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bDepartamento de F́ısica Teórica I, Facultad de Ciencias F́ısicas,

Universidad Complutense de Madrid (UCM),

Av. Complutene S/N (Ciudad Univ.), E-28040 Madrid, Spain

E-mail: enrique.alvarez@uam.es, mario.herrero@csic.es,

carmelop@fis.ucm.es

Abstract: The quantum dynamics of the gravitational field non-minimally coupled to

an (also dynamical) scalar field is studied in the broken phase. For a particular value of

the coupling the system is classically conformal, and can actually be understood as the

group averaging of Einstein-Hilbert’s action under conformal transformations. Conformal

invariance implies a simple Ward identity asserting that the trace of the equation of motion

for the graviton is the equation of motion of the scalar field. We perform an explicit one-

loop computation to show that the DeWitt effective action is not UV divergent on shell

and to find that the Weyl symmetry Ward identity is preserved on shell at that level. We

also discuss the fate of this Ward identity at the two-loop level — under the assumption

that the two-loop UV divergent part of the effective action can be retrieved from the

Goroff-Sagnotti counterterm — and show that its preservation in the renormalized theory

requires the introduction of counterterms which exhibit a logarithmic dependence on the

dilaton field.

Keywords: Models of Quantum Gravity, Conformal and W Symmetry, Anomalies in

Field and String Theories

ArXiv ePrint: 1404.0806

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP10(2014)115

mailto:enrique.alvarez@uam.es
mailto:mario.herrero@csic.es
mailto:carmelop@fis.ucm.es
http://arxiv.org/abs/1404.0806
http://dx.doi.org/10.1007/JHEP10(2014)115


J
H
E
P
1
0
(
2
0
1
4
)
1
1
5

Contents

1 Introduction 1

2 Nonconformal dilaton gravity 5

3 Conformal Ward identities 13

4 Conformal dilaton gravity 18

5 The one-loop effective action of CDG 21

6 Inclusion of a quartic interaction 24

6.1 Non-conformal dilaton gravity 25

6.2 Conformal dilaton gravity 26

7 Physical effects of quantum gravity 28

8 A discussion of the fate of the Weyl symmetry Ward identity at the two

loop level 29

9 Conclusions 34

A A quick reminder of the heat kernel approach 36

B Some details on the computation 38

1 Introduction

It is a cherished belief that some sort of scale invariance should be relevant when studying

physics at very short distances. In flat space-time is always possible to get an (improved)

traceless energy-momentum tensor

T ≡ gµν
δSmatt

δgµν

∣∣∣∣
gµν=ηµν

= 0 . (1.1)

The cosmological constant is then related to the trace of the gravitational equations

of motion (EM)

Λ ≡ gµν
δS

δgµν

∣∣∣∣
gµν=ηµν

=
(
1− n

2

)
R− nλ

∣∣∣
gµν=ηµν

= −nλ = 0 . (1.2)

This means that exact conformal invariance prevents a cosmological constant [32]. This

is a well-known fact, which undoubtly can be traced back much earlier than we were able

to do. This is a strong physical motivation to further study these theories.
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When gravitational fields are dynamical, the corresponding symmetry is Weyl invari-

ance (we shall understand conformal symmetry always in this sense), local rescalings of

the spacetime metric. Indeed conformal (super)gravity [17] is such a theory in which Weyl

invariance is implemented in four spacetime dimensions starting with the lagrangian1

L ≡ √−g Wµνρσ W
µνρσ ≡

√
|g| W4 (1.4)

where Wµνρσ is Weyl’s tensor, the tracefree piece of Riemann’s tensor. It is explicitily

defined in terms of the Riemann tensor as

Wµνρσ ≡ Rµνρσ − 1

n− 2
(gµρRνσ − gµσRνρ − gνρRµσ + gνσRµρ)+

+
1

(n− 1)(n− 2)
R (gµρgνσ − gµσgνρ) (1.5)

then

W4 ≡ R2
µνρσ − 4

n− 2
R2

µν +
2

(n− 1) (n− 2)
R2. (1.6)

This lagrangian is point conformally invariant under

g̃µν(x) ≡ Ω2(x)gµν(x) (1.7)

(this means by definition that the gravitational field has conformal weight w = −2) in four

dimensions only. There are local invariants in arbitrary dimensions, involving derivatives

of the Weyl tensor and the Fefferman-Graham obstruction, whose existence is guaranteed,

but which is not known explicitly in general [16]. It would be interesting to study the

physics of actions based on the integral of those invariants, but we shall refrain from doing

so in this paper.

It has been argued that conformal supergravities can be finite at the quantum level

provided they have enough supersymmetry. Nevertheless, there is always some tension,

at least at the perturbative level, with unitarity, because the propagator is quartic in the

momentum, which implies ghost excitations and/or tachyon behavior. It is actually not

clear in spite of some insightful attempts whether a non-perturbative unitary definition of

the theory is possible at all.

It is nevertheless quite easy to construct a much simpler conformal dilaton gravity

(CDG) free of these problems by the procedure of group averaging, that is, perform a con-

formal transformation on the Einstein-Hilbert lagrangian and promote the Weyl rescaling

factor to the status of a new field. It seems that the first to consider CDG was Dirac [12]

in a very interesting paper in which he related the large numbers hypothesis with the

old unified theory of Hermann Weyl. Other interesting pioneering works on this theory

include [15, 18, 19, 28]. In those works CDG was considered as a conformally invariant off-

mass shell extension of quantum gravity in the context of the early attempts to understand

the physical meaning2 of the conformal anomaly [13, 14].

1Let us agree once and for all to denote in future formulas the riemannian volume element as

d(vol) ≡
√

|g| dnx . (1.3)

2In Duff’s words real Weyl invariance has anomalies; pseudo-Weyl invariance (i.e. involving a spurion)

does not. This is a regularization-scheme-independent statement. It remains of course to decide which

metric couples to which matter.
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Under a Weyl rescaling3 the Einstein-Hilbert lagrangian behaves as

√
|g̃|R̃ =

√
|g|
[
Ωn−2R+ (n− 1)(n− 2)Ωn−4(∇Ω)2

]
. (1.12)

Where we have neglected a total derivative which yields a boundary term. We then

define a gravitational scalar field through

Ω ≡ 1

Mp

(
(n− 2)

4(n− 1)

) 1
n−2

φ
2

n−2 (1.13)

(where the n-dimensional Planck mass is defined as Mn−2
p ≡ 1

16πGn
) obtaining the CDG

lagrangian

SCDG =

∫
d(vol)

(
− n− 2

8(n− 1)
R φ2 − 1

2
gµν∇µφ∇νφ

)
. (1.14)

Classically, CDG reduces to General Relativity (GR) in the gauge

φ =

√
8(n− 1)

n− 2
M

n−2
2

p (1.15)

which is of course only accessible as long as we are in the broken phase; and to unimodular

gravity [1–3]4 in the gauge

φ+ 2
3
2M

n−2
2

p

√
n− 1

n− 2
g−

n−2
4n = 0 . (1.16)

3We use the Landau-Lifshitz spacelike conventions. The flat tangent metric is

ηab ≡ diag (1,−1,−1,−1) . (1.8)

The Riemann tensor reads

Rµ
ναβ ≡ ∂αΓ

µ
νβ − ∂βΓ

µ
να + Γµ

σαΓ
σ
νβ − Γµ

σβΓ
σ
να (1.9)

and the Riccci tensor

Rµν ≡ Rλ
µλν . (1.10)

The Einstein-Hilbert action is defined as

S = −
c3

2κ2

∫

√

|g| (R− 2λ) + Smatter (1.11)

with κ2 ≡ 8πG.
4Unimodular gravity is a speculative approach towards explaining why (the zero mode of) the vacuum

energy seems to violate the equivalence principle (the active cosmological constant problem). The main idea

is just to eliminate the direct coupling in the action between the potential energy and the gravitational

field. This leads to consider unimodular theories, where the metric tensor is constrained to be unimodular

in the Einstein frame gE ≡
∣

∣detgEµν
∣

∣ = 1.

The simplest nontrivial such unimodular gravitational action reads

SU ≡ −
1

16πGn

∫

dnx RE = −Mn−2
p

∫

dnx g
1

n

(

R+
(n− 1)(n− 2)

4n2

gµν∇µg ∇νg

g2

)

(the Einstein metric being inert) as well as invariant under area preserving (transverse) diffeomorphisms,

that is, those that enjoy unit jacobian, thereby preserving the Lebesgue measure.
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It is plain that the field redefinition

Gµν ≡ 1

M2
p

(
n− 2

8(n− 1)

) 2
n−2

φ
4

n−2 gµν (1.17)

transforms the theory back to GR; we are just undoing what we did to get CDG

S = −Mn−2
p

∫ √
G dnx R[G] . (1.18)

Conformal symmetry with conformal weight wφ = n−2
2 for the scalar field

φ̃ = Ω
2−n
2 φ (1.19)

is then tautological to the extent that it leaves invariant the metric Gµν . This is non

necessarily the case anymore when couplings to matter are considered, because we are going

to assume that matter couples to gµν instead to Gµν . Some interesting albeit speculative

physical reasons as to why the metric gµν could be the only one physically observable have

been advanced in [25, 26].

The above considerations are taken as a motivation to study the non-minimally coupled

system gravitational-scalar field in the following sense

S = −
∫ √

|g|dnx
(
ξRφ2 +

1

2
(∇φ)2

)
. (1.20)

The global sign in front of the action is irrelevant as it stands, but it is the correct

one to couple to a matter lagrangian containing matter fields, denoted collectively by

ψi (i = 1 . . . N)

Smatter ≡
∫
d(vol) Lmatter (ψi, gµν) . (1.21)

This sign reflects the gravitational origin of our former lagrangian.

This system has the following property. There is a symmetry

φ(x) → −φ(x) . (1.22)

(Which is promoted to an U(1) when the scalar field is complex and φ2 is replaced by |φ|2).
There are then two different phases, depending on whether the background field vanishes

or not. Only the vanishing solution is compatible with the Z2 symmetry. In the symmetric

phase, we are thus studying quantum perturbations around the symmetric classical solution

φ̄(x) = 0 . (1.23)

In this case there is no propagator for the gravitational fluctuation, and we do not

know how to proceed (athough some possible paths will be suggested in our conclusions).

In the broken phase we consider a classically nonvanishing solution

φ̄(x) 6= 0 (1.24)
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that determines the graviton propagator. Lacking any better option, we shall dub this

system dilaton gravity, although this name is really adequate in the conformal case only;

that is, when there is a particular value of ξ,

ξc ≡
n− 2

8(n− 1)
(1.25)

for which the symmetry is enhanced to full (local) conformal symmetry and we actually

recover the CDG mentioned above.

The aim of the present paper is to study dilaton gravity both in the non-conformal as

well as in the conformal point. Using a combination of background field and heat kernel

techniques, the one-loop effective action will be first determined for generic value of the

coupling constant ξ. This calculation is not valid at the conformal point, ξ = ξc, because

then there is an enhanced gauge symmetry, namely conformal symmetry. It can be argued

that because the classical action of CDG is the group average of Einstein-Hilbert, this

should also hold to one loop. Were this true, the counterterms would be derived just by

performing a conformal transformation in the ’t Hooft-Veltman counterterm We report a

nontrivial one-loop computation in CDG to show that this is indeed the case. In the last

section one issue is discussed in some detail, namely the extent to which it is possible to

define a renormalized theory which is still Weyl invariant. The conclusion is that in order

to do that counterterms with a logarithmic dependence on the dilaton field are needed.

2 Nonconformal dilaton gravity

Let us begin by analyzing the nonconformal case, that is

S = −
∫ √

|g|dnx
(
ξRΦ2 +

1

2
(∇Φ)2

)
(2.1)

where

ξ 6= ξc . (2.2)

The reason for the notation Φ will be apparent in a moment. The simplest way to proceed in

order to compute the divergences of any action involving the gravitational field is to use heat

kernel techniques pioneered by Bryce de Witt. It can be shown [11] that this is equivalent

to the assumption that the singular part of the propagator is of Hadamard type. Those

techniques are much less useful to compute finite parts. They are particularly efficient

for one loop calculations, which can be reduced to the computation of some determinants,

provided the operators in question are minimal ones (otherwise the technique is somewhat

unwieldly) There are many reviews avaliable, for example [7]. We shall follow a notation

similar to [4, 5, 27]. A brief summary explaining our notation can be found in appendix A.

Let us then expand the action around an arbitrary background

gµν = ḡµν + hµν (2.3)

Φ = φ̄+ φ .
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Demanding that the linear terms in the expansion cancel determines the background equa-

tions of motion (EM). When the background fields are so restricted, absence of tadpoles

in the quantum theory is guaranteed. In four spacetime dimensions and with arbitrary

parameter ξ they read

ξR̄µν =
1

4
ḡµν

∇̄2φ̄

φ̄
−
(
1

2
−2ξ

) ∇̄µφ̄∇̄ν φ̄

φ̄2
−
(
2ξ − 1

4

)
ḡµν

(
∇̄φ̄
)2

φ̄2
+2ξ

∇̄µ∇̄ν φ̄

φ̄
− 2ξḡµν

∇̄2φ̄

φ̄

R̄− 1

2ξ

∇̄2φ̄

φ̄
= 0 . (2.4)

The result of the expansion of the action to second order in the quantum fields reads

S2 = −
∫
dnx

√
|ḡ|
[
hµνĤµνρσh

ρσ + φ
(
ĤF

)
µν
hµν + φF̂φ+ (2.5)

+ξφ̄2
(
−1

2
∇̄µh∇̄νh

µν +
1

2
∇̄µh

µα∇̄νh
να

)]

where we have kept apart the non-diagonal contributions to the graviton sector in order to

cancel them later with a proper gauge fixing. The corresponding second order operators

are given in the appendix B.

It is now useful to perform a field redefinition

kµν = φ̄hµν (2.6)

in order to eliminate all the dependence on φ̄ out of the kinetic term. This only makes

sense in the broken phase, since this transformation is ill-defined when φ̄ = 0. In any other

case, the action is thus rewritten as

S2 = −
∫
dnx

√
|ḡ|
[
kµνĤµνρσk

ρσ + φ
(
ĤF

)
µν
kµν + φF̂φ)+ (2.7)

+ξ

(
−1

2
∇µk∇νk

µν +
1

2
∇µk

µα∇νk
ν
α

)]

where the explicit values of the coefficients can be found in the appendix B.

The gauge fixing for diffeomorphism (Diff from now on) invariance will be chosen with

an eye put on being able to implement heat kernel techiques in the simplest possible way.

This indicates that we shall try to cancel any non-minimal contribution to the kinetic term.

In other words, it has to cancel any term in second derivatives which is not proportional

to the laplacian, such as the non diagonal terms ∇̄µk
µν∇̄αk

α
ν or ∇̄νφ∇̄µk

µν .

This can be achieved in different ways, some of them simple modifications of the well-

known harmonic or De Donder gauge. It is actually possible to choose a very general gauge

interpolating between two funcions

F̂µ = (1− γ)F 1
µ + γF 2

µ (2.8)

with

F 1
µ = ∇̄νkµν −

1

2
∇̄µk − 2∇̄µφ (2.9)

F 2
µ = φ̄

(
∇̄νhµν −

1

2
∇̄µh

)
− 2∇̄µφ . (2.10)

– 6 –
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Although each of the two functions F 1
µ and F 2

µ represent perfectly admissible gauges

separately, we have decided to consider this more general linear combination of them as

above in order to be able to track the dependence on the γ parameter along the computation

and explicitely check that it vanishes on-shell, as it should. The full gauge fixing is then

F̂µ = ∇̄νkµν −
1

2
∇̄µk − 2∇̄µφ− γkνµ

∇̄ν φ̄

φ̄
+ γ

1

2
k
∇̄µφ̄

φ̄
. (2.11)

The term to be included in the action then reads

Sdiff = χ

∫
dnx

√
|ḡ| F̂µF̂

µ (2.12)

with

F̂µF̂
µ = 2

(
1

2
∇̄µk∇̄νk

µν− 1

2
∇̄µk

µα∇̄νk
ν
α

)
+2
[
−2φ∇̄µ∇̄νk

µν+φ∇̄2k
]
+ 4φ∇̄2φ+ (2.13)

+
1

4
k∇̄2k + γ

[
kµνkαν

∇̄µφ̄∇̄αφ̄

φ̄2
+

1

4
k2
(
∇̄φ̄
)2

φ̄2
− kkµν

∇̄µφ̄∇̄ν φ̄

φ̄2
+ k

∇̄µφ̄

φ̄
∇̄νk

µν−

−2kµν
∇̄ν φ̄

φ̄
∇̄αkαµ−

1

2
k∇̄µk

∇̄µφ̄

φ̄
+kµν∇̄µk

∇̄ν φ̄

φ̄
− 2k

∇̄µφ̄

φ̄
∇̄µφ+4kµν

∇̄µφ̄

φ̄
∇̄νφ

]

which cancels exactly the non-minimal terms when χ = ξ
2 .

The original action with the gauge fixing added then reads

Sfull
2 = −

∫
dnx

√
|ḡ|
[
kµνĤµνρσk

ρσ + φ
(
ĤF

)
µν
kµν + φF̂φ

]
(2.14)

where the values of the coefficients are again to be found in the appendix B.

Let us then define a generalized field living in the “gauge” bundle5 that includes all

the fields over which we are integrating

ΨA =

(
kµν

φ

)
. (2.15)

The kinetic term corresponding to (2.14) can then be rewritten as

−ΨAGAB∇̄2ΨB (2.16)

where the metric GAB is symmetric and given by

GAB =

(
ξ
4

(
1
2K

αβ
µνρσ − Pαβ

µνρσ

)
ḡαβ

ξ
2 ḡµν

ξ
2 ḡρσ

1
2 − 2ξ

)
(2.17)

5Capital indices label the different physical fields so that the matrices involved in the action carrying

two indices are split in three parts: a kk box carrying four indices (in some sense identifying A = µν and

B = ρσ), another diagonal box corresponding to the φφ element that behaves as a scalar and two non-

diagonal blocks carrying two space-time indices µν over the diagonal of the matrix and ρσ under it. The

rank of the index thus counts the number of physical degrees of freedom (not fields), being 1 + n(n+ 1)/2.

– 7 –
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with inverse

GAB =
1

8ξ(n− 1)− (n− 2)

(
Gµνρσ 8ḡµν

8ḡρσ −2(n− 2)

)
(2.18)

Gµνρσ = −2

ξ
[(8ξ(n− 1)− (n− 2))(ḡµσ ḡνρ + ḡµρ + ḡνσ) + 2(1− 8ξ)ḡµν ḡρσ]

defined in such a way that

GABG
BC = GCBGBA =

(
1
2

(
δρµδσν + δρνδσµ

)
0

0 1

)
. (2.19)

We will then rewrite the action as

Sfull
2 =

∫
dnx

√
|ḡ| ΨA

(
−GAB∇̄2 +Nµ

AB∇̄µ +MAB

)
ΨB (2.20)

whith Nµ
AB being antisymmetric and MAB being symmetric in their capital indices, mean-

ing interchange of physical field in both sides of the operator, which translates to in-

terchange of the pairs of indices (µν) ↔ (ρσ) in the kk elements. Again, the detailed

expression of the different matrices are to be found in the appendix.

To compute the heat kernel coefficient (A.24) for the previous action, we shall find

first the bundle connection ωµ and the endomorphism E that will allow us to express Sfull
2

as follows

Sfull
2 =

∫
dnx

√
|ḡ| ΨA

(
−ḡµν

[
∇̄µδ

A
C + ωA

µC

] [
∇̄νδ

C
B + ωC

ν B

]
− EA

B

)
ΨB, (2.21)

where ΨA = ΨBGBA. It can be checked easily that the following equation holds

GAC
(
−GCB∇̄2+Nµ

CB∇̄µ+MCB

)
= −gµν

(
∇̄µδ

A
C+ω

A
µC

) (
∇̄νδ

C
B+ωC

ν B

)
−ÊA

B, (2.22)

if

ωA
µB =

1

2
GAC NµCB (2.23)

ÊA
B = GAC

(
−MCB − ωµCFω

µF
B − ∇̄µω

µ
CB

)
.

Now, ΨA ∇̄µω
µ
ABΨ

B = 0, for ∇̄µω
µ
AB is antisymmetric under the exchange of A and

B. Hence, our endomorphism, EA
B, will be obtained from ÊA

B in (2.23) by removing from

the latter the contribution GAC∇̄µω
µ
CB, which does not contribute to the dynamics:

EA
B = GAC

(
−MCB − ωµCFω

µF
B

)
. (2.24)

In summary, it is the coefficient (A.24) of the heat kernel expansion of the operator

∆ = −
(
ḡµν

[
∇̄µδ

A
C + ωA

µC

] [
∇̄νδ

C
B + ωC

ν B

]
+ EA

B

)
, (2.25)

with ωA
µB and EA

B as given in (2.23) and (2.24), respectively, that will give the pole part of

the UV divergent contribution coming from Sfull
2 in (2.21). See the appendix A for further

information.
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In order to finish the computation of the heat kernel coefficient (A.24), one also needs

the field strength Fµν
AB which is worked out by means of the Ricci’s identity and has a

riemannian part and a bundle part:

Fαβ
A

B =

(
1
2

(
R̄µ

ρ αβδ
ν
σ + R̄ν

ρ αβδ
µ
σ + R̄µ

σ αβδ
ν
ρ + R̄ν

σ αβδ
µ
ρ

)
0

0 0

)
+ (2.26)

∇̄αωβ
A

B − ∇̄βωα
A

B + ωα
A

Cωβ
C

B − ωβ
A

Cωα
C

B .

The ghost sector of the theory at hand, which is a simple subset of the quite involved

one needed in the conformal case and discussed in the next section, has the following action

Sghost =

∫
dnx

√
|ḡ| ḡµν η̄µsDF̃ν , (2.27)

where sDF̃ν denotes the order-one variation of the gauge-fixing function F̃µ in (2.11)

induced by the variations

sDḡµν = sDφ̄ = 0

sDhµν =
1

κ

(
∇̄µην + ∇̄νηµ

)
+ ηρ∇̄ρhµν + ∇̄µη

ρhρν + ∇̄νη
ρhρµ

sDφ = ηλ∇̄λ

(
φ̄+ φ

)
.

The symbols ηµ and η̄µ denote the ghost and antighost fields, respectively. Of course,

Sghost in (2.27) is obtained from the Faddeev-Poov determinant in the standard fashion.

A little algebra yields the contribution to Sghost that is quadratic in the quantum fields.

This contribution reads

Sghost
2 =

∫
dnx

√
|ḡ| η̄ρ

(
−ḡρσ∇̄2 +Nµ

ρσ∇̄µ +Mρσ

)
ησ, (2.28)

where

Nµ
ρσ = −(1− γ) ḡρσ

∇̄µφ̄

φ̄
+ (1 + γ)

∇̄σφ̄

φ̄
δµρ + (1− γ)

∇̄ρφ̄

φ̄
δµσ (2.29)

Mρσ = −R̄ρσ + 2
∇̄ρ∇̄σφ̄

φ̄
.

The heat kernel coefficient (A.24) associated to Sghost
2 is the corresponding coefficient

of the heat kernel expansion of the following operator

∆(ghost) = −
(
ḡµν

[
∇̄µδ

ρ
λ + ω ρ

µ λ

] [
∇̄νδ

λ
σ + ω λ

ν σ

]
+ Eρ

σ

)
, (2.30)

where

ωρ
µ λ = ḡµνω

νρ
λ , ωνρ

σ = −1

2
ḡρλNµ

λσ (2.31)

Eρ
σ = −ḡρλ

(
Mλσ + ωµλδω

µδ
σ + ∇̄µω

µ
λσ

)
(2.32)

Nµ
λσ and Mλσ are given in (2.29).
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Finally, the field strength for the connetion defined by ∇̄µ + ωµ runs thus

F µ
ρσ ν = R̄µ

νρσ + ∇̄ρ ω
µ

σ ν − ∇̄σ ω
µ

ρ ν + [ωρ, ωσ]
µ
ν . (2.33)

Once all the matrices are defined, we can compute the relevant traces both for the

bosonic physical fields and for the ghost fields and thus finally write the one-loop (de Witt)

effective action as

ΓDeW

[
ḡ, φ̄
]
=

1

n− 4
(A2 (bosons)− 2A2 (ghosts)) (2.34)

where the ghost sector contributes twice and with a minus sign because the presence of

two anticonmuting fields. The final result is

ΓDeW

[
ḡ, φ̄
]
=

1

n− 4

1

16π2
1

g(ξ)

∫
d4x

√
|ḡ| a2

[
ḡ, φ̄
]

(2.35)

with

g(ξ) ≡ 720 ξ2 (2− 8ξ + 4 (−1 + 8ξ))2 . (2.36)

It is remarkable that the effective action presents a pole when ξ = 0, which represents

physically a scalar field minimally coupled to the gravitational field. The fact that gravity

is dynamical in our case is presumably the reason for this divergence.

To be specific, the gravitational EM in this case read

∇̄µφ̄∇̄ν φ̄ =
1

2
ḡµν

(
∇̄φ̄
)2

(2.37)

which for n 6= 2 imply (
∇̄φ̄
)2

= 0 . (2.38)

In the riemannian case (where the metric is positive definite) means that

∇̄µφ̄ = 0 . (2.39)

On the other hand, the quadratic gravitational piece of the lagrangian reads

L2
h ≡ 1

2

√
|ḡ|
{(

hµαh
αν − 1

2
hhµν

)
∇̄µφ̄∇̄ν φ̄+

1

4

(
∇̄φ̄
)2
(
1

2
h2 − hαβh

αβ

)}
. (2.40)

The fact that it can be written without any derivative acting on the gravitational quan-

tum fluctuations means that the corresponding high frequancy modes are generically not

suppressed.

The scalar quadratic piece on the other hand is perfectly kosher

L2
s ≡

1

2

√
|ḡ|ḡµν∇̄µφ∇̄νφ . (2.41)
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The heat kernel coefficient a2 reads

a2
[
ḡ, φ̄
]
=(12ξ−1)

(
P0(ξ, γ)

∇µφ̄∇ν φ̄∇µφ̄∇ν φ̄

φ̄4
P1(ξ, γ)

∇̄αφ̄∇̄βφ̄∇̄α∇̄βφ̄

φ̄2
+P2(ξ, γ)

∇̄µ∇̄ν φ̄∇̄µ∇̄ν φ̄

φ̄2
+

+P3(ξ, γ)

(
∇̄φ̄
)2 ∇̄2φ̄

φ̄3

)
+P4(ξ, γ)

∇̄2φ̄∇̄2φ̄

φ̄2
+P5(ξ, g)

∇̄α∇̄βφ̄ R̄αβ

φ̄
+P6(ξ, γ)

∇̄αφ̄∇̄βφ̄ R̄αβ

φ̄2
−

−P7(ξ, γ)R̄µνR̄
µν+P8(ξ, γ)

(
∇̄φ̄
)2
R̄

φ̄2
+P9(ξ, γ)

∇̄2φ̄ R̄

φ̄
+P10(ξ, γ)R̄

2+P11(ξ, γ)R̄µναβR̄
µναβ

(2.42)

where the polynomials Pi(ξ, γ) are defined by

P0(ξ, γ) ≡ 720(−5+104ξ−728ξ2+2784ξ3−18ξγ+72ξ2γ+1536ξ3γ+8ξγ2 − 260ξ2γ2 + 2064ξ3γ2−
− 16ξ2γ3 + 216ξ3γ3)

P1(ξ, γ) ≡ −960ξ
(
−29+450ξ−840ξ2−15γ+88ξγ+912ξ2γ − 38ξγ2+508ξ2γ2 − 8ξγ3+108ξ2γ3

)

P2(ξ, γ) ≡ 480ξ
(
1− 78ξ + 984ξ2 − 68ξγ + 720ξ2γ − 2ξγ2 + 28ξ2γ2

)

P3(ξ, γ) ≡ −480ξ
(
−2+228ξ − 3072ξ2+9γ+64ξγ − 1680ξ2γ+16ξγ2 − 368ξ2γ2 − 8ξγ3+108ξ2γ3

)

P4(ξ, γ) ≡ −480ξ
(
−1−48ξ+672ξ2−3312ξ3+56ξγ−1248ξ2γ+6912ξ3γ+2ξγ2−52ξ2γ2+336ξ3γ2

)

P5(ξ, γ) ≡ −3840ξ2 (−1 + 12ξ)(3− 12ξ − γ + 6ξγ)

P6(ξ, γ) ≡ −480ξ(−1 + 12ξ)
(
−1 + 42ξ − 744ξ2 + 52ξγ − 528ξ2γ − 10ξγ2 + 116ξ2γ2

)

P7(ξ, γ) ≡ −48ξ2(−1 + 12ξ) (−241 + 2412ξ)

P8(ξ, γ) ≡ −960ξ(−1 + 12ξ)
(
1− 41ξ + 432ξ2 − 32ξγ + 348ξ2γ − 6ξγ2 + 90ξ2γ2

)

P9(ξ, γ) ≡ 1920ξ2
(
−11 + 189ξ − 1008ξ2 + γ − 18ξγ + 72ξ2γ

)

P10(ξ, γ) ≡ 120ξ2
(
29− 576ξ + 3168ξ2

)

P11(ξ, γ) ≡ 3408ξ2(−1 + 12ξ)2 . (2.43)

There is a set of different terms appearing in the counterterm that will be related both by

the EM as well as by integration by parts. It is a fact that there are only three linearly

independent monomials. The full set of monomials compatible with the symmetries and

dimensional counting which appear in the counterterm is

G1 ≡
∇̄µφ̄∇̄ν φ̄ R̄

µν

φ̄2
A =

∇̄2φ̄∇̄2φ̄

φ̄2

G2 ≡
∇̄µ∇̄ν φ̄ R̄

µν

φ̄
B =

∇̄2φ̄
(
∇̄φ̄
)2

φ̄3

G3 ≡
∇̄2φ̄ R̄

φ̄
C =

(
∇̄φ̄
)2 (∇̄φ̄

)2

φ̄4

G4 ≡
(
∇̄φ̄
)2
R̄

φ̄2
D =

∇̄µ∇̄ν φ̄∇̄µ∇̄ν φ̄

φ̄2

G5 ≡ R̄µνR̄
µν E =

∇̄µφ̄∇̄ν φ̄∇̄µ∇̄ν φ̄

φ̄3

G6 ≡ R̄2 F =
∇̄µφ̄∇̄2∇̄µφ̄

φ̄2

G7 ≡ R̄µναβR̄
µναβ .
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The EM impose some relations between them, namely

G3 ≡
∇̄2φ̄ R̄

φ̄
=

1

2ξ
A

G4 ≡
(
∇̄φ̄
)2
R̄

φ̄2
=

1

2ξ
B

G6 ≡ R̄2 =
1

4ξ2
A

G1 ≡
∇̄µφ̄∇̄ν φ̄ R̄µν

φ̄2
=

(
1

4ξ
− 2

)
B − 1

4ξ
C + 2E

G2 ≡ ∇µ∇ν φ̄R
µν

φ̄
=

(
1

4ξ
− 2

)
(A+B) + 2D +

(
2− 1

2ξ

)
E

G5 ≡ R̄µνR̄
µν =

(
1

4ξ
−2

)
R̄

[
∇̄2φ̄

φ̄
+

(
∇̄φ̄
)2

φ̄2

]
+

(
2− 1

2ξ

) ∇̄µφ̄∇̄ν φ̄ R̄µν

φ̄2
+ 2

∇̄µ∇̄ν φ̄ R̄µν

φ̄

and by using this and integrating by parts, it can be shown that D, E and F can be written

in terms of A, B and C,
∫
d(vol)D =

∫
d(vol)

(
A− 2B + 2E − ∇̄µφ̄∇̄ν φ̄ R̄µν

φ̄2

)

∫
d(vol)E =

∫
d(vol)

(
3

2
C − 1

2
B

)

∫
d(vol)F =

∫
d(vol) (−D + 2E) .

Finally, whenever ξ 6= 1
12 there is an extra relation that we can use and that comes

from the fact that the two equations of motion for the metric and the scalar field must be

compatible. Taking the trace of the first one we have

R̄ =

(
n

4ξ
+ 2− 2n

) ∇̄2φ̄

φ̄
+

(
n

4ξ
+ 2− 2n− 1

2ξ

) (∇̄φ̄
)2

φ̄2
(2.44)

so requiring agreement with the scalar equation of motion requires

∇̄2φ̄

φ̄
+

(
∇̄φ̄
)2

φ̄2
= 0 (2.45)

which implies

A = C = −B . (2.46)

In the case ξ = 1
12 this identity is satisfied identically and these last relations cannot

be used.

When the background fields are put on-shell and the preceding identities are taken

into account, all the dependence in the gauge fixing parameter γ dissapears (this is just

DeWitt-Kallosh’ theorem; cf. also [22]) and we end up with

ΓDeW|on shell =
1

n− 4

1

16π2

∫
d4x
√
|ḡ|
(
71

60
W4+

1259

1440

(1−12ξ)2

ξ2

(
∇̄φ̄
)2 (∇̄φ̄

)2

φ̄4

)
. (2.47)
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The Euler density (the quantity whose integral yields the Euler characteristic) is

given by

E4 ≡ R̄µνρσR̄
µνρσ − 4R̄µνR̄

µν + R̄2 . (2.48)

It is a fact that

W4 = 2

(
R̄2

µν −
1

3
R̄2

)
+ E4 . (2.49)

This means that on Einstein-Hilbert’s shell (that is, when spacetime is Ricci-flat)

E4 and W4 are equivalent. When the space is Ricci-flat and Euler’s characteristic

vanishes, then ∫
d(vol) R̄2

µνρσ = 0 (2.50)

as well. Usually the anomaly integrand is represented as

a E4 − c W4 (2.51)

which reduces on Einstein-Hilbert shell to

(a− c) E4 . (2.52)

In the present situation we can assert that

∫
d(vol) (E4 −W4) = (−1 + 12ξ)

∫
d(vol)

A+ 3C + 48ξ (B − C)

12ξ2
. (2.53)

It is worth stressing that the value of this coefficient is different from the one that we

will find in the conformal case, when ξ = ξc.

3 Conformal Ward identities

Let us now shift to the conformal case, id est,

ξ = ξc . (3.1)

The framework is then a theory including the metric as well as a set of matter fields, ψi,

with scale dimensions λi, which is conformal.

Let us now spell out the consequences of conformal symmetry at the quantum level.

We can start with the path integral with external sources in it

Z [Jµν , J ] ≡
∫

Dgµν Dφ eiS[gµνφ]+i
∫

d(vol)(Jµνgµν+J φ) . (3.2)

The gravitational equations of motion (EM) read

∫
Dgµν Dφ 1

i

δ

δgµν
eiS[gµνφ]+i

∫

d(vol)(Jµνgµν+J φ) ≡
〈
0+

∣∣∣∣
δS

δgµν
+ Jµν

∣∣∣∣ 0−
〉

= 0 . (3.3)
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Those are operator equations (id est, their expectation values between any pair of

states vanishes). It is obvious that if the EM are valid then of course its trace (which is a

linear combination of EM) also vanishes; in the absence of sources,

gµν
〈
0+

∣∣∣∣
δS

δgµν

∣∣∣∣ 0−
〉

= 0 . (3.4)

It is worth emphasizing that this is a much subtler concept that the tracelessness of the

energy-momentum tensor in a conformal quantum field theory in an external gravitational

field. The energy-momentum tensor does not vanish; it is only covariantly conserved, and

this does not imply tracelessness even on shell.

Here if we want the statement to have any content, what is implied is that the trace of

the EM is not itself an EM, because it vanishes identically without the use of the EM. Let

us consider the path integral defining the partition function. We could as well perform the

path integral using Weyl-transformed variables. They are dummies, after all. Demanding

that the difference between the two different ways of computing the integral should vanish

leads to the whole hierarchy of conformal Ward identities. Let us write them down for

CDG (where δgµν = 2ω(x)gµν)

0 = δZ ≡
∫

Dgµν
∏

i

Dψi

∫
d(vol)xω(x)

{
− 2gµν(x)

δS

δgµν(x)
− n− 2

2
φ
δS

δφ
+ (3.5)

+ 2Jµν(x)gµν(x)− J(x)φ(x)

}
exp

{
iS[gµνφ] +

∫
d(vol) (Jµνgµν + J φ)

}
.

When the sources vanish, this conveys the fact that the equations of motion must be

traceless not only classically as a Noether identity, but also its expectation value between

any pair of states that are connected through the path integral with appropiate boundary

conditions. The vacuum expectation value is a particular case of it when all sources are

switched off. 〈
0+

∣∣∣∣gµν(x)
δS

δgµν(x)
+
n− 2

4
φ
δS

δφ

∣∣∣∣ 0−
〉

= 0 (3.6)

We emphasize that those identities are true off shell ; that is without the use of the

EM. Taking derivatives with respect to the sources yield all contact terms that appear in

higher correlators.

It is convenient at this stage to reflect on this result. The equation of motion for the

graviton is proportional to the energy-momentum tensor the graviscalar field would had if

gravitation were not dymamical.

δSCDG

δgµν
=

2√
|g|
Tµν . (3.7)

The Ward identity then tells us that when gravitation becomes dynamical, the trace of

the energy-momentum tensor is off-shell proportional to the equation of motion of the

graviscalar.

〈0+ |gµνTµν | 0−〉 = −n− 2

4

〈
0+

∣∣∣∣∣
1√
|g|
φ
δSCDG

δφ

∣∣∣∣∣ 0−
〉
. (3.8)

On shell both terms vanish trivially.

– 14 –



J
H
E
P
1
0
(
2
0
1
4
)
1
1
5

What characterizes conformal invariant theories with dynamical gravity is precisely

this conformal Ward identity. We shall investigate in due time whether the effective action

still fulfills it after taking loop contributions into account. A technical problem is the

following. The effective action (which coincides with the background field free energy at

one loop) is gauge dependent off shell. When we restrict to on shell quantities, the Ward

identity as such looks trivial (because it is a linear combination of the expectation values of

the equations of motion). It is well-known however [13, 14] that when there are evanescent

operators in the divergent part, id est, operators such that

δE[φ] ∼ (n− 4)E[φ] , (3.9)

then the Ward identity expressing conformal invariance is violated.

In terms of the singlet metric Gαβ the classical EM read

Rµν [G] = 0 = Rµν +
2n

n− 2

∇µφ∇νφ

φ2
− 2

∇µ∇νφ

φ
− 2

n− 2

(
(∇φ)2
φ2

+
∇2φ

φ

)
gµν . (3.10)

When varying the two fields in the CDG in an independent way, the EM read

δSCDG

δφ
≡ −∇2φ+

n− 2

4(n− 1)
R φ = 0 (3.11)

8(n− 1)

n− 2

δSCDG

δgαβ
≡ Rαβ φ

2 +
2n

n− 2
∇αφ∇βφ− 2φ∇α∇βφ−

− 1

2

(
Rφ2 +

4

n− 2
(∇φ)2 − 4φ∇2φ

)
gαβ = 0 . (3.12)

It is then a fact that at tree level

2gµν
δSCDG

δgµν
+
n− 2

2
φ
δSCDG

δφ
≡ − δS

δw(x)
= 0 . (3.13)

This is a fundamental identity which carries several consequences. First of all, it means

that the two set of EM are compatible at the classical level.

But it also embodies the Noether identity

δS

δw(x)
≡ 0 (3.14)

associated to the conformal invariance of the action. The Weyl transformation of the

metric is compensated by a conformal transformation of the scalar. The corresponding

Ward identy on the effective action implies that the possible conformal anomaly in the

gravitational sector should be cancelled by the contribution of the gravitational scalar.

One of the main objectives of the present paper is to examine whether this is the case.

Actually, in the present paper we shall confine ourselves to pure CDG in the absence

of any matter.

In order to integrate over the gravitational fluctuations, it is much simpler to work with

the singlet metric Gµν . Let us be specific. Given the fact that classically CDG is nothing

but the group averaged action of Einstein-Hilbert under conformal transformations, we
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could conjecture that the same is true in the quantum theory; that is, that the counterterm

of CDG can be obtained from the ’t Hofft-Veltman one by the group-averaging procedure.

This conjecture needs of course an explicit verification before it is accepted. We shall do

such a calculation in the next paragraph.

At any rate, there is an infinite factor coming from the functional integration over the

gravitational scalar, which does not appear in the action. This infinite factor disappears

in all connected amplitudes. We are defining

eiΓ[ḡµν ,φ̄g] ≡
∫

Dgµν Dφ e−i 1
2

∫

d4x
√
−g(∂µφ ∂µφ+ 1

6
R φ2) (3.15)

through

eiΓ[ḡµν ,φ̄g] := eiΓ[Ḡµν [ḡµν ,φ̄g]] (3.16)

where

eiΓ[Ḡµν ] ≡
∫

DGµν e
i

16πG

∫

d4xR[Gµν ] (3.17)

and the function

Ḡµν

[
ḡµν , φ̄g

]
≡ 1

M2
p

(
n− 2

8(n− 1)

) 2
n−2

φ̄
4

n−2 ḡµν . (3.18)

Actually there is in the best of cases a divergent proportionality factor, so that the

equivalence is as best true for the connected piece, which we precisely denote the effective

action,W . In the particular case of the Einstein-Hilbert term, the effective action is nothing

but the well-known ’t Hooft-Veltman [7, 35]counterterm for pure gravity. This yields

ΓDeW

[
G
]
=

1

π2(n− 4)

∫
d4x

√
|G|
(

149

2880
E4[G] +

7

320
W4[G] +

3

128
R[G]2

)
. (3.19)

Given the fact that the integral of the Weyl tensor squared is conformally invariant,

we can naively put G→ g on that term. If we keep the spacetime dimension at the generic

value, the result is

∫
d(vol) W4

[
Ω2gµν

]
=

∫
d(vol) Ωn−4 W4 [gµν ] . (3.20)

This is due to the fact that the covariant Weyl tensor has conformal weight −2 in any

dimension, whereas the volume element picks a factor Ωn. The same thing happens with

the integral of the Euler density

∫
d(vol) E4

[
Ω2gµν

]
=

∫
d(vol) Ωn−4 E4 [gµν ] . (3.21)

The term in R2 is not conformal invariant in any dimension.

The variation of the action under a conformal transformation is then an evanescent

operator. This means simply that it is proportional to (n− 4). By itself, it vanishes when

n → 4, but when (as is here the case) is multiplied by a pole term, it yields a finite

contribution. This has in turn the important consequence that the one loop expectation
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value of the trace of the equations of motion (this is the analogous to the energy-momentum

tensor when gravity is dynamical) does not vanish

〈
gµν

δS

δgµν

〉
= 2

δSeff
δΩ

∣∣∣∣
Ω=1

6= 0 . (3.22)

This is the analogous of the conformal anomaly and we shall dub it as such.

The total result for the divergent piece in four dimensions assuming the hypothesis as

above is then

ΓDeW

[
φ̄, ḡ
]
=

1

π2(n−4)

∫
d(volḡ)

{
149

2880
E4[ḡ]+

7

320
W4[ḡ] +

3

128

(
R[ḡ]−6

∇2φ̄

φ̄

)2
}
. (3.23)

The piece involving the gravitational scalar also yields a conformal anomaly, because

the general formula

(
∇̃2 − n− 2

4(n− 1)
R̃

)(
Ω−n−2

2 φ
)
= Ω−n+2

2

(
∇2 − n− 2

4(n− 1)
R

)
(3.24)

implies that (
R̃− 4(n− 1)

n− 2

∇̃2φ̃g

φ̃g

)2

= Ω−4

(
R− 4(n− 1)

n− 2

∇2φ

φ

)2

(3.25)

which yields again a factor of Ωn−4 when combined with the n-dimensional riemannian

measure. The anomalous Ward identity of the four dimensional CDG then reads

〈
0+

∣∣∣∣−2gµν
δSCDG

δgµν
−n−2

2
φ
δSCDG

δφ

∣∣∣∣0−
〉
≡ACDG=

1

π2

{
7

320
W4+

3

128

(
R−6

∇2φ

φ

)2
}
. (3.26)

The expression of the anomaly is manifestly pointwise conformally invariant. It is inter-

esting to compare this result with the cohomological analysis of Bonora, Cotta-Ramusino

and Reina [8]. They admit only polynomial candidates for the cocycles. The cocycles

which are not exact are

C1 ≡W4

C2 ≡ E4

C3 ≡ φ∇2φ− 1

6
Rφ2

C4 ≡ φ4 . (3.27)

Our expression for the anomaly is clearly of the form

aC1 + b
C2
3

C4
(3.28)

with a and b constants.
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4 Conformal dilaton gravity

Let us now consider the theory at the conformal point, corresponding to the critical coupling

ξ = (n−2)
8(n−1) . In this case, we have an enhanced gauge symmetry and, as a consequence, an

extra zero mode that will make the metric GAB non-invertible, as can easily be verified

from the fact that its determinant when ξ = ξc is

Det(GAB) =
n

64(n− 1)
Det

(
ḡµρḡνσ + ḡµσ ḡνρ −

2

n
ḡµν ḡρδ

)
(4.1)

which is the determinant of a projector.

In this section, by using the background field method in conjunction with the BRST

formalism, we shall quantize the CDG with classical action

SCDG =

∫
d(vol)

(
− n− 2

8(n− 1)
R Φ2 − 1

2
gµν∇µΦ∇νΦ

)
(4.2)

around a classical field configuration
(
ḡµν , φ̄

)
with φ̄ 6= 0. Thus we shall split first the full

fields, gµν and Φ, entering SCDG into their background, ḡµν and φ̄, and their quantum, hµν
and φ, parts, respectively:

gµν ≡ ḡµν + κhµν

Φ ≡ φ̄+ φ. (4.3)

Then we shall translate the invariance of SCDG under diffeomorphisms and Weyl

transformations into its invariance under the following infinitesimal quantum gauge

transformations

δQDḡµν = δQDφ̄ = δQW ḡµν = δQW φ̄ = 0

δQDhµν = ξρ∇̄ρhµν + ∇̄µξ
ρhρν + ∇̄νξ

ρhµρ +
1

κ

(
∇̄µξν + ∇̄νξµ

)

δQWhµν = 2ω

(
hµν +

1

κ
ḡµν

)

δQDφ = ξρ∇̄ρ

(
φ̄+ φ

)

δQWφ = −n− 2

2
ω
(
φ̄+ φ

)
. (4.4)

The subscripts D and W remind us that the corresponding transformations either come

from diffeomorphisms — D — or from Weyl transformations — W .

Since along the quantization process we shall have to handle two different gauge sym-

metries as the same time, the task of quantization may appear to be slightly tricky. And

yet, we shall see below that the BRST quantization method does the job for us easily.

So, next, we shall introduce the BRST operators, sD and sW , associated to the previous

infinitesimal quantum gauge transformations. These operators act on the fields ḡµν , φ̄, hµν
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and φ as follows

sDḡµν = sDφ̄ = sW ḡµν = sW φ̄ = 0

sDhµν =
1

κ

(
∇̄µην + ∇̄νηµ

)
+ ηρ∇̄ρhµν + ∇̄µη

ρhρν + ∇̄νη
ρhρµ

sWhµν =
2c

κ
(ḡµν + κhµν)

sDφ = ηλ∇̄λ

(
φ̄+ φ

)

sWφ = −n− 2

2
c
(
φ̄+ φ

)
. (4.5)

The symbols ηµ and c denote the ghost fields for diffeomorphisms and Weyl transfor-

mations, respectively. The action of sD and sW on ηµ and c is given by

sDη
µ = ηρ∂ρη

µ

sW η
µ = 0

sDc = ηρ∂ρc

sW c = 0 . (4.6)

To construct a gauge-fixing term that is BRST exact, we shall need the antighost fields,

η̄µ and c̄, and the corresponding Nakanishi-Lautrup auxiliary fields, Bµ and f . The BRST

variations of these fields read

sDη̄
µ = Bµ sDB

µ = 0

sW η̄
µ = 0 sWB

µ = 0

sD c̄ = ηρ∂ρc̄ sDf = ηλ∂λf

sW c̄ = f sW f = 0 . (4.7)

It can be shown that

s2D = 0 s2W = 0 {sW , sD} = 0 ; (4.8)

and hence one can introduce the following BRST operator

s = sD + sW , (4.9)

which takes care at once of both the BRST symmetry associated to diffeomorphisms and

the BRST symmetry stemming from Weyl transformations. Clearly, s2 = 0.

We are now ready to introduce the action S of the BRST quantized theory:

S = SCDG + s (XD +XW ) , (4.10)

where

XD =

∫
dnx

√
|ḡ| η̄µ

(
−4(n− 1)

n− 2
Bµ + Fµ

D

)
(4.11)

XW =

∫
dnx

√
|g| gµν ∂µc̄ ∂ν (f − αΦ) + α

∫
dnx

√
|ḡ| ḡµν ∂µc̄ ∂ν φ̄ , (4.12)
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and

F ν
D = (1− γ)

(
∇̄µkνµ − 1

2
∇̄νk

)
+ γ φ̄

(
∇̄µhνµ − 1

2
∇̄νh

)
− 2∇̄νφ. (4.13)

Here, and in the sequel, kµν = φ̄ hµν . α and γ are gauge parameters.

Furnished with S as given in the previous equation, we define the DeWitt effective

action, ΓDeW[ḡµν , φ̄], of the theory as follows

eiΓDeW[ḡµν ,φ̄] = (4.14)

=

∫
Dhµν DφDηµDη̄µDBµDcDc̄Df ei

[

S−
∫

dnx
(

δSCDG[0,0]

δḡµν (x)
hµν(x)+

δSCDG[0,0]

δφ̄(x)
φ(x)

)]

where SCDG[0, 0] is obtained by setting hµν = 0 and φ = 0 in SCDG

[
ḡµν + κhµν , φ̄+ φ

]
.

Taking advantage of the fact that s (XD +XW ) is BRST exact, one can show that the

appropriately regularized — eg, by using dimensional regularization — ΓDeW

[
ḡµν , φ̄

]
does

not depend on the choice of XD+XW , if ḡµν and φ̄ are on-shell. Our choice of XD+Xw is

dictated, partially, by the requirement of having a one-loop contribution to ΓDeW

[
ḡµν , φ̄

]

that is given by a minimal operator. Indeed, on the one hand, as we shall see below, the

contribution to SCDG which is quadratic on the quantum fields contains a non-minimal

part which reads

− n− 2

16(n− 1)

∫
dx
√
|ḡ|
(
∇̄µk

µν∇̄λkλν −∇µk
µν∇νk + 4∇̄µ∇̄νk

µνφ
)
. (4.15)

The need to cancel this term pins down the contribution to F ν
D which does not depend

on the gauge parameter γ. On the other hand, the fact that one can define the action of

sD on c̄ and f in such a way that the result is geometrical makes it possible to construct

easily a contribution to XW that is non-linear in the quantum fields and is annihilated by

sD; this contribution being
∫
dnx

√
|g| gµν ∂µc̄ ∂ν (f − αΦ) . (4.16)

Notice that in the previous expression it is Φ— the full scalar field — that occurs, not just φ.

Now, the action of sD on hµν and φ gives rise to a derivative of the appropriate quantum

field. Hence the sD variation of terms which — like the previous one — contain two

derivatives of the quantum fields, will tend to yield contributions that are quadratic in the

quantum fields and involve three derivatives of the appropriate quantum fields. These three-

derivative contributions will destroy the minimal character of the corresponding differential

operator, unless they cancel each other as in the case at hand. Notice that having two

derivatives in the term in (4.16) guarantees that we shall have a Laplace operator in the

c̄c contribution to S in (4.10).

It is worth stressing that the term

α

∫
dnx

√
|ḡ| ḡµν ∂µc̄ ∂ν φ̄ (4.17)

in XW in (4.11) ensures that no linear contribution in the quantum fields occurs in

s (XD+XW ), as befits the concept of DeWitt effective action.
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Let us finally point out that we shall keep the gauge parameters α and γ arbitrary

and thus check non-trivially that our result for the on-shell most UV contribution to

ΓDeW

[
ḡµν , φ̄

]
does not depend neither on α nor γ.

The Bµ field appears linearly and it is conveniently integrated out. It is worth remark-

ing thet were we to do the same thing for the field f , the resulting operator would have

been not minimal anymore.

5 The one-loop effective action of CDG

With the addition of the gauge fixing term, we have all the ingredients needed to compute

the one-loop counterterm. Again, we define a generalized field living in the “gauge” bundle,

this time including also the auxiliar field f

ΨA =



kµν

φ

f


 . (5.1)

This means that the metric GAB and the matrices MAB and Nµ
AB will have now extra

entries corresponding to the new interaction terms containing f . Therefore, the metric

now reads

GAB =
(n− 2)

4(n− 1)




1
8G

αβ
µνρσḡαβ

1
4 ḡµν 0

1
4 ḡρσ

n
(n−2) −2α(n−1)

n−2

0 −2α(n−1)
n−2

4(n−1)
n−2


 (5.2)

whose inverse, in the same sense as before, happens to be

GAB =



−16(n−1)

n−2

[
ḡµρḡνσ+ḡνρḡµσ + 2(2+α2(1−n))

α2(2−3n+n2)
ḡµν ḡρσ

]
16

α2(n−2)
ḡρσ 8

α(n−2) ḡ
ρσ

16
α2(n−2)

ḡµν − 4
α2 − 2

α
8

α(n−2) ḡ
µν − 2

α 0


 . (5.3)

The matrices are extended in such a way that

Nβ
AB =



Nβ

kk N
β
kφ Nβ

kf

Nβ
φk N

β
φφ N

β
φf

Nβ
fk N

β
fφ N

β
ff


 MAB =



Mkk Mkφ Mkf

Mφk Mφφ Mφf

Mfk Mfφ Mff


 (5.4)

where the kk, kφ and φφ elements are the same as in the non-Weyl-invariant case (provided

that we substitute ξ by ξc) and the new elements read

Nβ
kf = −Nβ

fk =
α

4

∇̄αφ̄

φ̄

(
ḡανδ

β
µ + ḡαµδ

β
ν − ḡµνδ

β
α

)

Nβ
ff = 0

Nβ
φf = −Nβ

fφ = 0

Mkf =Mfk = −α
8

(
∇̄µ

(∇̄ν φ̄

φ̄

)
+ ∇̄ν

(∇̄µφ̄

φ̄

)
− ḡµν∇̄β

(∇̄βφ̄

φ̄

))

Mφf =Mfφ = 0

Mff = 0 .
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Let us stress that now

Fαβ
A

B =




1
2

(
R̄µ

ρ αβδ
ν
σ + R̄ν

ρ αβδ
µ
σ + R̄µ

σ αβδ
ν
ρ + R̄ν

σ αβδ
µ
ρ

)
0 0

0 0 0

0 0 0


+

∇̄αωβ
A

B − ∇̄βωα
A

B + ωα
A

Cωβ
C

B − ωβ
A

Cωα
C

B . (5.5)

We shall introduce next the generalized ghost, ηs, and generalized antighost, η̄s, fields,

which are defined as follows

ηs =

(
ηµ

c

)
η̄s =

(
η̄µ c̄

)
. (5.6)

Then, the contribution which is quadratic in the ghost and antighost fields and comes

from (4.10) reads

Ŝghost
2 =

∫
dnx

√
|ḡ| η̄s

(
−Ḡst∇̄2 +Nα

st∇̄α +Mst

)
ηt, (5.7)

where

Gst =

(
ḡµν 0

0 1

)
Nα

st =

(
Nα

µν Nα
µw

Nα
wν N

α
ww

)
Mst =

(
Mµν Mµw

Mwν Mww

)
(5.8)

and

Nα
µν = −(1− γ) ḡµν

∇̄αφ̄

φ̄
+ (1 + γ)

∇̄ν φ̄

φ̄
δαµ + (1− γ)

∇̄µφ̄

φ̄
δαν

Nα
µw = 0, Nα

wν =
2

n− 2

∇̄2φ̄

φ̄
δαν , Nα

ww = 0

Mµν = −R̄µν + 2
∇̄µ∇̄ν φ̄

φ̄
, Mµw = −γ(n− 2)

∇̄µφ̄

φ̄
, Mwν =

2

n− 2

∇̄ν∇̄2φ̄

φ̄

Mww =
∇̄2φ̄

φ̄
.

The reader should bear in mind that the index w has no range and goes with c or c̄, as the

case may be.

The heat kernel coefficient (A.24) associated to Ŝghost
2 in (5.7) is the corresponding

coefficient of the heat kernel expansion of the following operator

∆̂(ghost) = −
(
ḡµν

[
∇̄µδ

s
t′ + ωs

µ t′
] [

∇̄νδ
t′

t + ωt′

ν t

]
+ Es

t

)
, (5.9)

where

ωs
µ t =

1

2
Gst′ Nµ t′t (5.10)

Es
t = Gst′

(
−Mt′t − ωµt′s′ω

µs′

t − ∇̄µω
µ
t′t

)
(5.11)

Gst is the inverse matrix of Gst in (5.8).
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To work out the heat kernel coefficient (A.24) associated to Ŝghost
2 in (5.7), one also

needs the field strength for the connection defined by ∇̄µδ
s
t + ωs

µt, which reads

F s
ρσt =

(
R̄µ

νρσ 0

0 0

)
+ ∇̄ρω

s
σt − ∇̄σω

s
ρt + [ωρ, ωσ]

s
t . (5.12)

All the ingredients which are needed for the full computation are now in place. All

that is left is to add the contributions of the physical fields and the ghost fields

ΓDeW

[
ḡ, φ̄
]
=

1

n−4

(
Abosons

2

[
ḡ, φ̄
]
−2 Aghosts

2

[
ḡ, φ̄
])

=
1

n−4

1

16π2

∫
d4x
√
|ḡ| a2

[
ḡ, φ̄
]
(5.13)

where the off-shell a2 term is now

a2
[
ḡ, φ̄
]
= Q1(αγ)

(
∇̄φ̄
)2(∇̄φ̄

)2

φ̄4
+Q2(α, γ)

∇̄µφ̄∇̄ν φ̄∇̄µ∇̄ν φ̄

φ̄3
+Q3(α, γ)

∇̄µ∇̄ν φ̄∇̄µ∇̄ν φ̄

φ̄2
+

2γ
∇̄µφ̄∇̄2∇̄µφ̄

φ̄2
+Q4(α, γ)

(
∇̄φ̄
)2 ∇̄2φ̄

φ̄3
+Q5(α, γ)

∇̄2φ̄∇̄2φ̄

φ̄2
+Q6(α, γ)

R̄µν∇̄µφ̄∇̄ν φ̄

φ̄2
+

+Q7(α, γ)
R̄µν∇̄µ∇̄ν φ̄

φ̄
+Q8(α, γ)R̄

µνR̄µν +
53

45
R̄µναβR̄µναβ +Q9(α, γ)

R∇µφ̄∇µφ̄

φ̄2
+

+Q10(α, γ)R̄
2 +Q11(α, γ)

R̄∇̄2φ̄

φ̄
(5.14)

where

Q1(α, γ) ≡
16 + 108α2 − 8γ + 96α2γ + 4γ2 + 18α2γ2 + γ3 + 4α2γ3

α2

Q2(α, γ) ≡ −2
(
96 + 405α2 − 48γ + 390α2γ + 13γ2 + 57α2γ2 + 3γ3 + 12α2γ3

)

9α2

Q3(α, γ) ≡
48 + 81α2 − 24γ + 102α2γ + γ2 + 3α2γ2

9α2

Q4(α, γ) ≡ −−102− 378α2 + 96γ − 420α2γ − 44γ2 − 60α2γ2 + 3γ3 + 12α2γ3

9α2

Q5(α, γ) ≡ −−162 + 228α2 − 108α4 − 24α2γ + 84α4γ + α2γ2 + 3α4γ2

9α4

Q6(α, γ) ≡ −−96− 63α2 + 24γ − 78α2γ − γ2 + 15α2γ2

9α2

Q7(α, γ) ≡ −4
(
4− 3α2 − γ + α2γ

)

3α2

Q8(α, γ) ≡ −−120 + 361α2

90α2

Q9(α, γ) ≡ −11 + 24α2 − 6γ + 32α2γ + 3γ2 + 6α2γ2

3α2

Q10(α, γ) ≡
18− 30α2 + 43α4

36α4

Q11(α, γ) ≡
−18 + 25α2 − 21α4 − 2α2γ + 2α4γ

3α4
.
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It is worth mentioning that all the monomials including the scalar field diverge when

φ̄ = 0. Naive power counting arguments can not then be applied. This fact also prevents

the monomials that appear in the bare lagrangian to appear in the counterterm. This

physically means something that we already knew, namely that our calculation is restricted

to the broken phase of the theory. When this is put on-shell by using the relationships

derived in a previous paragraph (particularized for the conformal value of the coupling ξ)

all the gauge dependence on the parameters γ and α dissapears. This is a powerful check

of the gauge independence of our result. Moreover, by using the relations

E4 = R̄µναβR̄
µναβ + R̄2 − 4R̄µνR̄

µν (5.15)
∫

d(vol) E4 =

∫
d(vol)W4 − 2

∫
d(vol)

(
R̄µνR̄µν −

1

3
R̄2

)
(5.16)

and using the fact that the last term in the second relation vanishes when using the EM,

the on-shell counterterm finally reads

ΓDeW =
1

n− 4

1

16π2
53

45

∫
d(vol) E4 (5.17)

which is exactly the same as in General Relativity once the equations of motion are taken

into account. In fact the counterterm vanishes for manifolds with vanishing Euler charac-

teristic (although not in general). On the other hand, S-matrix elements depend only on

the on-shell effective action. This means that the anomaly induced by the corresponding

evanescent operator is trivial for those spaces with χ(M) = 0.

6 Inclusion of a quartic interaction

The attentive reader could not fail to notice that the action of CDG is not the most general

one with the full set of symmetries. There is an operator, namely a quartic self-interaction

of the graviscalar field, that can always be included. The reason why it has been taken

apart from the other terms will be apparent in a moment.

The action of interest is

S = −
∫
dnx

√
|g|
(
ξφ2R+

1

2
∇µφ∇µφ− λφ

2n
n−2

)
(6.1)

where the coupling constant is dimensionless in any dimension.

The presence of this new term will add corrections to the second order action when

expanding around background fields. All these terms will be just new additions to the

MAB matrix of our algorithm

Mλ
AB =M0

AB + δMAB (6.2)

where M0
AB is the corresponding matrix when λ vanishes and

δMAB =




λ
4 φ̄

4
n−2

(
Pαβ
µνρσ − 1

2K
αβ
µνρσ

)
−λ

2
n

n−2 φ̄
4

n−2

−λ
2

n
n−2 φ̄

4
n−2 −λn(n+2)

(n−2)2
φ̄

4
n−2


 . (6.3)

It is convenient to study separately the non-conformal and the conformal case.
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6.1 Non-conformal dilaton gravity

Let us start with Dilaton Gravity out of the conformal point and just repeat the steps we

did before to obtain the one-loop effective action. For simplicity we choose γ = 0 and obtain

the following off-shell result after performing the computations for the DeWitt-Schwinger

coefficient of the Heat Kernel (the corresponding ghost action is insensible to the adition

of the potential term)

aλ2 = a02 + δa2 (6.4)

where, again, a02 is the coefficient when the potential is absent, obtained by choosing the

γ = 0 gauge in the corresponding equation, and

δa2 = l1(γ, λ, ξ)(∇φ̄)2 + l2(γ, λ, ξ)φ
4 − l3(γ, λ, ξ)R̄φ̄

2 − l4(γ, λ, ξ)φ̄∇2φ̄ . (6.5)

All counterterms proportional to the quartic self-interaction renormalize coupling constants

already present in the original lagrangian; in particular there are no operators that become

singular when φ̄→ 0

Here

l1(γ, λ, ξ) = 2880(−1 + 12ξ)
(
1− ξ

(
25 + 18γ + 5γ2

)
+ 4ξ2

(
45 + 50γ + 18γ2

))
λ

l2(γ, λ, ξ) = 2880
(
5− 112ξ + 696ξ2

)
λ2

l3(γ, λ, ξ) = 960ξ
(
13− 282ξ + 1728ξ2

)
λ

l4(γ, λ, ξ) = 5760ξ
(
−7 + ξ(132− 46γ) + 264ξ2(−3 + γ) + 2γ

)
λ . (6.6)

The presence of the self-interaction also corrects the equations of motion for the back-

ground fields. They receive new pieces and now read in four dimensions

ξRµν=
1

4
gµν

∇2φ̄

φ̄
−
(
1

2
−2ξ

) ∇µφ̄∇ν φ̄

φ̄2
−
(
2ξ− 1

4

)
gµν

(
∇φ̄
)2

φ̄2
+2ξ

∇µ∇ν φ̄

φ̄
−2ξgµν

∇2φ̄

φ̄
+
1

2
λφ̄2gµν

R− 1

2ξ

∇2φ̄

φ̄
− 2λ

ξ
φ̄2 = 0 .

The second set of on-shell relations previously derived in the absence of self-interaction

are still valid, since they only involve integration by parts. The first set is however modified

by the presence of the self-interaction. They read now

∇2φ̄R̄

φ̄
=

1

2ξ
A− 2λ

ξ
(∇φ̄)2

(∇φ̄)2R̄
φ̄

=
1

2ξ
B +

2λ

ξ
(∇φ̄)2

R̄2 =
1

4ξ2
A+

4λ2

ξ2
φ̄4 +

2λ

ξ2
φ̄∇2φ̄

R̄µν∇µφ̄∇ν φ̄

φ̄2
=

(
1

4ξ
− 2

)
B − 1

4ξ
C + 2E +

λ

2ξ
(∇φ̄)2

R̄µν∇µ∇ν φ̄

φ̄
=

(
1

4ξ
− 2

)
(A+B) + 2D +

(
2− 1

2ξ

)
E +

λ

2ξ
φ̄∇2φ̄

R̄µνR̄µν =

(
1

4ξ
−2

)(
R̄
∇2φ̄

φ̄
+R̄

(∇φ̄)2
φ̄2

)
+

(
2− 1

2ξ

)
R̄µν∇µφ̄∇ν φ̄

φ̄2
+2

R̄µν∇µ∇ν φ̄

φ̄
+
λ

2
R̄φ̄2 .
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And, again as in the λ = 0 case, compatibility of the two equations, whenever we are out

of the conformal point, demands

A = C = −B . (6.7)

Using this modified relations, we can finally put the full counterterm on-shell, ending

up with a simple expression for the DeWitt-Schwinger coefficient

a
λ(on−shell)
2 =

71

60
W4 +

1259

1440
(1− 12ξ)2C +

1484

1440

1− 12ξ

ξ2
λ
(
∇φ̄
)2 − 371

180

λ2

ξ2
φ̄4 . (6.8)

The main physical effect of the self-interaction at this level is to generate counterterms

for the dimension four operators in the lagrangian, a feature that was absent before. Ac-

tually the renormalization of the non-minimal coupling to the curvature is proportional to

δξ ∝ λ

ξ2
. (6.9)

In the limit ξ → 1
12 , corresponding to the conformal value, all non-Weyl invariant terms

in the effective action vanish. However, as we already saw in the pure λ = 0 case, this

limit is discontinuous owing to the presence of an enhanced gauge symmetry so that the

coefficients in front of every term will be different in the conformal case.

6.2 Conformal dilaton gravity

Let us now turn our attention to the conformal case in which the coupling to curvature

reaches the conformal value ξc = 1
12 . In this case, we have a Conformal Dilaton Gravity

with an extra gauge symmetry, namely Weyl invariance. The only monomial compatible

with this new symmetry is precisely

V = λφ
2n
n−2 . (6.10)

Actually it is the only Weyl invariant potential term in arbitrary dimension.

Quantization of CDG in this phase is done, again, in the same way as in the λ = 0

case. We stick to the γ = 0 choice for the diffeomorphism gauge fixing and we introduce

the gauge fixing sector for Weyl invariance by using BRS techniques as before. In this case,

the matrix δMAB must be extended to include the f field in a trivial way as

δMAB =




λ
4 φ̄

4
n−2

(
Pαβ
µνρσ − 1

2K
αβ
µνρσ

)
−λ

2
n

n−2 φ̄
4

n−2 0

−λ
2

n
n−2 φ̄

4
n−2 −λn(n+2)

(n−2)2
φ̄

4
n−2 0

0 0 0


 . (6.11)

Plugging the new matrix into the algorithm and working out the computations, the

off-shell Heat kernel expression again receives new terms proportional to λ. These are,

when n = 4

δaλ2 = s1(α, λ) φ̄
4 + s2(α, λ)(∇φ)2 + s3(α, λ)φ̄∇2φ̄− s4(α, λ)R̄φ̄

2 . (6.12)

It is remarkable that also here all counterterms involving λ seem to obey the ordinary

power counting arguments and renormalize the coupling constants already present in the

bare lagrangian. No singularities when φ̄ → 0 are present in terms involving the quartic

self-interaction.
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The explicit values of the four functions si(α, λ) is given by

s1(α, λ) ≡ 48λ2
6− 4α2 + 15α4

α4

s2(α, λ) ≡ 12λ

(
3 +

2

α2

)

s3(α, λ) ≡ 24λ
6− 6α2 + 7α4

α4

s4(α, λ) ≡ 4λ
6− 5α2 + 13α4

α4
. (6.13)

So that using again the on-shell relations induced by the equations of motion, we find the

on-shell coefficient to be

a
λ(on−shell)
2 =

53

45
W4 −

4568

15
λ2φ̄4 . (6.14)

A quartic self-interaction in the Jordan frame corresponds to a cosmological constant in

the Einstein frame. It must be then the case that the counterterm just derived is the Weyl

transformation of the one obtained for General Relativity with a cosmological constant by

Christensen and Duff [10].

This counterterm reads on-shell

a
GR(on−shell)
2 =

53

45
W4 −

1142

135
Λ2 . (6.15)

If the above conjecture is to be true our λ must be directly related to their Λ.

Taking the limit in which CDG goes to General Relativity, characterized in n=4 di-

mensions by

φ→
√
12Mp (6.16)

we learn that

Λ = 6λφ2 . (6.17)

The Christensen-Duff counterterm then reads

a
GR(on−shell)
2 −→ 53

45
W4 −

4568

15
λ2φ̄4 (6.18)

which is exactly the result we obtained by a direct computation of the one-loop counterterm

of CDG.

This is perhaps a good place to comment somewhat on previous literature. In [6] some

similar models are analyzed; but they beg the main physical question in the sense that

they postulate that the counterterm should be the Weyl transform of the ’t Hooft and

Veltman’s one.

The are a couple of interesting papers ([33, 34]) where quite general models that include

the one studied in the present paper are analyzed outside the conformal point. Only [33]

reports on shell results, so that there can be a meaningful comparison. We have checked

that the coefficent of W4 in their on-shell counterterm is different from our result.

The other paper [34] also assumes from the start that the function U(φ) that multiplies

the scalar curvature cannot vanish.6 This means that their results do not hold when

U(φ) ∼ φ2 as in our case. No comparison can then be made with them.

6We are grateful to A. Kamenshchik for informing us of this fact.
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7 Physical effects of quantum gravity

The standard lore of effective field theories is that quantum gravity effects should decou-

ple at energies much smaller than Planck mass, Mp ≡ 1√
16πG

, so that they can be safely

ignored in particle physics except in exotic circumstances. This statement needs qualifica-

tion in all cases in which the gravitational coupling constant becomes dynamical. This is

what happens, in particular, in conformally invariant theories, where all energy scales are

physically equivalent. Our calculations as reported here allow for a quantitative axample.

An scalar field conformally coupled to the gravitational field has the action

S =

∫
d(vol)

(
n− 2

8(n− 1)
φ2R+

1

2
(∇φ)2

)
. (7.1)

The conformal invariance of the effective action implies an off-shell Ward identity

2gµν
δΓ

δgµν
+
n− 2

2
φ
δΓ

δφ
= 0. (7.2)

This is true irrespectively of whether gravitation is dynamical or not.

The corresponding energy momentum tensor of the scalar fields reads

Tαβ ≡ 2√
|g|

δS

δgαβ
=

n− 2

4(n− 1)
Rαβφ

2 +
n

2(n− 1)
∇αφ∇βφ− n− 2

2(n− 1)
φ∇α∇βφ−

− 1

2

(
n− 2

4(n− 1)
Rφ2 +

1

n− 1
(∇φ)2 − n− 2

n− 1
φ∇2φ

)
gαβ . (7.3)

This energy-momentum tensor is already traceless on shell

T ≡ gαβTαβ = 0 . (7.4)

Quantum corrections yield however a trace anomaly (confer, for example [31], page 107)

which in this case is given by

〈0 |T | 0〉 = 1

2880π2

(
3

2
W4 −

1

2
Ē4 +� R̄

)
. (7.5)

Not only that; even the Ward identity (7.2) is violated as well owing to evanescent operators,

acquiring a nonvanishing second member

2gµν
δΓ

δgµν
+ φ

δΓ

δφ
=

1

2880π2

(
3

2
W̄4 −

1

2
Ē4 + �̄R̄

)
+

+
9

8π2
λ2φ̄4 − λ

8π2
∇µ

(
φ̄∇µφ̄

)
. (7.6)

The quartic self-interaction for the scalar field has been included.

This is to be contrasted with the result just obtained when gravitation is dynamical

2gµν
δΓ

δgµν
+ φ

δΓ

δφ
=

1

16π2

(
53

45
W̄4 −

4568

15
λ2φ̄4

)
. (7.7)

Here Γ is the four-dimensional renormalized action, and the quartic self-interaction has

been included as well. The difference between the result in the presence of quantum

gravity effects and the result when the gravitational field is just a background is not small.

This is only natural, because there is no yet anything that fixes the scale at which quantum

gravity effects should become important.
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8 A discussion of the fate of the Weyl symmetry Ward identity at the

two loop level

The fact that the UV divergent counterterm (as well as the conformal anomaly) vanishes on

shell means that it is in principle irrelevant, at least as far as S-matrix physics is concerned.

It is most interesting to consider a situation in which UV divergences are likely to show up.

As we shall see, this is the case in four dimensions at the two loop order and six dimensions

at the one loop order. Let us begin with the case in four dimensions.

The fact that the action SCDG in (1.14) is Weyl invariant for arbitrary n and the results

concerning the Quantum Action Principle presented in [9] lead to the conclusion that the

dimensionally regularized on shell background field effective action, Γ
[
ḡµν , φ̄; n

]
, of our

theory is Weyl invariant at any loop order:

[
2 ḡµν

δ

δḡµν
+
n− 2

2
φ̄
δ

δφ̄

]
Γ
[
ḡµν , φ̄; n

]
= 0 . (8.1)

And yet — see Theorem 2 of [9], that the previous equation holds does not necessarily

mean that the renormalized effective action, say Γ0

[
ḡµν , φ̄

]
, obtained from Γ

[
ḡµν , φ̄; n

]

by using the minimal substraction algorithm satisfies the corresponding Ward identity in

four dimensions. Indeed, let us assume — an assumption to be discussed below — that

Γ
[
ḡµν , φ̄; n

]
develops a simple pole at two loops; then, since the Ward identity in (8.1)

contains coefficients with an explicit dependence on n, these coefficients may give rise to

contributions that cancel the pole at n − 4 in Γ
[
ḡµν , φ̄; n

]
. This mechanism may yield

UV finite terms — let us denote them by B
[
ḡµν , φ̄

]
— that break the Ward identity for

Γ0

[
ḡµν , φ̄

]
: [

2 ḡµν
δ

δḡµν
+ φ̄

δ

δφ̄

]
Γ0

[
ḡµν , φ̄

]
= B

[
ḡµν , φ̄

]
. (8.2)

The previous Ward identity breaking term, B
[
ḡµν , φ̄

]
, will turn to be a true anomaly if no

acceptable UV finite counterterm, Γ
(ct)
0

[
ḡµν , φ̄

]
, can be found so that

[
2 ḡµν

δ

δḡµν
+ φ̄

δ

δφ̄

]
Γ
(ct)
0

[
ḡµν , φ̄

]
= B

[
ḡµν , φ̄

]
(8.3)

holds.

Let us stress that to tell whether or not B
[
ḡµν , φ̄

]
is a true anomaly, one should define

first what an acceptable counterterm is. In theories with overall UV divergences which are

polynomials in the fields and their derivatives, by acceptable counterterms one means poly-

nomials in the fields and their derivatives of the appropriate mass dimension. The reader

should also bear in mind that if a true anomaly does not show up after performing a mini-

mal substraction, then, a true anomaly cannot be generated by performing any acceptable

non-miminal substraction. By an acceptable non-minimal substraction one means that

which differs from the minimal subtraction by acceptable UV finite counterterms. Notice,

however, that the value of B
[
ḡµν , φ̄

]
changes, in general, as we change the acceptable

substraction.
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Now, in keeping with the one loop result obtained above, we shall assume that at

two loops the pole part at n = 4 of our dimensionally regularized on shell background

field effective action, Γ
[
ḡµν , φ̄; n

]
, can be obtained, by performing an appropriate Weyl

transformation, from the on shell two loop result worked out in 1986 for General Relativity

by Goroff and Sagnotti [21]. This on shell two loop divergence reads

Γ(GS)
∞

[
Ḡµν

]
=

1

n− 4

1

(4π)4M2
p

209

2880

∫
d4x
√
|Ḡ|W (4)

6

[
Ḡµν

]
, (8.4)

where

W
(4)
6 ≡W (4)α1α2α3α4 W (4)

a3α4α5α6
W (4) a5α6

α1α2 . (8.5)

The symbol W
(4)
µ1µ2µ3µ4 stands for the Weyl tensor — see (1.5) — for the metric Ḡµν

for n = 4.

Now, by applying the Weyl transformation

Ḡµν =
1

12M2
p

φ̄2 ḡµν (8.6)

to Γ
(GS)
∞

[
Ḡµν

]
in (8.4), one obtains

Γ(GS)
∞

[
ḡµν , φ̄

]
=

1

n− 4

12

(4π)4
209

2880

∫
d4x
√
|ḡ| 1

φ̄2
W

(4)
6 [ḡµν ] , (8.7)

which, as stated above, we assume it is the two loop pole part contribution to the dimen-

sionally regularized on shell background field effective action of our theory.

Since we want to make sure that no diffeomorphism anomaly arises in the renormalized

theory in 4 dimensions, the substraction of Γ
(GS)
∞ [ḡµν , φ̄] in (8.7) from Γ[ḡµν , φ̄; n] is to be

done in such a way that it preserves explicitly invariance under diffeomorphisms in n di-

mensions. This is achieved by generalizing Γ
(GS)
∞

[
Ḡµν

]
from 4 dimensions to n dimensions

and subtracting the resulting term from the dimensionally regularized action. The geomet-

rically natural generalization of W
(4)
6 to the n dimensional space is obtained by using the

both the metric and the Weyl tensor in n dimensions. The Weil tensor in n dimensions

contains coefficients that depend explicitly on n; so this generalization of W
(4)
µ1µ2µ3µ4 to an

object in n dimensions will lead to a non-minimal substraction algorithm. However, it is

the Weyl tensor in n dimensions the object which supplies a Weyl invariant tensor in n

dimensions: a property much appreciated if one looks for Weyl invariance.

Then, let us introduce the following generalization of Γ
(GS)
∞

[
ḡµν , φ̄

]
in (8.7) to

n dimensions:

Γ(nm)
∞

[
ḡµν , φ̄

]
=

1

n− 4
W

(nm)
−1

[
ḡµν , φ̄

]
, (8.8)

where

W
(nm)
−1

[
ḡµν , φ̄

]
=

12

(4π)4
209

2880

∫
dnx

√
|ḡ| 1

φ̄2
W

(n)
6 [ḡµν ] . (8.9)

In the previous equation

W
(n)
6 [ḡµν ] ≡Wα1α2α3α4 Wα3α4α5α6 W

α5α6
α1α2 , (8.10)

Wµ1µ2µ3µ4 being the Weyl tensor for the metric ḡµν in n dimensions — see definition in (1.5).
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We define, up to two loops, a renormalized on shell background field effective action,

let us call it Γ
(nm)
0

[
ḡµν , φ̄

]
, by performing the following non-minimal subtraction:

Γ
(nm)
0

[
ḡµν , φ̄

]
= lim

n→4

{
Γ
[
ḡµν , φ̄; n

]
− 1

n− 4
W

(nm)
−1

[
ḡµν , φ̄

]}
. (8.11)

Substituting

Γ
[
ḡµν , φ̄; n

]
=

1

n− 4
W

(nm)
−1

[
ḡµν , φ̄

]
+ Γ

(nm)
0

[
ḡµν , φ̄

]
+O(n− 4) (8.12)

in (8.1) and taking into account that
[
2 ḡµν

δ

δḡµν
+
n− 2

2
φ̄
δ

δφ̄

]
W

(nm)
−1

[
ḡµν , φ̄

]
= −2(n− 4)W

(nm)
−1

[
ḡµν , φ̄

]
, (8.13)

one readily shows that Γ
(nm)
0 [ḡµν , φ̄] satisfies the following broken Ward identity

[
2 ḡµν

δ

δḡµν
+ φ̄

δ

δφ̄

]
Γ
(nm)
0

[
ḡµν , φ̄

]
= B[ḡµν , φ̄] = 2W−1

[
ḡµν , φ̄

]
. (8.14)

W−1

[
ḡµν , φ̄

]
is given by

W−1

[
ḡµν , φ̄

]
=

12

(4π)4
209

2880

∫
d4x
√
|ḡ| 1

φ̄2
W

(4)
6 [ḡµν ] . (8.15)

It is clear that W−1

[
ḡµν , φ̄

]
cannot be canceled by adding to Γ

(nm)
0

[
ḡµν , φ̄

]
an inte-

grated local polynomial of the fields and their derivatives. This is not surprising since after

all the pole part of Γ
[
ḡµν , φ̄; n

]
is not a polynomial in φ̄; although it is a meromorphic

function, when φ̄ is replaced by a complex variable. To gain some understanding on the

type of counterterms that one has to accept with the purpose of modifying the value of

Ward identity breaking term B
[
ḡµν , φ̄

]
, and eventually setting it to zero, we shall con-

sider the effect on B
[
ḡµν , φ̄

]
of another non-minimal subtraction. This subtraction has the

same dependence on the Weyl tensor and the metric as the previous one, but a involves

non-homomorphic function of φ̄.

Following the ideas presented in [15], we shall introduce first the following non-minimal

generalization to n dimensions of the Goroff and Sagnotti UV divergence in (8.4):

Γ(GS)
∞

[
Ḡµν ; n

]
=

1

n− 4

1

(4π)4M
(6−n)
p

209

2880

∫
dnx

√
|Ḡ|W6

[
Ḡµν

]
. (8.16)

Notice that Ḡµν and the Weyl tensor inW6

[
Ḡµν

]
live in n dimensions. Then, the following

Weyl transformation in n dimensions

Ḡµν ≡ 1

M2
p

(
n− 2

8(n− 1)

) 2
n−2 (

φ̄
) 4

n−2 ḡµν (8.17)

casts Γ
(GS)
∞

[
Ḡµν ; n

]
into the form

Γ(wi)
∞

[
ḡµν , φ̄; n

]
=

1

n− 4

1

(4π)4
209

2880

(
n−2

8(n−1)

)n−6
n−2

∫
dnx

√
|ḡ|
(
φ̄
)2n−6

n−2 W
(n)
6 [ḡµν ] . (8.18)
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The renormalized, Γ
(wi)
0

[
ḡµν , φ̄

]
, on shell background field effective action, up two

loops, is now defined by using Γ
(wi)
∞

[
ḡµν , φ̄; n

]
to implement the following non-minimal

substraction

Γ
(wi)
0

[
ḡµν , φ̄

]
= lim

n→4

{
Γ
[
ḡµν , φ̄; n

]
− Γ(wi)

∞

[
ḡµν , φ̄; n

]}
. (8.19)

Finally, the fact that Γ
(wi)
∞

[
ḡµν , φ̄; n

]
is Weyl invariant in n dimensions — it satisfies (8.1)

— and that now

Γ
[
ḡµν , φ̄; n

]
= Γ(wi)

∞

[
Ḡµν ; n

]
+ Γ

(wi)
0

[
ḡµν , φ̄

]
+O(n− 4) (8.20)

leads to the conclusion that Γ
(wi)
0

[
ḡµν ; φ̄

]
is Weyl invariant:

[
2 ḡµν

δ

δḡµν
+ φ̄

δ

δφ̄

]
Γ
(wi)
0

[
ḡµν , φ̄

]
= 0. (8.21)

We would like to point out that to obtain an on shell renormalized effective action that

is Weyl invariant, we have substracted an integrated function which contains, for complex

n close to 4, a non-meromorphic function of φ̄; namely,
(
φ̄
)2n−6

n−2 . Non-surprisingly, the

Laurent expansion of ΓGS
∞

[
ḡµν , φ̄; n

]
around n = 4 contains the non-zero UV finite — i.e.,

non-vanishing in the limit n→ 4 — term

W
(nh)
0

[
ḡµν , φ̄

]
=

12

(4π)4
209

2880

∫
d4x
√
|ḡ| 1

φ̄2
ln(φ̄)2 W

(4)
6 [ḡµν ] , (8.22)

which, in turns, contains the non-meromorphic — when φ̄ is replaced by a complex vari-

able — logarithm. Whether substractions involving such terms are acceptable to define a

quantum field theory of gravity is an open issue, which we will not discuss in this paper.

Notice that
[
2 ḡµν

δ

δḡµν
+ φ̄

δ

δφ̄

]
W

(nh)
0

[
ḡµν , φ̄

]
= 2W−1

[
ḡµν , φ̄

]
, (8.23)

whereW−1

[
ḡµν , φ̄

]
is given in (8.15). Hence, by finite renormalizing Γ

(nm)
0

[
ḡµν , φ̄

]
in (8.11)

as follows

Γ
(nm)
0

[
ḡµν , φ̄

]
→ Γ

(new)
0

[
ḡµν , φ̄

]
= Γ

(nm)
0

[
ḡµν , φ̄

]
−W

(nh)
0

[
ḡµν , φ̄

]
, (8.24)

one obtains a renormalized on shell background field effective action which is Weyl in-

variant. Of course, all this is a consequence of the fact that the difference between the

substraction term, Γ
(wi)
∞

[
ḡµν , φ̄; n

]
, used in (8.19) and the substraction term, 1/(n −

4)W
(nm)
−1

[
ḡµν , φ̄

]
, employed in (8.11) contains W

(nh)
0

[
ḡµν , φ̄

]
in (8.22), in the limit n→ 4.

The outcome of the analysis and computations we have carried out above is that

Weyl invariance can be always be restored in Conformal Dilaton Gravity if one is willing

to accept counterterms which have logarithmic dependences on the fields. Otherwise,

it cannot be restored. Of course, our analysis rests on the validity of the assumption

that the on shell two-loop UV divergent contribution of Conformal Dilaton Gravity in 4
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dimensions can be obtained from the Goroff and Sagnotti counterterm by performing the

appropriate Weyl transformation. This hypothesis is suggested by our one loop results,

but, obviously, it demands to be confirmed, or falsified, by carrying out the corresponding

two loop computation.

Now we come to the case of CDG in 6 dimensions. The discussion parallels thoroughly

the discussion carried out in the case in 4 dimensions, but now the substractions are one

loop. Indeed, Peter van Nieuwenhuizen [36], in a brilliant paper, computed the on shell one

loop pole arising in General Relativity in 6 dimension as early as in 1976. His result reads

Γ(PV N)
∞

[
Ḡµν

]
= − 1

n− 6

9

1120

1

32π2

∫
d6x
√
|Ḡ| W (6)

6

[
Ḡµν

]
, (8.25)

where

W
(6)
6 ≡W (6)α1α2α3α4 W (6)

a3α4α5α6
W (6) a5α6

α1α2 . (8.26)

The symbol W
(6)
µ1µ2µ3µ4 stands for the Weyl tensor — see (1.5) — for the metric Ḡµν for

n = 6. The contribution in (8.25) is Weyl invariant, so that the Weyl transformation

Ḡµν =
1

M2
p

1√
10
φ̄ ḡµν (8.27)

leaves its form unchanged. Hence, we shall assume that the pole part, at n=6, of one loop

dimensionally regularized on shell background field effective action, Γ[ḡµν , φ̄; n], of CDG

runs thus

Γn=6
∞

[
ḡµν , φ̄

]
= − 1

n− 6

9

1120

1

32π2

∫
d6x
√
|ḡ| W (6)

6 [ḡµν ] . (8.28)

Notice that unlike the case in 4 dimensions, which we analysed above, the pole part in

local, ie, an integrated polynomial of the fields and their derivatives.

The substraction in the case at hand that is analogous to the substraction in (8.11)

reads

Γ
(nm,n=6)
0

[
ḡµν , φ̄

]
= lim

n→6

{
Γ
[
ḡµν , φ̄; n

]
− 1

n− 6
W(nm)

−1

[
ḡµν , φ̄

]}
, (8.29)

where

W(nm)
−1

[
ḡµν , φ̄

]
= − 9

1120

1

32π2

∫
dnx

√
|ḡ| W (n)

6 [ḡµν ] . (8.30)

W
(n)
6 [ḡµν ] is defined in (8.10).

Now, taking into account (8.1) and the following equation
[
2 ḡµν

δ

δḡµν

]
W(nm)

−1

[
ḡµν , φ̄

]
= −(n− 6)W(nm)

−1

[
ḡµν , φ̄

]
, (8.31)

one shows that Γ
(nm,n=6)
0 [ḡµν , φ̄] in (8.29) satisfies the following broken Ward identity

[
2 ḡµν

δ

δḡµν
+ 2φ̄

δ

δφ̄

]
Γ
(nm,n=6)
0

[
ḡµν , φ̄

]
= B

[
ḡµν , φ̄

]
= W−1

[
ḡµν , φ̄

]
. (8.32)

W−1[ḡµν , φ̄] is given by

W−1

[
ḡµν , φ̄

]
= − 9

1120

1

32π2

∫
d4x
√
|ḡ| W (4)

6 [ḡµν ] . (8.33)
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As in the case in 4 dimensions, we introduce next a substraction term that is Weyl

invariant in n dimensions:

Γ(wi6)
∞

[
ḡµν , φ̄; n

]
=− 1

n−6

9

1120

1

32π2
1

Mn−6
p

(
n−2

8(n−1)

)n−6
n−2
∫
dnx

√
|ḡ|
(
φ̄
)2n−6

n−2 W
(n)
6 [ḡµν ].

(8.34)

This substraction term is obtained by applying the Weyl transformation in (8.17) to the

geometrically natural generalization of Γ
(PV N)
∞

[
Ḡµν

]
in (8.25).

With the help of Γ
(wi6)
∞

[
ḡµν , φ̄; n

]
, we define a renormalized action in 6 dimensions

that is Weyl invariant as follows

Γ
(wi6)
0

[
ḡµν , φ̄

]
= lim

n→6

{
Γ
[
ḡµν , φ̄; n

]
− Γ(wi6)

∞

[
ḡµν , φ̄; n

]}
. (8.35)

Some comments are now in order. First, in the limit n→ 6, the difference between the

non-meromorphic substraction term Γ
(wi6)
∞ [ḡµν , φ̄; n], in (8.34), and the polynomial sub-

straction 1/(n− 6)W(nm)
−1

[
ḡµν , φ̄

]
, in (8.29), contains the UV finite non-meromorphic term

C = − 9

1120

1

32π2

∫
d4x
√
|ḡ|
(
ln

√
φ̄

)
W

(4)
6 [ḡµν ] . (8.36)

It can be readily seen that if we substract the previous UV finite term, C, to the

renormalized action, Γ
(nm,n=6)
0

[
ḡµν , φ̄

]
, in (8.29), one obtains a new renormalized action

that is Weyl invariant. All this is in complete analogy with the case in 4 dimensions,

analysed above. There is however a conspicuous difference: the pole part in 6 dimensions

is local, so to modify the non-local structure of the Green function may clash with general

principles of quantum field theory, such as unitarity. All these issues deserve to be carefully

studied on their own.

9 Conclusions

The conformal invariant action analyzed in our paper (CDG) has been argued [23, 24] to be

related to the ultraviolet fixed point of the exact renormalization group equations (ERGE).

The general action they considered was

S =

∫
d(vol)

(
V (φ2) + F

(
φ2
)
R+

1

2
gµν∇µφ∇νφ

)
. (9.1)

We find this result quite remarkable, although our results indicate that CDG is not

stable under renormalization at least perturbatively.

The main conjecture of the present paper is that the conformal Ward identity is violated

in renormalized CDG at two loops even on shell, if counterterms involving logarithms of the

scalar fiels are not allowed and that this Ward identity can be restored if those counterterms

are accepted as valid to define a quantum theory of gravity. This is true provided the CDG

counterterm can be obtained on shell from the corresponding counterterm in GR. We have

proved explicitly this at the one loop order through a not altogether completely trivial

calculation, and it is natural to assume that it holds true also to two loops, but we have

no proof of this. As to whether this violation ought to be called an anomaly, we are aware

that this concept is slippery when dealing with a theory which is not renormalizable, so

that new counterterms are expected to appear at any new loop order in the computation.
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In spite of the fact that the one loop counterterm vanishes on shell, its rather intricate

off shell structure should affect computations other than S-matrix ones.

An interesting topic that we did not touch in this paper is the analysis of the theory in

the symmetric phase. Background field techniques fail in this case owing to the fact that

there is no propagator for the gravitational fluctuations. One could modify the action by

introducing an Einstein-Hilbert piece

µ2
∫
d(vol)R (9.2)

and then take the limit when µ2 → 0. It seems that this is equivalent to a constant value

for the classical scalar field, namely,

φ̄ = µ . (9.3)

Then the counterterm reduces in this case to just three terms independent of µ; using our

previous notation

a2
[
ḡ, φ̄
]
=720 (−1+12ξ)

{
−P7(ξ, γ)R̄µνR̄

µν+P10(ξ, γ)R̄
2+P11(ξ, γ)R̄µναβR̄

µναβ
}
. (9.4)

The theory is never conformal when µ 6= 0, so that it seems diffcult to reach the conformal

point using this procedure. Another possibility is to introduce a propagator for the gravi-

tons through gauge fixing. This resembles some aspects of the quantization of topological

field theories [29]. We are planning to continue thinking on this fascinating problem and

hope to be able to report on it in the future.

At any rate, it would be most interesting to study the behavior of matter added so

that the resulting lagrangian is still conformal.

It is well known that the Goroff-Sagnotti counterterm does not have any supersym-

metric extension. Our arguments therefore do not stand for the supersymmetric extension

of CDG, which is also a conformal supergravity, which could well be all-order anomaly-free.
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A A quick reminder of the heat kernel approach

Let us define now the heat kernel associated to the operator whose determinant we want

to compute as the formal expression

K(τ) ≡ e−τ∆ . (A.1)

Again formally the inverse operator is given through

∆−1(x, y) ≡
∫ ∞

0
dτ K(τ ;x, y) (A.2)

where the heal kernel obeys the EDP heat equation

(
∂

∂τ
+∆x

)
K(x, y; τ) = 0 (A.3)

with the boundary condition

K(x, y, 0) = δ(n)(x− y) . (A.4)

Then

∆x

∫ ∞

0
K(τ ;x, y) = −

∫ ∞

0
dτ

∂

∂τ
K(τ, x, y) = δn(x− y) . (A.5)

The class of operators that have been studied by mathematicians [20] are deformations

of the laplacian of the type

∆ ≡ DµDµ + Y (A.6)

where the gauge covariant derivative is given by

Dµ ≡ ∂µ +Xµ . (A.7)

In the particular case X = Y = 0 the flat space solution is given by

K0(x, y; τ) =
1

(4πτ)n/2
e−

2σ(x,y)
4τ (A.8)

where the geodesic distance in flat space is simply

σ (x, y) ≡ 1

2
(x− y)2. (A.9)

It is clear from the above expression that when

σ → 0 (A.10)

the dominant terms in the above expression will be given by

τ ∼ 0 . (A.11)

It is customary in the literature to dub τ as proper time, although it has really di-

mensions, of length squared. It is then physically reasonable that the UV behavior of the
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theory is captured by the corresponding behavior of the heat kernel when τ ∼ 0. This

is fortunate, because there is a beautiful geometrical way of systematically studying this

behavior. Besides, the computations are well adapted to general riemannian backgrounds.

This method is currently the easiest and most powerful way of getting the divergent piece

of the effective action in gauge theories with nontrivial backgrounds.

The simplest approach to get small proper time expansion is due to Schwinger and

Dewitt and simply consists in a brute force Taylor expension

K(τ ;x, y) = K0(τ ;x, y)
∑

p=0

ap(x, y) τ
p (A.12)

with the diagonal part of the first coefficient normalized to 1

a0(x, x) = 1 . (A.13)

The integrated coefficients will be denoted by capital letters

An ≡
∫ √

|g| dnx an(x, x) (A.14)

in such a way that

A0 = vol . (A.15)

The determinant of the operator is then given by

log det∆ ≡ −
∫
dτ

τ
tr K(τ) ≡ − lim

σ→0

∫ ∞

0

dτ

τ

1

(4πτ)n/2

∞∑

p=0

τptr ap(x, x) e
−σ2

4τ (A.16)

where we have regularized the determinant by point-splitting the points x and y (although

still keeping only the diagonal part on the small time coefficients). All ultraviolet diver-

gences are given by the behavior in the τ ∼ 0 endpoint. The Schwinger-de Witt expansion

leads to

log det ∆ = −
∞∑

p=0

σ2p−n

4pπ
n
2

Γ
(n
2
− p
)

tr ap(x, x) . (A.17)

The term p = 0 diverges whn σ → 0 in four dimensions as

1

σ4
(A.18)

but this divergence is common to all operators and can be absorbed into the cosmological

constant. The next term corresponds to p = 2, and is independent on σ. When n = 4− ǫ

is given by

log det ∆|n=4 ≡
1

16π2 (n− 4)
a2(x, x) . (A.19)

From this term on, the limit σ → 0 kills everything.

There are of course finite contributions that are not captured by the small proper time

expansion; those are much more difficult to compute and the heat kernel method is not

particularly helpful in that respect.
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A different way of doing things is by considering σ = 0 from the very beginning, but

including a lower end cutoff, 1
Λ2 in the proper time integral. It should be remarked that

this cutoff respects all symmetries of the theory; it is not a momentum cutoff, and it is

therefore compatible with diff as well as conformal invriance. Integrals are extended until

an infrared cutoff 1
µ2 whcich physically represents the range of validity of the short proper

time expansion. The result is

log det ∆|n=4 ≡
1

16π2

(
Λ4Vol +

1

2
a1(x, x)Λ

2 + a2(x, x) log
Λ2

µ2

)
. (A.20)

The class of operators we are able to consider are some deformations of the Laplace

operator, namely,

D = − (GABg
µν∂µ∂ν + aσAB∂σ + bAB) (A.21)

where gµν is the inverse metric tensor on M and GAB is the metric tensor of the “gauge”

vector bundle V over the space-time manifoldM , and aσ and b are matrix valued functions

on M respectively. Then, there is a unique connection on V and a unique endomorphism

E of V so that

D = − (GABg
µνDµDν + EAB) (A.22)

where the covariant derivative D = ∇ + ω contains both Riemann and “gauge” bundle

parts. The introduction of the bundle with capital indices will allow us to encode the

collection of different fields present in our action in a compact structure.

The divergent part of the one-loop effective action in four dimensions is then

W(1) =
1

n− 4
A2|n=4 . (A.23)

Furthermore, there is an explicit formula for this coefficient, namely

A2=
1

360(4π)
n
2

∫
dnx

√
|g|Tr

[
60RE+180E2+5R2−2RµνR

µν+2RµναβRµναβ+30FµνF
µν
]

(A.24)

where Fµν is the field strenght defined by Ricci’s identity as

[Dµ, Dν ] Ψ
A = FA

µνBΨ
B (A.25)

ΨB being a vector field living on M , a section of the vector bundle. The trace refers both

to spacetime indices and bundle capital indices.

B Some details on the computation

Including up to quadratic order in the quantum fluctuations we get a quite involved ex-

pression, namely

S2 = −
∫
dnx

√
|ḡ| (H + F +HF ) (B.1)
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where

H = ξφ̄2
[
−1

4
h∇̄2h+

1

4
hαβ∇̄2hαβ − 1

2
∇̄µh∇̄νh

µν +
1

2
∇̄µh

µα∇̄νh
ν
α +

1

8
h2R̄− 1

4
hµνh

µνR̄−

−1

2
hhαβR̄αβ +

1

2
hµνhαν R̄µα +

1

2
R̄µναβh

µαhνβ
]
+ ξ

(
∇̄αφ̄

2
)(1

4
h∇̄αh− 3

4
hµν∇̄αhµν+

+
3

2
hαβ∇̄µh

µ
β+

1

2
hµν∇̄µh

α
ν −hαβ∇̄βh−

1

2
h∇̄βh

αβ

)
+
1

2
hµαhνα∇̄µφ̄∇̄ν φ̄−

1

4
hhµν∇̄µφ̄∇̄ν φ̄+

− 1

8
hµνh

µν∇̄αφ̄∇̄αφ̄+
1

16
h2∇̄µφ̄∇̄µφ̄

F =
1

2
∇̄αφ∇̄αφ+ ξR̄φ2

HF = ξφ̄φ
(
−2hµνR̄µν + hR̄+ 2∇̄µ∇̄νh

µν − 2∇̄2h
)
− hαβ∇̄αφ∇̄βφ̄+

1

2
h∇̄µφ̄∇̄µφ .

Since gravitational fluctuations are symmetric tensors, hµν = hνµ only the symmetric

part of the quadratic term contributes. We found it convenient to define the operators

Pαβ
µνρσ =

1

8

(
ḡµρδ

α
ν δ

β
σ + ḡµσδ

α
ν δ

β
ρ + ḡνρδ

α
µδ

β
σ + ḡνσδ

α
µδ

β
ρ

)
+

1

8
(α↔ β) (B.2)

Kαβ
µνρσ =

1

4

(
ḡµνδ

α
ρ δ

β
σ + ḡρσδ

α
µδ

β
ν

)
+

1

4
(α↔ β) .

It is then plain that

hµνhµν = hµνhρσPαβ
µνρσ ḡαβ

h2 = Kαβ
µνρσḡαβh

µνhρσ . (B.3)

After introducing the preceding notation, the quadratic operators read

Ĥµνρσ = ξφ̄2
[
1

4

(
Pαβ
µνρσ −Kαβ

µνρσ

)
ḡαβ∇̄2 +

1

2

(
Pαβ
µνρσ −Kαβ

µνρσ

)
R̄αβ +

1

2
R̄(µρνσ)

+

(
1

8
Kαβ

µνρσ−
1

4
Pαβ
µνρσ

)
ḡαβR̄

]
+

(
1

2
Pαβ
µνρσ−

1

4
Kαβ

µνρσ

)(
∇̄αφ̄∇̄βφ̄−

1

4
ḡαβ

(
∇̄φ̄
)2
)
+

+
ξ

4

(
∇̄αφ̄

2
) ((

Kγω
µνρσ − 3Pγω

µνρσ

)
ḡγω ḡ

αβ +Xαβ
µνρσ

)
∇̄β

with the tensor Xαβ
µνρσ defined as

Xαβ
µνρσ =

3

2

(
ḡαµ ḡ

β
ρ ḡνσ + ḡαν ḡ

β
ρ ḡµσ + ḡαµ ḡ

β
σ ḡνρ + ḡαν ḡ

β
σ ḡµρ

)
−
(
ḡαρ ḡ

β
σ ḡµν + ḡασ ḡ

β
ρ ḡµν

)
+

+
1

2

(
ḡαρ ḡ

β
µ ḡνσ + ḡαρ ḡ

β
ν ḡµσ + ḡασ ḡ

β
µ ḡνρ + ḡασ ḡ

β
ν ḡµρ

)
− 2

(
ḡαµ ḡ

β
ν ḡρσ + ḡαν ḡ

β
µ ḡρσ

)

and
(
ĤF

)
µν

= ξφ̄
[
R̄ḡµν − 2R̄µν + 2∇̄µ∇̄ν − 2ḡµν∇̄2

]
+

1

2

(
∇̄µφ̄∇̄ν + ∇̄ν φ̄∇̄µ

)
−

− 1

2
ḡµν∇̄αφ̄∇̄α + ∇̄µ∇̄ν φ̄− 1

2
ḡµν∇̄2φ̄

F̂ = −1

2
∇̄2 + ξR̄ .
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The operators after the rescaling to the kµν variables read

Ĥµνρσ = ξ

[
1

4

(
Pαβ
µνρσ −Kαβ

µνρσ

)
ḡαβ∇̄2 +

1

2

(
Pαβ
µνρσ −Kαβ

µνρσ

)
R̄αβ +

1

2
R̄(µρνσ)

+

(
1

8
Kαβ

µνρσ−
1

4
Pαβ
µνρσ

)
ḡαβR̄

]
+

(
1

2
Pαβ
µνρσ−

1

4
Kαβ

µνρσ

)(∇̄αφ̄∇̄βφ̄

φ̄2
− 1

4
ḡαβ

(
∇̄φ̄
)2

φ̄2

)
+

+ 2ξ
∇̄αφ̄

φ̄

((
1

2
Kγω

µνρσ − Pγω
µνρσ

)
ḡγω ḡ

αβ +
1

2
Kµνρσ +

1

4
Y αβ
µνρσ

)
∇̄β+

+
ξ

2

[
1

2

(
Pαβ
µνρσ −Kαβ

µνρσ

)
ḡαβ

(
2

(
∇̄φ̄
)2

φ̄2
− ∇̄2φ̄

φ̄

)
+

+
(
Pαβ
µνρσ −Kαβ

µνρσ −
(
Kγδ

µνρσ − 3Pγδ
µνρσ

)
ḡγδ ḡ

αβ −Xαβ
µνρσ

) ∇̄αφ̄∇̄βφ̄

φ̄2

]

(
ĤF

)
µν

= ξ
[
R̄ḡµν − 2R̄µν + 2∇̄µ∇̄ν − 2ḡµν∇̄2

]
+

+
1

2

(∇̄µφ̄

φ̄
δβν +

∇̄ν φ̄

φ̄
δβµ − ḡµν

∇̄βφ̄

φ̄

)
∇̄β−

− 2ξ

(∇̄µφ̄

φ̄
δβν +

∇̄ν φ̄

φ̄
δβµ − 2ḡµν

∇̄βφ̄

φ̄

)
∇̄β+

+ 2ξ

(
2
∇̄µφ̄∇̄ν φ̄

φ̄2
− ∇̄µ∇̄ν φ̄

φ̄
− 2

(
∇̄φ̄
)2

φ̄2
ḡµν +

∇̄2φ̄

φ̄
ḡµν

)
+

+
1

2

(
2
∇̄µ∇̄ν φ̄

φ̄
− 2

∇̄µφ̄∇̄ν φ̄

φ̄2
+

(
∇̄φ̄
)2

φ̄2
− ḡµν

∇2φ̄

φ̄

)

F̂ = −1

2
∇̄2 +

(n− 2)

8(n− 1)
R̄

and finally

Y αβ
µνρσ =

(
ḡαµ ḡ

β
ρ ḡνσ + ḡαν ḡ

β
ρ ḡµσ + ḡαµ ḡ

β
σ ḡνρ + ḡαν ḡ

β
σ ḡµρ

)
−
(
ḡαρ ḡ

β
σ ḡµν + ḡασ ḡ

β
ρ ḡµν

)
+

+
1

2

(
ḡαρ ḡ

β
µ ḡνσ + ḡαρ ḡ

β
ν ḡµσ + ḡασ ḡ

β
µ ḡνρ + ḡασ ḡ

β
ν ḡµρ

)
− 2

(
ḡαµ ḡ

β
ν ḡρσ + ḡαν ḡ

β
µ ḡρσ

)
.

The operators that appear in the gauge fixed action read

Sfull
2 = −

∫
dnx

√
|ḡ|
[
kµνĤµνρσk

ρσ + φ
(
ĤF

)
µν
kµν + φF̂φ

]
(B.4)

with

Ĥµνρσ = ξ

[
1

4

(
Pαβ
µνρσ − 1

2
Kαβ

µνρσ

)
ḡαβ∇̄2 +

1

2

(
Pαβ
µνρσ −Kαβ

µνρσ

)
R̄αβ +

1

2
R̄(µρνσ)

+

(
1

8
Kαβ

µνρσ−
1

4
Pαβ
µνρσ

)
ḡαβR̄

]
+

(
1

2
Pαβ
µνρσ−

1

4
Kαβ

µνρσ

)(∇̄αφ̄∇̄βφ̄

φ̄2
− 1

4
ḡαβ

(
∇̄φ̄
)2

φ̄2

)
+

+ 2ξ
∇̄αφ̄

φ̄

((
1

2
Kγω

µνρσ − Pγω
µνρσ

)
ḡγω ḡ

αβ +
1

2
Kµνρσ +

1

4
Y αβ
µνρσ

)
∇̄β+
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+
γ2ξ

4
Eαβ

µνρσ

∇̄αφ̄∇̄βφ̄

φ̄2
+
ξ

2

[
1

2

(
Pαβ
µνρσ −Kαβ

µνρσ

)
ḡαβ

(
2

(
∇̄φ̄
)2

φ̄2
− ∇̄2φ̄

φ̄

)
+

+
(
Pαβ
µνρσ−Kαβ

µνρσ−
(
Kγδ

µνρσ−3Pγδ
µνρσ

)
ḡγδ ḡ

αβ−Xαβ
µνρσ

) ∇̄αφ̄∇̄βφ̄

φ̄2

]
− γξ

2
Eαβ

µνρσ

∇̄αφ̄

φ̄
∇̄β

(
ĤF

)
µν

= ξ
[
R̄ḡµν − 2R̄µν − ḡµν∇̄2

]
+

+

(
γξ +

1

2

)(∇̄µφ̄

φ̄
δβν +

∇̄ν φ̄

φ̄
δβµ − ḡµν

∇̄βφ̄

φ̄

)
∇̄β−

− 2ξ

(∇̄µφ̄

φ̄
δβν +

∇̄ν φ̄

φ̄
δβµ − 2ḡµν

∇̄βφ̄

φ̄

)
∇̄β+

+ 2ξ

(
2
∇̄µφ̄∇̄ν φ̄

φ̄2
− ∇̄µ∇̄ν φ̄

φ̄
− 2

(
∇̄φ̄
)2

φ̄2
ḡµν +

∇̄2φ̄

φ̄
ḡµν

)
+

+
1

2

(
2
∇̄µ∇̄ν φ̄

φ̄
− 2

∇̄µφ̄∇̄ν φ̄

φ̄2
+

(
∇̄φ̄
)2

φ̄2
− ḡµν

∇2φ̄

φ̄

)

F̂ =

(
2ξ − 1

2

)
∇̄2 + ξR̄

where we have introduced

Eαβ
µνρσ =

1

2

(
gµνδ

α
ρ δ

β
σ + gµνδ

α
σ δ

β
ρ + gρσδ

α
µδ

β
n + gρσδ

α
ν δ

β
m − gµνgρσg

αβ
)
−

− 1

2

(
gµρδ

α
ν δ

β
σ + gµσδ

α
ν δ

β
ρ + gνρδ

α
µδ

β
σ + gνσδ

α
µδ

β
ρ

)
.

The matrix Nβ
AB reads

Nβ
AB =

(
Nβ

kk N
β
kφ

Nβ
φk N

β
φφ

)
(B.5)

where

Nβ
kk =

ξ

4

(
Y αβ
µνρσ − Y αβ

ρσµν − γEαβ
µνρσ + γEαβ

ρσµν

) ∇̄αφ̄

φ̄

Nβ
φφ = 0

Nβ
kφ = −Nβ

φk =
1

2

(
1

2
− 2ξ

)(∇̄µφ̄

φ̄
δβν +

∇̄ν φ̄

φ̄
δβµ

)
− 1

2

(
4ξ − 1

2

)
ḡµν

∇̄βφ̄

φ̄
−

− ξγ

2

(∇̄µφ̄

φ̄
δβν +

∇̄ν φ̄

φ̄
δβµ − ḡµν

∇̄βφ̄

φ̄

)

where we had to integrate by parts half of the symmetric part in order to cancel it. This

will leave some “residues” that will be introduced into the potential matrix MAB, which

reads

MAB =

(
Mkk Mkφ

Mφk Mφφ

)
(B.6)
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where the different elements are

Mkk=
(n− 2)

8(n− 1)

[
1

2

(
Pαβ
µνρσ −Kαβ

µνρσ

)
R̄αβ +

1

4
Gαβ
µνρσ ḡαβR̄+

1

2
R̄(µρνσ)

]
−

− 1

2
Gαβ
µνρσ

(
∇̄αφ̄∇̄βφ̄

φ̄2
− 1

4
ḡαβ

(
∇̄φ̄
)2

φ̄2

)
+

(n−2)

16(n−1)

{
1

2

(
Pαβ
µνρσ−Kαβ

µνρσ

)
ḡαβ

(
2

(
∇̄φ̄
)2

φ̄2
− ∇̄2φ̄

φ̄

)
+

+
∇̄αφ̄∇̄βφ̄

φ̄2
[(
Pαβ
µνρσ −Kαβ

µνρσ

)
+
(
3Pγω

µνρσ −Kγω
µνρσ

)
ḡγω ḡ

αβ −Xαβ
µνρσ

]
}
−

− (n− 2)

8(n− 1)
∇̄β

(∇̄αφ̄

φ̄

)[
Gγω
µνρσ ḡγω ḡ

αβ +
1

2
Kαβ

µνρσ +
1

8

(
Y αβ
µνρσ + Y αβ

ρσµν

)]
+

+
ξ

8

(
Eαβ

µνρσ + Eαβ
ρσµν

)(
γ∇̄β

(∇̄αφ̄

φ̄

)
+ γ2

∇̄αφ̄∇̄βφ̄

φ̄2

)

Mkφ=Mφk =
ξ

2

[
R̄ḡµν − 2R̄µν

]
+ ξ

(
2
∇̄µφ̄∇̄ν φ̄

φ̄2
− ∇̄µ∇̄ν φ̄

φ̄
− 2ḡµν

∇̄βφ̄∇̄βφ̄

φ̄2
+ ḡµν

∇̄β∇̄βφ̄

φ̄

)
+

+
1

4

(
2
∇̄µ∇̄ν φ̄

φ̄
− 2

∇̄µφ̄∇̄ν φ̄

φ̄2
+ ḡµν

∇̄βφ̄∇̄βφ̄

φ̄2
− ḡµν

∇̄β∇̄βφ̄

φ̄

)
− 1

2

(
1

2
− 2ξ

)
∇̄µ

(∇̄µφ̄

φ̄

)
−

− 1

4

(
4ξ − 1

2

)
ḡµν∇̄β

(∇̄βφ̄

φ̄

)
− γξ

2

[
1

2
ḡµν∇̄β

(∇̄βφ̄

φ̄

)
− ∇̄µ

(∇̄ν φ̄

φ̄

)]

Mφφ= ξR̄ .
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