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1 Introduction

In the recent years, higher spin gauge theories in three, four and higher dimensions have

attracted considerable interest (e.g., see reviews [1–5] and references therein), while com-

paratively little attention has been paid to two-dimensional higher spin theories [6–11].

One of the reasons for this is that higher spin gravity in two dimensions does not neces-

sarily share some of characteristic features of its higher dimensional cousins such as (A)dS

background geometry or infinitely many propagating massless modes of all spins. So for

example conventional 2d Fronsdal-type equations of motion both for massless or massive

fields of higher spins s ≥ 1 do not propagate local degrees of freedom. For that matter

the two-dimensional case is somewhat analogous to that in three dimensions, where higher

spin Chern-Simons theory also describes no local degrees of freedom [12–15].

It follows that in two dimensions the notion of higher spin gauge fields should be

clearly defined. We can, at least formally, introduce gauge fields of higher ranks and

impose one or another set of gauge invariant equations and/or constraints. Then some

of the resulting gauge systems have no local degrees of freedom, while others describe

matter modes as particular components of higher rank gauge fields. In the former case the

respective gauge fields often result from higher dimensional gauge systems by taking d = 2.

In particular, both global and gauge transformations remain intact, while local degrees of

freedom disappear.

In view of the above we propose to consider a particular 2d topological field theory

as higher spin gravity with the cosmological constant. The theory is formulated as two-

dimensional BF model with A-valued 0-form and 1-form fields, where A is some finite-

dimensional or infinite-dimensional higher spin Lie algebra.1 In [10] we explicitly considered

the finite-dimensional case of A = sl(N,R) for N ≥ 2. The point is that the gauge algebra

can be represented in the higher spin basis where generators are arranged as subalgebra

sl(2,R) rank-s irreps so that the respective connections are identified with two-dimensional

spin-(s + 1) fields. The case of N = 2 corresponds to the Jackiw-Teitelboim dilaton

gravity [20–25], while taking N ≥ 3 gives rise to particular higher spin extensions. The

N = 3 theory was also discussed in [11] in the framework of Poisson sigma-models, mainly

form the holographic perspective.

It is remarkable that a ground state of the model under consideration is given by the

AdS2 spacetime. It follows that the gauge sector of the sl(N,R) higher spin gravity model

comprises gauge fields in AdS2 space with spins s = 2, 3, . . . , N and masses m2
s = s(s−1)Λ,

where Λ is the cosmological constant. Using their global symmetry properties one finds that

1Two-dimensional topological gravity and its higher spin extensions can be defined in a different way as

topological field theories of Witten type [16–19]. The higher spin gravity we elaborate here is obviously a

topological field theory of Schwarz type.
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the fields are to be treated as “topological partially-massless” fields of maximal depth [10].

Recall that the system does not have local degrees of freedom. It follows that the AdS2

higher spin gravity can be interpreted as a consistent theory of topological yet interacting

partially-massless higher spin fields given in a closed form. It is worth noting that partially-

massless fields in higher dimensions do have local degrees of freedom [26–30], while their

interactions at the action level are known only in the cubic approximation [31–35].

In this paper we formulate AdS2 higher spin gravity with (in)finitely many fields as

BF theory for the infinite-dimensional higher spin gauge algebra A = hs[ν] and its finite-

dimensional truncations [36, 37]. Note that similar models with an infinite higher spin

algebra were partly discussed in [7, 9]. Here we focus on the following issues.

• Local tensor fields in the AdS2 higher spin gravity: frame-like versus the metric-like

formulation. We study in detail the interplay between the BF formulation of the

higher spin gravity which is actually the frame-like formulation and its metric-like

formulation which extends the original Jackiw-Teitelboim dilaton gravity.

• Global higher spin symmetry algebras:2 a formulation using the Howe duality o(2, 1)−
sp(2) between AdS2 global symmetry algebra and auxiliary symplectic algebra. We

explicitly describe previously unknown realization of higher spin algebras A = hs[ν]

in terms of o(2, 1)− sp(2) vector doublet variables.3 Gauging algebra A defines local

invariance of the BF theory under consideration.

• BF action for A-valued gauge fields: introducing particular trace operation on the

infinite-dimensional gauge algebra A we define various (in)finite-dimensional trunca-

tions directly at the action level. We study a perturbative expansion of the action

around the AdS2 background.

The outline of the paper is as follows.

Section 2: the linearized AdS2 higher spin gravity is formulated via the BF action

functional. The action, the equations of motion, and the gauge symmetry transformations

are given explicitly. The BF formulation under consideration is treated as a particular

frame-like formulation which is known to be a generalization of the zweibein description

of 2d gravitational systems. As a by-product, we propose a higher spin generalization of

2d Maxwell theory obtained as higher spin BF theory extended by a particular quadratic

potential.

Section 3: BF systems are treated in the framework of the unfolded formulation that

pursues the cohomological understanding of both lower spin and higher spin systems (see

the review [2] for details). The section contains a detailed discussion of various mathe-

matical structures underlying the cohomological interpretation of the dynamics. The main

2By global symmetry algebra in topological field theory we understand (generalized) Killing symmetries

of a given vacuum solution to the theory. In a theory with local degrees of freedom this notion naturally

extends to conventional global symmetry algebras acting on the space of one-particle states.
3The present construction of hs[ν] uses six independent oscillators which is a minimal number of variables

allowing for the Howe duality. Other approaches with less number of oscillators were known in the earlier

literature [38, 39].

– 3 –



J
H
E
P
1
0
(
2
0
1
4
)
1
2
2

objects here are the so-termed σ+ and σ− nilpotent operators acting on the field space of

the model. Elements of the space are differential p-forms taking values in any rank o(2, 1)

finite-dimensional irreps. Using the σ±-cohomology we perform a cohomological reduction

of the initial field space to a certain subspace: a transition from the frame-like formulation

of the model to its metric-like form. We compute σ±-cohomology groups that completely

identify the local structure of the (linearized) metric-like theory: gauge symmetry, inde-

pendent metric-like fields, equations of motion and their Bianchi identities.

Sections 4 and 5: Nilpotent operators σ+ and σ− correspond to two different cohomo-

logical reductions of the initial field space. So, in the one-form sector of the BF higher spin

model we find that the system is equivalent either to massive scalar theory with a mass

proportional to the cosmological constant and dependent on the spin, or to higher rank

current conservation conditions. The scalar/current equations are invariant with respect to

particular type of trivial on-shell symmetries/improvements that eliminate all local degrees

of freedom. We suggest that these two forms of a single system are analogous to the well-

known classical duality phenomenon occurring in the WZNW theory when second-order

equations can be represented as the first-order conservation condition [40, 41]. The same

analysis is done in the zero-form sector of the model.

Section 6: it summarizes the metric-like formulation developed in the previous sections.

We list the metric-like equations of motions in the zero-form and one-form sectors of the

BF higher spin gravity model in both cases of the σ± cohomological reductions. Finally,

the model is interpreted as the higher spin gauge-dilaton theory extending the Jackiw-

Teitelboim dilaton gravity. Also, we consider two metric-like action functionals which give

rise to dual metric-like equations of motion. We find out that the BF action is a “parent”

action for the two dual metric-like formulations.

Section 7: using manifestly covariant o(2, 1) − sp(2) vector notation we elaborate a

realization of the one-parametric higher spin algebra hs[ν] introduced in refs. [36, 37]. Our

realization is derived from the general d-dimensional oscillator description of the Eastwood-

Vasiliev higher spin algebra for d ≥ 3 [42, 43]. The approach is based on the Howe dual pair

o(2, d − 1) − sp(2) realization in the bimodule of formal power series in auxiliary doublet

variables [43, 44]. Specifying to d = 2 we find out that hs[ν] is to be identified as quotient

algebra obtained by singling out a particular ideal. The Howe duality o(2, 1)− sp(2) used

to describe quotient higher spin algebras may be useful in many respects, in particular,

for considering general non-linear two-dimensional higher spin models not necessarily of

BF type. Indeed, the Howe duality is known to be crucial to built a consistent interacting

higher spin theory in d ≥ 4 dimensions [43].

Section 8: it defines the full non-linear BF formulation of the AdS2 higher spin gravity.

Since the gauge algebras are realized as quotient algebras, the corresponding BF actions

are formulated using particular projecting technique that allows to factor out elements of

ideals directly inside the action. Quadratic higher spin actions studied in section 2 result

from a linearization around the AdS2 background solution.

Section 9: it summarizes our results and discusses future research directions. Details

of the σ±-cohomology computation are given in appendix A. Details of the projecting

technique are given in appendix B.
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2 Quadratic higher spin BF action

Let Gs be a linear space of differential p-forms on a two-dimensional manifold taking values

in finite-dimensional o(2, 1) totally symmetric and traceless representations of arbitrary

rank4

F
A1... As−1

(p) = dxm1 ∧ · · · ∧ dxmp F (A1... As−1)
m1...mp , ηBCF

BCA3... As−1

(p) = 0 , (2.1)

where p = 0, 1, 2 is a rank of a differential form (at p ≥ 3 differential forms are identically

zero). Using o(2, 1) Levi-Civita tensor one shows that all non-symmetric finite-dimensional

o(2, 1) irreducible representations either vanish identically, or are described by hook-type

traceless tensors

FA1... Am
(p) ∼ FA1... Am, B1

(p) . (2.2)

Two-dimensional higher spin fields are defined to be elements of Gs. In two spacetime

dimensions both massless and massive Wigner groups trivialize and whence it follows that

only scalar and spinor modes may propagate. However, by a slight abuse of notation, we

identify parameter s as a spin.

When considering gravitational systems parameterized by the negative cosmological

constant Λ, it is convenient to represent gravitational fields as o(2, 1) connection 1-forms

WA(x)TA = dxmWA
m(x)TA, where TA are o(2, 1) basis elements (see, e.g., [23]). Using

antisymmetric basis one represents the connection as WAB
m = −WBA

m which is dual to the

original connection via WmAB = εABCW
C
m . Flat connections satisfy the zero-curvature

condition, which component form is given by

RAmn ≡ ∂mWA
n − ∂nWA

m − εABCWm,BWn,C = 0 . (2.3)

The frame field and Lorentz spin connection are introduced in a standard fashion using

the compensator V A normalized such that V AVA = −L2. In what follows, we use V A in

the form V A = (0, 0, L). The o(2, 1) covariant decomposition of WA
m is given by

WA
m = EAm + V Aωm , (2.4)

where the transversality conditions VAE
A
m = 0 and ωm = ΛWA

mVA give rise to EAm = (eam, 0)

and WA
m =

(
eam,−1/

√
−Λωm

)
.

It is well-known that AdS2 spacetime solves constraint (2.3). The corresponding con-

nection will be denoted W0 =
(
ham,−1/

√
−Λwm

)
. The zero-curvature constraint expresses

Lorentz spin connection wm via the frame ham, while the latter defines AdS2 spacetime

metric gmn through the standard identification gmn = ηabh
a
mh

b
n, where ηab = (+−) is the

fiber Minkowski metric.
4A spacetimeM2 is a general two-dimensional manifold with local coordinates xm, Lorentz world indices

run m,n = 0, 1, Lorentz fiber indices run a, b = 0, 1, o(2, 1) fiber indices run A,B,C = 0, 1, 2, o(2, 1)

invariant metric is ηAB = (+ − −). The spacetime derivative is denoted as ∂m = ∂/∂xm, the de Rham

differential is d = dxm∂m. The Levi-Civita tensor εABC is normalized as ε012 = +1. Two-dimensional

anti-de Sitter spacetime AdS2 has a radius L and a signature (+−), so that the cosmological constant is

Λ = −1/L2. The Levi-Civita tensor εmn is normalized as ε01 = +1. Symmetrization of indices has a unit

weight and is labelled by parentheses.
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Let us consider particular elements of the space Gs which are 0-form field ΦA1...As−1 ,

1-form field ΩA1...As−1 along with 2-form field strength

ΦA1...As−1 , ΩA1... As−1 = dxm Ωm
A1... As−1 , R

A1... As−1

1 = D0ΩA1... As−1 , (2.5)

where D0 is o(2, 1) covariant background derivative,

D0F
A1...Ak
(p) = dTA1...Ak

(p) +εBC(A1 W0BF(p)C
A2...Ak) + . . .+εBC(AkW0BT(p)C

A1...Ak−1) . (2.6)

From now on, we systematically omit the wedge product symbol ∧. Representing the

zero-curvature condition (2.3) evaluated on the background connection W0 as R(W0) ≡
D0D0 = 0 one observes that higher spin field strengths are invariant with respect to the

following gauge transformations

δΩA1... As−1 = D0ξ
A1... As−1 , (2.7)

where gauge parameters ξA1... As−1 are 0-forms taking values in the same finite-dimensional

representations. Note that the Bianchi identities D0R in two dimensions are trivial since

any 3-form vanishes identically. The 0-form fields are assumed to be gauge invariant,

δΦA1...As−1 = 0 . (2.8)

Fields (2.5) are referred to as frame-like fields as these generalize the gravitational connec-

tion WA
m to any number of fiber indices and any rank of differential form.

Let us consider now the BF action for a single rank-s system,

S0[Ω,Φ] =

∫
M2

ΦA1...As−1R
A1...As−1
1 . (2.9)

The equations of motion obtained by varying with respect to ΦA1...As−1 and ΩA1...As−1 are

R
A1...As−1

1 = 0 , D0ΦA1...As−1 = 0 . (2.10)

Both the action and the equations of motion are invariant with respect to gauge transfor-

mations (2.7) and (2.8). In section 8 the action (2.9) will be obtained from a full non-linear

BF higher spin action by a linearization around AdS2 background W0.

The original BF theory (2.9) can be deformed in various ways. For instance, augment-

ing its action by a quadratic term

S0[Ω,Φ] =

∫
M2

(
ΦA1...As−1R

A1...As−1
1 − 1

2
ΦA1...As−1ΦA1...As−1V2

)
, (2.11)

where V2 = εab h
a ∧ hb is the volume 2-form built of AdS2 background frame fields, one

obtains the following equations

R
A1...As−1

1 = V2ΦA1...As−1 , D0ΦA1...As−1 = 0 . (2.12)

Eliminating the auxiliary field ΦA1...As−1 by using its own equation of motion one arrives

at the action of the form

S0[Ω] =

∫
M2

R?1 A1...As−1R
A1...As−1
1 , (2.13)

– 6 –
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where R?1 is the Hodge dual field strength. Note that now the action explicitly depends on

the background AdS2 metric. The rank-s equations of motion following from (2.13)

Dm
0 R

A1...As−1

1mn = 0 , (2.14)

generalize the Maxwell equations and describe no local degrees of freedom (see also our

comments in the end of section 4.3). For the simplest case s = 1 the action (2.11) is the well-

known action for the Maxwell field Am on the background metric gmn with the auxiliary

scalar variable f : S0[A, f ] =

∫
d2x
√
g
(
fεmnF

mn − 1

2
f2), where Fmn = ∇mAn − ∇nAm.

Representing the Maxwell action in this form is useful in the analysis of 2d Maxwell-dilaton

theories of gravity, since the dynamical field enters the action linearly (see, e.g., [45]).

3 Cohomological view of BF equations

In order to analyze the dynamical content of the BF action (2.9) we employ homological

tools developed within the unfolded formulation (see the review [2] for details). Indeed, one

observes that the BF equations of motion are explicitly formulated as the zero-curvature

and the covariant constancy conditions imposed on the frame-like fields which are differen-

tial forms taking values in certain o(2, 1) irreps, see (2.10). Fortunately, such a geometrical

setting naturally fits the unfolded formulation.

Most importantly, using the unfolded machinery helps to obtain the metric-like for-

mulation of the BF theory. For instance, in order to obtain the Jackiw-Teitelboim dilaton

gravity theory from o(2, 1) BF theory one should carefully identify the metric and scalar

fields along with auxiliary fields, use local Lorentz symmetry to set an antisymmetric

part of the zweibein equal to zero, split all the equations into dynamical and constraint

ones [23–25]. It is remarkable that all these operations can be done in a systematic manner

using cohomology groups of certain nilpotent operators called σ± acting on the field space

Gs (2.1). In other words, using the σ±-cohomology provides precise guidelines how to pass

from a frame-like (i.e., BF) formulation to a metric-like formulation where the higher spin

fields are higher rank Lorentz tensor fields.

In order to make using the cohomological methods more manifest it is convenient to

reformulate given BF equations as off-shell system. It means that the right-hand-sides of

BF equations are not zero but some arbitrary sources. Sending the sources to zero implies

going on-shell. Indeed, put equations (2.10) off-shell as follows

D0ΦA1...As−1 = B
A1...As−1

(1) , (3.1)

D0ΩA1...As−1 = C
A1...As−1

(2) , (3.2)

where the right-hand-sides of the equations are now arbitrary differential 1-form and 2-

form, respectively, taking values in rank-(s−1) irreducible o(2, 1) representation, (2.1). By

definition, sources B(1) are C(2) are invariant with respect to gauge symmetry transforma-

tions (2.7) and (2.8), and therefore the off-shell system (3.1)–(3.2) retains the same gauge

symmetry as the on-shell one (2.10).

– 7 –



J
H
E
P
1
0
(
2
0
1
4
)
1
2
2

3.1 σ± operators

Most conveniently, the cohomological analysis of off-shell o(2, 1) covariant equation sys-

tem (3.1)–(3.2) is performed in terms of Lorentz o(1, 1) ⊂ o(2, 1) algebra component fields.

To this end, we rewrite elements of the field space Gs (2.1) in Lorentz basis,

T(p)
A1... As−1 =

s−1⊕
k=0

T(p)
a1... ak , (3.3)

where Lorentz fields are totally symmetric and traceless,

T(p)
a1... ak = T(p)

(a1... ak) , ηbc T(p)
bca3... ak = 0 . (3.4)

Therefore, in Lorentz basis space Gs is given by a direct sum of subspaces spanned by

differential p-forms T a1...ak(p) with fixed value of k = 0, . . . , s − 1. Such elements will be

denoted as T(p)(k). It is worth recalling that a o(1, 1) totally symmetric and traceless

tensor T a1...ak has just two independent components. This is most obvious in the light-

cone parametrization T a1...ak ∼ (T++···+, T−−···−), where a number of± equals k. However,

keeping o(1, 1) symmetry manifest is convenient when analyzing the dynamical content of

the theory.

The space Gs incorporates all tensor fields of the theory, including zero-forms, one-forms

and associated two-forms (2.5), along with their 0-form gauge symmetry parameters (2.7).

For a given spin s there are two natural gradings in the space Gs : by a rank of differential

forms and by a number of Lorentz indices. On the other hand, there exist two nilpotent

algebraic operators acting on Gs that shift the gradings by one.

Let us define operators σ± acting on Gs as follows σ∓ : T(p)(k± 1)→ T(p+1)(k). Their

component action is given by5

σ− : α(k) hc T
ca1...ak
(p) = T a1...ak(p+1) ,

σ+ : β(k)

[
h(a1 T

a2...ak)
(p) + γ(k) η

(a1a2hc T
ca3...ak)
(p)

]
= T a1...ak(p+1) ,

(3.5)

where ham is the AdS2 background frame, while exact expressions for coefficients α(k), β(k)

and γ(k) are given below, see (3.14) and (3.12). The operators satisfy

σ2
− = 0 , σ2

+ = 0 , ∇2 + σ−σ+ + σ+σ− = 0 , (3.6)

where covariant derivative ∇m = ∂m + wm is evaluated with respect to AdS2 background

Lorentz spin connection wm. It is worth noting that conditions (3.6) can be understood

as realization of the zero-curvature condition D2
0 = 0 (2.3) in the Lorentz component

basis [46],

D0 = ∇+ σ− + σ+ . (3.7)

5It stands to mention that conventional σ− operator in d ≥ 4 dimensions turns to σ+ in d = 2 dimensions.

This is because in the case d ≥ 4 the field space Gs consists of two-row rectangle o(2, d−1) traceless tensors

that are replaced by one-row o(2, 1) traceless tensors in the case of d = 2. In the spin-2 case this is achieved

by using the Levi-Civita tensor what changes the roles of σ− and σ+ operators in dualized pictures. Note,

however, that this difference is purely notational.
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It is convenient to define the Euler operator N counting a number of Lorentz indices,

NT(p)(k) = kT(p)(k). Then, [N, σ±] = ±σ± and [N,∇] = 0. Operator N provides the

space Gs with a finite grading,

Gs = G(0)
s ⊕ · · · ⊕ G(s−1)

s , (3.8)

where a subspace G(k)
s is spanned by homogeneous elements of degree k. By definition,

operator σ− decreases a degree by one, operator σ+ increases a degree by one.

The space Gs can be endowed with an inner product given by

〈A|B〉 = δk, lδm+n, 2

∫
M2

A(m)
a1...ak B(n)a1...al , A,B ∈ Gs . (3.9)

Modulo an overall coefficient, operators σ− and σ+ are mutually conjugated with respect

to the above inner product. The following properties are elementary:

〈A|B〉 = 0 , A ∈ G(k)
s , B ∈ G(l)

s , k 6= l , (3.10)

〈σ±A|B〉 = 0 , ∀A ∈ Gs , ∀B ∈ Ker σ∓ . (3.11)

Exact expressions for the coefficients. Coefficients γ(k) in (3.5) are fixed by the

algebraic symmetry conditions (3.4) as

γ(1) = 0 , γ(k) = − 1

k − 1
, k = 2, 3 . . . , s− 1 . (3.12)

Coefficients α(k) and β(k) are defined by conditions (3.6). Namely, one arrives at the

equation system,

ρ(k) ≡ α(k)β(k+1) : Λ + ρ(k)

[
γ(k+1) − 1

]
+ ρ(k−1) = 0 , (3.13)

for k = 1, . . . , s− 1. The explicit solution reads

ρ(k) = −Λ
(s− k − 1)(s+ k)

2(k + 1)
. (3.14)

Using proper field redefinitions one can set either β(k) = 1 or α(k) = 1 for k = 1, . . . , s−1 so

that the solution is unique. Here, we choose the former case indicating that the dynamical

systems under consideration are extended from Minkowski to AdS space.

3.2 Cohomological analysis

Below we shortly describe the general idea of the cohomological reduction of the off-shell

BF system (3.1)–(3.2) using σ± nilpotent operators (see ref. [2] for more details).

Let us consider p-form gauge fields π(p)(k) ∈ Gs. Then, using the decomposition (3.7),

the unfolded equations (3.1), (3.2) can be represented in the Lorentz component form as

follows

∇π(p)(k) + σ−π(p)(k + 1) + σ+π(p)(k − 1) = Z(p+1)(k) , (3.15)

where differential (p+1)-forms Z(p+1)(k) are the sources, while k = 0, . . . , s−1, and a rank

of differential forms runs p = 0, 1 since for p = 2 the above expression vanishes identically.

– 9 –
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The unfolded equations (3.15) are invariant with respect to gauge transformations

given by

δπ(p)(k) = ∇ε(p−1)(k) + σ−ε(p−1)(k + 1) + σ+ε(p−1)(k − 1) , (3.16)

where (p− 1)-forms ε(p−1)(k) are gauge parameters. In fact, the gauge symmetry transfor-

mation appears at p = 1 only. Indeed, in the case p = 0 the gauge fields have no associated

gauge parameters, while in the case p = 2 the corresponding equations of motion vanish

identically.

Quantities Z(p+1)(k) on the right-hand-side of (3.15) are not completely arbitrary and

are restricted by the Bianchi identity

∇Z(p+1)(k) + σ−Z(p+1)(k + 1) + σ+Z(p+1)(k − 1) = 0 , (3.17)

which is a differential (p+ 2)-form. It is obtained by using conditions (3.6). For p = 1 the

Bianchi identity is a 3-form that vanishes identically.

Note that the unfolded equations, gauge transformations and identities are decomposed

according to the grade degree (3.8). On the other hand, operators σ± enter all equations

algebraically. It suggests that the gauge system (3.15)–(3.17) can be analyzed recurrently,

starting either from the minimal grade degree k = 0 equations or, from the maximal grade

degree k = s− 1 equations. In both cases, one arrives at the linear systems of the type

σ±X = Y , (3.18)

for some X,Y ∈ Gs built of the sources, fields, parameters, and their derivatives. It follows

that one is inevitably led to compute Imσ± and Ker σ±, and, moreover, the cohomology

group H(σ±) = Ker σ±/Imσ± as the operators σ± are nilpotent.

By way of example, let us identify independent equations of motion contained in the

gauge system (3.15)–(3.17). Consider the equations of motion (3.15) parameterized by

the sources Z(p+1)(k).6 Those o(1, 1) irreducible components of the sources Z(p+1)(k) that

belong to Imσ± can be shifted to zero by appropriate shift redefinitions of fields in terms

σ±π(p)(k∓1) in (3.15). Representing now the Bianchi identity as (3.18) one finds that non-

vanishing irreducible components of Z(p+1)(k) not belonging to Ker σ± are auxiliary. That

is to say these components are expressed through the derivatives of components belonging

to the cohomology H(p+1)(σ±) = Ker σ±/Imσ±
∣∣
p+1

, where the slash denotes restriction

to (p + 1)-forms. Note that cohomology elements of H(p+1)(σ±) represent independent

equations of motion and these nonetheless are not arbitrary being restricted by the residual

Bianchi identity.

A number of independent identities between independent equations of motion is equal

to a number of independent elements of the next cohomology group H(p+2)(σ±). Note that

for p = 1 the Bianchi identities are identically vanishing 3-forms and therefore any 2-from

always belongs to Ker σ±. Consequently, there are no differential constraints in this case

6Note that a differential form Z(p+1)(k) is a tensor product of two groups of indices: (p+1) antisymmetric

world indices and k totally symmetric traceless fiber indices. For p = 1 world indices form a singlet, and,

therefore, the tensor product contains a single o(1, 1) irreducible component given by totally symmetric

traceless tensor. For p = 0 the tensor product contains two components given by formula (A.2).
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and only field redefinitions associated with Imσ± are possible. These field redefinitions

allow one to shift all non-zero tensors on the right-hand-side of the unfolded equations (3.15)

to zero except for the cohomology elements.

Independent fields and gauge parameters can be considered similarly. So, the indepen-

dent dynamical fields are particular o(1, 1) irreducible components of π(p) identified with

elements of H(p)(σ±), while other irreducible o(1, 1) components are either auxiliary fields

expressed via dynamical ones, or Stueckelberg fields that can be shifted to zero by appro-

priate gauge transformation. Residual gauge parameters are given by o(1, 1) irreducible

components identified with elements of H(p−1)(σ±).

In this way, for a given p = 0, 1, 2 we come to the well-known dynamical interpretation

of different cohomology groups [2, 47, 48] specified to two spacetime dimensions:

parameters ∈ H(p−1)(σ±) fields ∈ H(p)(σ±)

equations ∈ H(p+1)(σ±) identities ∈ H(p+2)(σ±)

(3.19)

All higher cohomology groups are empty, H(p)(σ±) = ∅ for p ≥ 3, because in d = 2

dimensions differential p-forms with p ≥ 3 vanish identically. As a corollary, there are no

reducible gauge parameters and identities for identities.

It is important to note that the above interpretation of the cohomology elements (3.19)

gives rise to different forms of one dynamical system reduced via either σ+ or σ− operators.

Generally, this happens because the respective cohomology groups are non-isomorphic (see

below).

Theorem. The cohomology groups of operators σ± in Gs are given by

H(p)(σ−) =



p = 0 : T

p = 1, s = 1 : T a1

p = 1, s > 1 : T , T a1...as

p = 2 : T a1...as−1

H(p)(σ+) =



p = 0 : T a1...as−1

p = 1, s = 1 : T a1

p = 1, s > 1 : T , T a1...as

p = 2 : T

(3.20)

where T a1...am are totally symmetric and traceless o(1, 1) tensors.

The proof is straightforward and relegated to appendix A.7 A few comments are in order.

• The cohomology groups establish a cross-duality relation:

H(p+2)(σ±) ≈ H(p)(σ∓) , p = 0, 1, 2; (p+ 2) mod 2 . (3.21)

It underlines dual interpretations of the BF higher spin theory that we develop in

the following sections.

7Our results on H(σ+) cohomology (see a comment in footnote 5) can be obtained from d-dimensional

consideration of [48] by taking d = 2. However, the case of d = 2 is strongly degenerate so that making a

direct substitution of d = 2 should not be taken for granted. Also, H(σ−) has not been discussed before.

In particular, an explicit computation of the cohomology has technical features specific to two dimensions

that are crucial when analyzing the reduced unfolded equations.
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• Elements of group H(1)(σ±) are not double traceless (Fronsdal) spin-s tenors for

s > 2.

• Scalar elements of H(1)(σ±) are two different scalar components of grade k = 1

element of Gs, while tensor components are given by the same maximally symmetric

traceless component of maximal grade k = s − 1 element of Gs (see appendix A for

more details).

• Each of the second cohomology groups H(2)(σ±) contains a single non-vanishing

element. It is worth noting that in d ≥ 4 dimensions H(2)(σ−) contains two non-

vanishing elements called the Einstein cohomology elements and the Weyl cohomology

elements [46].8 These cohomology elements are given by differential gauge-invariant

combinations of d-dimensional Fronsdal fields and have an elegant interpretation.

Indeed, in order to obtain Fronsdal equations of motion one equates the Einstein

cohomology element to zero, while the Weyl cohomology element remains arbitrary

modulo the Bianchi identities. It follows that the Weyl elements parameterize on-shell

nontrivial gauge invariant combinations of dynamical fields, i.e., the physical degrees

of freedom. In the d = 2 case H(2)(σ±) is spanned by a single element.9 Equating

this element to zero inevitably makes the theory topological. We refer elements of

H(2)(σ±) to as the Weyl tensors/scalars.

4 Off-shell unfolded equations for one-form fields

Component form of fields. Lorentz components of 0-form gauge parameters (2.7),

1-form gauge fields (2.5), and 2-form field strengths (2.5) will be denoted as

ξa1...ak , ωa1...akm , Ra1...akmn , k = 0, . . . , s− 1 ; (4.1)

all of them satisfy the irreducibility conditions (3.4).

Using general formulas (3.15), along with (3.5) and (3.12), (3.14), we find that the

component form of the field strength is given by [10]

Ra1...akmn (ω) = ∇[m ω
a1...ak
n] − Λ

(s− k − 1)(s+ k)

2(k + 1)
h[m, c ω

ca1...ak
n] +

+
[
h

(a1
[m ω

a2...ak)
n] − 1

k − 1
η(a1a2h[m, c ω

ca3...ak)
n]

]
.

(4.2)

8See footnote 5. In higher spacetime dimensions one considers the σ− cohomology only because its

elements are interpreted as fields, parameters, and equations of the Fronsdal theory of massless fields. A

dynamical interpretation of the higher spacetime dimensional σ+ cohomology has not been elaborated yet.
9Along with the second item above this may imply that Fronsdal action in two dimensions at s > 1 is

a total derivative. E.g., in the s = 2 case, the Einstein tensor does vanish identically. On the other hand,

the 2d Maxwell action is not a total derivative: the respective variational equation is ∂mF = 0, where F

stands for dualized Maxwell tensor. Nonetheless, the theory is topological because the general solution

reads F = const allowing for linear potentials only.
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Analogously, the component form of the gauge symmetry transformations (2.7) is

given by

δωa1...akm = ∇mξa1...ak − Λ
(s− k − 1)(s+ k)

2(k + 1)
hm,c ξ

ca1...ak+

+
[
h(a1
m ξa2...ak) − 1

k − 1
η(a1a2hm,c ξ

ca3...ak)
]
.

(4.3)

Off-shell equations of motion. Consider now the unfolded equations in the one-form

sector (3.2) written in the Lorentz component form as follows

Ra1...ak = V2C
a1...ak
(s) , k = 0, . . . , s− 1 , (4.4)

where o(1, 1) totally symmetric and traceless tensors Ca1...ak(s) are the Lorentz components

of the 2-form source C
A1...As−1

(2) parameterizing the right-hand-side of (3.2). The expression

V2 = εcdhc ∧ hd is the volume 2-form (dual to 0-form) built of AdS2 background frame

fields.

In the case s = 1, the cohomology groups are isomorphic, H(p)(σ+) ≈ H(p)(σ−) for

∀ p. Therefore, the only equation of motion in (4.4) says that the Maxwell tensor admits

a dual representation, i.e., Rmn ≡ Fmn = εmnC(1). Whence it follows that there are no

restrictions imposed on Fmn, and the theory is off-shell. By some means, going on-shell

constrains C(1). For instance, by taking C(1) = 0 one obtains the BF topological theory;

other possible constraints are discussed in section 4.3. In what follows we always assume

s ≥ 2.

For s ≥ 2 and p 6= 1 the cohomology groups H(p)(σ±) are not isomorphic. This implies

that the cohomological reduction of the equation system (4.4) could be done in two different

ways giving rise to two different but dynamically equivalent theories.

Following the general discussion of section 3.2, the unfolded equations (4.4) can be

represented in two forms depending on particular operator σ±:

Ra1...ak = δk,0
(
C(s) +∇b1C

b1
(s) + · · · +∇b1 · · · ∇bs−1C

b1...bs−1

(s)

)
V2 , (4.5)

within the σ+ cohomological reduction, and,

Ra1...ak = δk,s−1

(
C
a1...as−1

(s) +∇(a1C
a2...as−1)
(s) + · · · +∇(a1 · · · ∇as−1)C(s) + · · ·

)
V2 , (4.6)

within the σ− cohomological reduction. In (4.6) the ellipsis refers to proper symmetrizations

of derivatives and trace terms. The proof is analogous to that of the theorem of section 3.2.

The representations (4.5) and (4.6) are convenient in practice because all field redefinitions

have been done that remove all right-hand-side tensors /∈ H(2)(σ±). In both cases, we see

that field redefinitions produce derivative transformations setting all the source components

to zero except for those corresponding to the cohomology elements.
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The existence of two operators σ± used for the corresponding cohomological reductions

implies two dual descriptions of the same system (4.4).10 We show that the σ+ cohomo-

logical reduction yields the massive scalar Klein-Gordon equation on the hyperboloid with

non-vanishing right-hand-side given by scalar Weyl tensor. The σ− cohomological reduc-

tion yields the current conservation condition with non-vanishing right-hand-side given by

the higher rank Weyl tensor. In both cases, we impose partial gauge conditions setting a

part of dynamical fields to zero.

Recall that the Bianchi identity (3.17) for the equation system (4.4) is trivial thereby

implying that the cohomology elements are arbitrary. Imposing algebraic and/or differen-

tial constraint on Weyl scalars/tensors is discussed in section 4.3. For instance, equating

all the cohomology elements to zero one obtains the BF higher spin theory with the ac-

tion (2.9).

4.1 Explicit σ+ - reduction: one-form sector

For convenience, we use the representation (4.5) with Cb1...bk(s) = 0, where k = 1, 2, . . . , s−1.

It follows that the unfolded equations take the form

R = V2C
(s) , Ra1... ak = 0 , k = 1, . . . , s− 1 , (4.7)

where Weyl scalar C(s) ∈ H(2)(σ+) is arbitrary function of spacetime variables, and the

field strengths Ra1... ak(ω) are given by (4.2).

The cohomological approach says that the field space Gs in the sector of 1-form fields

ωa1... akm decomposes into Stueckelberg fields, auxiliary fields, and dynamical fields given by

the cohomology H(1)(σ+). The above three types of fields appear as particular irreducible

Lorentz components of ωa1... akm , cf. (A.2).

In the case s > 1, the vanishing higher rank field strengths at k 6= 0 are constraints

allowing to express auxiliary fields via derivatives of independent dynamical fields given

by a scalar and a rank-s traceless tensor ϕ,ϕa1...as ∈ H(1)(σ+) (3.20). Other Lorentz

components of ωa1... akm are Stueckelberg ones shifted to zero by algebraic parts of the gauge

transformations (4.3).

The minimal grade degree equation εmnRmn = C(s) is the only off-shell equation of

motion for dynamical fields. Gauge fixing all Stueckelberg fields to zero and expressing

all auxiliary fields via the dynamical fields, one shows that the minimal grade equation is

reduced to the following order-s differential equation

κs
(
εa1b∇b∇a2 . . .∇asϕa1a2...as

)
+ ρs

(
�
AdS2

+m2
s

)
ϕ = C(s) , (4.8)

with

m2
s = 2ρ0 ≡ −s(s− 1)Λ , s ≥ 2 , (4.9)

where �
AdS2

= ∇a∇a is the wave operator on the AdS2 background, and coefficient ρ0

is given by (3.14). Non-vanishing spin-dependent coefficients κs, ρs are fixed by gauge

10Recall that in the flat space limit Λ = 0 the operator σ− disappears (see formula (4.2)) so that the

duality phenomena described below are peculiar to (A)dS2 space only. The cohomological analysis based

on the remaining operator σ+ remains valid in Minkowski space as well.
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symmetry transformations

δϕa1...as = ∇(a1ξa2...as) − 1

s− 1
η(a1a2∇c ξa3...as−1)c , (4.10)

δϕ = εba1∇b∇a2 · · · ∇as−1ξ
a1a2··· as−1 , (4.11)

with an independent gauge parameter ξa1...as−1 ∈ H(0)(σ+), see (3.20). Lower grade degree

k = 0, 1, . . . , s−2 gauge parameters ξa1...ak are Stueckelberg ones used to shift some Lorentz

components in ωa1... akm to zero.

The dynamical equation (4.8) can be simplified. To this end, a field ϕa1...as is com-

pletely gauged away by imposing the higher-spin gauge

ϕa1... as = 0 . (4.12)

Indeed, a traceless rank-k tensor in d = 2 dimensions has two independent components for

any k ≥ 2. It follows that a number of independent components of a rank-(s − 1) gauge

parameter equals a number of equations in (4.12). The higher spin gauge can be viewed

as an extension of the standard conformal gauge in 2d gravity which makes the metric

proportional to Minkowski tensor. Then, the only dynamical field is given by a scalar

component of the cohomology group, ϕ ∈ H(1)(σ+).

Imposing the higher spin gauge (4.12) and solving the constraints in (4.7) one finds

that the leftover equation reduces to the massive scalar equation with particular value of

the mass-like term [10]

�
AdS2

ϕ− s(s− 1)Λϕ = C(s) , (4.13)

where we redefined the right-hand-side as ρ−1
s C(s) → C(s).

The massive scalar equation (4.13) is invariant with respect to residual gauge trans-

formations (4.11) provided that the gauge parameter ξa1...as−1 ∈ H(0)(σ+), satisfies the

generalized Killing equation on the hyperboloid,

∇(a1ξa2...as) − 1

s− 1
η(a1a2∇c ξa3...as−1)c = 0 , (4.14)

The above constraint is clearly explained as the stability transformation of the higher spin

gauge condition (4.12) for transformations (4.10).

A few comments are in order.

• In the spin-2 case the above equation reproduces the gauge-fixed linearized equation

of motion of the Jackiw-Teitelboim model in the one-form sector [10, 23–25, 49].

We see that the higher spin extension is described by the scalar field as well, but

with a different spin-dependent mass term (4.9) and higher derivative leftover gauge

symmetry (4.14).

• Mass m2
s (4.9) differs from the conformal value of mass m2

conf = −Λ d(d − 2)/4 = 0

in d = 2 dimensions.

• Mass m2
s coincides with the value of the Casimir operator of o(2, 1) global symmetry

algebra of AdS2 space realized on tensor fields .

– 15 –



J
H
E
P
1
0
(
2
0
1
4
)
1
2
2

• Since the theory propagates no local degrees of freedom, the scalar field equation (4.13)

at C(s) 6= 0 becomes a constraint equation for auxiliary field ϕ that can be solved by

defining the respective Green’s function: ϕ(x) = (�AdS2 +m2
s)
−1C(s)(x).

4.2 Explicit σ− - reduction: one-form sector

Using the representation (4.6) with Cb1...bk(s) = 0, k = 0, 1, . . . , s − 2, one arrives at the

following unfolded equations

Ra1...as−1 = V2C
a1...as−1 , Ra1...ak = 0 , k = 0, . . . , s− 2 , (4.15)

where Weyl tensor C
a1...as−1

(s) ∈ H(2)(σ−) is arbitrary function of spacetime variables, and

the field strengths Ra1... ak(ω) are given by (4.2).

In the case s > 1, the vanishing higher rank field strengths at k = 0, . . . , s − 2 are

constraints allowing to express auxiliary fields via derivatives of independent dynamical

fields given by a scalar and a rank-s traceless tensor φ, φa1...as ∈ H(1)(σ+) (3.20). Other

Lorentz components of ωa1... akm are Stueckelberg ones shifted to zero by algebraic parts of

the gauge transformations (4.3).

Solving the constraints (4.15) yields the following expression

ωm|a1...as−1
= φma1...as−1 + τs

(
ηma1∇a2 . . .∇as−1φ+ . . .

)
, (4.16)

where τs is some non-vanishing spin-dependent coefficient, the parenthesis contain terms

that depend on field φ only, while the ellipsis refers to appropriate symmetrizations of

derivatives and trace terms. Independent gauge transformations are given by

δφ =
(
�
AdS2

+m2
s

)
ξ , (4.17)

δφa1...as =
1

Λ
∇a1 · · · ∇asξ + . . . , (4.18)

where the ellipsis refers to proper symmetrizations and trace terms, while a scalar gauge

parameter ξ ∈ H(0)(σ−) (3.20). The mass coefficient m2
s is given by (4.9).

The maximal grade degree equation Ra1...as−1 = V2C
a1...as−1 is the only off-shell equa-

tion of motion for dynamical fields. Gauge fixing all Stueckelberg fields to zero and express-

ing all auxiliary fields via the dynamical fields using (4.16), one shows that the maximal

grade equation is reduced to the following order-(s− 1) differential equation

∇mφma1...as−1 − τs∇a1 . . .∇as−1φ+ . . . = C(s)
a1...as−1

, (4.19)

where the ellipsis refers to proper symmetrizations and trace terms.

Higher order equation (4.19) can be simplified by imposing a gauge condition. Indeed,

using the scalar field transformations (4.17) one introduces the scalar gauge condition along

with the residual gauge parameter equation

φ = 0 , �
AdS2

ξ −m2
sξ = 0 , (4.20)

which are dual cousins of higher spin gauge condition (4.12) and generalized Killing equa-

tions (4.14). It follows that dynamical equation (4.19) takes the form

∇nφna1...as−1 = C(s)
a1...as−1

. (4.21)
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For equation (4.21) with the vanishing right-hand-side C
(s)
a1...as−1 = 0 one identifies

φa1...as with spin-s conserved current on the hyperboloid.11 Higher order derivative trans-

formations (4.18) with the scalar gauge parameter satisfying (4.20) are treated now as

“improvement” transformations for conserved currents. Indeed, “improvements” are higher

order derivative transformations with an antisymmetric tensor parameter which in d = 2

dimensions is dualized to a scalar via the Levi-Civita tensor.

Our analysis of the σ− cohomological reduction applied to the unfolded equations in

the one-form sector yields the following interpretation of the cohomology groups H(p)(σ−),

which conforms the general scheme (3.19). Namely, elements C
(s)
a1...as−1 ∈ H(2)(σ−) are

conservation conditions. Element φ ∈ H(1)(σ−) can be chosen a pure gauge, so that

another cohomology element φa1...as ∈ H(1)(σ−) can be identified with a conserved current.

Element ξ ∈ H(0)(σ−) plays the role of an “improvement” transformation parameter.

4.3 Off-shell field spaces

In the framework of the unfolded formulation one may introduce the so-called Weyl mod-

ule as a linear space which elements parameterize all possible gauge-invariant differential

combinations of dynamical fields ∈ H(1)(σ±) that remain arbitrary on-shell. In d ≥ 4

dimensions, the Weyl module is derived by solving the Bianchi identities: one “unfolds”

the original higher spin Weyl tensor, i.e. introduces new variables (infinite of them) that

parameterize independent combinations of derivatives of the Weyl tensor [2].

In d = 2 dimensions the Bianchi identities in the one-form sector trivialize due to

H(3)(σ±) = ∅, see (3.17) and (3.19). Whence, the Weyl tensor ∈ H(2)(σ±) remains

completely arbitrary function of spacetime variables. However, it does not yield local

degrees of freedom in the theory. Indeed, recall that contrary to the higher-dimensional

case, the cohomology H(2)(σ±) contains the only element, cf. (3.20). In other words, the

Einstein cohomology (higher spin equations of motion) and the Weyl cohomology (higher

spin Weyl tensors) coincide in two dimensions. It follows that keeping the Weyl element

arbitrary implies the theory is off-shell. On the other hand, choosing the Weyl element to

be a particular function can be treated as “going on-shell”. E.g., setting all Weyl tensors

to zero results in the zero-curvature equations of motion (2.10). There are various ways of

how to put our topological system on-shell. We discuss some of them in section 4.3.2.

4.3.1 Unfolding Weyl tensors

Despite the lack of 2d Bianchi identities, one can still associate to Weyl tensors infinite

sets of components which comprise their all possible derivative combinations. Namely,

by off-shell field space for the Weyl scalar C(s) ∈ H(2)(σ+) we call the following set of

components

W0 =
{
W

(s)
b1... bk

, k = 0, 1, 2, . . .
}
, (4.22)

11For particular models, switching on non-vanishing tensors on the right-hand-side may be visualized as a

sort of covariantization characteristic to non-Abelian interaction theories, which therefore is not conservation

violation but rather a map ∇m → Dm, where Dm is some new field-dependent covariant derivative.
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where elements are totally symmetric and traceful, ηmnW
(s)
mnb1... bk−2

6= 0 for k = 2, 3, . . .,

so that one identifies an index-free component with the original Weyl scalar, W (s) ≡ C(s).

Elements of W0 are equated with all possible derivatives of original scalar C(s), i.e.,

W
(s)
b1... bk

− Pb1... bkC
(s) = 0 , Pb1... bk = ∇b1 · · · ∇bk + · · · , (4.23)

where the ellipses in (4.23) refers to proper symmetrizations and all possible trace terms.

For a given k the projector Pb1... bk contains a finitely many arbitrary coefficients not fixed

by the above definition of W0. Note that in d = 2 dimensions only symmetric combina-

tions of covariant derivatives are possible because any non-symmetric ∇a1 . . .∇akC can be

reduced to a collection of symmetrized combinations by using the Levi-Civita tensor and

commutator [∇,∇] ∼ Λ.

Quite analogously, by off-shell field space for the Weyl tensor C
(s)
a1...as−1 ∈ H(2)(σ−) we

call the following set of components

Ws−1 =
{
W

(s)
a1...as−1|b1... bk , k = 0, 1, 2, . . .

}
, (4.24)

where elements are totally symmetric in each group of indices, and traceless with respect

to the first group of indices, ηmnW
(s)
mna1...as−3|b1... bk = 0, and traceful with respect to the

second group of indices, ηmnW
(s)
a1...as−1|b1... bk−2mn

6= 0. The k = 0 element is identified with

the original Weyl tensor, W
(s)
a1...as−1 ≡ C

(s)
a1...as−1 . Elements of Ws−1 are equated with all

possible derivatives of original tensor C
(s)
a1...as−1 , i.e.,

W
(s)
a1...as|b1... bk − Pb1... bkC

(s)
a1...as−1

= 0 , Pb1... bk = ∇b1 · · · ∇bk + · · · . (4.25)

Generally, off-shell field space elements are not related to each other. A natural option

suggested in [47] is to consider particular constraints for elements of the off-shell field space

relating components with different values of k as

W
(s)
b1...bk+1

∼ ∇b1W
(s)
b2...bk+1

, (4.26)

while element W (s) remains arbitrary. It follows that the form of relations (4.23) is not

changed, while arbitrary coefficients in projectors Pb1... bk are uniquely fixed modulo a single

free coefficient to be identified with the mass parameter. We refer the off-shell field space

W0 supplemented with constraints (4.26) to as the off-shell Weyl module W̃0. The same

consideration can be applied to off-shell module Ws−1.

4.3.2 Going on-shell

Recall now that dynamical fields propagated by the unfolded equations (4.4) are considered

as auxiliary, see our comments in the end of section 4.1. Indeed, these are completely

expressed via the Weyl tensors which parameterize the right-hand-sides of the dynamical

equations. Such a phenomenon is characteristic of topological field theories coupled to

external dynamical systems with or without local degrees of freedom (see a recent discussion

in [50]). In particular, this is the way one couples matter fields to 3d topological Chern-

Simons theory. In this case, Chern-Simons strength tensor turns out to be proportional to
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a matter current so that respective gauge fields are auxiliary carrying no physical degrees

of freedom. However, added topological modes may have a profound impact on dynamics

of the matter system, giving rise, for instance, to anyonic statistics.

In our case, the problem of coupling a field theory with an (in)finite number of de-

grees of freedom to the topological unfolded theory given by equations (4.4) reduces to the

equivalent problem of specifying Weyl tensors via imposing appropriate constraints on ele-

ments of the off-shell field spaces. Note that choosing particular Weyl tensors actually puts

the topological system (4.4) on-shell. Other way round, going on-shell in the topological

theory (4.4) is nicely interpreted as coupling to external field theory.

By way of example, specify the off-shell field space W0 to the off-shell Weyl module

W̃0 given by (4.26), and impose the tracelessness condition

ηmnW
(s)
mnb3... bk

= 0 . (4.27)

The above constraint yields the massive Klein-Gordon equation of motion on AdS2 space-

time imposed on the Weyl scalar C(s) [8, 47]. It follows that an external field theory is

identified here as the scalar field theory coupled to (linearized) topological spin-s BF the-

ory. The dynamical field ϕ in equation (4.13) is auxiliary and expresses now in terms of

the Klein-Gordon field C(s).

As another possible option let us mention a truncation of the off-shell Weyl W̃0 by

imposing the following constraint

W
(s)
b1...bk

= 0 for k = m,m+ 1, . . . ,∞ , (4.28)

at some fixed m. The above truncation is most easily analyzed in the spin s = 1 case.

Here, there are two standard choices of m = 1 and m = 0. Truncating W0 by imposing

W
(1)
b = 0 is equivalent to constraint ∇bF = 0 which is the dualized Maxwell equation.

Recall here that dualized Maxwell tensor Fmn = εmnF is identified with scalar C(1) and

two off-shell field spaces considered above coincide, being actually a single spaceW0. Also,

one may truncate all elements of W0 by imposing constraint W (1) ≡ F = 0 that appears

as the equation of motion in the Abelian BF theory.

Another example of a theory with no local degrees of freedom identified with an exter-

nal field theory is given by equations (3.1)–(3.2) with the right-hand-sides given by (2.12).

In this case, the right-hand-side of unfolded equation (4.4) is parameterized by 0-form field

subjected to another unfolded equation which describes no local degrees of freedom as well

(see the next section).

5 Off-shell unfolded equations for zero-form fields

Consider now the unfolded equations in the zero-form sector (3.15). By analogy with (3.3)

o(2, 1) covariant 0-form fields can be decomposed into Lorentz algebra o(1, 1) ⊂ o(2, 1)

components as

ΦA1... As−1 =

s−1⊕
k=0

φa1... ak , (5.1)
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where Lorentz components satisfy irreducibility conditions (3.4). Using general formu-

las (3.15), along with (3.5) and (3.12), (3.14), one finds that Lorentz component form of

equations (3.15) reads as

Da1...ak|m = Ba1...ak|m , k = 0, . . . , s− 1 , (5.2)

where

Da1...ak
m = ∇mφa1...ak − Λ

(s− k − 1)(s+ k)

2(k + 1)
hm,c φ

ca1...ak+

+
[
h(a1
m φa2...ak) − 1

k − 1
η(a1a2hm,c φ

ca3...ak)
]
,

(5.3)

where Da1...ak|m = hm,nDa1...ak
n and the slash says that two groups of fiber indices are not

related by permutations, tensors Ba1...ak|m are o(1, 1) components of differential 1-form

B
A1...As−1

(1) (3.1).

The 0-form fields have no associated gauge symmetry (2.8). However, the equations of

motion (5.2) satisfy the Bianchi identities taking the following component form, cf. (3.17),

∇[mD
a1...ak
n] − Λ

(s− k − 1)(s+ k)

2(k + 1)
h[m, cD

ca1...ak
n] +

+
[
h

(a1
[m D

a2...ak)
n] − 1

k − 1
η(a1a2h[m, c D

ca3...ak)
n]

]
≡ 0 .

(5.4)

According to the general consideration of section 3.2, the system (5.2) can be alge-

braically reduced using one or another type of nilpotent operators σ±. In both cases,

the cohomological theorem (3.20) guarantees that the true dynamical fields in the system

are either φ ∈ H(0)(σ−), or φa1...as−1 ∈ H(0)(σ+). Cohomology elements B±(s), B
±(s)
a1...as ∈

H(1)(σ±) represent independent equations of motion. A number of independent identi-

ties between equations of motion corresponds to a number of independent elements of the

second cohomology group, i.e., I
(s)
a1...as−1 ∈ H(2)(σ−) and I(s) ∈ H(2)(σ+).

Note that the right-hand side of the equation system (5.2) cannot be set to

δk,1 (εma1B
+(s) + ηma1B

−(s)) + δk,s−1(B
+(s)
a1...as−1m + B

−(s)
a1...as−1m) as in the case of the un-

folded equations in the one-form sector (4.4). Not only the cohomology elements, but also

other components Ba1...ak|m are generally non-vanishing. While the cohomology represents

the independent equations of motion, the other components are auxiliary, i.e., are expressed

through the independent ones by virtue of the Bianchi identities, see section 3.2.

It is worth noting that the right-hand-sides of the independent equations of motion

obtained through the cohomological reduction are parameterized by two independent ele-

ments of H(1)(σ±). In this respect, the situation is different from that in the gauge sector,

where the reduced equations of motion are parameterized by a single Weyl scalar/tensor.

It is similar to the higher dimensional picture, where the right-hand-sides of the equations

also contain two independent cohomology elements, the Einstein part and the Weyl part,

see the discussion in the end of section 3.2.12

12It would be instructive to explicitly build Weyl-like linear spaces that parameterize solutions to the

Bianchi identities. See our discussion of the off-shell field spaces in the gauge sector in section 4.3.
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5.1 Explicit σ+ - reduction: zero-form sector

The σ+ cohomological reduction of the unfolded equations (5.2) gives rise to the following

independent equations of motion

εmn1∇m∇n2 · · · ∇ns−1ϕ
n1···ns−1 = B+(s) ,

∇(a1ϕa2...as) −
1

s− 1
η(a1a2∇

c ϕa3...as−1)c = B+(s)
a1...as ,

(5.5)

where ϕa1··· as−1 ∈ H(0)(σ+) and B+(s), B
+(s)
a1....as ∈ H(1)(σ+), and indices are symmetrized

with a unit weight. The tensors on the right-hand-sides of (5.5) are not arbitrary and are

subjected to the Bianchi identities (5.4). Following (3.19) and (3.20), we find that there

is a single identity between independent equations (5.5) corresponding to a scalar element

I(s) ∈ H(2)(σ+),

κs
(
εa1b∇b∇a2 . . .∇asB+(s)

a1a2...as

)
+ ρs

(
�
AdS2

+m2
s

)
B+(s) = 0 , (5.6)

where κs, ρs are some non-vanishing spin-dependent coefficients, cf. (4.8), while mass pa-

rameter m2
s is given by (4.9).

By way of example, consider the spin-2 case. Here, the unfolded equations of mo-

tion (5.2) read

∇mϕ− Λhcmϕc = Bm , ∇mϕa + hamϕ = Ba
m , (5.7)

where Λ is the cosmological constant, and B and Ba are subjected to the Bianchi identi-

ties (5.4)

∇mB − ΛhcmBc = 0 , ∇mBa + hamB = 0 . (5.8)

Using the σ+ cohomological reduction and field redefinitions one finds from the second

equation in (5.7) that ϕ = −1
2∇

aϕa. Considering the Bianchi identities (5.8) one shows

that the first equation in (5.7) is a differential consequence of the second equation. The

resulting equations that follow from the second equation in (5.7) for the independent field

ϕa ∈ H(0)(σ+) read

∇aϕb +∇bϕa − ηab∇cϕc = B+
ab , εab∇aϕb = B+ , (5.9)

where B+, B+
(ab) ∈ H

(1)(σ+); cf. equations (5.5). Note that redefining fields by a dualization

via εab-tensor yields the following system ∇aϕb+∇bϕa = Bab, where Bab = B+
ab+εabB

+,13.

This form is useful when analyzing Killing symmetries of the gauge dynamical field, see

section 5.3. The Bianchi identities (5.6) take the form

εac∇c∇bB+
ab +

(
�
AdS2
− 2Λ

)
B+ = 0 , (5.10)

or, equivalently, εab
(
∇a∇cBb

c + ΛBab
)

= 0. We see that there is a single identity corre-

sponding to a single element of the second cohomology I ∈ H(2)(σ+).

13Here we used formula (A.3). The trace component is set to zero by a shift field redefinition because it

belongs to Imσ+.
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5.2 Explicit σ− - reduction: zero-form sector

The σ− cohomological reduction of the unfolded equations (5.2) gives rise to the following

independent equations of motion(
�
AdS2

+m2
s

)
φ = B−(s) ,

(
∇a1 · · · ∇asφ+ . . .

)
= B−(s)

a1...as ,

(5.11)

where φ ∈ H(0)(σ−) and B−(s), B
−(s)
a1....as ∈ H(1)(σ−), coefficient m2

s is given by (4.9); the

ellipses refers to proper symmetrizations and trace terms. The right-hand-sides of equa-

tions (5.11) are not arbitrary and are subjected to the Bianchi identities (5.4). Follow-

ing (3.19) and (3.20), we find that there is a tensor identity between independent equa-

tions (5.11) corresponding to a tensor element I
(s)
a1...as−1 ∈ H(2)(σ−),

∇nB−(s)
na1...as−1

− τs
(
∇a1 . . .∇as−1B

−(s) + . . .
)

= 0 , (5.12)

where τs is some non-vanishing spin-dependent coefficients, cf. (4.8); the ellipses refers to

proper symmetrizations and trace terms.

By way of example, consider the spin-2 case. Here, the equations of motion and

the Bianchi identities are the same as in the previous section, see (5.7) and (5.8). The

cohomological analysis goes along the same lines. So, using the σ− cohomological reduction

one finds from the first equation in (5.7) that φa = −∇aφ. It follows that the resulting

equation for the independent field φ ∈ H(0)(σ−) reads ∇a∇bφ−ηabΛφ = Bab, where tensor

Bab = B−ab + ηabB
−, while B−, B−ab ∈ H

(1)(σ−). The trace and traceless parts of the above

equation are

�
AdS2

φ− 2Λφ = B− , ∇a∇bφ−
1

2
ηab�AdS2

φ = B−ab , (5.13)

cf. equations (5.11). Equations (5.13) reproduce the Jackiw-Teitelboim linearized equations

in the zero-form sector [23–25]. The Bianchi identities (5.12) take the form

∇bB−ab −∇aB
− = 0 , (5.14)

or, equivalently, εbc∇bBca = 0. We see that there is an o(1, 1) vector identity corresponding

to independent elements of the second cohomology Ia ∈ H(2)(σ−).

5.3 Background symmetries

The unfolded equations in the zero-form sector (3.1) can be considered from a different

perspective. Provided the right-hand-side is vanishing, the equations (3.1) are interpreted

as stability transformations for a particular 1-form background gauge field Ω0. From (2.7)

it follows that the stability transformation equation reads

D0ξ
A1...As−1 = 0 , (5.15)
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while its o(1, 1) component form read off from (4.3) is given by

∇mξa1...ak − Λ
(s− k − 1)(s+ k)

2(k + 1)
hm,c ξ

ca1...ak+

+
[
h(a1
m ξa2...ak) − 1

k − 1
η(a1a2hm,c ξ

ca3...ak)
]

= 0 .

(5.16)

Taking into account the analysis of the unfolded equations in the zero-form sector, the

system (5.16) can be treated in two different ways, using either σ− or σ+ cohomological

reduction. Whence it follows that there are two possible interpretations of the stability

transformations.

Using the σ+ cohomological reduction one finds out that (5.16) reduces to equa-

tions (4.10)–(4.11) or (5.5) on tensor parameters ξa1...as−1 at s = 1, 2, . . . ,∞ subjected

to the Bianchi identity (5.6). For a given s, the solution to the stability equations depends

on a finitely many integration constants interpreted as constant o(1, 1) tensors parameter-

izing higher spin global symmetry transformations of the AdS2 background spacetime.14

For instance, in the spin-2 case stability transformation equations can be rewritten in the

form ∇aξb + ∇bξa = 0 (see our comments below (5.9)) and their explicit solution repro-

duces the well-known o(2, 1) Killing vector parameterized by three integration constants

representing three o(2, 1) generators.

On the other hand, using the σ− cohomological reduction one finds out that (5.16)

reduces to equations (4.17)–(4.18) or (5.11) on a scalar parameter ξ(s) at s = 1, 2, . . . ,∞
subjected to the Bianchi identities (5.12). In this case the stability transformations de-

scribe trivial ”improvement” transformations of the respective spin-s conserved currents.

Contrary to the general “improvement” transformations that are invariance transforma-

tions of the conservation condition, the trivial “improvements” do not change the conserved

current itself. It seems that there is no any “background conserved current” similar to the

background spacetime, so that an interpretation of trivial “improvements” remains unclear.

6 Summary of the metric-like formulation

6.1 Metric-like equations of motion

Below we list the metric-like equations following from the σ± cohomological reductions

of the original spin s > 1 unfolded equation system (3.1) and (3.2) analyzed in sections

4 and 5.

• σ+ - reduction

1-form sector:
(
�
AdS2
− s(s− 1)Λ

)
ϕ = C , ϕa1... as = 0 (6.1)

14Detailed discussion of global higher spin symmetries in higher dimensions and their representations can

be found, e.g., in [1, 39, 51–53].
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0-form sector: εmn1∇m∇n2 · · · ∇ns−1ϕ
n1···ns−1 = B+

∇(a1ϕa2...as) −
1

s− 1
η(a1a2∇

c ϕa3...as−1)c = B+
a1...as

(6.2)

• σ− - reduction

1-form sector: ∇nφna1...as−1 = Ca1...as−1 , φ = 0 (6.3)

0-form sector:
(
�
AdS2
− s(s− 1)Λ

)
φ = B−

(
∇a1 · · · ∇asφ+ . . .

)
= B−a1...as

(6.4)

Recall that the metric-like equations in the one-form sector have been obtained using the

higher spin gauge (4.12) in the σ+ case, and the scalar gauge (4.20) in the σ− case. In

particular, the above equations are supplemented with the leftover gauge transformations

and the Bianchi identities in the one-form and the zero-form sectors, respectively. Note

also that the metric-like equations of motion are of order 1, 2, s− 1, s in derivatives.

6.2 Dual metric-like higher spin actions

Let us consider linearized frame-like action (2.9) in the metric-like form. To this end, we

represent the action in Lorentz basis

S0[φ, ω] =
s−1∑
k=0

∫
M2

φa1...akR
a1...ak(ω) , (6.5)

where 0-form fields φa1...ak are given by (5.1) and 2-form field strength Ra1...ak(ω) is ex-

pressed via 1-form gauge fields ωa1...ak (4.2). The corresponding equations of motion are

given by (4.4) and (5.2) with vanishing right-hand-sides.

The idea is to fix Stueckelberg (shift) gauge symmetries and eliminate auxiliary fields

using their own equations of motion substituting then the independent metric-like fields

and the field strengths back to the frame-like action (6.5). In particular, this is the way

one shows the equivalence of the frame-like o(2, 1) BF theory with the original metric-like

Jackiw-Teitelboim model [23–25].

As we have already seen, a reduction to the independent dynamical sector can be

done in two equivalent ways associated either to σ+ or σ− cohomology. Moreover, when

considering both one-form and zero-form sectors simultaneously one has four equivalent

reductions which we denote as (σ±, σ±) reduction, where the first and second sigmas refer

to corresponding reduction in the one-form and zero-form sector, respectively. However, at

the action level one finds out that there are only two possible ways to perform a reduction

to the metric-like form. Equations obtained via (σ−, σ−) or (σ+, σ+) reductions cannot be

derived as variational equations since the number of the independent fields do not coincide

with the number of the equations of motion.
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Equations obtained via the (σ+, σ−) reduction can be derived as the Euler-Lagrange

equations of motion following from the action

S+−
0 [ϕ,ϕa1...as |φ] =

∫
M2

φR(ϕ,ϕa1...as) , (6.6)

where R(ϕ,ϕa1...as) is the 2-from field strength of grade degree k = 0 (4.7) expressed

in terms of the dynamical fields. The equations of motion of the theory (6.6) take the

form (6.1) and (6.4) (using the higher spin gauge). In particular, the linearized action and

equations of the Jackiw-Teitelboim model follow from (6.6) at s = 2.

Analogously, equations obtained via the (σ−, σ+) reduction follow from the other action

S−+
0 [φ, φa1...as |ϕa1...as−1 ] =

∫
M2

ϕa1...as−1 R
a1...as−1(φ, φa1...as) , (6.7)

where Ra1...as−1(φ, φa1...as) is the 2-form field strength of grade degree k = s − 1 (4.15)

expressed in terms of the dynamical fields. The equations of motion of the theory (6.7)

take the form (6.2) and (6.3) (using the scalar gauge).

The form of actions (6.6) and (6.7) can be explained by resorting to the cross-

duality (3.21) exhibited by the cohomology groups H(m)(σ+) and H(n)(σ−) that gives,

in particular, H(2)(σ±) ≈ H(0)(σ∓). To this end, one employs inner product (3.9) on the

space Gs and reformulates action (6.5) as S0[φ, ω] =

∫
M2

〈φ|R〉, where φ, ω,R ∈ Gs. Then,

eliminating the auxiliary fields via their own equations of motion one finds that fields of

the metric-like formulation are elements of the cohomology, 0-forms 〈φ| ∈ H(0)(σ±) and

reduced 2-forms |R〉 ∈ H(2)(σ∓). After that, using the properties (3.10), (3.11) along with

the above cross-duality relation one arrives at the two actions considered above.

On the other hand, both types of the cohomological reductions describe the same

dynamical system. It suggests there exists a duality mapping between two linear theories

given by (6.6) and (6.7). It would be interesting to provide an exact definition of such

a mapping originated from the cohomology cross-duality and to study its properties and

implications beyond the linear approximation.

6.3 The model interpretation

The equations of motion in the one-form sector have been previously interpreted as de-

scribing topological maximal depth partially-massless higher spin fields on the AdS2 back-

ground [10]. It should be noted that such an interpretation follows from (σ+, σ−) - reduction

described by action (6.6).

In this case, the equations of motion in both zero-form and one-form sectors (in the

gauge fixed form) are given by the same Klein-Gordon equation
(
�
AdS2
− s(s− 1)Λ

)
ϕ = 0

and
(
�
AdS2
−s(s−1)Λ

)
φ = 0 for two scalars ϕ and φ. The general solution depends on two

arbitrary functions of spacetime coordinates so that it can be interpreted as left and right

waves. However, there are gauge symmetry in the one-form sector and additional tensor

constraint along with the Bianchi identities in the zero-form sector that eventually eliminate

the functional freedom leaving no local modes (only a finitely many integration constants).

The absence of propagating degrees of freedom leaves enough room for interpretation of
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the equations of motion under consideration. We set that fields in the one-form sector are

gauge fields, while those in the zero-form sector are dilaton fields, both topological.

The spectrum of the model can be interpreted as follows. The BF higher spin theory

given by action (6.6) describes: (one-form sector) topological s = 1 massless Maxwell field

and s = 2 graviton field along with increasing spin s = 3, 4, ... partially-massless gauge fields

of the maximal depth; (zero-form sector) topological dilaton fields with increasing masses

m2
s = −s(s− 1)Λ. In this form action (6.6) can be treated as a higher spin gauge-dilaton

extension of the original (linearized) Jackiw-Teitelboim dilaton gravity model.

7 The higher spin algebras in two dimensions

To formulate a non-linear BF higher spin theory the fields should be represented as connec-

tions of some (in)finite Lie algebra. In the case of finitely many fields a higher spin algebra

can be identified with sl(N,R) algebra provided that its basis elements are represented as

TA1 ⊕ TA1A2 ⊕ · · · ⊕ TA1...AN−1
, (7.1)

where generators TA1...Ak are rank-k totally symmetric and traceless sl(2,R) algebra ten-

sors [14, 15, 54]. Gauging algebra (7.1) yields a finite collection of 0-form and 1-form fields

of the type (2.5). A natural infinite-dimensional generalization of (7.1) should have the

following structure
∞⊕
s=1

⊕
ls

T
(ls)
A1...As−1

, (7.2)

where the numbers ls are multiplicities of spin-s basis elements. Note that (7.2) contains

also infinitely many copies of gl(1,R) generator T corresponding to the spin-1 Abelian

connection.

A convenient way to realize higher spin algebras with generators TA1...As−1 (7.2) is to

represent them as homogeneous polynomials of degree-(s− 1) in auxiliary vector variables.

It is remarkable that such a vector realization can be obtained using d-dimensional oscillator

approach based on the o(2, d − 1) − sp(2) Howe duality proposed by Vasiliev [43, 44]. In

what follows, we use the o(2, 1)−sp(2) Howe duality to describe the one-parametric family

of 2d higher spin algebras hs[ν] originally introduced by Feigin as quotients of the universal

enveloping algebra U(sl(2)) [36], and by Vasiliev as the enveloping algebra of the Wigner

deformed oscillator algebra [37].

7.1 Oscillator approach

Following the original papers [43, 44], we consider auxiliary doublet variables Y A
α , with

sp(2) vector index α and o(2,M) vector index A,15 and consider polynomials expanded in

the auxiliary variables as follows

F (Y ) =

∞∑
k=0

Fα1...αk
A1...Ak

Y A1
α1
...Y Ak

αk
=

∞∑
m,n=0

FA1...Am|B1...BnY
A1

1 · · ·Y Am
1 Y B1

2 · · ·Y Bn
2 , (7.3)

where expansion coefficients are totally symmetric in both groups of indices.

15In this section symplectic indices α, β, γ, ... = 1, 2, vector indices A,B,C... = 0, ...,M + 1, the o(2,M)

invariant metric is ηAB = (+− ....−+), symplectic indices are raised and lowered with the sp(2) invariant

metric εαβ = −εβα.
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Define now the Weyl star-product

(F ∗G)(Y ) =
1

π2M

∫
dSdT F (Y + S)G(Y + T ) exp(−2SAα T

α
A) . (7.4)

It follows that the auxiliary variables satisfy the following commutation relations[
Y A
α , Y

B
β

]
∗ = εαβη

AB. A space of polynomials (7.3) endowed with the star-product (7.4) is

the Weyl algebra AM+2.

The algebraAM+2 is a bi-module over o(2,M) and sp(2) algebras. Their basis elements

are realized as bilinear combinations of the auxiliary variables

TAB =
1

2
εαβ
{
Y A
α , Y

B
β

}
∗ , tαβ =

1

2
ηAB

{
Y A
α , Y

B
β

}
∗ . (7.5)

Bilinears TAB and tαβ commute, [TAB, tαβ]∗ = 0. Moreover, the two algebras form a Howe

dual pair o(2,M)−sp(2) [55]. It follows that sp(2) highest weight conditions imposed on el-

ements of AM+2 single out particular finite-dimensional o(2,M) irreducible representations

(see section 7.2 for more details).

Using (7.5) one finds that quadratic Casimir operators C2 = 1
2 TAB ∗ T

AB of o(2,M)

algebra and c2 = 1
2 tαβ ∗ t

αβ of sp(2) algebra are related as

C2 =
1

4
(M2 − 4) + c2 . (7.6)

Higher spin algebras considered below are various quotients of the ∗-product algebra

SM+2 ⊂ AM+2 of all polynomials spanned by sp(2) invariant elements[
tαβ, F (Y )

]
∗ = 0 . (7.7)

Endowing the associative algebra SM+2 with the commutator [F,G]∗, where F,G ∈ SM+2

one obtains the Lie algebra denoted as hc(1|2:[M, 2]) [44].16

In general, associative algebra SM+2 (as well as Lie algebra hc(1|2 : [M, 2])) contains

various two-sided ideals I. For instance, there exists the maximal ideal spanned by elements

I1 =
{
g(Y ) = tαβ ∗ gαβ(Y )

}
,

[
tαβ, g

γρ
]
∗ = δγβ gα

ρ + 3 terms , (7.8)

where gαβ(Y ) is an arbitrary polynomial transforming as an sp(2) symmetric tensor. Us-

ing ideals I one defines quotient algebras H = SM+2/I. So, factoring out the maximal

ideal (7.8) gives rise to associative algebra SM+2/I1. A particular real form of the respec-

tive Lie algebra hc(1|2 : [M, 2])/I1 is denoted as hu(1|2 : [M, 2]) [44]. It is singled out by

reality conditions (
F (Y )

)†
= −F (Y ) , (7.9)

where the involution † of the complex algebra SM+2 is defined as (Y A
α )† = Y A

α and(
aF (Y )

)†
= ā

(
F (Y )

)†
, where a ∈ C, and the bar stands for the complex conjugation.

Gauging hu(1|2 : [M, 2]) yields totally symmetric massless (Fronsdal) fields of increasing

spins s = 1, 2, ...,∞.

16In what follows, by a slight abuse of notation, we denote associative algebras and Lie algebras obtained

by taking the commutators with respect to the associative product by the same symbols.
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In what follows, we explicitly consider the case of M = 1 and study quotient higher

spin algebras corresponding to different ideals, including the maximal one. We show that

hc(1|2:[1, 2])/I1 is a finite-dimensional algebra. Therefore, in order to produce an infinite-

dimensional higher spin algebra one should use non-maximal ideals. We identify two infinite

families of ideals that yield both finite- and infinite-dimensional quotient higher spin alge-

bras. Our analysis also applies to the case of M = 2, where the AdS3 global symmetry

algebra o(2, 2) ≈ o(2, 1) ⊕ o(2, 1), and each factor can be considered by analogy with the

case of M = 1.

7.2 Howe dual realization of U(o(2, 1))

Howe dual algebras sp(2) and o(M, 2) act on AM+2 so that expansion coefficients of F (Y )

in the auxiliary variables (7.3) are both sp(2) and o(2,M) tensors. On the other hand, the

sp(2) invariance condition (7.7) says that these tensors are of particular index symmetry

type. It follows that the resulting expansion coefficients of (7.3) are o(2,M) traceful tensors

with index symmetry described by rectangular two-row Young diagrams

FA1...Am, B1...Bm : F(A1...Am, B1)B2...Bm ≡ 0 . (7.10)

In the M = 1 case, any o(2, 1) traceful two-row rectangular tensor (7.10) can be

decomposed into one-row tensors because any traceless o(2, 1) tensor with indices described

by two-row Young diagram with more than one cell in the second row vanishes identically,

while those with a single cell in the second row are dualized using the Levi-Civita tensor,

see (2.2).

It follows that a linear space of the algebra S3 spanned by sp(2) singlets (7.7) can be

represented as an infinite collection of one-row traceless Young diagrams. Indeed, let Tm
denote a spin-m o(2, 1) irrep given by a totally symmetric traceless o(2, 1) tensor. Then,

one can show that a linear space of S3 as o(2,1) module is decomposed in a direct sum

S3 =

∞⊕
m=0

∞⊕
l=1

T (l)
m , (7.11)

where a superscript l stands for multiplicity, cf. (7.2). Elements of linear space (7.11) can

be depicted on the following plot:

• · · ·
• · · ·

• · · ·
• · · ·

(7.12)

Here, irreps Tk are depicted as length-k Young diagrams, dots • correspond to scalar

components T0. Irreps Tk resulted from decomposing a traceful two-row rectangle of length

m− 1 are disposed vertically, k = 0, ...,m. Note that an each line on the plot successively

depicts all basis elements of gl(N) algebra, where N = 1, 2, 3, ....

The other way around, traceless symmetric tensors can be rearranged as traces of a

given totally symmetric traceful tensor. It suggests that the linear space can be described
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by traceful symmetric tensors of all ranks from zero to infinity, each in a single copy. It can

be equivalently seen by dualizing traceful rectangular o(2, 1) diagrams (7.10). It follows

that the linear space of S3 can be represented as

S3 =

∞⊕
k=0

Gk , (7.13)

where Gk denotes a rank-k symmetric traceful o(2, 1) tensor; it follows that Gk = Tk ⊕
Tk−2 ⊕ · · · . On the plot (7.12) a tensor Gk corresponds to the k-th vertical column.

Let us now notice that when indices A,B, ... run just three values it is possible to

introduce new variables

TA = εABCε
αβY B

α Y
C
β , (7.14)

which are in fact Hodge dualized o(2, 1) basis elements (7.5), and hence satisfy the com-

mutation relations
[
TA, TB

]
∗ = εABCT

C . One can show that any sp(2) singlet F (Y ) can

be equivalently rewritten as an arbitrary polynomial F (T ). Indeed, the sp(2) invariance

condition (7.19) says that expansion coefficients of any F ∈ S3 (7.3) have even numbers of

sp(2) and o(2, 1) vector indices, and can be represented as

Fα1...α2m
A1...A2m

= εα1α2 ... εα2m−1α2mFA1A2| ··· |A2m−1A2m
(7.15)

where each group of two vector indices |AiAi+1| is antisymmetric (see [56] for more details).

Using the definition (7.14) along with (7.15) one finds that (7.3) can be completely rewritten

as polynomials of o(2, 1) bilinears TA with totally symmetric expansion coefficients. Note

that TA are sp(2) singlets. It follows that the space S3 of sp(2) singlets is now naturally

realized as functions of sp(2) invariant variables. The action of Howe dual algebra sp(2)

becomes implicit.

In this way, we establish that the associative algebra S3 of sp(2) singlets and the

universal enveloping algebra U(o(2, 1)) are isomorphic,

S3 ≈ U(o(2, 1)) . (7.16)

Note that the above consideration applies to SM+2 for any M . However, its basis

elements are parameterized by o(2,M) two-row rectangle o(2,M) diagrams (7.10) so that

SM+2 cannot be interpreted as the universal enveloping algebra U(o(2,M)). In the case

of M = 1 two-row rectangle diagrams become arbitrary one-row diagrams making isomor-

phism (7.16) possible.

Trace decomposition. Subtracting o(2, 1) traces can be done systematically if one em-

ploys sp(2) Howe dual algebra. To this end, consider first o(2,M) trace decompositions.

From the definition of sp(2) basis elements tαβ (7.5) it follows that all three possible traces

of a tensor with indices described by o(2,M) two-row Young diagram can be collectively

represented as three independent sp(2) generators. In particular, any multiple trace of

F ∈ S3 is to be proportional to the following combination [56]

tαβ · · · tγρ c2 · · · c2 . (7.17)
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Here, sp(2) indices are assumed to be symmetrized. Totally antisymmetric combinations

of tαβ produces powers of the sp(2) Casimir element c2.

By way of example consider particular polynomial F (Y ) = FAB|CDY
A

1 Y
B

1 Y C
2 Y D

2 sub-

jected to the sp(2) invariance condition (7.7). It follows that an expansion coefficient

FAB,CD is described by a “window” Young diagram . On the other hand, the expansion

coefficient is traceful so that a decomposition into traceless parts yields a linear combination

FAB,CD = F 0
AB,CD + ηABF

1
CD + ηABηCDF

2 + . . . , (7.18)

where the ellipsis denote proper symmetrization of indices, while F 0
AB,CD, F 1

AB, and F 2 are

traceless components. Substituting the above decomposition into F (Y ) one finds that the

second term is proportional to tαβ, while the third term is proportional to c2, i.e., F (Y ) =

F0(Y ) + tαβF
αβ
1 (Y ) + c2F2. For the case of M = 1 the first term in decomposition (7.18)

identically vanishes, F 0
AB,CD = 0. The second and the third terms correspond to T2 and

T0 elements depicted in the third vertical column on the plot (7.12).

It follows that a trace decomposition of any F (Y ) ∈ S3 reads [56]

F (Y ) = F0 + F1(Y ) +

∞∑
k,m=0

Fα1...α2k

(m) (Y ) tα1α2 · · · tα2k−1α2k
(c2)m , (7.19)

where F0 and F1(Y ) denote the scalar and the vector components, while Fα1...α2k

(m) (Y ) are

totally symmetric sp(2) rank-2k tensors, a subscript m stands for a multiplicity. Using the

symmetry property F ...αβ......AB... = F ...βα......BA... one concludes that expansion coefficients in (7.19)

are given by totally symmetric o(2, 1) traceless tensors. It is worth noting that analogous

decomposition for elements of SM+2 algebra is 3-parametric, while taking M = 1 leaves

only 2 parameters. The absent branch corresponds to traceless two-row rectangular o(2,M)

Young diagrams. In the case M = 1 this branch reduces to the two first terms.

One concludes that the first line in (7.12) contains Tk for k ≥ 2 that appear as coeffi-

cients in front of symmetrized combinations t(α1α2
∗ ... ∗ tα2k−1α2k), while subsequent lines

necessarily contain powers of c2. Any tensor on the plot (7.12) is proportional to particular

combination (7.17) except for the first two scalar T0 and vector T1 representations.

7.3 Quotient higher spin algebras

Algebra S3 is not simple. In what follows, we consider two types of ideals I ⊂ S3 along

with respective quotient algebras S3/I which we call vertical and horizontal ones according

to their graphical interpretation (7.12) and trace decomposition (7.19).

For instance, factoring out the maximal ideal I1 spanned by elements (7.8) yields the

quotient H1 = S3/I1 spanned by a finitely many basis elements

H1 = T0 ⊕ T1 , (7.20)

corresponding to gl(2,R) ≈ gl(1,R) ⊕ sl(2,R) algebra. Indeed, using the trace decompo-

sition (7.19) one notes that all elements in (7.12) save for T0 and T1 are proportional to

sp(2) generators tαβ. It follows that all such elements belong to the ideal I1 and therefore

are to be factored out.
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7.3.1 Horizontal factorization

The maximal ideal is the first element in a family of two-sided ideals

Ik =
{
Tα1...α2k

∗ gα1...α2k(Y )
}
, k ∈ N , (7.21)

where

Tα1α2...α2k
= t(α1α2

∗ ... ∗ tα2k−1α2k) , (7.22)

and gα1...α2k(Y ) is a rank-2k symmetric sp(2) tensor:
[
tγρ, g

α1α2...
]
∗ = δα1

ρ gγ
α2 + . . . , where

the ellipses denotes all possible symmetrizations. Using the associativity of the ∗-product,

the sp(2)-invariance condition (7.7), and the following elementary properties[
tγρ , g

γρα3...α2k(Y )
]
∗ = 0 ,

[
Tα1...α2k

, gα1...α2k(Y )
]
∗ = 0 ,

[
F (Y ) , Tα1α2...α2k

]
∗ = 0 ,

(7.23)

where F (Y ) ∈ S3, one shows that Ik ⊂ S3 is a two-sided ideal. Note that ideals (7.21)

form an infinite flag sequence

I1 ⊃ I2 ⊃ · · · ⊃ Ik ⊃ · · · . (7.24)

A quotient algebra Hk = S3/Ik is given by

Hk =
2k−1⊕
m=0

Gm . (7.25)

cf. (7.13). It is finite-dimensional and isomorphic to a direct sum of general linear algebras

Hk ≈ gl(2,R)⊕ ...⊕ gl(2k − 2,R)⊕ gl(2k,R) . (7.26)

To prove (7.26) one notes that factoring out elements proportional to (7.22) for a given k

is equivalent to truncating the plot (7.12) starting from (2k+1)-th column. The remaining

elements form (7.25).

7.3.2 Vertical factorization

Another type of ideals is given by a family

It =
{
It(c2) ∗ g(Y ) , ∀g ∈ S3

}
, (7.27)

where It(c2) is a t-th order ∗-product polynomial in the sp(2) Casimir element c2. Using the

sp(2) invariance condition (7.7) one shows that It ⊂ S3 are two-sided ideals. From (7.19)

and (7.12) it follows that the resulting quotient algebra Ht = S3/It is given by

Ht =

∞⊕
m=0

t⊕
l=1

T (l)
m . (7.28)
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Any polynomial It(c2) can be decomposed into elementary monomials, so that an ideal

corresponding to I1 = c2 + ν, where ν is a constant parameter,

I1
ν =

{
(c2 + ν) ∗ g(Y ) , ∀g ∈ S3

}
, (7.29)

is special. Taking t = 1 in (7.28) one arrives at the quotient algebra H1
ν = S3/I1

ν given by

H1
ν =

∞⊕
m=0

Tm . (7.30)

Recalling that S3 ≈ U(o(2, 1)) (7.16) and using the relation c2 = C2 + 3
4 obtained

by taking M = 1 in formula (7.6), one finds that the above factorization is equivalent

to factoring out elements proportional to C2 + 3
4 from the universal enveloping algebra

U(o(2, 1)). In this way, we obtain that H1
ν = U(o(2, 1))/IC2+ 3

4
+ν , and, therefore, H1

ν is

isomorphic to the higher spin algebra hs[ν] [36, 37, 57]. On the other hand, the algebra

hs[ν] is spanned by polynomials of two spinor variables qα and an idempotent element K

with commutation relations [qα, qβ] = 2iεαβ(1 + νK), {qα,K} = 0 [37].

Note that the two types of factorizations can be visualized on the plot (7.12). The hori-

zontal factorization corresponds to truncating the plot horizontally starting from (2k+1)-th

column. The vertical factorization corresponds to truncating the plot vertically starting

from t-th row.

7.3.3 Double factorizations

For particular integer ν algebra H1
ν (7.30) contains an additional (infinite-dimensional)

ideal. The corresponding quotient is a finite-dimensional general linear algebra [36, 37].

Using the o(2, 1)− sp(2) Howe duality this can be seen as follows.

For a given ν, all other ideals I1
µ for µ 6= ν and ideals Ik (7.21) for any k in the quotient

S3/I1
ν become the trivial ideal which is the entire quotient itself.

Indeed, factoring out I1
ν one obtains that in the quotient algebra H1

ν the sp(2) Casimir

element takes a particular value c2 = −ν. Consider now ideal Iµ ⊂ S3 with parameter

µ 6= ν. Using definition (7.29) one shows that elements of Iµ restricted to quotient H1
ν are

of the form (µ−ν)g, where g ∈ H1
ν . As a result, I1

µ ≈ H1
ν for µ 6= ν, and I1

µ ≈ ∅ for µ = ν,

so that the ideal becomes trivial.

The same reasoning applies to another type of ideals Ik restricted to the quotient

algebra H1
ν . To this end, taking in (7.21) elements gα1...α2k(Y ) = Tα1...α2k(Y )∗g(Y ), where

∀g(Y ) ∈ S3, and using the formula

Tα1α2...α2k
∗ Tα1α2...α2k = τk

k−1∏
m=0

∗ (c2 + αm) , αm = m(2m+ 1) , (7.31)

where τk is some non-vanishing normalization coefficient, one shows that Ik contains ele-

ments g(Y ) ∗
∏k−1
m=0 ∗ (c2 + αm), where αm = m(2m + 1). Substituting the quotient value

c2 = −ν one finds that Ik contains elements of the form g(Y )
∏k−1
m=0 (αm − ν0), where

g(Y ) ∈ H1
ν0 . For general values ν the appearance of these elements implies that the ideal

Ik is trivial, i.e., Ik ≈ Hν .
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However, for particular integer values

ν0 = (k − 1)(2k − 1) , k ∈ N , (7.32)

one finds that the ideal Ik restricted to H1
ν0 is non-trivial, and, therefore, can be factored

out. Indeed, ideal Ik restricted to H1
ν0 does not contain any powers of the sp(2) Casimir

element since c2 = −ν0. On the other hand, it contains combinations Tα1α2...α2l
for l ≥ k

only, cf. (7.22) and (7.24). Since the horizontal factorization yields a finite-dimensional

quotient, we conclude that the result of such a double factorization is finite-dimensional as

well: examining the plot (7.12) one finds out that basis elements of the double factorization

span a general linear algebra,

H1
ν0/Ik ≈ gl(2k,R) . (7.33)

Note that the rank of the algebra (7.33) is even. In Conclusions 9 we discuss how to take

account of odd values.

Finally, one can use a combination of the two types of ideals in a single factorization.

For instance, consider a composite two-sided ideal Ip1 =
{
tαβ ∗ Ip(c2) ∗ gαβ(Y )

}
provided

that a sp(2) symmetric tensor gαβ is not proportional to tαβ, and I(c2) is some p-th order

polynomial in c2. The resulting quotient algebra is given by

Hp1 =
[
T0 ⊕ T1

]
⊕
[ ∞⊕
m=0

p⊕
l=1

T (l)
m

]
. (7.34)

7.4 Factorization via (quasi-)projectors

To describe quotients of algebra S3 explicitly one employs the projecting technique elab-

orated in [44, 46].17 Given a quotient H of algebra S3 with respect to some ideal I one

introduces a quasi-projector ∆ satisfying the basic property

∆ ∗ h = h ∗∆ = 0 , ∀h ∈ I . (7.35)

Then, it follows that elements of quotient H = S3/I can be parameterized as follows

H =
{
g ∈ H : g = ∆ ∗ F , ∀F ∈ S3

}
. (7.36)

An educated guess is to consider the following ansatz

∆ = ∆(z) , z = YαAY
A
β Y

α
B Y

βB . (7.37)

Note that z = 2c2 − 9/2, where c2 is sp(2) Casimir operator. Variable z is invariant with

respect to both sp(2) − o(2, 1) Howe dual algebras, [tαβ, z]∗ = 0 and [TA, z]∗ = 0. In

particular,

∀F ∈ S3 : ∆ ∗ F = F ∗∆ . (7.38)

In appendix B we explicitly analyze the projecting conditions (7.35) imposed on

∆(z) (7.37). We show that the horizontal projecting condition is given by an ordinary

17The projecting technique was also discussed in refs. [58–62].
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2k-th order differential equation for function ∆k(z). The vertical projecting condition is

an ordinary 4-th order differential equation for function ∆ν(z). In both cases the searched-

for solutions have the form of the series ∆(z) = κ0z
α + κ1z

α+1 + κ2z
α+2 + · · · , for some

degree α ≥ 0 and fixed coefficients κi depending on either k or ν. Also, we analyze solutions

with parameter ν taking particular values (7.32).

8 Non-linear higher spin BF action

As a starting point, we formulate a non-linear higher spin theory in two dimensions as

BF theory with gauge fields taking values in the adjoint representation of the infinite-

dimensional Lie algebra hc(1|2:[1, 2]) explicitly discussed in section 7.2. After that, using

the factorization procedure of section 7.4 we describe reduced theories with fields taking

values in the quotient higher spin Lie algebras.

The fields of the theory are 0-forms and 1-forms taking values in hc(1|2:[1, 2]) algebra

Ψ(Y |x) , W (Y |x) = dxmWm(Y |x) . (8.1)

From (7.11) it follows that the expansion coefficients in the auxiliary variables of (8.1) are

0-form and 1-form fields taking values in totally symmetric traceless o(2, 1) representations

of any rank. Each independent field enters in infinitely many copies, cf. (7.2). We assume

that fields (8.1) satisfy the reality conditions

Ψ†(Y ) = −Ψ(Y ) , W †(Y ) = −W (Y ) , (8.2)

where the conjugation † is defined by (7.9).

The higher spin curvature associated to 1-form gauge fields (8.1) is defined as

R(Y |x) = dxmdxnRmn(Y |x) = dW (Y |x) +W (Y |x) ∗W (Y |x) , (8.3)

while the infinitesimal gauge transformations are

δεW = Dε , δεΨ = [Ψ, ε]∗ , δεR = [R, ε]∗ , (8.4)

where ε = ε(Y |x) is 0-form gauge parameter taking values in the algebra hc(1|2:[1, 2]), and

DF = dF + [W,F ]∗ , d = dxm
∂

∂xm
, (8.5)

is the gauge covariant derivative.

Consider now an invariant bilinear form on the higher spin algebra needed to build a

BF action. To this end, define a trace of any element F (Y ) ∈ hc(1|2:[1, 2]) as follows [63]

Tr(F (Y )) = F (0) . (8.6)

The trace satisfies the cyclic property

Tr
(
F ∗G−G ∗ F

)
= 0 , ∀F,G ∈ hc(1|2:[1, 2]) , (8.7)
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that can be directly shown using the definition (7.4) and the property that F is even

function, F (Y ) = F (−Y ). It follows that the algebra hc(1|2:[1, 2]) can be endowed with

the following invariant bilinear form

〈F,G〉 = Tr(F ∗G) , (8.8)

which is symmetric 〈F,G〉 = 〈G,F 〉 and invariant
〈
[F,G]∗, H

〉
=
〈
G, [H,F ]∗

〉
. From (7.4)

it follows that the invariant form has an integral representation useful in practice.

Using the invariant bilinear form (8.8) one defines the higher spin BF action as

S[Ψ,W ] = g

∫
M2

Tr (Ψ ∗ R) (8.9)

where g is a dimensionless coupling constant. The above action can be invariantly extended

by adding potentials which are linear combinations of Casimir polynomials κiIi(Ψ) on the

algebra, where κi are coupling constants.

The equations of motion obtained by varying with respect to Wm(Y |x) and Ψ(Y |x) are

Rmn(Y |x) = 0 , (8.10)

and

DmΨ(Y |x) = 0 , (8.11)

where the gauge covariant derivative Dm is given by (8.5). The equation (8.10) is the

covariance constancy condition involving both fields Ψ and Wm, while equation the (8.11)

is the zero-curvature condition involving fields Wm only. It follows that the gauge sector

of the theory can be analyzed independently. Adding invariant potentials to the action

results in that the curvature acquires non-vanishing right-hand-side. For instance, addi-

tional terms proportional to the second-order invariant operator I2 = Tr(Ψ ∗Ψ) yields the

deformation (2.12) discussed earlier within the linearized theory.

By construction, the higher spin BF action is invariant under the gauge symmetry

transformations (8.4). On the other hand, the theory is manifestly diffeomorphism in-

variant as it is formulated via differential forms, while containing no metric tensor. The

diffeomorphism transformations of fields (8.1) are given by the respective Lie derivatives

δξΨ = ξm∂mΨ , δξWn = ξm∂mWn + ∂nξ
mWm , (8.12)

that can be represented as follows

δξΨ =
[
Ψ, ξmWm

]
∗ + ξmDmΨ , δξWn = Dm

(
ξnWn

)
+ ξnRnm . (8.13)

The terms proportional to the field equations represent the trivial invariance transforma-

tions vanishing on the mass-shell. Indeed, given any action S[φi] depending on fields φi,

i = 1, 2, 3, ... one has a trivial invariance transformation δφi = Mij δS/δφj , where the pa-

rameter matrix is antisymmetric Mij = −Mij . Symmetries which differ by these trivial

terms are equivalent. In our case, 0-form Ψ and 1-form W are identified with φ1 and φ2.
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It follows that modulo the trivial transformations the diffeomorphisms are just a particu-

lar gauge transformation with a field-dependent gauge parameter, and, therefore, can be

disregarded as independent symmetries.18

8.1 Linearization around AdS2 background

The higher spin theory (8.9) contains the gravitational subsector since the higher spin

algebras under consideration always contain o(2, 1) subalgebra. Moreover, the ground

state of the model is identified with the AdS2 spacetime. It seems natural to have AdS2

spacetime as the background, because in this way higher dimensional higher spin gauge

theories extend to the 2d case while keeping their main characteristic features intact: higher

spin gauge fields and the AdS background geometry. One should note, however, that

contrary to d ≥ 4 higher spin theories the AdS2 background is not necessarily required to

have a consistent interacting theory.19 Recall that switching on the cosmological constant

Λ 6= 0 is indispensable to guarantee consistent gravitational interactions of gauge massless

higher spin fields. In two and three dimensions it seems that taking Λ = 0 does not prevent

having a consistent theory with higher spin symmetries because higher spin fields carry no

local degrees of freedom.

Fixing the background connection W0 we treat dynamical fields Ω as fluctuations,

W (Y |x) = W0(Y |x) + Ω(Y |x) , (8.14)

where W0 satisfies the o(2, 1) zero-curvature condition (2.3) and describes AdS2 spacetime.

A background value of Ψ is discussed below, while perturbations over Ψ0 are defined as

Ψ(Y |x) = Ψ0(Y |x) + Φ(Y |x) , (8.15)

where Φ are dynamical fields. Up to the second order in the fields the non-linear curva-

ture (8.3) decomposes as

R(Y |x) = R0(Y |x) +R(Y |x) + ... , (8.16)

where

R0 = dW0 +W0 ∗W0 , R = dΩ +W0 ∗ Ω + Ω ∗W0 . (8.17)

Substituting the perturbative expansions (8.14), (8.15) into the equations of mo-

tion (8.10), (8.11) one finds that the background fields satisfy the following equations

dW0 +W0 ∗ W0 = 0 , dΨ0 + [W0,Ψ0]∗ = 0 . (8.18)

The first equation above is the zero curvature-condition (2.3), while the background field

Ψ0 remains unknown. Next, the first-order equations are given by

dΩ + [W0,Ω]? = 0 , dΦ + [W0,Φ]∗ + [Ω,Ψ0]∗ = 0 . (8.19)

18In particular, for the spin s = 1 two components of the diffeomorphism parameter ξn(x) combine into a

single scalar gauge parameter ε(x). For the spin s = 2 case one shows that the gauge transformation of the

frame with o(1, 1) vector parameter εa(x) and the diffeomorphism with parameter ξn(x) are identified [64].

For the higher spins s > 2 diffeomorphism parameters form a subspace in the gauge parameter space.
19See, e.g., refs. [65, 66], where 3d flat higher spin theory was discussed.
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Suppose now that Ψ0 is x-independent, that is dΨ0 = 0. Then, the second equation

in (8.18) says that

[W0,Ψ0]∗ = 0 . (8.20)

It follows that o(2, 1)-invariant non-vanishing vacuum value of the 0-form field is a function

of the sp(2) basis elements only

Ψ0(Y ) = a(0) + aαβ(0)tαβ + a(1)c2 + ... =

∞∑
k, l=0

aα1α2...α2k

(l) Tα1α2...α2k
∗ (c2∗)l , (8.21)

where aα1α2...α2k

(l) are some (Y, x)-independent (constant) sp(2) symmetric tensor parame-

ters, Tα1α2...α2k
is given by (7.22) and c2 is sp(2) Casimir operator.20 Recall that these

properties guarantee the sp(2) invariance of Ψ0, cf. (7.19). The fluctuation field Ω is also

sp(2) invariant, and therefore it commutes with any combination of tαβ. As a result,

[Ω,Ψ0]∗ = 0.

It follows that the linearized equations of motion (8.19) take the form

dΩ + [W0,Ω]∗ = 0 , dΦ + [W0,Φ]∗ = 0 . (8.22)

The Abelian part of the gauge transformation (8.4) for fluctuations has the form

δεΩ = D0ε ≡ dε+ [W0, ε] , δεΦ = 0 , δεR = 0 , (8.23)

where the linearized derivative D0 reproduces the definition (2.6), while the above trans-

formations themselves reproduce (2.7) and (2.8).

Now, the trace decomposition (7.19) that brings the higher spin algebra hc(1|2:[1, 2])

into the basis where all basis elements are given by traceless o(2, 1) tensors (7.12) is ex-

pressed via the sp(2) generators. It follows that field Ωm decomposes into irreducible

components as

Ωm :=
∞⊕
s=1

∞⊕
k=0

Ω(s,k)
m , (8.24)

where components Ω
(s,k)
m are 1-form spin-s gauge fields Ω(k)A1...As−1

m with s − 1 totally

symmetric traceless o(2, 1) indices, while the label k stands for a multiplicity, cf. (7.2).

On the other hand, field equations (8.22) can be represented via the background co-

variant derivative as D0Ω = 0 and D0Φ = 0, cf. (3.1), (3.2). Therefore, using D0tαβ = 0

one finds out that the field equations (8.22) can be decomposed into o(2, 1) irreducible com-

ponents as well. In each irreducible spin-s sector equations of motion take the form (2.10);

each pair of equations (2.10) comes in infinitely many copies. Whence, the spectrum of the

model contains infinitely many copies of all integer spin-s subsystems,

1[∞], 2[∞], 3[∞], ... ,∞[∞] , (8.25)

where 1, 2, 3, .. denote spins, while a subscript [·] denotes a multiplicity, which in the present

case is infinite, cf. (8.24).

20Choosing Ψ0 = tαβa
αβ in (8.21) is similar to non-vanishing vacuum value of the 0-form in the BF

higher spin model considered in ref. [8].
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8.2 Reduced BF higher spin models

The spectrum of the AdS2 higher spin gravity model (8.9) is infinite and degenerate. It

can be truncated in two possible ways.

• Horizontally reduced model: finitely many fields with spins bounded from above,

each field appears in several copies.

• Vertically reduced model: infinitely many fields of all spins from zero to infinity, each

field appears in a single copy.

It is clear that such reduced models are governed by respectively horizontal and vertical

quotient higher spin algebras of section 7.3.

We propose to describe reduced models with fields taking values in the quotient higher

spin algebras by the BF action (8.9) modified by the projecting operator ∆ in the following

manner21

S∆[Ψ,W ] = g

∫
M2

Tr
[
∆ ∗Ψ ∗ R

]
, (8.26)

where, according to particular factorization, one chooses either the horizontal projector ∆k

or the vertical projector ∆u of section 7.4. By inserting ∆ we reduce the original spectrum

of fields to a smaller subset of fields identified with representatives of the quotient algebra.

Indeed, ∆ is defined to send all elements of the corresponding ideals in hc(1|2 : [1, 2]) to

zero (7.35).

Action (8.26) can be understood by introducing a new invariant form. Indeed, we

replace the invariant form (8.8) on the algebra hc(1|2:[1, 2]) by the following form

〈F,G〉∆ = Tr(∆ ∗ F ∗G) , F,G ∈ hc(1|2:[1, 2]) . (8.27)

The invariance and symmetry properties are not spoiled by ∆ as it commutes with F

and G, (7.35). However, the invariant form (8.27) is degenerate since 〈F,G〉∆ = 0 for

∀F ∈ hc(1|2:[1, 2]) and ∀G ∈ I.

Reduced action (8.26) is invariant with respect to the gauge transformations (8.4).

Additionally, it acquires a new type of invariance due to a degeneracy of the form (8.27),

δΨ(Y |x) = A(Y |x) , A ∈ I ,

δW (Y |x) = B(Y |x) , B ∈ I .
(8.28)

If the factorization with respect to the ideal I gives a quotient algebra which is not simple,

then there happens a symmetry enhancement governed by an additional ideal. This is the

case of the double factorization described in sections 7.3.3 and 7.4.

The equations of motion of the reduced theory (8.26) are

∆ ∗ Rmn(Y |x) = 0 , (8.29)

21Action functionals of this type were previously considered within AdS5 higher spin interacting theo-

ries [46, 60, 62]
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and

∆ ∗DmΨ(Y |x) = 0 , (8.30)

where the covariant derivative Dm is given by (8.5). The equations are invariant with

respect to the standard gauge transformations, while the shift transformations (8.28) yield

additional algebraic Bianchi identities.

Let us consider a perturbative expansion of the reduced model (8.26). Both zeroth-

order and first-order equations are again equations (8.18) and (8.19) but now multiplied

by ∆. A natural choice for the background is to take the AdS2 connection W0 as the

vacuum 1-form field because it solves the equation of motion (8.29). As the background

0-form field we take an x-independent Ψ0(Y ). From (8.30) it follows that ∆∗ [W0,Ψ0]∗ = 0

which means that Ψ0 can be chosen to be an element of the ideal, Ψ0 ∈ I. However, using

the shift symmetry (8.28) one observes that it can be equivalently set to zero. Therefore,

from the very outset one can choose W = W0 and Ψ0 = 0 as representatives of the zeroth

equivalence class in the quotient higher spin algebra.

On the other hand, the projector is o(2, 1)-invariant since D0∆(Y ) = 0, where D0 is

the background o(2, 1) covariant derivative (2.6). Introducing the quotient algebra repre-

sentatives Ω̄ = ∆ ∗ Ω and Φ̄ = ∆ ∗ Φ one rewrites the linearized equations of motion as

D0Ω̄(x|Y ) = 0 and D0Ψ̄(x|Y ) = 0. It follows that the linearized equations factorize into

independent spin-s subsystems described by previously studied equations (2.10).

In the case of the horizontal factorization, the respective quotient higher spin algebra is

given by a direct sum of general linear algebras (7.26). It follows that for a given parameter

of the horizontal factorization k = 1, 2, ..., a spectrum of the reduced model is degenerate.

It contains independent subsystems of spins:

2k[1], (2k − 1)[1], (2k − 2)[2], (2k − 3)[2], (2k − 4)[3], (2k − 5)[3], ... (8.31)

where 2k − i denotes spin, while a subscript [j] denotes a multiplicity. Spin-1 and spin-2

subsystems have a maximal multiplicity [k]. For instance, the maximal horizontal factor-

ization (k = 1) gives spin s = (2[1], 1[1]) system that obviously reproduces the original

Jackiw-Teitelboim model plus the Maxwell BF theory. A spectrum of the next-to-maximal

horizontal factorization (k = 2) reads 4[1], 3[1], 2[2], 1[2].

In the case of the vertical factorization, the resulting higher spin algebra hs[ν] is infinite-

dimensional and parameterized by continuous parameter ν. A spectrum of the reduced

model is non-degenerate. It contains independent subsystems of spins:

ν 6= ν0 : 1[1], 2[1], 3[1], ... ,∞[1] . (8.32)

Generally, the spectrum does not depend on ν, but for the special values (7.32) it is

truncated to a finite subset of subsystems with spins:

ν0 = (k − 1)(2k − 1) : 1[1], 2[1], 3[1], ... , (2k − 1)[1], (2k)[1] , (8.33)

that immediately follows from that the reduced higher spin algebra is gl(2k,R) (7.33).22

22One can also discuss reduced models based on double factorizations of the form (7.34).
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9 Conclusions and outlooks

In this paper, we proposed a new class of two-dimensional higher spin models interpreted

as the AdS2 higher spin gravity and explored some of its global and local properties.

The model is formulated by virtue of topological BF action for fields taking values in

particular higher spin symmetry algebra containing o(2, 1) ≈ sl(2,R) subalgebra. Our

analysis follows methods used within the unfolded approach to higher spin dynamics. In

particular, we developed a two-dimensional version of the unfolded formulation resulting in

a cohomological understanding of the BF dynamics. Using two different nilpotent operators

acting on the field space of BF model we elaborate two metric-like formulations of the

model. Our analysis of the linearized BF equations of motion both for 0-forms and 1-forms

accomplishes the analysis of the 1-form sector performed earlier in [10]. We also discuss

a new type of duality between two metric-like formulations obtained from a single BF

frame-like theory.

We suggested a particular formulation of two-dimensional higher spin algebra hs[ν]

employing the o(2, 1) − sp(2) Howe duality. In this way we extend the Vasiliev oscillator

construction of d ≥ 4 higher spin Eastwood-Vasiliev algebras to the d = 2 case. Infinite-

dimensional higher spin algebras and their finite-dimensional truncations are realized as

particular quotient algebras for which reason we classified relevant cases of ideals and

corresponding factorizations. We explicitly described the projecting technique used to

define the BF actions for fields taking values in the quotient algebras.

The d = 2 classification of ideals and factorizations extends to any d case. Obviously,

using the ideals generated by the sp(2) Casimir operator and its powers one arrives at

some quotient algebra with connections identified with higher spin partially-massless fields

of any depth (e.g., see discussion in [56]). It should be realized as the symmetry algebra

of higher order singleton representations of o(2, d) algebra [67].

It is important to note that a given BF theory with a finite-dimensional algebra is

necessarily topological one. The situation is more intricate in the case of an infinite-

dimensional algebra. For instance, the BF action for higher spin algebras considered in

this paper is topological. On the other hand, a particular BF theory proposed in ref. [8]

describes self-interactions of matter fields via higher spin currents built of these matter

fields. Nonetheless, the model is not topological because BF fields take values in a peculiar

infinite-dimensional algebra containing hs[ν] as a subalgebra. The rationale behind this

observation is that a BF action formulated on an infinite-dimensional field space may leave

a room for local degrees of freedom.

In particular, it follows that BF actions may contain current interactions of matters

fields, and, therefore, it is tempting to speculate that higher spin BF action has to do

somehow both with currents and matter fields on equal footing. This idea conforms with

the duality between the metric-like formulations described in this paper. Indeed, we find

out that BF equations of motion can be simultaneously treated as matter field equations

and conservation conditions.

Below we list some interesting issues left beyond the scope of the paper.

• The form and properties of the mapping between two metric-like descriptions of the
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free field higher spin theory discussed in section 6.2. The original linearized BF higher

spin action functional can be treated as a parent action for the two dual formulations.

• One may consider the supersymmetric Howe dual pair o(2,M)− osp(1, 2) underlying

the construction of the higher spin algebra hc(1|(1, 2):[M, 2]) which describes hook-

type mixed-symmetry higher spin fields in AdSM+1 [44]. For M = 1 all mixed-

symmetry fields are dual to totally symmetric ones (2.2). One can classify ideals

of hc(1|(1, 2) : [1, 2]) as in section 7.3, and study respective quotient algebras. In

particular, it should result in odd values of the rank of general linear algebras obtained

via the double factorization (7.33).

• It is interesting to realize the universal enveloping algebra U(o(2, 1)) in terms of

extended o(2, 1)− osp(n, 2) Howe dual pairs with arbitrary n ≥ 2.

• The role of parameter ν in the vertical reduced model is to be clarified. We have

seen that the linearized equations of motion are independent on ν. It appears that ν

comes out in the next orders.23

• The flat space limit Λ→ 0 in the BF higher spin models. The resulting theory should

be a higher spin extension of the two-dimensional Poincare gravity suggested in [69]

and further discussed in [49, 70, 71]. It should be governed by a non-semisimple

higher spin algebra extending the (1 + 1) Poincare algebra.

Among other things, the AdS2 higher spin gravity is interesting because the respective

action functional is given in a closed form that makes possible to analyze many conventional

questions like higher spin black hole solutions, supersymmetric higher spin extensions,

quantization, etc. In particular, it is interesting to consider matter fermions interacting

via higher spin fields and, therefore, to formulate a higher spin extension of the Schwinger

model in AdS2 spacetime.24 Further, topological field theories are known to induce local

degrees of freedom at the boundary. This is also the case for two-dimensional higher spin

theories of the type considered in the present paper. The problem has been already partly

discussed in the literature [9, 11].
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A Computation of the cohomology groups

In what follows, we compute the cohomology of the nilpotent σ± operators acting on the

space Gs. To this end, one recalls some relevant group-theoretical facts on o(1, 1) Lorentz

algebra representations and their tensor products.

Introducing a collective notation for symmetrized indices (a1...ak) ≡ a(k), one finds

that a frame-like tensor Tm
a(k) being a tensor product of totally symmetric and traceless

tensor with a vector decomposes into two o(1, 1) irreps of spins k− 1 and k + 1. Recalling

that a dimension of any integer spin o(1, 1) (non-scalar) irrep equals 2, the above statement

can be simply understood as 22 = 2 + 2. On the other hand, any totally symmetric

and traceful frame-like tensor Am
a(k) decomposes into

⊕k
n=0 Tm

a(n), where Tm
a(n) are

traceless with respect to fiber o(1, 1) tensors. The decompositions clarify the formula

dim Am
a(k) = 2(2k + 1).

To summarize, the following decompositions are useful in practice

Am
a(k) = Aa(k+1) ⊕Aa(k−1) , (A.1)

Tm
a(k) = Ta(k+1) ⊕ Ta(k−1) , (A.2)

both for traceful Aa(k) and traceless Ta(k) totally symmetric tensors. Decomposition (A.2)

for traceless tensors is easily explained in components: a trace part is proportional to

antisymmetric dualized part of hook component. The case k = 1 is special: decomposing

Am
a ≡ Tm

a into sl(2) irreps and then into o(1, 1) irreps yields

Am
a ≡ Tm

a := Aa(2) ⊕A = Ta(2) ⊕ T⊕A , (A.3)

where A and T are two different scalar components. Their appearance is due to the relation

Aa|b = 1
2A(a|b) + 1

2A[a|b] = 1
2A(a|b) + 1

2ε
abA = 1

2T(ab) + 1
4η

abT + 1
2ε
abA, where ηmnT(mn) = 0

and εab is 2d Levi-Civita tensor. Vertical slash denotes independent groups of indices.

Consider operators σ± given by (3.5) that act on the module Gs of differential p-

forms which take values in o(1, 1) finite-dimensional irreps, T a1...ak(p) , where p = 0, 1, 2 and

k = 0, 1, ..., s− 1, see section 3.1. For the case s = 1 the cohomology computation is trivial

so we give detailed consideration of the spin s ≥ 2 case only.

σ−- cohomology. Let us compute cohomology group H(0)(σ−). Since exact forms are

absent in this case the cohomology is defined by the closure condition only

hc T
a(k−1)c
(0) = 0 , 0 ≤ k ≤ s− 1 . (A.4)

Using the background 1-form frame hm, c the world index is converted into fiber one so that

equation (A.4) is cast into the form T a(k−1)c = 0 for k = 1, 2, ..., s − 1. The case k = 0 is

exceptional: equation (A.4) does not impose any restrictions on T . Thus, the cohomology

group contains a single scalar component T , i.e. we find H(0)(σ−) = {T}, see (3.20).

Consider now cohomology groupH(1)(σ−) which is defined by both closer and exactness

conditions

hc ∧ T a(k−1)c
(1) = 0 , δT

a(k)
(1) = hc T

a(k)c
(0) , (A.5)
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where T
a(k)
(1) and T

a(k+1)
(0) , 0 ≤ k ≤ s − 1, are 1-forms and 0-forms, respectively. Consider

the first equation in (A.5). Converting all world indices into fiber ones the equation can

equivalently be rewritten as T a(k−1)[c|d] = 0. Contracting with εcd and using decomposi-

tion (A.2) one finds that rank-(k − 1) totally symmetric and traceless component of T
a(k)
(1)

vanishes except for the cases k = 0 and k = s − 1. Then, one considers the exactness

condition in (A.5) and shows that rank-(k+ 1) totally symmetric and traceless component

of T
a(k)
(1) also vanish since it is exact, except for the case k = s− 1.

Equation (A.5) at k = 1 should be analyzed separately because in this case decomposi-

tion into irreducible components is different, see (A.3). It follows that the closer condition

sets to zero the antisymmetric part, while symmetric one is arbitrary. For s > 2 sym-

metric and traceless component cancels due to the exactness condition, while for s = 2

it remains intact. One concludes that cohomology is given by rank-s totally symmetric

component and a scalar component T which comes as a trace part of T a(1). Therefore,

H(1)(σ−) = {T, T a1...as}, see (3.20).

Then, consider cohomology group H(2)(σ−) defined by the following chain of conditions

hc ∧ T a(k−1)c
(2) ≡ 0 , δT

a(k)
(2) = hc ∧ T a(k)c

(1) , δT
a(k)
(1) = hc T

a(k)c
(0) , (A.6)

where T
a(k)
(2) , T

a(k+1)
(1) , and T

a(k+2)
(0) , 0 ≤ k ≤ s− 1, are respectively 2-forms, 1-forms, and 0-

forms. Being a 3-from the first equation in (A.6) is identically satisfied. On the other hand,

analysis of the exactness conditions in (A.6) is similar to previously done computation of

H(0)(σ−) and H(1)(σ−). Repeating the reasoning we find that H(2)(σ−) = {T a1...as−1},
see (3.20).

σ+- cohomology. Computation of σ+ cohomology is analogous. The only essential dif-

ference is the origin of the scalar component in H(1)(σ±): for the case of σ+ this is an

antisymmetric component of Am|n, while for the case of σ− the scalar component is identi-

fied with the trace of Am|n, cf. (A.3). The resulting cohomology groups H(p)(σ+) are given

in (3.20).

B Horizontal and vertical (quasi-)projectors

Horizontal projection. Substituting (7.21) into (7.35) one gets a function ∆k(z) satis-

fying the horizontal projecting equation

∆k ∗ Tα1...α2k
=
[
D(k)∆

]
Tα1...α2k

= 0 , (B.1)

where D(k) stands for k-th degree of the second-order differential operator

D = 2z
d2

dz2
+ 2

d

dz
+ 1 . (B.2)

The ordinary differential equation D(k)∆k = 0 has 2k independent solutions. Among them

we single out only those that have the form of the series ∆ = κ0z
α+κ1z

α+1 +κ2z
α+2 + · · · ,

for some α ≥ 0. It turns out that α = 0 and there are k independent solutions of this type,
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∆i, i = 1, ..., k. Since equation D(k)∆ = 0 comes as differential consequences of equation

D(k−1)∆ = 0, one concludes that k− 1 solutions ∆i, where i = 1, ..., (k− 1) solve equation

of lower rank and therefore can be found by induction, while the highest rank solution

∆k does describe factorization (B.1). From the algebraic perspective, a set of analytical

solutions to the horizontal projecting equation is clearly explained by the flag sequence of

ideals (7.24).

An explicit form of solutions can be found straightforwardly provided that differential

operator (B.2) is represented as D = 2(Nz + 1)
d

dz
+ 1, where Nz = z

d

dz
is the Euler

operator, so that searching for a solution in the form of power series yields a recurrent

equation system.

Solutions to equation (B.1) can be expressed via the Bessel functions and their multiple

integrals. For instance, in the case k = 1 equation (B.1) is in fact the Bessel equation of

zeroth order solved by25

∆k=1(z) = I0(
√

2z) . (B.3)

In the case k ≥ 2 equation (B.1) can be expressed via auxiliary combinations Fm(z) =

D(k−m−1)∆(z) as inhomogeneous Bessel equation DFm(z) = Fm−1(z), where m = 0, ..., k−
1 and Fk−1 ≡ ∆.

It is worth noting that using the horizontal factorization via projector (B.1) yields

finite-dimensional quotient algebras (7.26) with basis elements realized as infinite formal

power series of auxiliary variables Y A
α , and not as bilinear combinations as one might expect

from (7.5).

Vertical projection. Substituting (7.29) into (7.35) one gets a function ∆ν(z) satisfying

the vertical projecting condition expressed as the 4-th order differential equation

∆ν ∗ (c2 + ν) = z2F ′′ + 4zF ′ +
1

2
zF +

9

4
F + ν∆ν = 0 , F = D∆ν , (B.4)

where differential operator D is given by (B.2). Solutions analytical in z = 0 have the

form ∆ν(z) = γ0 + γ1z + γ2z
2 + · · · , where the coefficients satisfy the following recurrent

equation system

9γ1 +
(
2ν +

9

2

)
γ0 = 0 , γk−2 +Akγk +Bkγk−1 = 0 , (B.5)

where Ak and Bk are given by

Ak = k2(2k + 1)2 , Bk = 2(k − 1)(2k + 1) + 2ν +
9

2
. (B.6)

A few first coefficients for γ0 = 1 are found to be

∆ν(z) = 1− uν
32
z +

uν(10 + uν)− 9

(30)2
z2 + · · · , where uν = 2ν + 9/2 . (B.7)

25In d dimensions the k = 1 equation describes the maximal factorization; the solution is given in the

particular integral form [44].
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Following the discussion of the double factorization in section 7.3.3, one observes that

given a particular value (7.32) quotient Hν0 defined by projecting condition (B.4) possesses

an additional ideal formed by elements proportional to (7.22). Indeed, using relation (7.31)

one shows that operator ∆ν0 satisfying the projecting condition ∆ν0 ∗ (c2 + ν0) = 0 can be

represented in the form

∆ν0 = ∆k ∗
k−2∏
m=0

∗ (c2 + αm) , (B.8)

where ∆k fulfills the horizontal projecting condition (B.1). It follows that elements of the

quotient Hν0 proportional to (7.22) are sent to zero by virtue of the projecting property of

the prefactor ∆k.

For instance, taking k = 1 corresponding to ν0 = 0 (7.32) one finds from (B.8) that the

vertical and horizontal projectors coincide, ∆ν0=0 = ∆k=1. In particular, substituting ν0 =

0 into (B.5)–(B.6) one finds the solution (B.7) in a closed form ∆ν0=0(z) =

∞∑
k=0

(−)k

2k(k!)2
zk

recognized as the Bessel function, ∆ν0=0(z) = I0(
√

2z) (B.3). On the other hand, we know

that the k = 1 horizontal projection yields the quotient Hk ≈ gl(2,R) (7.26), while the

double factorization in the case ν0 = 0 yields H1
ν0/I1 ≈ gl(2,R) (7.33). The resulting quo-

tients obviously coincide. Note, however, that for k > 1 the horizontal quotient algebra Hk
and the double quotient algebra H1

ν0/Ik are not isomorphic anymore, while the respective

projectors do not coincide as well, see (B.8).
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