2) ∂zL3

)
+ρ2w ∂zM−M ∂z(ρ

2w)−2ρ2wL1L2,

(B.11)

−∂z
(
ω(φ)

)
=

1

2

(
L1 r∂rK

1 −K1 r∂rL1

)
+

1

2

(
L2 r∂rK

2 −K2 r∂rL2

)
+

1

4

(
L3 r∂ruz − uz r∂rL3

)
+ w r∂rM −M r∂rw.

(B.12)

It is again a tedious exercise to show that these are solved by

ω(φ) = ω0 +
1

ρ2(V 2
ρη + V 2

ηη)

{
1

2
`z3

(
ρ2VρVρη − ηρ2(V 2

ρη + V 2
ηη)

)
(B.13)
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+
1

2

(
k1

0`
0
1 + k2

0`
0
1 − `03 + 2m0q0

)(
k3

0 −
∑
i

η − ηi
Σi

k3
i

)
− 1

2
k3

0

∑
i

(
k1

0`
i
1 + k2

0`
i
2 + 2m0qi

)η − ηi
Σi

+
1

2

∑
ij

k3
i

(
k1

0`
j
1 + k2

0`
j
2 + 2m0qj

)ρ2 + (η − ηi)(η − ηj)
ΣiΣj

+
1

2
k3

0

∑
ij
i 6=j

(
k1
i `
j
1 + k2

i `
j
2 − `

i
3k

3
j + 2miqj

) 1

ηi − ηj
ρ2 + (η − ηi)(η − ηj)

ΣiΣj

− 1

2

∑
ijk
i 6=j

k3
k

(
k1
i `
j
1 + k2

i `
j
2 + 2miqj

) 1

ηi − ηj
1

ΣiΣjΣk
×

×
[
ρ2
(
η − ηi + ηj − ηk

)
+ (η − ηi)(η − ηj)(η − ηk)

]
+

1

2

∑
ik

k3
k

(
k1
i `
i
1 + k2

i `
i
2 + 2miqi

) ρ2

Σ2
iΣk

+
1

2

∑
ijk
i 6=k

k3
i k

3
j `
k
3

ηi − ηj
ηi − ηk

ρ2

ΣiΣjΣk
− 1

2

∑
ij

k3
i k

3
j `
i
3

ρ2

Σ2
iΣj

+
1

2

∑
i

(k3
i )

2`i3
ρ2

Σ3
i

+
1

2

∑
ijk
i 6=k

k3
i k

3
j `
k
3

1

ηi − ηk
(η − ηk)

(
ρ2 + (η − ηi)(η − ηj)

)
ΣiΣjΣk

+
∑
ijk

qi`
j
1`
j
2

ρ2

ΣiΣjΣk

}
,

where again, all sums are assumed to run over i, j, k ∈ {1 . . . N}.
We now have the complete data for constructing supergravity solutions. The solu-

tion is characterized by N number of points ηi along the axis in the base space, and

by the 8N + 10 parameters {q0, k
1
0, k

2
0, k

3
0, `

0
1, `

0
2, `

0
3,m0, ω0, `

z
3, qi, k

1
i , k

2
i , k

3
i , `

i
1, `

i
2, `

i
3,mi},

which in general are constrained by the requirement for the absence of CTC’s and Dirac-

Misner strings. Finally, to complete the supergravity solution, one puts the functions

w,K1,K2,K3, L1, L2, L3,M into the ansätze of sections 2 and 3.3.

B.1 Asymptotic expansions of the metric functions

In this section are the detailed asymptotic expansions of the metric functions in terms of

the above solutions.

First, the parameters k1
0, k

2
0, `

z
3 lead to terms that blow up at infinity, so we set

k1
0 = 0, k2

0 = 0, `z3 = 0. (B.14)

To look near infinity it is helpful to define the coordinates R, θ via

ρ = R sin θ, η = R cos θ. (B.15)
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Then the warp factors Z1, Z2 go as 1/R:

Z1 ∼
(
K2
?K

3
? +Q?L

?
1

q0K3
? − k3

0Q?

)
1

R
, Z2 ∼

(
K1
?K

3
? +Q?L

?
2

q0K3
? − k3

0Q?

)
1

R
, (B.16)

where we define the quantities

K1
? ≡

N∑
i=1

k1
i , K2

? ≡
N∑
i=1

k2
i , K3

? ≡
N∑
i=1

k3
i , Q? ≡

N∑
i=1

qi, (B.17)

L?1 ≡
N∑
i=1

`i1, L?2 ≡
N∑
i=1

`i2, L?3 ≡
N∑
i=1

`i3, M? ≡
N∑
i=1

mi. (B.18)

At leading order, the remaining metric functions Z3, µ, ω(φ) go as constants:

Z3 ∼ `03 −
∑
ij
i 6=j

k1
i `
j
1 + k2

i `
j
2 − k3

i `
j
3 + 2miqj

ηi − ηj
, (B.19)

µ ∼ m0 −
1

2

K3
?

q0K3
? − k3

0Q?

(
`03 −

∑
ij
i 6=j

k1
i `
j
1 + k2

i `
j
2 − k3

i `
j
3 + 2miqj

ηi − ηj

)
, (B.20)

ω(φ) ∼ ω0 +
1

2

Q?
q0K3

? − k3
0Q?

(
`03 −

∑
ij
i 6=j

k1
i `
j
1 + k2

i `
j
2 − k3

i `
j
3 + 2miqj

ηi − ηj

)

+

(
k3

0q0 +K3
?Q? − (q0K

3
? + k3

0Q?) cos θ

(k3
0)2 + (K3

? )2 − 2 k3
0K

3
? cos θ

)
×

×
[
m0−

1

2

K3
?

q0K3
?−k3

0Q?

(̀
0
3−
∑
ij
i 6=j

k1
i `
j
1+k2

i `
j
2−k3

i `
j
3+2miqj

ηi − ηj

)]
.

(B.21)

However, we must have µ→ 0, ω(φ) → 0 asymptotically in order to avoid CTC’s at infinity.

Therefore we must set

m0 =
1

2

K3
?

q0K3
? − k3

0Q?

(
`03 −

∑
ij
i 6=j

k1
i `
j
1 + k2

i `
j
2 − k3

i `
j
3 + 2miqj

ηi − ηj

)
, (B.22)

ω0 = −1

2

Q?
q0K3

? − k3
0Q?

(
`03 −

∑
ij
i 6=j

k1
i `
j
1 + k2

i `
j
2 − k3

i `
j
3 + 2miqj

ηi − ηj

)
. (B.23)
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Then in fact the asymptotic expansions of µ, ω(φ) must be carried to the next order, giving

µ ∼ 1

R

{
1

(q0K3
? − k3

0Q?)
2

[
−K3

?

(
(k3

0)2 + (K3
? )2 − 2 k3

0K
3
? cos θ

)
K1
?K

2
?

−K3
?

(
k3

0q0 +K3
?Q? − 2 k3

0Q? cos θ
)(
K1
?L

?
1 +K2

?L
?
2

)
−Q?

(
k3

0q0 +K3
?Q? − (q0K

3
? + k3

0Q?) cos θ
)
L1
?L

2
?

]
+

1

2

1

q0K3
? − k3

0Q?

[(
k3

0 +K3
? cos θ

)(
K1
?L

?
1 +K2

?L
?
2

)
+
(
K3
? cos θ − k3

0

)(
K3
?L

?
3 + 2Q?M?

)]}
,

(B.24)

and

ω(φ) ∼
1

2R

K3
? sin2 θ

(k3
0)2 + (K3

? )2 − 2 k3
0K

3
? cos θ

(
K1
?L

?
1 +K2

?L
?
2 +K3

?L
?
3 + 2Q?M?

)
. (B.25)
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