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ABSTRACT: The quantum dynamics of the gravitational field non-minimally coupled to
an (also dynamical) scalar field is studied in the broken phase. For a particular value of
the coupling the system is classically conformal, and can actually be understood as the
group averaging of Einstein-Hilbert’s action under conformal transformations. Conformal
invariance implies a simple Ward identity asserting that the trace of the equation of motion
for the graviton is the equation of motion of the scalar field. We perform an explicit one-
loop computation to show that the DeWitt effective action is not UV divergent on shell
and to find that the Weyl symmetry Ward identity is preserved on shell at that level. We
also discuss the fate of this Ward identity at the two-loop level — under the assumption
that the two-loop UV divergent part of the effective action can be retrieved from the
Goroff-Sagnotti counterterm — and show that its preservation in the renormalized theory
requires the introduction of counterterms which exhibit a logarithmic dependence on the
dilaton field.
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1 Introduction

It is a cherished belief that some sort of scale invariance should be relevant when studying
physics at very short distances. In flat space-time is always possible to get an (improved)
traceless energy-momentum tensor

g 5Smatt

T=g Sgi

~0. (1.1)
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The cosmological constant is then related to the trace of the gravitational equations
of motion (EM)
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This means that exact conformal invariance prevents a cosmological constant [32]. This

is a well-known fact, which undoubtly can be traced back much earlier than we were able
to do. This is a strong physical motivation to further study these theories.



When gravitational fields are dynamical, the corresponding symmetry is Weyl invari-
ance (we shall understand conformal symmetry always in this sense), local rescalings of
the spacetime metric. Indeed conformal (super)gravity [17] is such a theory in which Weyl

invariance is implemented in four spacetime dimensions starting with the lagrangian'

L= V=g W,uupa WHYPT = V |g| W4 (14)

where W, is Weyl’s tensor, the tracefree piece of Riemann’s tensor. It is explicitily
defined in terms of the Riemann tensor as

1
W;u/po = R,ul/pcf - m (.g,upRua - guo'Rup - gupRua + gua'R,up) +
1
N v vo oJv, L.
then

Wy = R? A2 g (1.6)

ST 2 (=1 (n—2)" )

This lagrangian is point conformally invariant under

() = () gyu () (1.7)
(this means by definition that the gravitational field has conformal weight w = —2) in four

dimensions only. There are local invariants in arbitrary dimensions, involving derivatives
of the Weyl tensor and the Fefferman-Graham obstruction, whose existence is guaranteed,
but which is not known explicitly in general [16]. It would be interesting to study the
physics of actions based on the integral of those invariants, but we shall refrain from doing
so in this paper.

It has been argued that conformal supergravities can be finite at the quantum level
provided they have enough supersymmetry. Nevertheless, there is always some tension,
at least at the perturbative level, with unitarity, because the propagator is quartic in the
momentum, which implies ghost excitations and/or tachyon behavior. It is actually not
clear in spite of some insightful attempts whether a non-perturbative unitary definition of
the theory is possible at all.

It is nevertheless quite easy to construct a much simpler conformal dilaton gravity
(CDG) free of these problems by the procedure of group averaging, that is, perform a con-
formal transformation on the Einstein-Hilbert lagrangian and promote the Weyl rescaling
factor to the status of a new field. It seems that the first to consider CDG was Dirac [12]
in a very interesting paper in which he related the large numbers hypothesis with the
old unified theory of Hermann Weyl. Other interesting pioneering works on this theory
include [15, 18, 19, 28]. In those works CDG was considered as a conformally invariant off-
mass shell extension of quantum gravity in the context of the early attempts to understand
the physical meaning? of the conformal anomaly [13, 14].

ILet us agree once and for all to denote in future formulas the riemannian volume element as

d(vol) = \/|g| d"x. (1.3)

2In Duff’s words real Weyl invariance has anomalies; pseudo- Weyl invariance (i.e. involving a spurion)
does not. This is a regularization-scheme-independent statement. It remains of course to decide which
metric couples to which matter.



Under a Weyl rescaling® the Einstein-Hilbert lagrangian behaves as

VI]gIR = \/E[QT”R + (n—1)(n —2)Q"*4(VQ)?|. (1.12)

Where we have neglected a total derivative which yields a boundary term. We then
define a gravitational scalar field through

o= L <(”2))>"12 sz (1.13)

M, \4(n—1
(where the n-dimensional Planck mass is defined as M)'~? = ﬁ) obtaining the CDG
lagrangian
S —/d(ol) —”7_23¢2—1Wv¢v¢ (1.14)
Classically, CDG reduces to General Relativity (GR) in the gauge
8(n—1) n=2
=4/ —M,? 1.15
o=y, (1.15)

which is of course only accessible as long as we are in the broken phase; and to unimodular

n—2 —1 n—
G+230M,7 4|2 2g_Tn2:0. (1.16)
n_

*We use the Landau-Lifshitz spacelike conventions. The flat tangent metric is

gravity [1-3]* in the gauge

Nay = diag (1, —1,-1,-1). (1.8)
The Riemann tensor reads
R" yap = 0aT¥y — 8Tk, + TH, T — T4, T7, (1.9)
and the Riccci tensor
Ry = R . (1.10)
The Einstein-Hilbert action is defined as
3
c
S:_ﬁ/\/|g‘ (R_Q)\)+Smdtter (111)

with k? = 87G.

4Unimodular gravity is a speculative approach towards explaining why (the zero mode of) the vacuum
energy seems to violate the equivalence principle (the active cosmological constant problem). The main idea
is just to eliminate the direct coupling in the action between the potential energy and the gravitational
field. This leads to consider unimodular theories, where the metric tensor is constrained to be unimodular
in the Einstein frame g = |detgfy| =1.

The simplest nontrivial such unimodular gravitational action reads

1 " n—2 N1 (n—1)(n—2)¢""V,g Vog
= — = — M. n
Su 16ﬂGn/d r REg » /d Tg (R+ in2 2

(the Einstein metric being inert) as well as invariant under area preserving (transverse) diffeomorphisms,
that is, those that enjoy unit jacobian, thereby preserving the Lebesgue measure.



It is plain that the field redefinition

(n

1 n—2 \n2 4
= — [ —— "=z q,, 1.1
Gu Mp2 ( 3 — 1)> o) 9u ( 7)
transforms the theory back to GR; we are just undoing what we did to get CDG
S =—Mr? /\/5 d"z R[G]. (1.18)
Conformal symmetry with conformal weight wy = ”772 for the scalar field

o=07" ¢ (1.19)

is then tautological to the extent that it leaves invariant the metric G,. This is non
necessarily the case anymore when couplings to matter are considered, because we are going
to assume that matter couples to g, instead to G,. Some interesting albeit speculative
physical reasons as to why the metric g,,, could be the only one physically observable have
been advanced in [25, 26].

The above considerations are taken as a motivation to study the non-minimally coupled
system gravitational-scalar field in the following sense

S =— / V]gld™x <£R¢2 + ;(w)?) : (1.20)

The global sign in front of the action is irrelevant as it stands, but it is the correct
one to couple to a matter lagrangian containing matter fields, denoted collectively by

G (i=1...N)
Smatter = /d(VOI) Lmatter (¢za g,ul/) . (121)

This sign reflects the gravitational origin of our former lagrangian.
This system has the following property. There is a symmetry

o(z) = —o(x). (1.22)

(Which is promoted to an U(1) when the scalar field is complex and ¢? is replaced by |¢|?).
There are then two different phases, depending on whether the background field vanishes
or not. Only the vanishing solution is compatible with the Zs symmetry. In the symmetric
phase, we are thus studying quantum perturbations around the symmetric classical solution

é(z) =0. (1.23)

In this case there is no propagator for the gravitational fluctuation, and we do not
know how to proceed (athough some possible paths will be suggested in our conclusions).
In the broken phase we consider a classically nonvanishing solution

b(z) £ 0 (1.24)



that determines the graviton propagator. Lacking any better option, we shall dub this
system dilaton gravity, although this name is really adequate in the conformal case only;
that is, when there is a particular value of &,

¢ = 8(7”; _21) (1.25)
for which the symmetry is enhanced to full (local) conformal symmetry and we actually
recover the CDG mentioned above.

The aim of the present paper is to study dilaton gravity both in the non-conformal as
well as in the conformal point. Using a combination of background field and heat kernel
techniques, the one-loop effective action will be first determined for generic value of the
coupling constant &. This calculation is not valid at the conformal point, £ = &., because
then there is an enhanced gauge symmetry, namely conformal symmetry. It can be argued
that because the classical action of CDG is the group average of Einstein-Hilbert, this
should also hold to one loop. Were this true, the counterterms would be derived just by
performing a conformal transformation in the 't Hooft-Veltman counterterm We report a
nontrivial one-loop computation in CDG to show that this is indeed the case. In the last
section one issue is discussed in some detail, namely the extent to which it is possible to
define a renormalized theory which is still Weyl invariant. The conclusion is that in order
to do that counterterms with a logarithmic dependence on the dilaton field are needed.

2 Nonconformal dilaton gravity

Let us begin by analyzing the nonconformal case, that is

S =— / V]gldz (§R<I>2 + ;(vqu?) (2.1)

where

£# & (2.2)

The reason for the notation ® will be apparent in a moment. The simplest way to proceed in
order to compute the divergences of any action involving the gravitational field is to use heat
kernel techniques pioneered by Bryce de Witt. It can be shown [11] that this is equivalent
to the assumption that the singular part of the propagator is of Hadamard type. Those
techniques are much less useful to compute finite parts. They are particularly efficient
for one loop calculations, which can be reduced to the computation of some determinants,
provided the operators in question are minimal ones (otherwise the technique is somewhat
unwieldly) There are many reviews avaliable, for example [7]. We shall follow a notation
similar to [4, 5, 27]. A brief summary explaining our notation can be found in appendix A.
Let us then expand the action around an arbitrary background

Juv = Guv + hw/ (2.3)
d=0¢+¢.



Demanding that the linear terms in the expansion cancel determines the background equa-
tions of motion (EM). When the background fields are so restricted, absence of tadpoles
in the quantum theory is guaranteed. In four spacetime dimensions and with arbitrary
parameter £ they read

o1 v v, N (V) VS L V%
fRuv—4g#vq—5¢— <— f) #z ¢ (25—4> g,uz/( gﬁﬁ) +2§ qZ) ¢ %gwgz_f
_ 1 V26

R=ge3 =0 (2.4)

The result of the expansion of the action to second order in the quantum fields reads
- / d"z+/|7] [h“”f[u,,pgh"" 16 (ﬁ) R 4 SF pt- (2.5)
nv
12 1 v v 1 e va
O | —5 Vuh Vb + SV MV h

where we have kept apart the non-diagonal contributions to the graviton sector in order to
cancel them later with a proper gauge fixing. The corresponding second order operators
are given in the appendix B.

It is now useful to perform a field redefinition

k,u,u = Cgh,uy (26)

in order to eliminate all the dependence on ¢ out of the kinetic term. This only makes
sense in the broken phase, since this transformation is ill-defined when ¢ = 0. In any other

case, the action is thus rewritten as
So = —/d"m g [lﬂ“”Hw,pgk""7 +¢ <ITI-F’> kR + ¢F¢)+ (2.7)
ny
1 174 1 (0% v

where the explicit values of the coefficients can be found in the appendix B.

The gauge fixing for diffeomorphism (Diff from now on) invariance will be chosen with
an eye put on being able to implement heat kernel techiques in the simplest possible way.
This indicates that we shall try to cancel any non-minimal contribution to the kinetic term.
In other words, it has to cancel any term in second derivatives which is not proportional
to the laplacian, such as the non diagonal terms WW VakS or ?yqﬁv“k"“’ .

This can be achieved in different ways, some of them simple modifications of the well-
known harmonic or De Donder gauge. It is actually possible to choose a very general gauge
interpolating between two funcions

F,=(1—7)F} +~F2 (2.8)
with
_ 1- _
=V — 5V“k —2V,¢ (2.9)
_/_ 1_ _
Fg = <V'fhu,, - 2Vuh> —2V,9. (2.10)



Although each of the two functions Fﬁ and F3 represent perfectly admissible gauges
separately, we have decided to consider this more general linear combination of them as
above in order to be able to track the dependence on the v parameter along the computation
and explicitely check that it vanishes on-shell, as it should. The full gauge fixing is then

L V.6 Y,
B, =Vkyu, — Vk—2vuq5 VK ¢¢+72k

SN

(2.11)

%\‘

The term to be included in the action then reads

Sun = x [ /o] F P (2.12)

with
PN 1_- I _ _
F,Fr = ( 5 VikVy W—fv Y k:> 2 [-20V, V, k" +¢Vk] +4¢V3p + (2.13)
— —— — — —\ 2 — N — —
1 - VidVad | 1,5(V9) OV, ¢ (2
~kV?k g L0 o Vi [k VA
+ 1 Vo +~ v + 1 7 po + 3 \Y
—2kH ¢vak;w 2kV k:v qbJer kv;¢ —ka ¢V”¢+4k“” ¢¢ 4
which cancels exactly the non-minimal terms when y = g
The original action with the gauge fixing added then reads
Shall _ / d"z+/|g] [ ook + ¢ (fﬁ?) kMY 4 ¢F¢] (2.14)
v

where the values of the coefficients are again to be found in the appendix B.
Let us then define a generalized field living in the “gauge” bundle® that includes all
the fields over which we are integrating

oA = (kgu) : (2.15)

The kinetic term corresponding to (2.14) can then be rewritten as
— UG, V2UE (2.16)

where the metric G 4p is symmetric and given by

E(lgaB _paB \o o &o
Gap = i (zlc,uupa Pyl/pd’) JaB 339w (217)
Jpo % - 25

5Capital indices label the different physical fields so that the matrices involved in the action carrying

[
)

two indices are split in three parts: a kk box carrying four indices (in some sense identifying A = pv and
B = po), another diagonal box corresponding to the ¢¢ element that behaves as a scalar and two non-
diagonal blocks carrying two space-time indices uv over the diagonal of the matrix and po under it. The
rank of the index thus counts the number of physical degrees of freedom (not fields), being 1+ n(n + 1)/2.



with inverse
1 GHvpo - 8ghv
AB g
= 2.1
AT § gy o ( 8% —2(n — 2)) (2.18)

—z (86(n — 1) — (n— 2))(3"g"" + g + 3°) +2(1 — 8¢)g"g*°]

GH o —

defined in such a way that

1 (5P 5o P so
CGunGPC = GCBG = (2 (5“5V0+ 0407) ?) . (2.19)
We will then rewrite the action as

whith N being antisymmetric and Mp being symmetric in their capital indices, mean-
ing interchange of physical field in both sides of the operator, which translates to in-
terchange of the pairs of indices (uv) <> (po) in the kk elements. Again, the detailed
expression of the different matrices are to be found in the appendix.

To compute the heat kernel coefficient (A.24) for the previous action, we shall find
first the bundle connection w, and the endomorphism F that will allow us to express Sg““
as follows

Sgu“ = /d":):\/ IR (—g“” [?#5‘40 + W;:‘C] [?lﬁCB + w,?B] — EAB) oh, (2.21)
where U4 = WBGp4. It can be checked easily that the following equation holds
if
A 1 e
wup =567 Nucs (2.23)
EA, = gAC (—MCB — wMCqug - ?ngB> )

Now, U4V ,wh ;U8 = 0, for V,w!; is antisymmetric under the exchange of A and
B. Hence, our endomorphism, F5, will be obtained from EAB in (2.23) by removing from
the latter the contribution GAmeg p» wWhich does not contribute to the dynamics:

EA, = gAC (—MCB . wucpw“g> . (2.24)
In summary, it is the coefficient (A.24) of the heat kernel expansion of the operator
A=—(g" WH(SAC + w;fc] WufSCB + WSB] + EAB) ) (2.25)

with W;?B and E4; as given in (2.23) and (2.24), respectively, that will give the pole part of

the UV divergent contribution coming from S in (2.21). See the appendix A for further

information.



In order to finish the computation of the heat kernel coefficient (A.24), one also needs
the field strength F'; which is worked out by means of the Ricci’s identity and has a
riemannian part and a bundle part:

1 (pu v DU 10 D v DU 0
Fusp = (2 (R papdy + R paﬂ5oo+R o apdy + RY 5 apdp) 8) N (2.26)

= A = A A c A c
Vawg® B —Vgwa " p+wa cwg” B—wg” cwa B-

The ghost sector of the theory at hand, which is a simple subset of the quite involved
one needed in the conformal case and discussed in the next section, has the following action

Sghost = /dnx V |.§_7| g#l’ 'f_]uSDFV, (2'27)

where spF, denotes the order-one variation of the gauge-fixing function Fu in (2.11)
induced by the variations

SDGuw = SD(;S =0
1 - _ _ _ _
; (V}L"’/V + vyn“) + npvPhlu,y + V/_anhpy + Vynphpu

spd =1V (d+ o).

sphu, =

The symbols n* and n* denote the ghost and antighost fields, respectively. Of course,
Sghost i (2.27) is obtained from the Faddeev-Poov determinant in the standard fashion.

A little algebra yields the contribution to Sghest that is quadratic in the quantum fields.
This contribution reads

Gghost /d"x 191 1 (=Gpe V> + N* .V + Mpo) 1, (2.28)
where
_ VHo Voo vV,
Nl ===y S+ (149) 2220, + (1= 220, (220
_ V, Ve

My = —Rpy + 2

The heat kernel coefficient (A.24) associated to S’QghoSt is the corresponding coefficient
of the heat kernel expansion of the following operator

Alghost) — _ (g“” [?H(Sp,\ - wupA] W,ASAU - w,fg} + Epo') ; (2.30)
where
1
wz A g#uwl)jpv wupa = _i_pANu/\J (231)
Ef, = —g" (M,\g + W', + ?#w“/\g> (2.32)

N*, and M), are given in (2.29).



Finally, the field strength for the connetion defined by vﬂ + wy, Tuns thus
Fpa’ HI/ - Ruupa + ?,0 wa"uu - vU wpuy + [wpawa]'uy : (233)

Once all the matrices are defined, we can compute the relevant traces both for the
bosonic physical fields and for the ghost fields and thus finally write the one-loop (de Witt)
effective action as

Ipew [7, 0] = ;4 (A2 (bosons) — 245 (ghosts)) (2.34)

where the ghost sector contributes twice and with a minus sign because the presence of
two anticonmuting fields. The final result is

. 11 1 _
Toew (3.9) = g5 | ' Vil e2[a.d (23)

with
g(6) =720 €2 (2 — 86 +4(—1+48¢))?. (2.36)

It is remarkable that the effective action presents a pole when ¢ = 0, which represents
physically a scalar field minimally coupled to the gravitational field. The fact that gravity
is dynamical in our case is presumably the reason for this divergence.

To be specific, the gravitational EM in this case read

V8906 = S (V6)’ (2.37)
which for n # 2 imply
(Vé)? =0. (2.38)

In the riemannian case (where the metric is positive definite) means that

Vup=0. (2.39)

On the other hand, the quadratic gravitational piece of the lagrangian reads
2 1 - av 1 v Ao 4 I o2 (1 2 af
L} = 5\/|g| hE R — ihh“ VudVid + 7 (Vo) 31— hagh : (2.40)

The fact that it can be written without any derivative acting on the gravitational quan-
tum fluctuations means that the corresponding high frequancy modes are generically not
suppressed.
The scalar quadratic piece on the other hand is perfectly kosher
L? =

1 L
3 VI9lg" VgV, (2.41)

,10,



The heat kernel coefficient as reads

] o
as [97¢]=(12£—1)<P0(57 IR

o
V(b) V2
¢

AT
<£2

VGV Ra

T Ry

2 2
L Pye ) L P(E,) ‘f; ¢

+P5(¢,9) +Fs(8,7)

. Vo)’ R V26 R
7P7(€7’)/)R;WRMV+P8(€>7)(¢—72+P9(537) ¢

¢>) +Pio(¢, )R +P11(&,7) uvaﬁRwaﬁ

(2.42)

where the polynomials P;(¢, ) are defined by
Po(&,77) = 720(—54104¢ — 72862 427843 — 186y + 722y +1536£3 748672 — 2606242 4 2064£3~* —
—166%y% + 2166%4%)
v) = —960€ (—29-+4506 —840& — 157 +88Ey+9126%y — 38£y°+508£%72 — 8¢+ +108¢%4%)
) = 480¢ (1 — 78 + 984€2 — 68&y + T206%y — 2672 + 28¢%47)
) = —480¢ (—2+228¢ — 307262 +9v+64&y — 1680&%y+16£~ — 368¢%72 — 8¢y +108¢%4%)
v) = —480¢ (—1—48¢+6726% — 33126 +56£y— 124862y +6912¢ y+2£v* —52¢°7* +336£°7)
v) = —384062 (=1 + 126)(3 — 126 — v + 6£7)
,y) = —480&(—1 + 12€) (—1 + 42¢ — 744€% + 528y — 52862y — 10&7° + 116£%4?)
7) = —4862(—1 4 12¢) (—241 + 2412¢)
v) = —960&(—1 4 12€) (1 — 41& + 4326 — 328y + 348¢%y — 667% + 90£°7%)
7) = 19206 (—11 + 189¢ — 1008£2 + v — 188y + 72¢%7)
) = 12062 (29 — 576¢ + 3168¢?)
) = 34082 (—1 + 12¢)2. (2.43)

There is a set of different terms appearing in the counterterm that will be related both by
the EM as well as by integration by parts. It is a fact that there are only three linearly
independent monomials. The full set of monomials compatible with the symmetries and
dimensional counting which appear in the counterterm is

v,V b RV =2 7 (S T)\2
G3_sz CZW
G4E(Y€ER D:W;W
G5 = Ry R" 5o WW“{?WM
G = B2 F:W

— 11 —



The EM impose some relations between them, namely

Y
ngsz—;éA

G6ER2—422A

1=wq3vq_:fR“”=<41§— )B—41£C+2E
GZEW:(415—2>(A+B)+2D+(2—21£>E

Gs = R, R" = <41£—2>R ?Jr (Zﬁ)Q +<2—21§> V%Vg;ﬁ RWJFQV“V”(;E Ry

and by using this and integrating by parts, it can be shown that D, F and F' can be written
in terms of A, B and C,
VOV R
/d(vol)D = /d(vol) <A — 2B +2F — W)

/ d(vol) E = / d(vol) <;’c _ ;3)
/ d(vol) F — / d(vol) (—D + 2E).

Finally, whenever & # % there is an extra relation that we can use and that comes
from the fact that the two equations of motion for the metric and the scalar field must be

compatible. Taking the trace of the first one we have

=9 7 = 7\ 2
_ n V2o <n 1 > (Vo)
R= +2—2n>——|— —+2-2n— — | —=— 2.44
<4§ ¢ 4¢ 26) ¢? (244)
so requiring agreement with the scalar equation of motion requires
v (Vo)
—F+ —=—=0 (2.45)
¢ ¢?
which implies
A=C=-B. (2.46)

In the case £ = % this identity is satisfied identically and these last relations cannot
be used.

When the background fields are put on-shell and the preceding identities are taken
into account, all the dependence in the gauge fixing parameter « dissapears (this is just
DeWitt-Kallosh’ theorem; cf. also [22]) and we end up with

= \2 (& 1)\ 2
11 . = (71 1259 (1-12¢)% (V)~ (Vo)
I‘DeVV|0n shell — n—4 167T2 /d T |g| (60 W4+ 1440 é_2 ¢_§4 . (247)

— 12 —



The Euler density (the quantity whose integral yields the Euler characteristic) is
given by
Ey = Ry RMP7 — 4R R + 2. (2.48)

It is a fact that

_ 1 _
Wy =2 <R,2W -3 R2> + Ey. (2.49)

This means that on Einstein-Hilbert’s shell (that is, when spacetime is Ricci-flat)
E, and W, are equivalent. When the space is Ricci-flat and Euler’s characteristic
vanishes, then

/ d(vol) R2,, ., =0 (2.50)
as well. Usually the anomaly integrand is represented as
a Ey—cWy (2.51)
which reduces on Einstein-Hilbert shell to
(a—c) Ey. (2.52)
In the present situation we can assert that

/ d(vol) (Ey—Wa) = (—1+ 12€) / d(vol) 213C¢ +1§§§ (B-C) (2.53)

It is worth stressing that the value of this coefficient is different from the one that we
will find in the conformal case, when & = &..

3 Conformal Ward identities

Let us now shift to the conformal case, id est,

§ - fc- (3.1)

The framework is then a theory including the metric as well as a set of matter fields, 1,
with scale dimensions \;, which is conformal.

Let us now spell out the consequences of conformal symmetry at the quantum level.
We can start with the path integral with external sources in it

Z[Jm,J) = / Dy Dp e dHi [ Aol gt ¢) (3:2)

The gravitational equations of motion (EM) read

08

Guw

+ JH

15 | )
/DQMV D¢ ; W eZS[g#u¢]+Zfd(V01)(J“ Juv+J (]5) = <O+

o_> =0. (3.3)
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Those are operator equations (id est, their expectation values between any pair of
states vanishes). It is obvious that if the EM are valid then of course its trace (which is a
linear combination of EM) also vanishes; in the absence of sources,

g <0+ o5 0_>:o. (3.4)

dghv
It is worth emphasizing that this is a much subtler concept that the tracelessness of the

energy-momentum tensor in a conformal quantum field theory in an external gravitational
field. The energy-momentum tensor does not vanish; it is only covariantly conserved, and
this does not imply tracelessness even on shell.

Here if we want the statement to have any content, what is implied is that the trace of
the EM is not itself an EM, because it vanishes identically without the use of the EM. Let
us consider the path integral defining the partition function. We could as well perform the
path integral using Weyl-transformed variables. They are dummies, after all. Demanding
that the difference between the two different ways of computing the integral should vanish
leads to the whole hierarchy of conformal Ward identities. Let us write them down for
CDG (where dg,, = 2w()guw)

0=0Z= /Dguv HD%’ /d(VODxW(x){ — 29" () 05  n—2

dghv () 2

ss
09

+ 2T () gy () — J(q:)¢(a:)} exp {z’S[ng)] + /d(vol) (J* g +J @) }

¢t (3.5)

When the sources vanish, this conveys the fact that the equations of motion must be
traceless not only classically as a Noether identity, but also its expectation value between
any pair of states that are connected through the path integral with appropiate boundary

conditions. The vacuum expectation value is a particular case of it when all sources are
oS n—2 08
—10 > =0 (3.6)

switched off.
uv
(0 o @) s + 05 | 0-

We emphasize that those identities are true off shell; that is without the use of the

EM. Taking derivatives with respect to the sources yield all contact terms that appear in
higher correlators.

It is convenient at this stage to reflect on this result. The equation of motion for the
graviton is proportional to the energy-momentum tensor the graviscalar field would had if

gravitation were not dymamical.

CDG )
5T _ 2 g (3.7)

sgvv gl M

The Ward identity then tells us that when gravitation becomes dynamical, the trace of

the energy-momentum tensor is off-shell proportional to the equation of motion of the

o> . (3.8)

graviscalar.
1 5 SCDG

NI,

n—2
(04 9" Thw[0-) = T4 <0+

On shell both terms vanish trivially.

— 14 —



What characterizes conformal invariant theories with dynamical gravity is precisely
this conformal Ward identity. We shall investigate in due time whether the effective action
still fulfills it after taking loop contributions into account. A technical problem is the
following. The effective action (which coincides with the background field free energy at
one loop) is gauge dependent off shell. When we restrict to on shell quantities, the Ward
identity as such looks trivial (because it is a linear combination of the expectation values of
the equations of motion). It is well-known however [13, 14] that when there are evanescent
operators in the divergent part, id est, operators such that

0E[p] ~ (n —4)E[g], (3.9)

then the Ward identity expressing conformal invariance is violated.
In terms of the singlet metric G,g the classical EM read

2 V vy vvl’ 2 v ’ V2
e a e ¢_n—2((¢(§) * ¢¢>g‘”' (310

When varying the two fields in the CDG in an independent way, the EM read

RLGI=0=R,, +

§SCPG 9 n—2
= — _— = 11
5% V¢+4(n_1)R¢> 0 (3.11)
8(n — 1) 68°PG 5 2n
= a — 20V, —
n—2 590,3 Raﬁ o° + n— 2V §Z5V5¢ oV Vﬁ@b
1 4
- = <R¢2 +——(Vo¢)* - 4¢v2¢> Gap = 0. (3.12)
2 n—2
It is then a fact that at tree level
§SCPG oy — 9 §SCODG 05
yu s = — = . 1
29 ogHv + 2 dop ow(x) 0 (3:.13)

This is a fundamental identity which carries several consequences. First of all, it means
that the two set of EM are compatible at the classical level.
But it also embodies the Noether identity

5S
dw(x)

0 (3.14)

associated to the conformal invariance of the action. The Weyl transformation of the
metric is compensated by a conformal transformation of the scalar. The corresponding
Ward identy on the effective action implies that the possible conformal anomaly in the
gravitational sector should be cancelled by the contribution of the gravitational scalar.
One of the main objectives of the present paper is to examine whether this is the case.

Actually, in the present paper we shall confine ourselves to pure CDG in the absence
of any matter.

In order to integrate over the gravitational fluctuations, it is much simpler to work with
the singlet metric G,,,. Let us be specific. Given the fact that classically CDG is nothing
but the group averaged action of Einstein-Hilbert under conformal transformations, we
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could conjecture that the same is true in the quantum theory; that is, that the counterterm
of CDG can be obtained from the 't Hofft-Veltman one by the group-averaging procedure.
This conjecture needs of course an explicit verification before it is accepted. We shall do
such a calculation in the next paragraph.

At any rate, there is an infinite factor coming from the functional integration over the
gravitational scalar, which does not appear in the action. This infinite factor disappears
in all connected amplitudes. We are defining

I / Dy, D e~i3 [ 4 V=3(0u6 96+3 R &) (3.15)
through B _ _
T35 . — T [Gruw [Gurbo]] (3.16)
where B _
1] = [ DG, erko [ #ohiGu @)

and the function

- - 1 —2 \n2 __a
G (G b9) = ﬁg <8(T;_1)) ¢"=2 Guu - (3.18)

Actually there is in the best of cases a divergent proportionality factor, so that the
equivalence is as best true for the connected piece, which we precisely denote the effective
action, W. In the particular case of the Einstein-Hilbert term, the effective action is nothing
but the well-known 't Hooft-Veltman [7, 35]counterterm for pure gravity. This yields

Tpew [@] = / a's\/IGl < 2184890 \[G +%W4[G]+@R[G] ) (3.19)

Given the fact that the integral of the Weyl tensor squared is conformally invariant,
we can naively put G — g on that term. If we keep the spacetime dimension at the generic
value, the result is

/ d(vol) Wy [Q%g,] = / d(vol) Q"* Wy [g,] - (3.20)

This is due to the fact that the covariant Weyl tensor has conformal weight —2 in any
dimension, whereas the volume element picks a factor 2. The same thing happens with
the integral of the Euler density

/ d(vol) Ey4 [Q%g,] = / d(vol) Q" By 9] .- (3.21)

The term in R? is not conformal invariant in any dimension.

The variation of the action under a conformal transformation is then an evanescent
operator. This means simply that it is proportional to (n — 4). By itself, it vanishes when
n — 4, but when (as is here the case) is multiplied by a pole term, it yields a finite
contribution. This has in turn the important consequence that the one loop expectation
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value of the trace of the equations of motion (this is the analogous to the energy-momentum
tensor when gravity is dynamical) does not vanish

58 5 St
pv -
<g 5QW> 2750

This is the analogous of the conformal anomaly and we shall dub it as such.

£0. (3.22)
Q=1

The total result for the divergent piece in four dimensions assuming the hypothesis as
above is then

97N 2
Toaw[6.9] = [dtvoy {;gmgwg;owg] +os (R0 T7) } (3.23)

The piece involving the gravitational scalar also yields a conformal anomaly, because
the general formula

<©2 _ 4&_21)1%) (a7 s) =0 (v2 _ MR) (3.24)

implies that

s A1)\ 4 (A1) T2\
(R pa— @)Q <R o ¢> (3.25)

which yields again a factor of Q" % when combined with the n-dimensional riemannian
measure. The anomalous Ward identity of the four dimensional CDG then reads

2 2
<0+ 0_>EACD(*,—7:2 {3;0W4+128 <R—6Y¢¢> } (3.26)

The expression of the anomaly is manifestly pointwise conformally invariant. It is inter-
esting to compare this result with the cohomological analysis of Bonora, Cotta-Ramusino

0Scpa - n—2¢5SCDG
oghv 2 oo

—2gM

and Reina [8]. They admit only polynomial candidates for the cocycles. The cocycles
which are not exact are

Cl = W4

02 = E4

Cy = 99%9 — RS’

Cy= ¢t (3.27)

Our expression for the anomaly is clearly of the form

2

C.
b3 2
aCy + s (3.28)

with a and b constants.
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4 Conformal dilaton gravity

Let us now consider the theory at the conformal point, corresponding to the critical coupling

£ = (n—2)

= 8n=1)" In this case, we have an enhanced gauge symmetry and, as a consequence, an

extra zero mode that will make the metric G 4p non-invertible, as can easily be verified
from the fact that its determinant when & = &, is

n _ o 2_
Det(GAB) = mDet <g'u,pguo' + g,u,agl/p - nguugp(S) (41)

which is the determinant of a projector.
In this section, by using the background field method in conjunction with the BRST
formalism, we shall quantize the CDG with classical action

1

_ - 2 2 v
Scpa = /d(VOI) < Sn=1) R &= gg V,ﬂ)VﬁI)) (4.2)

around a classical field configuration (gw, g?)) with ¢ # 0. Thus we shall split first the full
fields, g, and ®, entering Scpg into their background, g, and ¢, and their quantum, Py
and ¢, parts, respectively:

g/ﬂ/ = guy + Kh/u/
O =¢+ . (4.3)

Then we shall translate the invariance of Scpg under diffeomorphisms and Weyl
transformations into its invariance under the following infinitesimal quantum gauge
transformations

059 = 050 = 05 G = 6 =0

_ _ _ 1 _ _
8Lh, = €PN yhy + Ny, + V€ Ny + — (Vb + Vok)

1
53Jhwzz2a)<huy+—mguy>
056 =&V, (64 ¢)

5%¢:—ﬁ;2w@+¢y (4.4)

The subscripts D and W remind us that the corresponding transformations either come
from diffeomorphisms — D — or from Weyl transformations — W.

Since along the quantization process we shall have to handle two different gauge sym-
metries as the same time, the task of quantization may appear to be slightly tricky. And
yet, we shall see below that the BRST quantization method does the job for us easily.
So, next, we shall introduce the BRST operators, sp and sy, associated to the previous
infinitesimal quantum gauge transformations. These operators act on the fields g, , b, Py
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and ¢ as follows

SpGur = SDO = Swiw = Swo =0

1 - _ _ _ _

SDh‘/Ll/ == E (v“ny + Vy?]#) + npvPh#y + Vunphpy + V,ﬂ?phpu
2¢

SWh,uZ/ = (g,uu + K/huu)

K
spd ="V (¢ + ¢)

";24$+@. (4.5)

The symbols n* and ¢ denote the ghost fields for diffeomorphisms and Weyl transfor-

sSwo = —

mations, respectively. The action of sp and sy on n* and c is given by

spn* = nPo,n"

swn't =
spc=n0,c
swe=0. (4.6)

To construct a gauge-fixing term that is BRST exact, we shall need the antighost fields,
7" and ¢, and the corresponding Nakanishi-Lautrup auxiliary fields, B and f. The BRST
variations of these fields read

spit = B spB"' =0
swnt = swBf =0
spe=1"0,c  spf =n'O\f
swe=f swf=0. (4.7)

It can be shown that
sH=0 si, =0 {sw,sp}=0; (4.8)
and hence one can introduce the following BRST operator
s =sp + sw, (4.9)

which takes care at once of both the BRST symmetry associated to diffeomorphisms and
the BRST symmetry stemming from Weyl transformations. Clearly, s? = 0.
We are now ready to introduce the action S of the BRST quantized theory:

S =Scpg +s (Xp+ Xw), (4.10)

where
4(n —1
XD = /dnl'\/ ’g‘ 77“ <_(77,—2)BM +Fg> (411)

Xy = /d”:m/]g g"" 0,e0, (f — ad) +oz/d":n 9| " 0,e0,¢, (4.12)
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and
_ 1 . 1 _
Fp=(1-7) <V“k; - 2V”k:> +v¢ (V“h; — 2V”h> —2VY¢. (4.13)

Here, and in the sequel, k,, = qi;hw,. « and 7 are gauge parameters.
Furnished with S as given in the previous equation, we define the DeWitt effective
action, I'pew [Gyuw, @], of the theory as follows

6'LTDeW [g;w»a)] — (414)

A (S [0,0] 550D 10,0]
- / Dhyy D& Dy Di DB De De D ¢! 51 = (S50t @)+ G567 01) |

where Scpcl0, 0] is obtained by setting by, = 0 and ¢ = 0 in Scpa [gw + KRy, ¢ + <Z>].

Taking advantage of the fact that s (Xp + Xy ) is BRST exact, one can show that the
appropriately regularized — eg, by using dimensional regularization — I'pew [QW, gﬂ does
not depend on the choice of Xp + Xy, if g, and ¢ are on-shell. Our choice of Xp + X, is
dictated, partially, by the requirement of having a one-loop contribution to I'pew [QW, (/3]
that is given by a minimal operator. Indeed, on the one hand, as we shall see below, the
contribution to Scpg which is quadratic on the quantum fields contains a non-minimal
part which reads

- 167Zn__21) / Az /9] (V™ V¥, = Uk V7 4 4,V 5 6) (4.15)

The need to cancel this term pins down the contribution to F, which does not depend
on the gauge parameter v. On the other hand, the fact that one can define the action of
sp on ¢ and f in such a way that the result is geometrical makes it possible to construct
easily a contribution to Xy that is non-linear in the quantum fields and is annihilated by
sp; this contribution being

/d"a: lg| g 0ucO, (f — a®). (4.16)

Notice that in the previous expression it is ® — the full scalar field — that occurs, not just ¢.

Now, the action of sp on h,,, and ¢ gives rise to a derivative of the appropriate quantum
field. Hence the sp variation of terms which — like the previous one — contain two
derivatives of the quantum fields, will tend to yield contributions that are quadratic in the
quantum fields and involve three derivatives of the appropriate quantum fields. These three-
derivative contributions will destroy the minimal character of the corresponding differential
operator, unless they cancel each other as in the case at hand. Notice that having two
derivatives in the term in (4.16) guarantees that we shall have a Laplace operator in the
¢c contribution to S in (4.10).

It is worth stressing that the term

a/d”a: lg| g" 0,c0,¢ (4.17)

in Xy in (4.11) ensures that no linear contribution in the quantum fields occurs in
s (Xp+Xw), as befits the concept of DeWitt effective action.
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Let us finally point out that we shall keep the gauge parameters o and ~ arbitrary
and thus check non-trivially that our result for the on-shell most UV contribution to
I'bew [gw, a_ﬁ] does not depend neither on « nor 7.

The B,, field appears linearly and it is conveniently integrated out. It is worth remark-
ing thet were we to do the same thing for the field f, the resulting operator would have

been not minimal anymore.

5 The one-loop effective action of CDG

With the addition of the gauge fixing term, we have all the ingredients needed to compute
the one-loop counterterm. Again, we define a generalized field living in the “gauge” bundle,
this time including also the auxiliar field f

kHv
= ¢ |. (5.1)
f

This means that the metric G g and the matrices Mg and N ﬁ p Will have now extra
entries corresponding to the new interaction terms containing f. Therefore, the metric

now reads .
GuvpoGas 19uv 0
(n — 2) 8 _ n 2a(n—1
Gas = 31 1060 GO (5.2)
0 2a(n—1)  4(n—1)
n—2 n—2

whose inverse, in the same sense as before, happens to be

M g"g"7+g"* g7 + 7204(225522(”1;?2))) gwgpa} a2(1n6,2)§pa a(n8_2)§p0'
GAB _ a2(11672)9uu -4 -2 . (5.3)
a(n872)glw — 0
The matrices are extended in such a way that
Nkﬁk Ny Ny My Mygy Myy
Nig=| Ny N¢¢ N} Map = | My, Myy Mgy (5.4)
N . N, NG, Mpr Mgy Myy

where the kk, k¢ and ¢¢ elements are the same as in the non-Weyl-invariant case (provided
that we substitute £ by &) and the new elements read

8 s _aVeo _
Nkf— ka—z ¢ (gau5 +gau(55_gmx55)
B _

N{p =0

B _ B _

Ngp=—Npy=0

-5 (). (55) ()

Mgy = Mps =0
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Let us stress that now

%(R“pagég +Rl’paﬂ6{;‘ —I-R“gag(sz +Ryga655) 0 0
FaﬁAB: 0 0 0]+
0 0 0
vawﬁAB—vﬁwaAB—l-waAcwch—W5AcwaCB. (5.5)

We shall introduce next the generalized ghost, n°; and generalized antighost, 7°, fields,

= (nc") 7= (). (5.6)

Then, the contribution which is quadratic in the ghost and antighost fields and comes
from (4.10) reads

which are defined as follows

S5 = / d"2\/|g] 7* (=Gt V? + N° Vo + M) 1, (5.7)
where
g#yo a Nal/Naw Mp’l’ M,ww
G N 1 [z My = 5.8
: ( 0 1) ! <NQUIV Naww ! Mwy Mww ( )
and
o _ V% b 71/(;5 « @ QE a
Ny =—=1=9) G — + (1 +7) 3 Y u+(1_7)7%5 v
2 V%%
Naﬂw = 0; Nawy Lfbéau’ Naww 0
n—2 ¢
_V7 — " 2 7[]72_
MMV = _Rm/ +2vNY ¢, Muw - ’Y(n— Q)M’ My, = Y Y ¢
p b n—2 ¢
-
v = 0
¢

The reader should bear in mind that the index w has no range and goes with ¢ or ¢, as the
case may be.

The heat kernel coefficient (A.24) associated to S’%hOSt in (5.7) is the corresponding
coefficient of the heat kernel expansion of the following operator

Alghost) — _ (gW (V0% +wi ] [?Vét’t + w,ﬁ’t} + Est) , (5.9)

where
Wit = %G“' Nyt (5.10)
B®, = G (—Mt/t — W — ?Mwm (5.11)

Gt is the inverse matrix of G in (5.8).
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To work out the heat kernel coefficient (A.24) associated to S%hOSt in (5.7), one also

needs the field strength for the connection defined by ?”5575 + w}¢, which reads

s Ruupa 0 = s v, s s
Foo = 0 0o + Vywg — Vowy, + [wp, we®; (5.12)

All the ingredients which are needed for the full computation are now in place. All
that is left is to add the contributions of the physical fields and the ghost fields

- 1 - hosts r— - 11 - .
Tpew (9, ] = (AS"S"“S [9,0] —2 A5 g, qs]) =13 /d% 9] a2 [g.¢] (5.13)
where the off-shell as term is now
— — 2 — — 2 — — - . — — — J— — —
s Vo) (Vo AZIAVEEAVIAVS VEVY GV, VY,
o2 5.8 = @u(an VLT G0, OV ITT0 | ) VPV ST
V,.$V2ViG Vo)’ V2o V2oV% RN,V 6
27% + Q4(a,7)(2b3 + Qs(aﬁ)% + Qe(ary)$+
RV, V., ¢ I 53 - o RVH*¢V .6
+ Q7(a,’7)TI—L¢ + QS(OK»’Y)RM R;u/ + gRM 'BR;Luaﬁ + Qg(a,'y)#—i—
_ RV*$
+ Quola ) + Qua(0,7) 5 (5.14)
where
(o) = 16 + 10802 — 8y + 9602y 4 492 + 18a%92 + 73 + 40?43
1 ; == 2
(6%
Orlon) = — 2 (96 + 40502 — 48y + 39002y + 1372 + 57a%+? + 373 + 12a%4?)
T 9q?
Qs(0,) = 48 + 812 — 24+ + 10202y + v? + 3a2~?
3\@, ) = 90(2
Qu(e) = —102 — 37802 + 96y — 42002y — 44~% — 600272 + 373 + 120243
4 3 -
9q?
Os(a.) —162 + 22802 — 108a* — 2402y + 84ty + a?42 + 3aty?
5(Q,7Y) = —
9a4
Qslin) = —96 — 63a% + 24~ — 78a’y — v2 + 150242
6 (&Y, = 9&2
4(4—3042 —’y+a2fy)
Q?(O‘a’)/) =- 302
=120+ 361a?
QS(aa’Y) = _QOT
1142402 — 6 + 3202y + 372 + 60242
Qo(a,7) = —
o\, 7y) = 30[2
18 — 3002 + 43a*
Qio(a,7) = T
Onlanr) = —18 4 2502 — 21a* — 202y + 20ty
’ 3at '
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It is worth mentioning that all the monomials including the scalar field diverge when
¢ = 0. Naive power counting arguments can not then be applied. This fact also prevents
the monomials that appear in the bare lagrangian to appear in the counterterm. This
physically means something that we already knew, namely that our calculation is restricted
to the broken phase of the theory. When this is put on-shell by using the relationships
derived in a previous paragraph (particularized for the conformal value of the coupling &)
all the gauge dependence on the parameters v and « dissapears. This is a powerful check
of the gauge independence of our result. Moreover, by using the relations

Ey = RuyopR"™ " + R* — AR, R" (5.15)
/ d(vol) By — / d(vol) Wy — 2 / d(vol) <RWRW - ;R2> (5.16)

and using the fact that the last term in the second relation vanishes when using the EM,
the on-shell counterterm finally reads

1 1 53
— 41672 45

which is exactly the same as in General Relativity once the equations of motion are taken

FDeW = d(VOl) E4 (517)

into account. In fact the counterterm vanishes for manifolds with vanishing Euler charac-
teristic (although not in general). On the other hand, S-matrix elements depend only on
the on-shell effective action. This means that the anomaly induced by the corresponding
evanescent operator is trivial for those spaces with x(M) = 0.

6 Inclusion of a quartic interaction

The attentive reader could not fail to notice that the action of CDG is not the most general
one with the full set of symmetries. There is an operator, namely a quartic self-interaction
of the graviscalar field, that can always be included. The reason why it has been taken
apart from the other terms will be apparent in a moment.

The action of interest is

s=- [0 VIl (8R4 59,09 - 2672 (6.1)

where the coupling constant is dimensionless in any dimension.

The presence of this new term will add corrections to the second order action when
expanding around background fields. All these terms will be just new additions to the
M 4 p matrix of our algorithm

Mlp = M} + 6Magp (6.2)

where Mg p is the corresponding matrix when A vanishes and

SMap — %Cf_’ ( /C}fpa— ’C;wm> %\L?—)

It is convenient to study separately the non-conformal and the conformal case.
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6.1 Non-conformal dilaton gravity

Let us start with Dilaton Gravity out of the conformal point and just repeat the steps we
did before to obtain the one-loop effective action. For simplicity we choose v = 0 and obtain
the following off-shell result after performing the computations for the DeWitt-Schwinger
coefficient of the Heat Kernel (the corresponding ghost action is insensible to the adition
of the potential term)

ay = a9 + das (6.4)

where, again, aJ is the coefficient when the potential is absent, obtained by choosing the
v = 0 gauge in the corresponding equation, and

das = (7, N, E)(VP)? + la(7, A, €)¢* — I3(7, A\, ) RP? — la(7, X, £)V3h.  (6.5)

All counterterms proportional to the quartic self-interaction renormalize coupling constants
already present in the original lagrangian; in particular there are no operators that become
singular when ¢ — 0

Here
Li(y, A €) = 2880(—1+12¢) (1 — ¢ (25 + 18y + 577) + 4€2 (45 + 507 + 18+%)) A
lo(y, A, &) = 2880 (5 — 112€ + 696£%) A\
I3(7, A, &) = 960¢ (13 — 282¢ + 1728¢%) A
La(y, A\, &) = 5760 (—7 + £(132 — 467) + 2643 (=3 + ) +27) A. (6.6)

The presence of the self-interaction also corrects the equations of motion for the back-
ground fields. They receive new pieces and now read in four dimensions

1 V2 (1 V.0V, 0 1 Ve V.V.é V2 1. -
R =~ ¢‘(2‘2€>M_(Q§_4) gw( <) +26—H— ¢—2€QMVJ+§A¢29W

193 2 2 % 3
1V 2,
Bogeg — ¢ =0

The second set of on-shell relations previously derived in the absence of self-interaction
are still valid, since they only involve integration by parts. The first set is however modified
by the presence of the self-interaction. They read now

5 A (Ver
(V?QR - 2153 + %(W))2
R 422A 4?22& + %EV%
W _ (41€ _2> B- 41§c+2E+ %(Véf
W - (42-2) (A+ B) +2D + (2—215)E+ 2§¢V2¢
b () (S ASE)e o) PR 5
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And, again as in the A = 0 case, compatibility of the two equations, whenever we are out
of the conformal point, demands

A=C=-B. (6.7)

Using this modified relations, we can finally put the full counterterm on-shell, ending

up with a simple expression for the DeWitt-Schwinger coefficient

Aonshet) 71 1259 L, 14841126 _5 371A2_,
- 2270 12 i A _2A g .
2 60"+ Taa0 O°CH T €2 (Vé)" - 150 e (6:8)

The main physical effect of the self-interaction at this level is to generate counterterms

for the dimension four operators in the lagrangian, a feature that was absent before. Ac-
tually the renormalization of the non-minimal coupling to the curvature is proportional to

A
0 x 2k (6.9)
In the limit £ — %, corresponding to the conformal value, all non-Weyl invariant terms

in the effective action vanish. However, as we already saw in the pure A\ = 0 case, this
limit is discontinuous owing to the presence of an enhanced gauge symmetry so that the
coeflicients in front of every term will be different in the conformal case.

6.2 Conformal dilaton gravity

Let us now turn our attention to the conformal case in which the coupling to curvature
reaches the conformal value & = 1—12 In this case, we have a Conformal Dilaton Gravity
with an extra gauge symmetry, namely Weyl invariance. The only monomial compatible

with this new symmetry is precisely
V= Az, (6.10)

Actually it is the only Weyl invariant potential term in arbitrary dimension.

Quantization of CDG in this phase is done, again, in the same way as in the A = 0
case. We stick to the v = 0 choice for the diffeomorphism gauge fixing and we introduce
the gauge fixing sector for Weyl invariance by using BRS techniques as before. In this case,
the matrix dM4p must be extended to include the f field in a trivial way as

-4 _ 4
%¢n72 <ngpg- - %]C,Cifm,) —%n%¢n72 0

PMas = e gtk ol (©1
0 0 0

Plugging the new matrix into the algorithm and working out the computations, the
off-shell Heat kernel expression again receives new terms proportional to A\. These are,
when n =4

(5&%‘ = 51(047 )‘) (54 + 82(04, )\)(V(ﬁ)2 + 33(a7 )‘)QEVQQE - 34(a7 )‘)RQEQ : (6‘12)

It is remarkable that also here all counterterms involving A seem to obey the ordinary
power counting arguments and renormalize the coupling constants already present in the
bare lagrangian. No singularities when ¢ — 0 are present in terms involving the quartic
self-interaction.
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The explicit values of the four functions s;(«, \) is given by

_ 28— 4a24+ 150
(0%

s1(a, \)

2
so(a, \) = 12\ <3 + 042>

6 — 602 + 7at
s3(a, \) = 24)\T
6 — 5a? + 13a*

sa@, ) = A (6.13)

So that using again the on-shell relations induced by the equations of motion, we find the

on-shell coefficient to be

ajy o shell) — %m - 4?—?%34. (6.14)
A quartic self-interaction in the Jordan frame corresponds to a cosmological constant in
the Einstein frame. It must be then the case that the counterterm just derived is the Weyl
transformation of the one obtained for General Relativity with a cosmological constant by
Christensen and Duff [10].
This counterterm reads on-shell
agRenshell) %W - %AQ. (6.15)
If the above conjecture is to be true our A must be directly related to their A.
Taking the limit in which CDG goes to General Relativity, characterized in n=4 di-

mensions by

¢ — V12 M, (6.16)
we learn that
A =6)¢7%. (6.17)
The Christensen-Duff counterterm then reads
GR(on—shell) 53 4568 274
i _ == .1

which is exactly the result we obtained by a direct computation of the one-loop counterterm
of CDG.

This is perhaps a good place to comment somewhat on previous literature. In [6] some
similar models are analyzed; but they beg the main physical question in the sense that
they postulate that the counterterm should be the Weyl transform of the 't Hooft and
Veltman’s one.

The are a couple of interesting papers ([33, 34]) where quite general models that include
the one studied in the present paper are analyzed outside the conformal point. Only [33]
reports on shell results, so that there can be a meaningful comparison. We have checked
that the coefficent of Wy in their on-shell counterterm is different from our result.

The other paper [34] also assumes from the start that the function U(¢) that multiplies
the scalar curvature cannot vanish.® This means that their results do not hold when
U(¢) ~ ¢? as in our case. No comparison can then be made with them.

SWe are grateful to A. Kamenshchik for informing us of this fact.
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7 Physical effects of quantum gravity

The standard lore of effective field theories is that quantum gravity effects should decou-

167G’
ignored in particle physics except in exotic circumstances. This statement needs qualifica-

ple at energies much smaller than Planck mass, M, = \/% so that they can be safely

tion in all cases in which the gravitational coupling constant becomes dynamical. This is

what happens, in particular, in conformally invariant theories, where all energy scales are

physically equivalent. Our calculations as reported here allow for a quantitative axample.
An scalar field conformally coupled to the gravitational field has the action

S = / vol( )¢2R+ (w)) (7.1)

The conformal invariance of the effective action implies an off-shell Ward identity
or n -2 5I‘
— . 7.2

This is true irrespectively of whether gravitation is dynamical or not.

29"

The corresponding energy momentum tensor of the scalar fields reads

2095 n-2 n n—2
Ta = = Ra 2 e o n—-Z B
s N 1) B9° + 2(n — 1)va¢w¢ S~ 1)¢vav5¢
1 n o
3 <4() R¢? +— (W) — ) Gop - (7.3)
This energy-momentum tensor is already traceless on shell
T= gaﬁTaﬁ =0. (74)

Quantum corrections yield however a trace anomaly (confer, for example [31], page 107)
which in this case is given by

1
288072

Not only that; even the Ward identity (7.2) is violated as well owing to evanescent operators,

(0]7]0) = < Wy — - E4 +O R> (7.5)

acquiring a nonvanishing second member

5r 1 /3
29" d)% 288072 ( Wa - 7E4 + DR)
S U
gt o 1) . .
+ 872 ¢ {72 v# (¢v ¢) (7 6)

The quartic self-interaction for the scalar field has been included.
This is to be contrasted with the result just obtained when gravitation is dynamical
or or 1 53 - 4568 -
pv o= S - N2t . 7.7
g T 56 = 167 <45 ST ¢> (7.7)

Here I' is the four-dimensional renormalized action, and the quartic self-interaction has

been included as well. The difference between the result in the presence of quantum
gravity effects and the result when the gravitational field is just a background is not small.
This is only natural, because there is no yet anything that fixes the scale at which quantum
gravity effects should become important.
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8 A discussion of the fate of the Weyl symmetry Ward identity at the
two loop level

The fact that the UV divergent counterterm (as well as the conformal anomaly) vanishes on
shell means that it is in principle irrelevant, at least as far as S-matrix physics is concerned.
It is most interesting to consider a situation in which UV divergences are likely to show up.
As we shall see, this is the case in four dimensions at the two loop order and six dimensions
at the one loop order. Let us begin with the case in four dimensions.

The fact that the action Scpg in (1.14) is Weyl invariant for arbitrary n and the results
concerning the Quantum Action Principle presented in [9] lead to the conclusion that the
dimensionally regularized on shell background field effective action, I [gw,i); n], of our
theory is Weyl invariant at any loop order:

4] —2-9

TR T [Gu, ¢ n] =0. (8.1)

2 gMv
T g T2 Y55

And yet — see Theorem 2 of [9], that the previous equation holds does not necessarily
mean that the renormalized effective action, say Iy [QW,J)], obtained from I’ [QW,J); n]
by using the minimal substraction algorithm satisfies the corresponding Ward identity in
four dimensions. Indeed, let us assume — an assumption to be discussed below — that
r [gu,,ng; n] develops a simple pole at two loops; then, since the Ward identity in (8.1)
contains coefficients with an explicit dependence on n, these coefficients may give rise to
contributions that cancel the pole at n — 4 in I’ [guy,q_ﬁ; n] This mechanism may yield
UV finite terms — let us denote them by B [gm,, Q_S] — that break the Ward identity for

1—‘0 [guln (ﬂ :

[29“"5 i ]Fo[guméf)]:lg[guméﬁ]- (8.2)

s " C 50

The previous Ward identity breaking term, B LZ]W, Q_ﬁ], will turn to be a true anomaly if no

acceptable UV finite counterterm, F(()Ct) [gw, q_ﬁ], can be found so that

{29"” ; A LS [Gs 8] = B [ 8 (8.3)

holds.

Let us stress that to tell whether or not B [gw,, é] is a true anomaly, one should define
first what an acceptable counterterm is. In theories with overall UV divergences which are
polynomials in the fields and their derivatives, by acceptable counterterms one means poly-
nomials in the fields and their derivatives of the appropriate mass dimension. The reader
should also bear in mind that if a true anomaly does not show up after performing a mini-
mal substraction, then, a true anomaly cannot be generated by performing any acceptable
non-miminal substraction. By an acceptable non-minimal substraction one means that
which differs from the minimal subtraction by acceptable UV finite counterterms. Notice,
however, that the value of B [QW,QZ_)] changes, in general, as we change the acceptable
substraction.
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Now, in keeping with the one loop result obtained above, we shall assume that at
two loops the pole part at n = 4 of our dimensionally regularized on shell background
field effective action, I' [gu,,,gE; n}, can be obtained, by performing an appropriate Weyl
transformation, from the on shell two loop result worked out in 1986 for General Relativity
by Goroff and Sagnotti [21]. This on shell two loop divergence reads

_ 1 1 209 4
PGS (G, ] = /d4 Glw ) v 8.4
O [ #] - ( M2 9880 \/ﬁ 6 u ) ( )
where
Wi = wWmeesan ) e, (8.5)

The symbol Wﬁﬂwg,,“ stands for the Weyl tensor — see (1.5) — for the metric G,
for n = 4.
Now, by applying the Weyl transformation

72 -
G,uu 12 M2 o Guv (8'6)
to TCY [G,.v] in (8.4), one obtains

e 112 209/ .
[guVa¢] 42880 d \/7 g,ul/ ’ (87)

n_

which, as stated above, we assume it is the two loop pole part contribution to the dimen-
sionally regularized on shell background field effective action of our theory.

Since we want to make sure that no diffeomorphism anomaly arises in the renormalized
theory in 4 dimensions, the substraction of PESS)[QW, ¢] in (8.7) from I'[g,m, ¢; n] is to be
done in such a way that it preserves explicitly invariance under diffeomorphisms in n di-
mensions. This is achieved by generalizing PSS S) [C_JW] from 4 dimensions to n dimensions
and subtracting the resulting term from the dimensionally regularized action. The geomet-
rically natural generalization of W6(4) to the n dimensional space is obtained by using the
both the metric and the Weyl tensor in n dimensions. The Weil tensor in n dimensions
contains coeflicients that depend explicitly on n; so this generalization of Wﬁﬁw pspa tO an
object in n dimensions will lead to a non-minimal substraction algorithm. However, it is
the Weyl tensor in n dimensions the object which supplies a Weyl invariant tensor in n
dimensions: a property much appreciated if one looks for Weyl invariance.

Then, let us introduce the following generalization of I'sg (G9) [gm,, gb] in (8.7) to
n dimensions:

nm) [ = I 1 nm) r— s
F<(>o ) [QMV7¢] = m WS]_ ) [guy7¢] ) (88)
where 12 209
WEqm) [guw(ﬂ = 2880/ \/g W6 gwj . (89)
In the previous equation
Wﬁ(n) [glﬂl] = Wala2a3a4 Wa3a4a5a6 WOA50¢6 a1oo s (810)

Wi popspa being the Weyl tensor for the metric g, in n dimensions — see definition in (1.5).
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We define, up to two loops, a renormalized on shell background field effective action,
let us call it T’ (()nm) [gwj, Q_S], by performing the following non-minimal subtraction:

nm — n 1 nm — n
T (G0, 6] = lim {I‘ R W (g, 8] } (8.11)
Substituting
I 1 nm — n nm — "
r [g,uua ®; n] = n—4 W£1 ) [gumd)] + Fé ) [guuv¢] + O(n - 4) (8‘12)

in (8.1) and taking into account that
) n—2-0 ]

¢ —| WO (G, 0] = =200 = ) W™ G, 6] , (8.13)

5o T2 %55
()

one readily shows that I';

-
[%m QE] satisfies the following broken Ward identity

Spv 0 (nm) 1= n _ - B _
20 5+ 05 6 [9008) = Blowe =21 [gud] . (510

W_4 [gw, (E] is given by

-1 [g/ﬂu(ﬂ (12) 2280890/ 4 \/> g,ul/ . (815)

It is clear that W_; [gW, é] cannot be canceled by adding to F(()nm) [gW, é] an inte-
grated local polynomial of the fields and their derivatives. This is not surprising since after
all the pole part of T’ [gw, &; n] is not a polynomial in ¢; although it is a meromorphic
function, when ¢ is replaced by a complex variable. To gain some understanding on the
type of counterterms that one has to accept with the purpose of modifying the value of
Ward identity breaking term B [gu,,, ¢_>], and eventually setting it to zero, we shall con-
sider the effect on B [gw, gE] of another non-minimal subtraction. This subtraction has the
same dependence on the Weyl tensor and the metric as the previous one, but a involves
non-homomorphic function of ¢.

Following the ideas presented in [15], we shall introduce first the following non-minimal
generalization to n dimensions of the Goroff and Sagnotti UV divergence in (8.4):

] 1 1 200 [ .
P [Guui n] = =4 (4 M 2880/d I61s G 510

Notice that G’W and the Weyl tensor in Wy [GW] live in n dimensions. Then, the following

Weyl transformation in n dimensions

2

=~ 1 n—2 \»2 - A
Guw = ﬁg <8(n—1)> (¢) Guv (8.17)

casts FSSS) [CW; n] into the form
n—=6

Nl - 1 1 209 n—2 \n-2 —  — gn=6 _
(w1) . n n_2 (n)
L (G 63 ] n —4 (47)* 2880 (8(n—1)> /d V191(9) o (9] (818)
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(wi [gw,,d)] on shell background field effective action, up two

(wi

The renormalized, F

loops, is now defined by using I'sy [gu,,,gb, ] to implement the following non-minimal

substraction

F(()wi) [gum (ZB] = 7111121 {P [g,uua &; n] - F(wl) [gMV’ ¢’ ]} ' (8'19)

Finally, the fact that FS;)U g [gw,, &: n] is Weyl invariant in n dimensions — it satisfies (8.1)
— and that now

T [Gus &; 0] = T8 (G 0] + T8 (G, @] + O(n — 4) (8.20)

leads to the conclusion that F(()wi) [gu,,; <Z_>] is Weyl invariant:

2g’“’§ —_ + 5o 5 05" [guv, 9] = 0. (8.21)

We would like to point out that to obtain an on shell renormalized effective action that

is Weyl invariant, we have substracted an integrated function which contains, for complex

n close to 4, a non-meromorphic function of ¢; namely, ((]3)22%3 Non-surprisingly, the

Laurent expansion of FSOS [QW, &; n] around n = 4 contains the non-zero UV finite — i.e.,
non-vanishing in the limit n — 4 — term

- 12 209 1 - 4

W [z 8] = /d4 il = ()2 WG], 8.22

0 [gul/ ¢] (47‘(')4 2880 & ‘g| ¢2 n(¢) 6 [g,uy] ( )

which, in turns, contains the non-meromorphic — when ¢ is replaced by a complex vari-

able — logarithm. Whether substractions involving such terms are acceptable to define a

quantum field theory of gravity is an open issue, which we will not discuss in this paper.
Notice that

L0
SgH ¢> 0

" [Guos 8] = 2W_1 [ 8] , (8.23)

where W_14 [gu,,, gE] is given in (8.15). Hence, by finite renormalizing F(()nm) [gw,, gz_S] in (8.11)
as follows

0™ (G0 3] = T8 [0 8] = T8 [ 3]~ W™ [gun 8] (8.24)

one obtains a renormalized on shell background field effective action which is Weyl in-
variant. Of course, all this is a consequence of the fact that the difference between the
substraction term, 1“83’“ [gm,,qS; n], used in (8.19) and the substraction term, 1/(n —
4) ng) [gw, <Z_>], employed in (8.11) contains Wénh) [gu,,, &] in (8.22), in the limit n — 4.

The outcome of the analysis and computations we have carried out above is that
Weyl invariance can be always be restored in Conformal Dilaton Gravity if one is willing
to accept counterterms which have logarithmic dependences on the fields. Otherwise,
it cannot be restored. Of course, our analysis rests on the validity of the assumption
that the on shell two-loop UV divergent contribution of Conformal Dilaton Gravity in 4
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dimensions can be obtained from the Goroff and Sagnotti counterterm by performing the
appropriate Weyl transformation. This hypothesis is suggested by our one loop results,
but, obviously, it demands to be confirmed, or falsified, by carrying out the corresponding
two loop computation.

Now we come to the case of CDG in 6 dimensions. The discussion parallels thoroughly
the discussion carried out in the case in 4 dimensions, but now the substractions are one
loop. Indeed, Peter van Nieuwenhuizen [36], in a brilliant paper, computed the on shell one
loop pole arising in General Relativity in 6 dimension as early as in 1976. His result reads

) 19 1 = .
P (Gl =~ =5 T 32 / Foi/lel W (6. 52

where

W(G) — W(G) ooy W( ) W(ﬁ) a506

azo40506 Q10

(8.26)

The symbol W,S?LQHBM stands for the Weyl tensor — see (1.5) — for the metric G, for
n = 6. The contribution in (8.25) is Weyl invariant, so that the Weyl transformation

~ 1 1

G = M2 \/»fbg;w (8.27)

leaves its form unchanged. Hence, we shall assume that the pole part, at n=6, of one loop
dimensionally regularized on shell background field effective action, I'[g,., #; n], of CDG

P 19 1 )
=6(5. & =— d6 w9 5.1 8.28
0 (98] =~ s gaes | VI WA ) (3.25)

Notice that unlike the case in 4 dimensions, which we analysed above, the pole part in

runs thus

local, ie, an integrated polynomial of the fields and their derivatives.
The substraction in the case at hand that is analogous to the substraction in (8.11)
reads

p{m n=0) [gw,qb}—hm{ (G & ] — —— W) [g,w,qﬂ} (8.29)

n—=~6

where

nm — T 9
WO (G 6] = 11203%2 / "o/[al W (5] (8.30)

Wﬁ(n) [Guv] is defined in (8.10).
Now, taking into account (8.1) and the following equation

J

[2 9" 5z W} WO (G, 6] = —(n — ) W™ g, 9] (8.31)

one shows that I‘(nm n=6) (G, @] in (8.29) satisfies the following broken Ward identity

5 nm n= n — n
20 5 4 20 | T (00.6) = Bl d] =W [gnd]. (832)
W—l [g/ﬂu (5] is given by
- 9 1
Wor [0 8] = ~ 150532 | 4 ov19l W5 (9. (8.33)
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As in the case in 4 dimensions, we introduce next a substraction term that is Weyl
invariant in n dimensions:

n—=6
19 1 1 n—2 \n2 n
DL (g 65 1] =~ =5 1735 33,2 Mo (S(n—l)) /dnx 91(6)"%= Wi [gu)
(8.34)
This substraction term is obtained by applying the Weyl transformation in (8.17) to the
CVN 1G] in (8.25),

With the help of Fc(fé,% [gw,,gi); n], we define a renormalized action in 6 dimensions

geometrically natural generalization of I's,

that is Weyl invariant as follows

T8 (G, 6] = lim {T (G &5 0] = T g, 65 ] } (8.35)
Some comments are now in order. First, in the limit n — 6, the difference between the

non-meromorphic substractlon term I‘(Mﬁ (G, &5 1], in (8.34), and the polynomial sub-

straction 1/(n — 6)W( [Guv, @], in (8.29), contains the UV finite non-meromorphic term

= _i 1 4 — - 4) =
€= "T0%o /d”’” 4 (111\/%) We " ] - (8.36)

It can be readily seen that if we substract the previous UV finite term, C, to the

renormalized action, F(nm n=6) [ v ¢] n (8.29), one obtains a new renormalized action
that is Weyl invariant. All this is in complete analogy with the case in 4 dimensions,
analysed above. There is however a conspicuous difference: the pole part in 6 dimensions
is local, so to modify the non-local structure of the Green function may clash with general
principles of quantum field theory, such as unitarity. All these issues deserve to be carefully
studied on their own.

9 Conclusions

The conformal invariant action analyzed in our paper (CDG) has been argued [23, 24] to be
related to the ultraviolet fixed point of the exact renormalization group equations (ERGE).
The general action they considered was

S = / v01< (¢°) + F (¢*) R+ = g“”quSVl,gb) (9.1)

We find this result quite remarkable, although our results indicate that CDG is not
stable under renormalization at least perturbatively.

The main conjecture of the present paper is that the conformal Ward identity is violated
in renormalized CDG at two loops even on shell, if counterterms involving logarithms of the
scalar fiels are not allowed and that this Ward identity can be restored if those counterterms
are accepted as valid to define a quantum theory of gravity. This is true provided the CDG
counterterm can be obtained on shell from the corresponding counterterm in GR. We have
proved explicitly this at the one loop order through a not altogether completely trivial
calculation, and it is natural to assume that it holds true also to two loops, but we have
no proof of this. As to whether this violation ought to be called an anomaly, we are aware
that this concept is slippery when dealing with a theory which is not renormalizable, so
that new counterterms are expected to appear at any new loop order in the computation.
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In spite of the fact that the one loop counterterm vanishes on shell, its rather intricate
off shell structure should affect computations other than S-matrix ones.

An interesting topic that we did not touch in this paper is the analysis of the theory in
the symmetric phase. Background field techniques fail in this case owing to the fact that
there is no propagator for the gravitational fluctuations. One could modify the action by
introducing an Einstein-Hilbert piece

2 / d(vol)R (9.2)

and then take the limit when p? — 0. It seems that this is equivalent to a constant value
for the classical scalar field, namely,

p=p. (9.3)

Then the counterterm reduces in this case to just three terms independent of p; using our
previous notation

az (9, 8] =720 (—1+12€) { = Pr(&,) R R+ Pro 6, 7) B2+ Py (€, 1) Rywras P} (9.4)

The theory is never conformal when 1 #£ 0, so that it seems diffcult to reach the conformal
point using this procedure. Another possibility is to introduce a propagator for the gravi-
tons through gauge fixing. This resembles some aspects of the quantization of topological
field theories [29]. We are planning to continue thinking on this fascinating problem and
hope to be able to report on it in the future.

At any rate, it would be most interesting to study the behavior of matter added so
that the resulting lagrangian is still conformal.

It is well known that the Goroff-Sagnotti counterterm does not have any supersym-
metric extension. Our arguments therefore do not stand for the supersymmetric extension
of CDG, which is also a conformal supergravity, which could well be all-order anomaly-free.
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A A quick reminder of the heat kernel approach

Let us define now the heat kernel associated to the operator whose determinant we want
to compute as the formal expression

K(r)=e ™. (A.1)

Again formally the inverse operator is given through

A= [ dr K(ma) (A.2)
0
where the heal kernel obeys the EDP heat equation
E—FA K(z,y;7)=0 (A.3)
87’ x 7y’ - .
with the boundary condition
K(x,y,0) = 6™ (z—vy). (A.4)
Then - - 5
Ax/ K(riay) = —/ dr L K(rey) = 5@ —y). (A.5)
0 0 87'

The class of operators that have been studied by mathematicians [20] are deformations
of the laplacian of the type
A=D'D, +Y (A.6)

where the gauge covariant derivative is given by
D,=0,+X,. (A.7)
In the particular case X =Y = 0 the flat space solution is given by

1 _ 20(z,y)

Ko(z,y;7) = ——e A8
0( y T) (471'7')”/2 ( )
where the geodesic distance in flat space is simply
1 2
o(z,y) =5 (z—y)” (A.9)
It is clear from the above expression that when

oc—=0 (A.10)

the dominant terms in the above expression will be given by
T~0. (A.11)

It is customary in the literature to dub 7 as proper time, although it has really di-
mensions, of length squared. It is then physically reasonable that the UV behavior of the
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theory is captured by the corresponding behavior of the heat kernel when 7 ~ 0. This
is fortunate, because there is a beautiful geometrical way of systematically studying this
behavior. Besides, the computations are well adapted to general riemannian backgrounds.
This method is currently the easiest and most powerful way of getting the divergent piece
of the effective action in gauge theories with nontrivial backgrounds.

The simplest approach to get small proper time expansion is due to Schwinger and
Dewitt and simply consists in a brute force Taylor expension

K(ria,y) = Ko(r;2,9) ) ap(,y) 77 (A.12)
p=0

with the diagonal part of the first coefficient normalized to 1
ag(xz,x) =1. (A.13)

The integrated coefficients will be denoted by capital letters

A, = / Vgl Az an(x, x) (A.14)

in such a way that
AO =vol. (A15)

The determinant of the operator is then given by

log det A /th K(r)=—tim [ &1 ipt (@2) % (A.16)
ogdet A =— | —tr K(7) = — lim e E— TPtr ay(x, x) e 27 .
& T =0 Jo T (4mT)"/2 = P

where we have regularized the determinant by point-splitting the points x and y (although
still keeping only the diagonal part on the small time coefficients). All ultraviolet diver-
gences are given by the behavior in the 7 ~ 0 endpoint. The Schwinger-de Witt expansion

leads to

v r (E - p> tra,(z, ). (A.17)

logdetA:—z:ZH72 5
T2

p=0
The term p = 0 diverges whn ¢ — 0 in four dimensions as

1

p (A.18)
but this divergence is common to all operators and can be absorbed into the cosmological
constant. The next term corresponds to p = 2, and is independent on 0. Whenn =4 — ¢
is given by

log det A|,_, = ! D az(zx,x) . (A.19)

1672 (n —
From this term on, the limit ¢ — 0 kills everything.
There are of course finite contributions that are not captured by the small proper time
expansion; those are much more difficult to compute and the heat kernel method is not
particularly helpful in that respect.
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A different way of doing things is by considering ¢ = 0 from the very beginning, but
including a lower end cutoff, ﬁ in the proper time integral. It should be remarked that
this cutoff respects all symmetries of the theory; it is not a momentum cutoff, and it is
therefore compatible with diff as well as conformal invriance. Integrals are extended until
an infrared cutoff ;712 whcich physically represents the range of validity of the short proper
time expansion. The result is

1 1 A?
log det A|,_, = T6n2 <A4V01 + ial(m,m)Az + as(z, z) log M2> . (A.20)

The class of operators we are able to consider are some deformations of the Laplace
operator, namely,
D=- (GAngauau + aiBao + bAB) (A21)

where g"” is the inverse metric tensor on M and G 4p is the metric tensor of the “gauge”
vector bundle V' over the space-time manifold M, and a” and b are matrix valued functions
on M respectively. Then, there is a unique connection on V and a unique endomorphism
E of V so that

D = —(Gapg""DuD, + E4B) (A.22)

where the covariant derivative D = V + w contains both Riemann and “gauge” bundle
parts. The introduction of the bundle with capital indices will allow us to encode the
collection of different fields present in our action in a compact structure.

The divergent part of the one-loop effective action in four dimensions is then

1
W(l) - m A2|7’Z:4 . (A23)

Furthermore, there is an explicit formula for this coefficient, namely

1
A2 = W /dnx\/m Tr |:60RE+ 180E2 —|—5R2 _ QRMVRMV +2RuyaﬁRyya6 +30FWFW]
TT) 2
(A.24)
where F),, is the field strenght defined by Ricci’s identity as
[Dy D)4 = Fyp0® (A.25)

U5 being a vector field living on M, a section of the vector bundle. The trace refers both
to spacetime indices and bundle capital indices.

B Some details on the computation

Including up to quadratic order in the quantum fluctuations we get a quite involved ex-

pression, namely

ng—/d”:v gl (H+ F + HF) (B.1)

— 38 —



where

1o - 1, 1 _
H=¢p? |~ hv2h+ 4haﬁv2h(w - fv AV, W + =V WOV BY + gh?R— 1hWhWR—

[\)

_ _ _ o 1 3 _

—§hh°‘5Ra5 + §h“”h3RW - QRWagh”ah”ﬁ] +&(Vad?) <4hv"h = PV b+

3@,(3_ “ 1 M «@ afo l = af 1 ALV I L 1 2V} I Iy
+oh V4 SHN WG =RV gh = SV gh*T ) 4 SRRV 16V G — L hhHTY NV, 0V, 0+
_ gh hltuva¢va¢+ 7h2 (bvu¢

= 5va¢va¢ +ERg?
_ _ _ - _ _ - 1. - ——
HF = ¢ (—2h" R, + hR + 2V, V, W — 2V?h) — h*FV ¢V 3¢ + 3hVuoV"e.

Since gravitational fluctuations are symmetric tensors, h,, = h,, only the symmetric
part of the quadratic term contributes. We found it convenient to define the operators

Pl = 5 (9000008 + Guo30) + G000 + 3o} ) + S0 00 ) (B2)
Kipo = i (90595 + 9000507 ) + i(a o B).
It is then plain that
W by = WY PP o
h? = Ko o Gaph b . (B.3)

After introducing the preceding notation, the quadratic operators read
ﬁ/wm = & [ (Pﬁfpo - Kﬁﬂpo) %562 (ngpcr - ,Cgfpo) Raﬁ + %R(upvo)
(5530~ 1P ) Bos| + (5P 1K ) (T 108 (76)°) +
% (V a¢2) <(ICZUVJPG - P/Wpa) 9rwd” 7+ Xuli)ﬂ) Vs

with the tensor X ﬁ‘,,ﬁpg defined as

X0, = g ( 95 Gvo + 359, Guo + 3595900 + G5 gffgup) - (é‘;‘gﬁéuu + §3‘§5§W) +
+ % ( nGvo + 559, Guo + 353,900 + gogugup> -2 (ngugpa + gz/g,ugPU)
and
(HF) | = €6 [Rguw — 2Ry + 29,9, = 20, V7] + 5 (9,69, + V.67,) -
STV adV 4V, V06— 5%
P —%W 1 ¢R.
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The operators after the rescaling to the k,, variables read

A~ 1 a o — —2 1 « (e 1 D
H,ul/pa = g |:4 (Pp,yﬁpa - Kufpa) gaﬂv + 5 (Puuﬂpa - K,ulépa) Raﬁ + iR(NPVU)
S = 7\ 2
1 1 - 1 1 VadVsp 1_ (Vo)
ap ap ap ap B
+(8,Cpl/pa_4pu1/pa> gaﬁR:|+ (2P,ul/pa_4lc,u1/pa> ( Q_52 _Zgaﬁ &2 +
1

Vod [ (1 sl .
+ 2§ g ((2ICZL1;}pJ - Plf;m) g%UgOé,B + iK:HVPU + 4YMO;’/6;‘7> VB+

1/ s\ Ve V2
3 (Pi = Kile) 9o (2(¢2) sy )*

) 350~ X3, @“Wﬂﬂ

2
+ (Pt = Kibe — (K800 — 3P

nvpo uvpo nvpo uvpo

Yiiho = (9200900 + 50990 + 5295900 + 5095900) — (95950 + 959700 ) +

L o
+5 (gﬁgﬁgw + G090 G0 + G2T0Gup + 9?95%:) -2 (gfjgfgpa + gﬁgﬁgpa> :

The operators that appear in the gauge fixed action read
[ —— / d"z+/|g] [kﬂ"ﬁfwgw + ¢ (fﬁf) kM 4 ¢F¢] (B.4)
v

with

N 1 1 _ 1
_ af af = 2 af af
H;Lupa - 5 |:4 (P/Lypo - QIC[LV[)O'> gaﬁv + 5 (P/LV[)(T - IC/}.l/pd) Roﬁ +

= - — 2
1 1 1 /1 1 VadVso 1 (Vo)
ap aB ap af B
+(8’CHVPU_4PHVPU> gaﬁR:| + (QPNVPU_4ICHVPU> <¢2 _Zgaﬁ 52 +

e 1 w w s 1 1 o N
+ 25 (E ((21631/,00' - Plupo’) Gywg g + ilcluupo' + 4Y.U'VBPU> V6+
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2 Y 7 VAR v2PS
V€ as VadVsd | €1, s yo (o (VE) V4
+ TE;LngT + 5 5 (P;pra - ,C,ugpa) Yap (2 q_52 - 7 +
VadVs0 ws Vad
P Kl 9P 0 X3) Vo0 | Ty Ve,
(ITF) = €[~ 2R 97 +
I\ (Vb Vb — Vi) o
s (o) (o -0 55 ) 9
Vubys Vb o T8\
—2 L2658+ _652W_)V+
5( 6 R G
o - - - — -2 -
VuoViep  V,V,0 (Vo)™ Vig_
+2§ (2 Még - N(E -2 <17)2 gm/+79uu +
_ - 2 _
1 Vuvl/¢ _ VM¢VV¢ (V¢) = L%
+2<2 s e e
P <2§—;> V24 R
where we have introduced
(6% 1 (0% (6% (0% (0% (6%
g =5 (g,wap 08 + 90208 + Gpob20L + Gpr620L, — GunGpod ,6) _
1 (0% (0% (0% (0%
= 5 (9000202 + 90050} + 0up020% + 9,036 )
The matrix NV g g reads
N2 NP
ok 9
where
B8 _ £ af o o3 af _aﬁg
Nkk - Z (Y,prcr - Ypa,ul/ - VE,ulzpo' + 7Epa,u1/> (5
B
N¢¢> =0
1/1 A Y 1 1\ _ VP
Nﬁz—NB:— Z_9 K 5B VESBY 2[4 - = y———
_ _ =57
_ 0 (Vubspy Vebgs o VO
2 ¢ o " ¢

where we had to integrate by parts half of the symmetric part in order to cancel it. This
will leave some “residues” that will be introduced into the potential matrix M4p, which

Map = (Mkk Mk¢> (B.6)

reads
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where the different elements are

(n—2) _ 1 1.
My = 27— (ngprf - ’Cgfw) apt+ ZgﬁfpvgaﬂR + ER(#PVU) -

8(n—1)

729’%" (W 739“5 (Z)ﬁ)Q >+ 12?71_2)1) { (Pitpo=Kiivpa) G (2 (Z?Q - ?) +
+ w:;yg& (P, — K8 ) + (3P — K19 0) G108 — X000 }_

. 8((1;—_ 21)) 2 (VZ¢> [gw,ﬂ,gmgaﬁ + K+ 5 (Y, + Yp‘ffiy)] ;

L€ > (Bl + Ef) <Wﬁ (v§¢> Qvawm)

L¢vu¢ ? ? VvV Qgﬁﬁ({ﬁ B

l pe o = 29w Bg{)? + Guv 3 +
V¢ V.6 VeaVPE | VeVER\ 1 /1 e
ng ¢ u(;; ¢ + G ﬁ(gﬁ ¢ G ﬂ(;5 ¢) _ ( )v# ( u(b) -

1 1 VALY - [V - (Vo
-5 (16-5) 295 (552) - 5 [3907 (52) -9 (29)]
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