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1 Introduction

A lot of work has been done on soft theorems in the past, based on local on-shell gauge
invariance [1-9]. The leading soft-graviton behavior was found by Weinberg in 1965 [6],
and the sub-leading soft-graviton theorem was first investigated by Gross and Jackiw in
1968 [14]. Recently, active interest in soft theorems has been reawakened in [10-13], as
Strominger and collaborators discovered that soft-graviton behavior can be extracted from
extended BMS symmetry [15-19]. For four dimensions, Cachazo and Strominger provided
a proof for the universality of tree level sub-leading and sub-sub-leading corrections [13]
to Weinbergs soft-graviton factor [6], making use of spinor helicity formalism and BCFW
recursion [20, 21]. The soft-graviton factor refers to the factorization property of an (n+1)-
point tree level scattering amplitude when the momentum of one external particle, conven-

tionally the (n+1)'" particle, is going to zero!
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In case of gravity, these soft factors read [13]
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ISubstitute kn4+1 — €kn41 and expand around € = 0.



where €,11 v 18 the polarization tensor of the (n + 1)th particle, k4 are momenta and
J&” are angular momentum operators. Subsequently, these soft-graviton theorems are
being investigated with the restriction to four dimensions lifted. In arbitrary number of
dimensions, the leading factor (1.2a) was addressed in [22] and the sub-leading factor (1.2b)
was explicitly confirmed in [23, 24]. Considering Poincaré and gauge invariance in arbitrary
number of dimensions, as well as expected formal structure, Broedel, de Leeuw, Plefka and
Rosso fixed the orbital part of the sub-leading and sub-sub-leading factors completely
and constrained their polarization parts up to one numerical constant for every order of
expansion and each hard leg [25], in agreement with (1.2). Following Low’s example [4],
Bern, Davies, Di Vecchia and Nohle used on-shell gauge invariance to fully determine and
confirm the first two sub-leading soft-graviton behaviors in D dimensions [26].

Further work on soft factors in general was, for instance, done for Yang-Mills ampli-
tudes in [27], [28]. Several advances in gauge and gravity theories at loop level appeared
in [29, 30].2 Cachazo and Yuan proposed a modification of the usual soft limit procedure
to cope with corrections appearing at loop level [31]. For a comment on this procedure,
see [26]. Sub-leading soft theorems in gauge and gravity theory were confirmed from a
diagrammatic approach in [32, 33]. Soft theorem in QED was revisited in [37, 38]. Stringy
soft theorems appeared in [34, 35], and a more general investigation of soft theorems in a
broader set of theories was conducted in [36].

In this note we will contribute an additional proof of the validity of the sub-sub-leading
tree level soft factor (1.2c¢) by explicit computation in arbitrary dimension, making use of
the CHY formula [22]. This note is structured as follows. Section 2 recalls the CHY
formula. In section 3 we outline the computational steps for the higher point expansion
in the soft limit. Section 4 contains the computation of lower point construction and
comparison of the two results. Appendices A, B and C contain all terms resulting from
higher point expansion, which are compared with and are found to be equal to the result
of lower point construction.

2 The CHY formula

In order to explicitly prove the sub-sub-leading factor in the soft-graviton expansion, we
will make use of the CHY formula for tree level gravity scattering amplitudes with (n + 1)
external legs, which is valid in any number of dimensions [22]
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Here we use the abbreviation o;; = (0; — o). Upper indices on the matrix ¥ denote

removed columns and lower indices denote removed rows. Values of indices p, q, 7,4, 7, k,m
and w can be chosen arbitrarily without changing the result. The 2(n + 1) dimensional

2Nontrivial corrections are expected at loop level.



matrix ¥ is given by
A —CT
U =
(¢ s )

where the (n + 1) dimensional sub-matrices are given by
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Here k4 is the momentum of the a'® particle, and €} is part of its polarization tensor. The
values for all g; in the integration are fixed by the product of delta functions which enforce
the scattering equations. The momentum of the (n + 1)* leg will be sent to zero in the
soft-graviton expansion.

3 Higher point expansion

In the higher point expansion we start with the momentum conservation stripped tree level
amplitude for n+ 1 external gravitons, substitute k! 1 ekl 41 and expand around € = 0.
In the sub-sub-leading case we are interested in the order O(e!) terms of this expansion.
Subsequently, we integrate out the 0,11 dependance to obtain the result which we expect
to recover from lower point construction by acting with the corresponding soft factor on
an amplitude with one fewer external leg in section 4. All solutions for o,41 are fixed
by the scattering equations. However, since we are dealing with tree level amplitudes, the
functional dependance does not feature any branch cuts such that we will be able to deform
the integration contour and pick up a different set of residues in 0,41 as in [23, 24] in order
to obtain the same result, effectively avoiding having to solve the scattering equations.
For convenience we set ¢ = 1, j = n, m = 2 and w = 3 so that the momentum
conservation stripped tree level amplitude for n + 1 external gravitons is given by

n+1 n+1 n+1

4 ko - k
Mn+1 _ / H do’c (qua'qrgrp)(a';nankakl) H 5 Z a b det (‘Ilgzg) )
c=1 (0-2’3) a=2 b=1 O-ab
C#EP,q,T a#k,n b#a

(3.1)

Since tree level amplitudes do not feature branch cuts, a delta distribution can be mapped
to a single pole term
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while the integration contour is deformed to pick up the residue associated with this pole
as in [23, 24]. This naturally yields the same result for the amplitude. Therefore, we can



substitute one delta function that has index a = (n+1) by a simple pole, take k1 — €kny1
and expand around ¢ = 0 as follows:
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Here we have introduced abbreviations ¢ to denote the expansion coefficients of order '~
Similarly, we can expand the determinant det(; 3) to make its ¢ dependance explicit. For
that end we employ the usual recursive formula3

2(n+1)

det(A) = Z (1) Fay; det (A}), (3.4)
i=1

where ay; are elements of matrix A and the choice of row k is arbitrary.* If certain rows
and columns are initially missing from the matrix A such that it is less than 2(n + 1) x
2(n + 1) dimensional before the expansion (3.4) is applied, those corresponding values of
missing rows and columns have to be skipped in the summation over the expansion index 3.
Additionally, a jump by #1 has to be introduced in the exponent of (—1)"** whenever such
a missing row or column is crossed. This will be accomplished with help of the Heaviside
step function 6(a,b) = 6(a — b). More explicitly, when an additional row 4 (or column k)
is removed from matrix A, one step function has to be introduced for each of the rows u
(or columns v) that were already missing, so that we add® Y, 0(i,u) (or >, 0(k,v)) to
the exponent of (—1)”’“. This ensures that each summand in the expansion (3.4) appears
with the correct sign.

As in [24], we make use of the gauge condition (kn+; - €;) = 0 for all i to conveniently
reduce the number of appearing terms. We realize that with this all the £ dependance is
located along the (n + 1)™ row and column of \Ilgg Therefore, we apply the expansion to

3In this case we are dealing with a 2(n + 1) x 2(n 4 1) matrix.

4Naturally, an analogous expansion can also be done along a column instead of a row.

®Note that the newly removed index i (or k) is in the first argument of each respective step function and
is attached to the determinant at the far right. This introduces a natural initial index-ordering and will be
relevant in the following.



the (n 4 1) row and column in succession:
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Here and in later equations the Heaviside step functions involving arguments 2, 3, n + 1
and 2(n+ 1) are suppressed. However, to keep track of the signs we should agree to always
order the argument of each step function according to the order in which removed rows or
columns appear in the determinant. In particular,

(_1)...+6(a,b)+...+9(c,d)+... det (W...,b,a,..) _ _(_1)...+9(b,a)+...+9(C,d)+--- det (W:Z:z:) (36)
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In cases where more than two rows (columns) are removed from V¥, there will be one step
function for each way an unordered pair of removed rows (columns) can be selected. There-
fore, with our agreement (3.6) we can think of the step functions as being attached to the
determinant, facilitating the property of making the exchange of two neighboring indices
of removed rows (or columns) antisymmetric. Furthermore, this ensures that the order of
arguments of all step functions is in one to one correspondence to the order of removed row
(column) indices in the determinant, allowing us to ignore the step functions and concen-
trate on comparing determinants. This convenient property yields a slight simplification
to the algebraic steps that later will be required in order to show the equality of the higher
point expansion and lower point construction results.’
Note that the order in which the indices of removed rows and columns appear in the
determinants in (3.5) is different from the straightforward order which emerges from the
expansion. We reordered these indices according to (3.6) to ensure proper sign in com-
parison to the terms of lower point construction computed in the next section. For later
convenience we define the abbreviation:

det (U') = det (\I@gﬂ};gﬁ};) . (3.7)

We wish to make the entire 0,41 dependance explicit to be able to integrate it out. Only
(n+1)™ and 2(n + 1)*™ rows and columns in the matrix ¥ depend on o, 1. Therefore, we

expand det (nggi};(nﬂ)) along the 2(n 4 1)™ column, as well as det (nggﬁ;) along

5Some of the appearing step functions can never yield a change of sign and it might be tempting to
evaluate them right away and get rid of them. However, this would break the agreement (3.6) and the
convenient general antisymmetry property of the determinant under exchange of two neighboring removed
row (column) indices, thus making a more tedious case by case distinction for index-ordering necessary.



the 2(n + 1) row and column in succession. Again, here and in all further steps we make
use of the gauge condition (kp41 - €;) = 0 for all 4, such that:
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Here, again we defined abbreviations det; to denote the coefficients of €’. The ordering of
the indices of removed rows and columns in the determinants was again done in accordance
with (3.6) to ensure proper signs. In the sub-sub-leading case at hand only terms of overall
order O(e!) are of interest. Therefore, we restrict our attention to:
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where ... denotes other terms of different order in €. In fact, the terms given explicitly
in (3.9) are the only terms of order O(e!) in the amplitude which depend on o,,11. Other
multiplicative terms and integrals are merely spectators and can be suppressed when we
integrate out 0,41 and compare the result to the lower point construction.

As in [23, 24], it is trivial to see that there is no pole and therefore no residue at infinity
in opy1. Therefore, the integration contour can be reversed to pick up the residues at
on+1 = o; for all 7 # n + 1 instead. Poles of higher order will occur in the computation, so
that we will use Cauchy’s integral formula to obtain the respective residues:

Res <(f(z) z= Zo) = ;f(”_l)(z()), (3.10)

z—zo)"’ (n—1)!

where f(»=1(z) is the (n — 1)™ derivative of f(z).
The technical steps necessary to obtain the residues from all the terms of order O(e!)



appearing in (3.9) are identical. Let us illustrate the procedure on one expression from
52det0:

2
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First, we suppress the product of delta functions and the determinant since they are just
spectators independent of 0,41, and we abbreviate 5£2) = (5(2)(27:1 kofi’?) for convenience.
t ™

To investigate the residues at o,4+1 = oy for all ¢ # n + 1, it is natural to distinguish
between two cases of 0,41 = 04 where o4 € {01, 04,0,} and o4 ¢ {01, 0%,0,}. In the first
case, where o, € {01, 0k, 0, } we find only first order poles in (3.11):
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so that the sum of corresponding residues is trivially given by using the Cauchy integral

formula (3.10) with n = 1 and summing over g¢:
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In the second case o4 ¢ {01, 04,0, } we find first, second and third order poles in (3.11):

2
n  ent1-ke 2 n— ko 2
1 1 (Z b=1 0'1;:11,6 ) (kq ’ kn"rl)Q&g ) 1 (€n+1 : kq)2 Z r:12 (k i +1) 57('2)

1 s 1 rtkag On+1,r
Knt1-ke knt1-ke
Ontta | 2 kg1 kg + Ongig D e v 2 kst kg o+ onig Yt Tarie
c#q ’ 74 ’
(3.14)
2 i1k
[ (e Ry (kg hngn)?07 S0 e
. ,
oy o S e (3.15)
q n+l " Kq ntha o=t ot
1 1 (engr - kg)?(kq - kns1)265)
n 4 n+1 - Rq q " "n+l) 9 (3 16)
3 Fopt1 ke ’
(0n+1,0)° \ 2 kng1 - kg + Ongiq Z%g} Tiie

The sum of all simple pole residues again is trivially obtained by using the Cauchy integral
formula (3.10) with n = 1 and summing over ¢:
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To obtain the sum over second order pole residues we make use of the Cauchy integral
formula (3.10) with n = 2. This yields:

n—1
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Finally, to obtain the sum over the third order pole residues we use the Cauchy integral
formula (3.10) with n = 3:
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The residues of all further terms appearing in (3.9) are computed in exactly the same
way. Without showing every single step explicitly, we will give a list of pole orders appear-
ing in the respective terms. Additionally, the results for all residues will be gathered in
appendices.

Apart from the computation presented above, the term §2dety contains one additional
expression. It has only first order poles for o, € {01, 04,04}, and it has first and second
order poles for o, ¢ {01, 0%, 0, }. All residues associated with the term §%detq are presented
in appendix A.

The residues of the term §'det; are obtained from three different cases. In the case
of o4 ¢ {01,02,03,0%,0,} there are first, second and third order poles. In the case of
o4 € {01,0%, 05} there are first and second order poles. And in the case of o, € {02,03}
there are first and second order poles. All residues associated with the term 6'det; are
presented in appendix B.

The residues of the term §°dety are obtained from two different cases. In the case of
o4 ¢ {02, 03} there are first, second and third order poles. And in the case of o, € {02, 03}
there are only first order poles. All residues associated with the term §°dety are presented
in appendix C.

With this, all relevant terms from higher point expansion are obtained and we can
proceed with the computation of lower point construction.

4 Lower point construction

In the lower point construction we start with the momentum conservation stripped tree
level amplitude for n external particles. We set i =1, j = n, m = 2 and w = 3 and invoke
the gauge condition (k,41-€,) =0 for all w € {1,2,...,n + 1}, such that:”
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"The gauge condition ensures that there is no remaining k.1 and 0,41 dependance in det(0").



where we used the abbreviation defined in (3.7). First we notice that only the product of
delta functions and the determinant are relevant for our considerations, and all remaining
multiplicative factors and integrals are exactly the same spectators which we suppressed in
the higher point expansion case. Therefore, here we again suppress these spectator terms,
such that the expression we should compare to the higher point expansion is given by:

H5 Zk i det (9') . (4.2)

Ocb
c;ﬁk b;éc

As already stated in the introduction, the sub-sub-leading factor S is expected to be
given by:
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where the action of the angular momentum operators by their orbital or spin part on
momenta or polarization vectors is given by [24]

J gD = (kg 821 . a/? ) kP (4.4a)
T el = (nvﬁag - Mag) . (4.4D)

Naively, the two angular momentum operators in the sub-sub-leading factor (4.3) could
act on each other. However, it is trivial to show that the interaction vanishes due to the
(n + 1) particle being massless k2 41 = 0, therefore having only transverse polarization
modes ky11 - €n+1 = 0, and the polarization being light-like such that 6%"1‘1 = 0. With
this we can conclude that we will have to match the resulting terms to the higher point
expansion in the following way
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where we used the abbreviations
€u = €nt1y, and g, = k’n+1u, (4.6)

and the sum in ¢ is over all residues picked up when integrating out o,41.



To compute the lower point construction for (4.5a), only the orbital part of the angular
momentum operator (4.4a) is involved, since the scattering equation delta functions depend
on momenta only. Therefore, the object of interest is

17 o 0 o 0 (6 . ka) 9 0 n ko -
- . BV — . B A e " b
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c#k b#c

(4.7)

Carrying out the partial derivatives as usual, then suppressing the remaining product
of delta functions and abbreviating the derivatives of delta functions in the same way
as after (3.11), we obtain the same result as from the higher point expansion given in
appendix A. The only type of reshaping needed to recover the exact same set of terms
(apart from trivial cancellation and (3.6)), is to combine expressions which have a similar
structure up to o0;;’s appearing in denominators, such that a simplification occurs as in:

LI S (4.8)
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These steps eventually demonstrate the equality of both sides in (4.5a).

To compute the lower point construction for (4.5b), both parts of the angular mo-
mentum operator (4.4a) and (4.4b) are needed. Furthermore, to obtain the derivative of a
determinant, we use the chain rule and straightforwardly obtain:

2(n+1) 2(n+1)
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First, we compute the action of a single angular momentum operator on the product of
scattering equation delta functions:
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where ¢; ; is the Kronecker delta, and where on the right hand side we suppressed the
remaining product of delta functions and abbreviated the derivative of the delta function
in the same way as after (3.11). Next, we compute the action of a single angular momentum

~10 -



operator on the determinant:
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To make the terms more explicit, we invoke the usual gauge from before k, 1 - €¢; = 0 for
all 7 and obtain:
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Plugging (4.12) into (4.11), multiplying with (4.10) and summing over a = 1,...,n gives
the same result as from higher point expansion in appendix B. To recover the exact same
set of terms in order to prove the equality, we use simplifications like (3.6) and (4.8).
Additionally, we realize that for an antisymmetric 2(n + 1) x 2(n + 1) matrix A we have:

det (g7 ) = (<1)™ det (Abytztr ). (4.13)

a1,a2,...,am

Making use of these steps, the demonstration of the equality of both sides in (4.5b) becomes
straightforward.

Finally, to compute the lower point construction for (4.5¢), again both parts of the
angular momentum operator (4.4a) and (4.4b) are needed. We start with (4.11) and
act with the angular momentum operator a second time. The case where both angular
momentum operators hit the expansion coefficient in each line vanishes due to the same
arguments as the vanishing of the self-interaction of the two angular momentum operators.
Therefore, only the case remains where the second angular momentum operator acts on the
determinant in each line. Combining (4.11) with (4.12) and using the abbreviations (4.6),
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this results in:

Z eﬂel,qqu JPR TN det (W Z Z z+m7k’) (qpelt‘]ﬁzu det (\Ij%)) (4.14)

a=1 m=1
m#2,3 z#Z 3 m

n

7.+m 6 ) km)(q : kl)

(@ b (oS00t (7))

&
Mﬁ

3

S
¥
w

+
510
7

3
S
¥
w
W
3

,m

(M”mM““gﬂ%j@N%@ﬁw@qygmg)

O.T",’L

I
-
Il
A

;L.
3

_ Z Z( 1)i+m+n+1 (6 i 61) <Qp€qu€zM det (\I,Zl-i-n-i-l))
m=1
m;;z 3

+ ) Z(—l)”“w (gp€uJ0r det (Wmtntly)

m=1 i=1
m#2,3 i#m

n n

— Z Z(—l)”*lg (qpe#J"“ det (\Ij/m+n+1))

m=1 i=1 mu
m#2,3 i£m

The action of the angular momentum operator on the determinants in each of these six
lines is then expanded further analogously to (4.11). The only difference is, that now the
expansion summations have to omit one removed row and column more in each case, and
we have to explicitly display the corresponding step functions in the exponent of (-1). Since
the product of scattering equation delta functions is untouched by the operators in this case,
it can be suppressed as a spectator completely, so that the terms resulting from a further
expansion of (4.14) correspond to the higher point expansion result given in appendix C.
Again, making use of simplifications (3.6), (4.8) and (4.13), it is then straightforward to
reshape the finding to obtain the exact same set of terms listed in appendix C, which proves
the equality of both sides in (4.5¢).

This concludes the computation of the lower point construction and its comparison
with the higher point expansion. Both yield the same result, which confirms that the sub-
sub-leading factor (1.2¢) in the soft-graviton expansion of tree level scattering amplitudes
is indeed valid in arbitrary dimension.

A Residues of 63det,

The following are all residues obtained from §2detq in (3.9) by integrating out the 0,1
dependance. Multiplicative spectator terms and integrals which are trivially the same
in the lower point construction are suppressed.® Additionally, the product of scattering
equation delta functions is suppressed and the derivative of delta function is abbreviated as

55_") o) S (M ' (A1)
a=1 O-a-]
a%j

®In this particular case the determinant det(¥’) is also suppressed, since it is also a multiplicative
spectator term in §2deto.

~12 -



With this the residues are:

2 e - koD 3 Ko s 3 e o
g,

r=2 qr b=1 Tab
q;ék r#k,q b#q
(e kq) 2 ot (1)
1 n+1° . n+1 1
. —;
+ = Z kni1)d Z an ke " ;
r;ék q;ér t#k,r,q
n—1
kr - kny1 (1) k. kn+1 Fny1 - ky
_ nt1 - kq)26LV Zr tntls Intl ™
Z " v ; (0gr)? " Kpsi - k’q Tz; bzl: Tqb
q#k r#k,q r#k,q b#q
2
n n 9 n—1 2
€nt1 - ke ) 1 (6n+1 : kq) kp - kng1 2
St | S | gy LS G (g
—1  Jac =1 I+l Re T Oq,r
Q7£k b#q r#k,q
= eng1 - €nit - kb = kgt - K
- Z(€n+1 ) kq) (kq : kn+1) Z il 26 2) + Z ntl T Z ntl 06(52)
q=2 b=1 (qub) b c=1 Tq,c
q#k b#q b;ﬁq c#q
2
1 ) 1 gt - Ky Ry
4= €nat - k - Intl P s5(2) L T Il T 6(2)
5 qZ( n+1 k) K1 - kg ; Tab q ; (0g0)? ¢
q#k b#q b#q

B Residues of d'det,

The following are all residues obtained from d'det; in (3.9) by integrating out the oy, 1
dependance. Multiplicative spectator terms and integrals which are trivially the same
in the lower point construction are suppressed. Additionally, the product of scattering
equation delta functions is suppressed and the derivative of delta function is abbreviated
as (A.1). With this the residues are:

n—1 n n

— 2> (ens1 kg0 > ’“";;’“ > (-1t E”*(; % et () (B.1)
q;a_ék 7234 ” 2230 Y

- 22 SRRy AL Z . Z (-1 enJ: 5 det ( ) (B.2)
=t o b Y

)Y (€nt1 - kg)oL) Ze”tflikc 3 (_1)i+q@ det (07 (B.3)
gt c#q ‘ 42,30 "

+2 enH kqwngw Y (- 1)q+J6”+01 ‘kj de t( ) (B.4)
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6n—i—l - n+1 ky = 1+ n+1 k; i
B LS L SR RLE LS (B:5)
q=4 n+1 b=1 b i=1 ql
a7k b#q 1#2,3,q
kn+1 I{Z . €n41 - k
—2Zen+1k¢ Z SIS0 N (—pyr jdt( ) (B.6)
r=2 qr =1 qJ
q;£2 3 r#k,q J#2,3,9
n—1 n
(€nt1 - kg)® kny1 - ky g Fnr1 - ki i
Ly Z — B IR SRS (B.7)
q=1 kn r=2 qr i=1 q
q;ﬁ2 3 r#k,q 1#2,3,q
n—1
€n k
+2) (ent1 - kg)(Fnga - kg)diH Z qﬂ;li)gjd et (‘I’]> (B.8)
= q]
Z#k’ J7ﬁ23q
n—1 n
s kn 1° ki 3
+2) (eng1- k)26 Y (-1) +qﬁ det (W) (B.9)
— i— qi
gk 2,30
n—1
kn i n+1€n+1 " €
+ 22(571-&-1 . (1) Z Rnt1 - Ri Z( 1)+ +1# det (\Py+n+1) (B.10)
Z;k 1752 3 ,q ?;}1
n—1 n n
nt1 - ke il €n €
123 kg - kgD Y S NS et LG g t( ]+n+1) (B.11)
q= c=1 Oqc j=1 Oqj
q#k c#q J#q
n—1 n n
€nt1 - ke i n kn+1- ks
T e SN =S ST/ B URE
_ — qc P qi
ik ta i#2.8.0
n—1
kn kb n+1€n+1 "€
— 23 (entr - kg)5V Z 2 Z (—1)r e S e ( ]+n+1) (B.13)
q=4 j=1 qJ
q#k b;éq Jj#q
€n+1 6n+1 €9) <(1) "~ kg1 by vitgntl g - ki
o - 8 ; Sy (- v det (¥, 1)
=1 =
q#k b#q i#2,3,q
(B.14)
n n—1 n
kno1 -k n+1€n+1 - €5
+2 ) (enin ) 30 TELEGO S e L S e (9 ) (Bu15)
' qr — qj
q#2,3 7'#k2q ;#i
n—1 n
En+1 €n+1 Eq) kni1 - Ky s i+gq+n+1 knt1 - ki
-1 ————det (P
+ZZ n+1 ) ; Oqr " ; ( ) Ogqi ( Q+n+1)
rsf_k,q i#;,3q
(B.lﬁ)
n—1 n
n €Ent1 €
-2 Z(6n+1 : kq)(kn+1 : kq)éél) Z(_ q+]+ +1(;r7)J det ( j+n+1) (B'17)
i—1 q7

q=
qF#k

j;q
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n—1 n
— 2> (ent1 - kg)(ent1 €0 D (—1)itatnt ;;)2 det (W, 11) (B.18)
i=1 qr
a7k 1#2,3,9
= n+1€n+1 - ke
~ 23 (enr1 - e) (ka1 - k)80 3 (1) +1ﬁ det (\If’qanﬂ) (B.19)
q= c=1 c
qFk c#q
(1) " €n+1 - kc - n+1 kn+1 . kb 1q
9N (ént1 - €q)0 Entl The NT )t 2 TR et (W B.20
a/7q o4 Oub q+n+1
e=1 ¢ b=1
q#k c#q b#q
eni1- ke <= kni1 - ko
+25 (ens1 - € ol T e — 1)t Bl TR (1) et B.21
q Oge Oqr q+n+1
q¢23 c#q T;:’fq
2
2 €n+1 €n+1 Eq)é(l) N ntl g
+ - ) Z T ( ) et < q+n+1) (B22)
n — q
q#k Z#tlz
n—1 k k
n n+1 - hb
+23 (ens1 - kg)(ensa - ) Z —)nt oy det (\If’qq+n +1) (B.23)
q=4
q#k bsﬁq
—9 Z €n+1 67;)1'611) 3 knti - k‘b Z Pyt kn1 - Ky "5 de t( q+n+1)
n+1 _ Ogr
q#23 Z#tlz 7¢kq
(B.24)
n—1 i knJrl . k; (1)
—2 Z eni1 - kg)(ent1-€g) Y (1) W(s de t( q+n+1) (B.25)
r=2 qr
;é23 r#k,q

C Residues of §%det,

The following are all residues obtained from §°dets in (3.9) by integrating out the 0,41
dependance. Multiplicative spectator terms and integrals which are trivially the same
in the lower point construction are suppressed. Additionally, the product of scattering
equation delta functions is suppressed. With this the residues are:

n

. . ~ky € 1 k;
i1 - kq) 1)uti+00us0)+0G.) St Nu Entl " g 4 glau C.1
; o Z 2 Tqu Tqj (¥5) e
q#2,3 u;ézsq §#2,3,q
n n Y N -kn+1’k'€n+1'ku w
19 Z eni1 - kq) Z Z (—1)JFutowa)+6(a.)) - j o det, (W711) (C.2)
q;eza Ji# 2: ,q u;ZZ;q
- (6n+1'6q)2 - - 45 40(q,6)+0(q.5) Fnt1 - ki kny1 - k) i
N 1)+ +H0(a,)+6(a.) 7 et (q;w) C.3
; (knt1 - kq) ; ; (=1 Ogi Ogqj 4 (C3)
q#2,3 i#2,3,q j#2,3,q
n " " k kje k
i+u+n u n i) vn4-1 " vg Ent1 ° by ,
S2Y () Yo DD (Sl ) B S R o (w7 )
q(;:;S j?z?f:,;’,q u;;é q
(C.4)
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n n
, , [ k 4
_9 § (€nt1 - €q) E § : (_1)z+u+n+1+9(u7z)+9(q+n+17q) 1 Ni Ent1 R g (\I,Z,,(;_nﬂ)
q=1 .

i=1 u=1 Oqi Oqu
q#2,3 i#2,3,q u#2,3,q,i
(C.5)
- " kg1 ky ent1 - k
+2 3 (ensr- eq)Zi”jb Y (e el S o (W)
q;;? 3 Z;lz ! u;;é q "
(C.6)

- - z n [3 n kn k kn k 7
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qq#213 i#Q,Zli,q
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— n i= qi
q#213 b‘r‘q L¢25q
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