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1 Introduction

Whenever one computes a physical quantity and the result enjoys certain mathematical

beauty a natural question arises whether this mathematics has a deeper physical meaning.

In recent years several beautiful physical and mathematical results have been obtained

while studying four dimensionalN ≥ 1 supersymmetric field theories and three dimensional

N ≥ 2 theories. In particular a great amount of information about the partition functions

of such theories has been collected.

Let us give an example central to this note: the supersymmetric partition functions

of theories of class S [1, 2] in 4d. Theories of this class are obtained by compactifying 6d

(2, 0) theory on a punctured Riemann surface. The supersymmetric partition functions on

S
3 × S

1 [3–5], and more generally on S
3/Zr × S

1 [6, 7], of class S theories of AN−1 type

corresponding to Riemann surface Cg,s of genus g and having s punctures has a very robust

and mathematically interesting structure.1 It can be written in the following form,

I =
∑

λ

C2g−2
λ

s∏

i=1

ψ̂λ(ai) . (1.1)

Here ai are holonomies around non trivial cycles of the geometry for the global symmetries

of the theory associated to the punctures of the Riemann surface. The parameter λ runs

over the finite dimensional irreps of AN−1 and ψ̂λ(a) are orthogonal eigenfunctions of

certain difference operators. This form of the index is not a result of a direct computation

starting from a Lagrangian: i.e. it is not clear how to directly obtain this expression by

1For a generalization of this to type D see [8, 9], and for discussion of E type case see [10].

– 1 –



J
H
E
P
1
0
(
2
0
1
4
)
0
9
9

localizing any path integral. In fact, the main strength of this expression is that it equally

applies to theories of class S with and without known description in terms of a Lagrangian.

One thus might wonder what is the physical problem which directly gives us (1.1) as

its answer, and what is the physical meaning of the ingredients of this equation. Often

when we have different ways to evaluate physical observables this is due to having different

physical descriptions of the same system: a duality. In this context, on general grounds [11],

one expects that the expression (1.1) is a result of a computation of a correlator in two-

dimensional topological quantum field theory. However, although we can formally specify

such a theory, so far it has not been formulated using a 2d Lagrangian.

Interestingly, these question become much more straightforward when the problem is

reduced down to 3d. The 3d N = 4 theories one obtains by dimensional reduction enjoy a

mirror dual description in 3d [12]. Although we start in 4d with conformal theories, the 3d

models one obtains are not conformal and flow to an interacting fixed point in the IR. The

mirror description gives an alternative UV starting point for the flow. Moreover, although

majority of the class S theories do not have any known Lagrangian descriptions, all the

mirror duals are given in terms of usual Lagrangians. In the 3d wonderland thus many

things which were either impossible or hard to imagine in 4d become extremely tractable.

The purpose of this note is to review some of the structure of theories of class S:

structure which becomes more transparent in 3d. We will take the reader on a journey

starting with N = 2 theories in 4d, going down to 3d theories with N = 4 supersymme-

try, and then back to 4d again. On the way we will touch upon several exciting recent

developments and make certain observations. By making this journey we hope to clarify

some of the tricky points in this story and underscore some of the salient features and

interconnections between different observations.

The plan of the paper is as follows. We start in section 2 with a very brief review

of theories of class S in 4d. Then in section 3 we make the transition to 3d. We discuss

3d partition functions making full use of N = 4 supersymmetry and in particular study

some of the interesting limits these partition functions possess. In section 4 we discuss

aspects of dimensional reduction of theories of class S. Finally in section 4 we make some

speculative remarks on how one might go about to understand the 4d problem by knowing

the 3d answers.

2 N = 2 class S theories in 4d

Before plunging into the 3d wonderland let us briefly review the world of 4d theories of

class S and their partition functions. One constructs class S theories by taking the 6d (2, 0)

theory and considering its twisted compactification on a punctured Riemann surface C such

that the resulting 4d theory, TC , has N = 2 superconformal symmetry. At the punctures

of the Riemann surface one has to specify boundary conditions which in 4d translate to a

choice of matter content and in particular to a choice of the global symmetry group. The

(2, 0) theory has an ADE classification. In this note we will consider theories of type An

and for simplicity we will usually take n = 1: however, all of our discussion applies also for

higher rank cases.
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Some of the theories of class S are free, some are continuously connected to free the-

ories by exactly marginal couplings, but most of them are strongly interacting SCFTs.

Performing computations for such strongly-coupled theories a priori is an extremely hard

task. However, certain supersymmetric 4d observables can be shown to be exactly equiva-

lent to computations in lower dimensional theories, which in general are under somewhat

better control. An example of such an observable is the S
4 partition function which is

related to Liouville/Toda theory [13].

Another set of observables which can be exactly computed are supersymmetric par-

tition functions on S
3/Zr × S

1: i.e. supersymmetric indices on lens spaces. It can be

argued [5, 7, 14] that the partition functions on S
3/Zr × S

1 of the theory TC deformed by

certain surface defects can be obtained by acting with a difference operator on the partition

function without the defect. This surface defect spans the temporal S1 and sits on one of

the equators of S3 (see section 3 for more details). The partition functions of theories of

class S then are expected to be naturally expressible in terms of eigenfunctions of these

operators, ψ̂λ(z), as in equation (1.1). One way to argue for this is by studying analytical

properties of the partition functions. The arguments of [5] lead to the conclusion that

residues at certain poles of the partition function of a theory obtained from TC by coupling

to it a bi-fundamental hypermultiplet give the partition function in presence of a surface

defect. Computing such a residue is equivalent to an action of a difference operator.

Mathematically these statements translate for ψ̂λ(z) to the following,

Sz∗(z) · ψ̂λ(z) = Eλ
z∗ ψ̂λ(z) . (2.1)

The difference operators are labeled by a pole z∗ in flavor fugacity which also labels a

certain choice of the surface defect. The difference operators Sz∗(z) for S
3 × S

1 are given

by polynomials of (properly conjugated) Ruijsenaars-Scnheider (RS) Hamiltonians [5].2

For S3/Zr × S
1 these are certain matrix valued generalizations of the latter [7]. Moreover,

since one obtains these difference operators by studying residues of the partition functions

the equality (1.1) implies that

Resz→z∗ ψ̂λ(z) = Eλ
z∗ . (2.2)

Note that here we have to be very careful with all the normalizations for the equations to

be consistent.

Let us give two examples of difference operators introducing surface defects which will

be relevant for this paper. First, the basic operator introducing a surface defect in S
3 × S

1

computation (for A1 theories) spanning one of the equators of S3 and the S1 is given by [5]

S
z∗=t

1
2 q

1
2
· I(b) ∼

θ
(

t
q b

−2; p
)

θ(b2; p)
I
(
q

1
2 b
)
+
θ
(

t
q b

2; p
)

θ(b−2; p)
I
(
q−

1
2 b
)
. (2.3)

2Integrable models of RS type are ubiquitous when studying N = 2 supersymmetric field theories, see

e.g. [15–18].
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The meaning of the parameters appearing in this formula will be explained in the next

section. Here we used the theta-function

θ(z; q) =
∞∏

ℓ=0

(
1− z qℓ

)(
1− z−1qℓ+1

)
.

The operator introducing a surface defect on the other equator of S3 is obtained by ex-

changing p and q in the above formula. The joint eigenfunctions of these operators are

closely related to elliptic generalizations of Macdonald polynomials.

The second example is an operator introducing a pair of surface defects, one on each

equator of S3, of the lens space partition function. This operator is given by [7]

S
(r)

z∗=t
1
2 (pq)

1
2
· I(b,m) ∼

1

θ(q2mb−2; qr)θ(p2mb2; pr)
× (2.4)

(
θ

(
q2m

t

pq
b−2; qr

)
θ
(
p2m

pq

t
b2; pr

)
I
(
(pq)

1
2 b,m

)
+

+ θ
(
q2m

pq

t
b−2; qr

)
θ

(
p2m

t

pq
b2; pr

)
I
(
(pq)−

1
2 b,m

)
+

+
(pq
t

) 2+4m−r
r

θ
(
q2m

pq

t
b−2; qr

)
θ
(
p2m

pq

t
b2; pr

)
I
(
(p/q)−

1
2 b,m+ 1

)
+

+
(pq
t

) 2−4m+r
r

θ

(
q2m

t

pq
b−2; qr

)
θ

(
p2m

t

pq
b2; pr

)
I
(
(p/q)

1
2 b,m− 1

))
.

For r = 1 this operator is proportional to S
z∗=t

1
2 q

1
2
S

z∗=t
1
2 p

1
2
. However, for r > 1 (2.4)

is the basic operator surviving the Zr projection. It is hard to find the explicit spectrum

of eigenfunctions of these operators. However, in what follows we will encounter the 3d

versions of (2.3) and of (2.4) and will discuss a very explicit and physical set of their

eigenfunctions.

3 Brief review of N = 4 3d generalities

Let us first recall some of the basic properties of the three dimensional gauge theories with

N = 4 supersymmetry. The fields and UV actions of these theories can be obtained by

dimensionally reducing those of N = 1 6d gauge theories or N = 2 4d gauge theories.

Recall the 6d theory has an SU(2) R-symmetry - upon dimensional reduction, one obtains

an additional SU(2) factor in the R-symmetry group from rotations in the compactified

dimensions. The full R-symmetry group in 3d is thus SU(2)H ×SU(2)C . The supercharges

are Majorana spinors in Minkowski signature, and come in a representation (2, 2) of the

R-symmetry.

The fields are organized into vector multiplets and hypermultiplets, along with their

twisted counterparts. Let us write the field content of these multiplets in a notation where

the R-symmetry transformation properties are explicit by introducing indices A,B, . . . =

1, 2 for SU(2)C and M,N, . . . for SU(2)H . For the vector multiplet, the dynamical fields

– 4 –
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are in the adjoint representation of the gauge group, and can be written as:3

gauge field: Aµ, real gaugino: ΛA,M , real scalars: Φ[AB] . (3.1)

Here the bracket denotes symmetrization, so that Φ[AB] is an SU(2)C triplet of scalars

in the vector multiplet. The transformations for the vector multiplet can be closed off-

shell if we introduce real auxiliary scalars D[MN ], transforming in a triplet of SU(2)H . A

supersymmetric Yang-Mills action takes the form

Sg =

∫
d3x

1

g2
Tr (FµνF

µν+ (3.2)

+DµΦ[AB]D
µΦ[AB] + iΛA,MD/ Λ

A,M + ǫMNΛA,MΛB,NΦ[AB] +D[MN ]D
[MN ]

)
.

Note that in 3d one can also include a Chern-Simons kinetic term for the gauge field. This

is, however, incompatible with the N = 4 supersymmetry transformations preserving the

action above. There are also special examples with enhanced supersymmetry, such as the

ABJM theory, where one considers Chern-Simons actions with no Yang-Mills term. We

will not consider such theories in this paper.

The supersymmetry transformations of the hypermultiplet cannot be closed off-shell

for the full N = 4 superalgebra. For now we will be content with working with the

on-shell fields:

complex scalar: QM complex fermion: ΨA . (3.3)

These can be taken in a representation R of the gauge group and coupled to a vector

multiplet, with the following action:

Sm =

∫
d3x
(
DµQ

M †
DµQM + iΨA†

D/ ΨA+ (3.4)

+QM †
Φ[AB]Φ[AB]QM +ΨA†

Φ[AB]Ψ
B +ΨA†

ΛA,MQ
M

+QM †
ΛA,MΨA +QM †

D[MN ]Q
N
)
.

In addition to the field content above, there are twisted vector and hyper multi-

plets [19, 20], which are as above, except with their SU(2)C and SU(2)H transformation

properties exchanged. Then we can couple twisted hypermultiplets to twisted vector multi-

plets, although not to ordinary vector multiplets. We can couple a twisted vector multiplet

to an ordinary vector multiplet, provided one of them is abelian, by a BF term (assuming

the twisted vector multiplet is abelian, and writing its fields with a prime):

SBF =

∫
d3xTr

(
A′ ∧ F +Φ[AB]D

′[AB]
+D[MN ]Φ

′[MN ]
+ ΛA,MΛ′M,A

)
, (3.5)

where F is the field strength for the ordinary vector multiplet.

The moduli spaces of these theories can roughly be split into a Higgs branch, where

the hypermultiplet scalars get VEVs, and a Coulomb branch, where the scalars in the

3Here the fields are real in the sense that they satisfies reality conditions ΛA,M †
= ǫABǫMNΛB,N and

Φ[AB]† = ǫACǫBDΦ[BD].
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vector multiplet get VEVs. These are both hyper-Kahler manifolds, and the former does

not receive any quantum corrections, so can be computed exactly by studying the D-

term equations in the UV theory. From the transformation properties of the corresponding

scalars, we can see the Higgs branch is acted on by the SU(2)H symmetry and the Coulomb

branch by the SU(2)C , which explains their names. There may also be mixed branches

where both kinds of scalars get VEVs.

Finally, we can also add mass and Fayet-Iliopoulos (FI) terms to the action. The mass

(FI) parameters live in background vector (twisted vector) multiplets, and are associated to

global symmetry groups. First consider mass terms. These are associated to a global flavor

symmetry group GH , which acts on the Higgs branch scalars of the theory [21]. The mass

term can be obtained by giving an expectation value to the scalar Φ[AB] in a background

vector multiplet coupled to this symmetry. Thus they come in an SU(2)C triplet, M[AB],

and enter the action as terms:

Smass =

∫
d3x

(
QM †

M [AB]M[AB]QM +ΨA†
M[AB]Ψ

B
)
. (3.6)

InN=2 notation, theM [AB] decompose as a real mass and a complex (superpotential) mass.

The FI term, on the other hand, can be thought of as living in a background twisted vec-

tor multiplet, and is associated to a U(1) factor of the gauge group. It couples via a BF term:

SFI =

∫
d3xTr

(
D[MN ]ζ

[MN ]
)
. (3.7)

These are also associated to a global symmetry group, which we call GC , whose maximal

torus is the set of U(1)J topological symmetries, with current Ji = ⋆TrFi, which appear

for each U(1) factor in the gauge group. This symmetry is sometimes enhanced in the IR

to a larger, nonabelian symmetry group. Then the FI terms arise by coupling the twisted

vector multiplet to this symmetry group and turning on a VEV for the scalar, as for the

mass terms above.

Three dimensional mirror symmetry [22, 23] is a class of dualities between three di-

mensional N = 4 theories, which is characterized by the fact that the two R-symmetry

factors, SU(2)H and SU(2)C , are exchanged. We will, however, use a notation where the

same R-symmetry group acts on both theories, so that, if ordinary vector and hypermul-

tiplets appear on one side of the duality, then twisted vector and hypermultiplets appear

on the other. As a consequence, the Higgs branch of one theory maps to the Coulomb

branch of the other, and mass and FI terms are exchanged. The simplest example is the

duality between SQED with a single charge 1 hypermultiplet on one side and a free twisted

hypermultiplet on the other. We will consider several examples of mirror symmetries, and

see explicitly in index computations how the two SU(2) R-symmetry factors are exchanged.

3.1 N = 4 3d partition functions

We would like to study 3d partition functions of N = 4 theories. In particular we are

interested in properties which are evident when exploring the extended supersymmetry of

these theories.

– 6 –
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We will be mainly interested in 3d N = 4 theories obtained by dimensional reduction

from 4d N = 2 theories (see, eg [24]). We will thus define 3d N = 4 supersymmetric

partition functions by dimensionally reducing the 4d N = 2 partition functions.4 In this

note we will be in particular interested in partition functions on S
3 and S

2 × S
1, both of

which can be understood from reducing partition functions on S
3/Zr×S

1 [29]. Let us start

then by defining the latter 4d partition function,

I = TrS3/Zr
(−1)F pj2+j1−r̂ qj2−j1−r̂ tr̂+R e−β (E−2j2−2R+r̂) . (3.8)

Here j2 and j1 are the Cartans of SU(2)j1 × SU(2)j2 isometry of S3; the charges r̂ and

R are the Cartans of the R-symmetry SU(2)R × U(1)r̂; and E is the energy in the radial

quantization. The space S
3/Zr is defined as follows. We parameterize the S

3 as

(z1, z2), |z1|
2 + |z2|

2 = 1 . (3.9)

So the two equators are z1=0 and z2=0. The Hopf fibration is given by the map of S3 to S2,

(z1, z2) →
(
2z1z2, |z1|

2 − |z2|
2
)
. (3.10)

The Hopf fiber is parameterized by phase λ

(
λz1, λ

−1z2
)
, |λ| = 1 . (3.11)

Then S
3/Zr is defined by the following identifications

(z1, z2) ∼

(
exp

(
2πi

r

)
z1, exp

(
−
2πi

r

)
z2

)
. (3.12)

The supersymmetric configurations of a U(1) gauge field are labeled by a holonomy z

around the S
1 cycle and e2πim/r around the (non-contractible) image of the Hopf fiber. A

hypermultiplet in this background has partition function:

I
(4d)
H (z,m; p, q, t) =

(
(pq)

1
2 t
)m(r−m)/r

Γe

(
tqr∓mz±1; qr, pq

)
Γe

(
tp±mz±1; pr, pq

)
, (3.13)

where

Γe(z; p, q) =

∞∏

i,j=0

1− pi+1qj+1z−1

1− piqjz
, (3.14)

is the elliptic gamma function. It will be convenient to redefine the fugacity z as z →

z(p/q)−m/2, so that the contribution of the hyper becomes:5

IH(z,m; p, q, t) → (3.15)
(
(pq)

1
2 t
)m(r−m)/r

Γe

(
t(pq)(r∓m)/2(p/q)r/2z±1; qr, pq

)
Γe

(
t(pq)±m/2z±1; pr, pq

)
.

4These partition functions can, of course, also be defined intrinsically in three dimensions. When we

consider partition functions of N = 4 3d theories which do not reduce from four dimensional partition

function, for example, those whose 4d lift would be non-conformal, we should use the intrinsic 3d definitions

(see, eg, [25–28]).
5This redefinition amounts to measuring the momentum (j1,2) of the fields with the gauge-covariant

derivatives, D1,2, rather than the non-covariant ∂1,2.
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Before moving on to the examples in 3d, let us make a general comment about partition

functions of N = 4 theories. When we perform localization of these theories, we must

choose a privileged N = 2 subalgebra and corresponding U(1) R-charge. For example,

we will pick an N = 2 R-charge, which we take as a JH
3 + JC

3 , where J i
3 denotes the

Cartan generators of the two SU(2) N = 4 R-symmetry factors. The other combination,

JH
3 − JC

3 , which we will call Jt, appears as a flavor symmetry from the N = 2 point of

view. Note that, under mirror symmetry, where the two SU(2) factors are exchanged, Jt
will be exchanged with −Jt, and we will indeed observe this explicitly in examples below.

From the point of view of this subalgebra, the component of M[AB] which is fixed by the

Cartan of SU(2)C looks like a real mass parameter from the N = 2 point of view, while the

others look like superpotential masses, and break this choice of U(1) R-symmetry. We will

consider turning on only the former, real mass parameters. Similarly, we will only turn on

a single component of the FI term ζ[MN ], the N = 2 FI term. Once again, such parameters

will generically be exchanged by mirror symmetry. We may also turn on a real mass for the

Jt symmetry defined above, although this will break us down to N = 2 supersymmetry.

On the curved manifolds which we will place these theories on, these statements about

real masses map to analogous statements about which background BPS vector multiplet

configurations we can turn on, whose VEVs will give the parameters on which the partition

functions depend.

The S
2 × S

1 partition function. One obtains the 3d index by sending the parameter

r to infinity. The charge j1 counts the momentum on the Hopf fiber which shrinks to zero

size in this limit. We set

p→ q1/2y, q → q1/2y−1, t→ t q1/2 , (3.16)

and make the following map between the 4d and 3d charges,

R = RH , r̂ = −RC . (3.17)

Where SO(4) ∼ SU(2)H × SU(2)C is the N = 4 R-symmetry in 3d. The 3d index thus

obtained takes the form

I = TrS2(−1)F qj2+
1
2
(RH+RC) tRH−RC e−2β(Ẽ−RH−RC−j2) . (3.18)

Note that with the redefinition which gives (3.15), the fugacity y =
√
p/q decouples in

the r → ∞ limit from the index of the hypermultiplet, and one can check that it also

does so for the indices of the vector fields: thus the 3d expressions do not depend on y.

This is the N = 4 index we will compute, with possible further refinement with fugacities

and background magnetic fluxes for flavor symmetries. The 3d conformal dimension Ẽ is

related to the 4d one for states contributing to the index as

2Ẽ = E − r̂ . (3.19)

The index is independent of β and gets contributions only from states satisfying

Ẽ −RH −RC − j2 = 0. (3.20)

– 8 –
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Let us comment on the fugacity t. Since it couples to the difference Jt = JH
3 − JC

3 , we

see that, under mirror symmetry, where the two R-symmetries are exchanged, t will map

to t−1. This gives an indication as to whether a given duality is a mirror symmetry or not.

Let us mention useful examples of theN = 4 index. The index of a free hyper-multiplet

is given by6

Ihyp(z,m; t, q) =

(
q

1
2

t

) 1
2
|m| ∞∏

ℓ=0

1− t−
1
2 q

3
4
+ 1

2
|m|+ℓ z

1− t
1
2 q

1
4
+ 1

2
|m|+ℓ z

1− t−
1
2 q

3
4
+ 1

2
|m|+ℓ z−1

1− t
1
2 q

1
4
+ 1

2
|m|+ℓ z−1

, (3.21)

which can be written compactly using the q-Pochammer symbol, defined for |q| < 1 by

(z; q) =
∏∞

ℓ=0

(
1− zqℓ

)
(we will often suppress the arguments t, q),

Ihyp(z,m) =

(
q

1
2

t

) 1
2
|m|

(
t−

1
2 q

3
4
+ 1

2
|m|z±1; q

)

(
t
1
2 q

1
4
+ 1

2
|m| z±1; q

) . (3.22)

Here and below, we use the convention that when a function appears with multiple choices

of signs, the product is taken over all choices. The parameter z is a fugacity for U(1)z
symmetry under which the half-hypers have charges ±1. The discrete parameter m is the

GNO charge of a background monopole configuration of U(1)z. These can be thought of

as parameterizing the BPS configurations of a background vector multiplet which couples

to the U(1) global symmetry acting on the hyper.

When a U(N) flavor symmetry is gauged in an N = 4 theory, the index is computed

by the following matrix integral over holonomies zi in the unit circle, as well as a sum over

integer GNO charges mi,

I(aj , nj) =
∑

{mi}∈Z

w
∑

i
mi

1

|W{mi}|




(
t q

1

2 ; q
)

(
t−1 q

1

2 ; q
)




N (
q

1

2

t

)−
∑

i<j
|mi−mj |

× (3.23)

∮ N∏

i=1

zi
ndzi

2πizi

∏

i6=j

(
1− q

1

2
|mi−mj |zi/zj

)
(
t q

1

2
+|mi−mj |/2zi/zj ; q

)

(
t−1 q

1

2
+|mi−mj |/2zi/zj ; q

)Imatt(zi, mi; aj , nj) .

This includes the contribution of the N = 2 vector multiplet and the adjoint chiral mul-

tiplet. Here Imatt(zi, mi; aj , nj) denotes the contribution of the matter hypermultiplets of

the theory which may couple to the gauge field variables {zi,mi} as well as flavor symmetry

variables {aj , nj}. In addition, the parameters (w, n) represent the BPS configurations of a

twisted vector multiplet which couples to the U(1)J symmetry. The discrete group W{mi}

is the subgroup of the Weyl group of U(N) preserved in the presence of gauge configura-

tions with GNO charges {mi}. In the context where the index counts local operators in

flat space, these GNO charges label monopole operators, which may further be dressed by

the fields of the theory.

6Here we should mention that in presence of magnetic charges m what is meant by (−1)F depends on

the charges of the states, i.e. F → F+e·m where e is the “electric” charge of a state [30]. This fact is crucial

in obtaining correct indices transforming properly under dualities [31, 32]. However, in the particular cases

discussed in this paper this will not play any role: not to clatter notations the “naive” definition of F is

used which amounts to redefining the Cartan U(1) fugacities z → (−1)mz.
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We should also comment that, in order to probe the index of the SCFT one obtains in

the IR from such UV descriptions, as we would like to do, one must localize with respect to

the correct superconformal R-symmetry [28]. Typically for N = 4 theories, the nonabelian

structure of the R-symmetry group is sufficiently rigid that one can argue the same R-

symmetry group acts in the UV and IR. When this is the case, the partition function

computations in this section will apply to the IR theory. However, in [33] it was shown

that, for some theories, the so-call “bad” theories, this is not the case. For such theories one

in fact finds that the partition function computed as above, actually diverges. In this paper

we will restrict to theories which are “good” or “ugly,” in the sense of [33]. It is interesting

to note that, although a theory may be bad, it may have a dual which is not bad, and so

one can still probe its IR SCFT. We will in fact see examples of this in what follows.

The S
3
b partition function. The S

3
b, or squashed sphere, partition function can also

be obtained from the 4d index by taking a limit where the radius of the S
1 goes to

zero [34–36] (see also [31]). More precisely, we define 3d parameters γ, σ in terms of

the 4d parameters via:7

t = e
2πir1

(
γ+ i

2r3
(b+b−1)

)

, z = e2πir1σ, p = e2πbr1/r3 , q = e2πb
−1r1/r3 . (3.24)

We then take the limit of the 4d index where r1, which we identify with the radius of the

S
1, goes to zero.8 Here b is the squashing parameter and r3 the radius of the S

3
b. The

holonomies for global symmetries, e.g., z, descend to N = 2 real mass parameter, σ, in the

3d limit. In other words, we have picked a privileged N = 2 subalgebra and the real mass

parameters correspond to VEVs of the scalars in the N = 2 background vector multiplet,

while VEVs of other scalars in the N = 4 vector multiplet cannot be turned on without

further breaking the supersymmetry.

Carrying out this procedure for a free hypermultiplet, we find it contributes the fol-

lowing factor to the S
3
b partition function:

Zhyp(σ; γ, b) = Γh

(
1

2
ω +

1

2
γ ± σ;ω1, ω2

)
. (3.25)

Here we have defined ω1 = ib, ω2 = ib−1, and ω = 1
2(ω1 + ω2), and Γh(z;ω1, ω2) is the

hyperbolic Gamma function, given by (for Im(ω2/ω1) > 0):

Γh(z;ω1, ω2) = e
πi

2ω1ω2

(
(z−ω)2−

ω2
1+ω2

2
12

)
(
e

2πi
ω1

(ω2−z)
; e

2πiω2
ω1

)

(
e
− 2πi

ω2
z
; e

−
2πiω1
ω2

) . (3.26)

One gauges a U(N) symmetry in an N = 4 theory by performing the following integral:

Z(ma)=
1

N !
Γh(ω−γ)

N

∫
dNσe−2πiζ

∑
i σi

∏

i 6=j

Γh(ω−γ+σi−σj ;ω1, ω2)

Γh(σi−σj ;ω1, ω2)
Zmatt(σ;ma), (3.27)

7The funny shift in the definition of γ is analogous to the shift by q
1

2 of in the definition of t in (3.16),

and is made so that γ transforms simply under mirror symmetry, namely, as γ → −γ.
8We also should remove certain divergent prefactors which appear in the limit related to the gravitational

anomaly, as in [31].
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where σ = {σi}, taking values in the Cartan of U(N), is the background value of the scalar

in the N = 2 gauge multiplet, and ma parameterizes the scalars in background multiplets

coupled to flavor symmetries. Also ζ parameterizes the scalar in a background twisted

vector multiplet coupled to the U(1)J symmetry, i.e., it is an FI parameter. Here the

numerator is the contribution of the adjoint chiral multiplet, and the denominator is that

of the N = 2 gauge multiplet. The latter can be simplified using:

∏

i 6=j

1

Γh(σi − σj ;ω1, ω2)
=
∏

i<j

2 sin
π

ω1
(σi − σj)2 sin

π

ω2
(σj − σi)

=
∏

i<j

2 sinhπb(σi − σj)2 sinhπb
−1(σi − σj) . (3.28)

Holomorphic blocks. In [37, 38]9 it was shown that, for a wide class of N = 2 three

dimensional theories, both of the partition functions discussed above can be assembled from

the same basic ingredient, the holomorphic block. This can be thought of as a partition

function on D2×S
1, with D2 a two-dimensional disk. Gluing two copies of this space along

their boundary tori in two different ways, one recovers S3b and S
2×S

1, and, correspondingly,

taking two kinds of “fusions” of two sets of holomorphic blocks, one can recover the two

different partition functions. Let us briefly review how this works, focusing on theories

with N = 4 supersymmetry.

We will take the holomorphic block of a free hypermultiplet to be,

Bhyp(z; t, q) =

(
q

3
4 t−

1
2 z−1; q

)

(
q

1
4 t

1
2 z−1; q

) , (3.29)

where we have used the q-Pochammer symbol, defined for general q by,

(z; q) =

{∏∞
r=0 (1− zqr) , |q| < 1∏∞
r=0

(
1− zq−r−1

)−1
, |q| > 1 .

(3.30)

To recover the partition functions, we take the product of two blocks with modularly

transformed parameters. For example, for the S
3
b partition function, one finds10

e
πi

ω1ω2
m(γ−ω)

Zhyp(σ; γ, b) = Bhyp(z; t, q)Bhyp

(
z̃; t̃, q̃

)
, (3.31)

where we define11

z = e2πbz, t = −e2πbγ , q = e2πib
2
, (3.32)

and similarly for z̃, t̃, q̃, with b↔ b−1. One can check from (3.26) that this reproduces (3.25).

9See also [64] for a relevant discussion.
10More precisely, one finds the partition function produced by the blocks come with an additional back-

ground off-diagonal Chern-Simons term, which we have included as a prefactor on the l.h.s..
11Here we should specify that t = −e2πbγ should be interpreted as t = eπi+2πbγ , and similarly t̃ =

eπi+2πb−1γ , in order to fix branch cut ambiguities that will arise since t
1

2 appears in many expressions.
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Similarly, for the S
2 × S

1 index, we have:12

(
q

1
4 t−

1
2

)m
Ihyp(z,m; t; q) = Bhyp(z; t, q)Bhyp (z̄; t̄, q̄) , (3.33)

where we now define:

z = zq
m
2 , z̄ = z−1q

m
2 , t̄ = t−1, q̄ = q−1 . (3.34)

The block of the N = 4 adjoint chiral multiplet is given by:

BV (z, t, q) =
∏

α

(
q

1
2 tzα; q

)
. (3.35)

The free theories described above factorize into one pair of blocks, but, as was shown

in [38] and as we will see concretely in an example below, the process of gauging a symmetry

is more subtle than for the two partition functions described above, and for a gauge theory

one finds the partition functions are written as a sum over blocks, e.g., for a theory on S
2×S

1

with parameters {ai,mi} for global symmetries and corresponding block parameters ai:

Igauge theory({ai,mi}) =
r∑

α=1

Bα({ai})Bα({ãi}) (3.36)

where r is roughly the number of (fully gapped) vacua of the theory at generic values of

the mass parameters. We will study this in detail in what follows for the example of the

T [SU(2)] theory, i.e., SQED with two flavors.

3.2 Useful limits of the 3d partition functions

There are several interesting limits of the 3d partition functions which one can discuss.

In these limits some of the parameters are sent to special values resulting in the partition

functions simplifying tremendously.

Limits of the index. It is useful to define the following combinations of fugacities

x = q
1
2 t, x̃ = q

1
2 t−1 . (3.37)

In terms of these fugacities the index (3.18) can be written as

I(x, x̃) = Tr(−1)F xẼ−RC x̃Ẽ−RH e−2β(Ẽ−RH−RC−j2) . (3.38)

Under mirror symmetry x and x̃ are exchanged. Note that

Ẽ ≥ RH,C . (3.39)

This follows from unitarity: the eight supercharges of N = 4 supersymmetry anticommute

with their superconformal counterparts to,

Ẽ ±RH ±RC ± j2 ≥ 0 . (3.40)

The inequality (3.39) makes it sensible to consider the limits of the index we are about

to discuss.
12Here, and throughout this paper, we do not consider turning on a flux for the symmetry with fugacity t:

this would be natural from the N = 2 perspective, since then RH − RC is just a global flavor symmetry,

but less natural from the N = 4 perspective.
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We define Coulomb/Higgs limits as follows

Higgs : q → 0, t → ∞ (x̃→ 0), t q
1
2 = x fixed , (3.41)

Coulomb : q, t → 0 (x→ 0),
q

1
2

t
= x̃ fixed .

The index we are computing is

IC(x̃) = TrHC
(−1)F x̃Ẽ−RH , IH(x) = TrHH

(−1)F xẼ−RC . (3.42)

Here HC,H is the subspace of the Hilbert space on S
3 with Ẽ = RC,H respectively. The

states which contribute to these limits of the index are annihilated by an additional super-

charge. In the Coulomb limit this supercharge anticommutes with its hermitian conjugate

to Ẽ+RH −RC + j2, and in the Higgs limit the extra supercharge anticommutes with the

conjugate to Ẽ −RH +RC + j2.

Note that since mirror symmetry exchanges R-symmetries acting on the Higgs and the

Coulomb branches, RH with RC , and so maps t → t−1, the Higgs (Coulomb) limit of the

index of a given theory maps to Coulomb (Higgs) limit of the mirror dual. The index of a

hypermultiplet becomes in these limits,

Higgs : IH
hyp(z,m;x) = δm,0

1

1− x
1
2 z±1

, (3.43)

Coulomb : IC
hyp(z,m; x̃) = x̃

1
2
|m| .

In particular, the former depends non-trivially only on the fugacity z, and the latter only

on the flux m.

When a symmetry is gauged we obtain in the Higgs limit (suppressing other flavor

fugacities)

IH(x) =
1

N !
(1− x)N

∮ N∏

i=1

dzi
2πizi

∏

i 6=j

(1− zi/zj)(1− xzi/zj) I
H
matt({zi};x) . (3.44)

In the Coulomb limit we get

IC(x̃) =
∑

{mi}∈Z

1

|W{mi}|

(
1

1− x̃

)N

x̃−
∑

i,j |mi−mj | × (3.45)

∮ N∏

i=1

dzi
2πizi

∏

i 6=j

(
1− zi/zj
1− x̃zi/zj

)δmi,mj

IC
matt({mi}; x̃) .

Note that only the fugacity w for the U(1)J symmetry appears in the Coulomb limit,

and only the flux n in the Higgs limit, which is the opposite behavior as for the flavor

symmetry parameters. This makes sense, since the former live in twisted vector multiplets

and the latter in ordinary vector multiplets, and these two limits are exchanged by mirror

symmetry.
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In the Coulomb index the contribution of the matter does not depend on the integration

variables, and so the same integral appears for any choice of matter content. We can

evaluate this integral using13

(
1

1−x̃

)M

M !

∮ M∏

i=1

dzi
2πizi

∏

i 6=j

(
1− zi/zj
1− x̃zi/zj

)
=

M−1∏

j=0

1

1− x̃j+1
. (3.46)

From here one can immediately see that the Higgs/Coulomb limits give Hilbert series of the

Higgs/Coulomb branch respectively (see [40–42] for a recent discussion of the 3d Hilbert

series of Higgs/Coulomb branch). We will discuss some examples in what follows.

Next we define two limits of the index which use the symmetries admitting certain

relevant deformations,

MassH : t → q
1
2 (x̃ = 1) , (3.47)

MassC : t → q−
1
2 (x = 1) . (3.48)

These two limits are again interchanged by mirror symmetry. The index we are computing is

IMassC (x̃) = Tr (−1)F x̃Ẽ−RH , IMassH (x) = Tr (−1)F xẼ−RC . (3.49)

Note the traces here are over the whole Hilbert space on S
2 unlike in (3.42). For the index

of free hyper-multiplet these limits give

MassH : Ihyp(z,m) = 1, (3.50)

MassC : Ihyp(z,m) =
x̃

1
2
|m|

1− x̃
1
2
|m|z±1

. (3.51)

The MassH limit is consistent with giving all the hypermultiplets a complex mass. Note

that for the gauge theories these two limits are a bit involved to compute since the limit

does not obviously commute with the infinite sum over the monopole sectors.

Finally there is the limit t = 1, or x = x̃, which is consistent with giving a mass to the

adjoint chiral multiplet in the N = 4 vector multiplet. This limit is taken to itself under

mirror symmetry.

The partition function. The only special limit of the S
3
b partition function we will

discuss is the dimensional reduction of the 4d Schur index, q = t (or p = t) [4]. This

condition descends in the S
3
b partition to the limit γ = i

2

(
b−1 − b

) (
or γ = i

2

(
b− b−1

))
.

We can see the simplification in this limit most easily at the level of the holomorphic blocks,

namely, we recall from (3.31):

Zhyp(σ; γ, b)=e
πim(γ−ω)Bhyp(z; t, q)Bhyp

(
z̃; t̃, q̃

)
=eπim(γ−ω)

(
q

3

4 t−
1

2 z−1; q
)

(
q

1

4 t
1

2 z−1; q
)

(
q̃

3

4 t̃−
1

2 z̃−1; q̃
)

(
q̃

1

4 t̃
1

2 z̃−1; q̃
) . (3.52)

13Mathematically this is the Hall-Littlewood version of the Macdonald central term identity [39].
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In terms of the block variables the Schur limit is t = q
1
2 , t̃ = q̃−

1
2 , and one finds the blocks

simplify as: (
q

3
4 t−

1
2 z−1; q

)

(
q

1
4 t

1
2 z−1; q

) →
1

1 + z−1
,

(
q̃

3
4 t̃−

1
2 z̃−1; q̃

)

(
q̃

1
4 t̃

1
2 z̃−1; q̃

) → 1 . (3.53)

So that the partition function of the hyper becomes

Zhyp

(
σ; γ =

i

2

(
b−1 − b

)
, b

)
= e−πmb 1

1 + z−1
=

1

2 coshπbσ
. (3.54)

In the other Schur limit (descending from p = t), the behavior of the two blocks is reversed,

and one finds

Zhyp

(
σ; γ =

i

2

(
b− b−1

)
, b

)
=

1

2 coshπb−1σ
. (3.55)

We can similarly work out the contribution of the N = 4 vector multiplet in this limit,

and one finds that, e.g., for a U(N) gauge theory:14

Z

(
ma; γ =

i

2

(
b−1−b

))
=
bN

N !

∫
dNσe−2πiζ

∑
i λi

∏

i 6=j

2 sinhπb(σi−σj)Zmatt(σj ,ma). (3.56)

And similarly with b → b−1 for the other Schur limit. Note that the dependence of the

partition function on b is trivial in this limit, as it can be absorbed into a rescaling of σ

and the real mass parameters by b−1 and of the FI parameters by b. This is analogous to a

the fact that, in the 4d Schur limit, eg. q = t, the S
3× S

1 index becomes independent of p.

Note that mirror symmetry takes γ → −γ, and so exchanges the two Schur limits.

This is compatible with the way we rescale mass and FI parameters in this limit.

3.3 Examples

(I) — U(1) SQED/free hypermultiplet mirror symmetry. Let us discuss some of

these partition functions and limits in some simple examples, starting with N = 4 U(1)

SYM with one charge 1 hypermultiplet, which we denote by SQED1. This exhibits the

most basic example of N = 4 mirror symmetry, being dual to a free (twisted) hypermulti-

plet. The index of SQED is

ISQED1
(w, n; t, q) =

(
tq

1
2 ; q
)

(
t−1q

1
2 ; q
)
∑

m̃∈Z

wm̃

(
q

1
2

t

) 1
2
|m̃| ∮

dz

2πiz
zn

(
t−

1
2 q

3
4
+ 1

2
|m̃|z±1; q

)

(
t
1
2 q

1
4
+ 1

2
|m̃|z±1; q

) . (3.57)

The index of a free twisted hypermultiplet is

Ihypt(w, n; t, q) =
(
q

1
2 t
) 1

2
|n|)

(
t
1
2 q

3
4
+ 1

2
|n|w±1; q

)

(
t−

1
2 q

1
4
+ 1

2
|n|w±1; q

) . (3.58)

14Note the difference from (3.28) — this comes about because the adjoint chiral contributes as
bN sinhπb(σi−σj)

sinhπb−1(σi−σj)
in this limit.
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Note that this differs from the index of an ordinary hypermultiplet by t → t−1. These

expressions can be shown to be equal [43]. We can see this explicitly in the Higgs/Coulomb

limit. For example, in the Higgs limit, we find:

IH
SQED1

(w, n;x) = (1− x)

∮
dz

2πiz

zn

1− x
1
2 z±1

= x
1
2
|n| , (3.59)

which agrees with the Coulomb index of a free twisted hypermultiplet.

We can also study the partition function of this theory. This is given by:

ZSQED1
(ζ; γ, b) = Γh(ω − γ)

∫
dσe−2πiζσΓh

(ω
2
+
γ

2
± σ

)
. (3.60)

This is known [44] to be equal to the partition function of a free twisted hypermultiplet

Zhypt(ζ; γ, b) = Γh

(
ω −

γ

2
± ζ
)
. (3.61)

This can be seen explicitly in the Schur limit, γ = ib, where these become

ZSQED1
(ζ) →

∫
dσ

e−2πiζσ

2 coshπbσ
, (3.62)

Zhypt(ζ) →
1

2 coshπb−1ζ
, (3.63)

and the equality of these follows from the fact 1/ cosh is fixed under the Fourier transform.

In fact, since we have seen above that the b-dependence can be removed by suitably rescaling

parameters, the partition function in this limit essentially reduces to that of N = 4 theories

on the round sphere, where many such checks have been performed in the literature.

(II) — N = 4 Seiberg-like duality. As an example of a non-mirror symmetry between

N = 4 theories, we consider the duality discussed in [33] between a U(N) theory with

2N − 1 fundamental hypermultiplets (an “ugly” theory in their notation) and U(N − 1)

with 2N − 1 fundamental hypermultiplets (a “good” theory) plus a decoupled free twisted

hypermultiplet. In the case N = 1, this reduces to the duality above, and can be thought

of as a mirror symmetry, but for general N , ordinary (as opposed to twisted) vector- and

hypermultiplets appear in both the U(N) and U(N − 1) gauge theories, so this is not a

mirror symmetry. We can see this explicitly by studying the index.

The index of a general U(Nc) theory with Nf fundamental hypermultiplets is given by:

IU(Nc)Nf
(w, n;µa, m̂a) =




(
t q

1
2 ; q
)

(
t−1 q

1
2 ; q
)




Nc

∑

{mi}

1

|W{mi}|
w

∑
i mi

(
q

1
2

t

)−
∑

i<j |mi−mj |

∮ Nc∏

i=1

zi
ndzi

2πizi

∏

i 6=j

(
1−q

1
2
|mi−mj |zi/zj

)
(
t q

1
2
+|mi−mj |/2zi/zj ; q

)

(
t−1 q

1
2
+|mi−mj |/2zi/zj ; q

)×

Nc∏

i=1

Nf∏

a=1

Ihyp(ziµa,mi + m̂a) . (3.64)
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Then the statement of the duality is that:15

IU(N)2N−1
(w, n;µa, m̂a) = Ihypt(w, n)IU(N−1)2N−1

(
w, n;µa

−1,−m̂a

)
. (3.65)

It is difficult to evaluate these integrals explicitly, but we have verified this in several

examples by expanding both sides as a series to a high order in q. We can obtain analytic

formulas in certain of the limits considered above. For example, in the Higgs limit, the

index of a U(Nc) theory with Nf flavors is:

IH
U(Nc)Nf

(n, µa;x) =
1

Nc!
(1− x)Nc

∮ ∏

i

dzi
2πizi

zi
n

∏
i 6=j

(
1− ziz

−1
j

) (
1− xzizj

−1
)

∏Nc

i=1

∏Nf

a=1

(
1− x

1
2 (ziµa)±1

) . (3.66)

This can be computed by summing the finitely many poles that lie inside the unit circle.

Let us assume n ≥ 0. Then these lie at:

zi = x
1
2µ−1

a(i) (3.67)

for some function a(i) : {1, . . . , Nc} → {1, . . . , Nf}. When Nc > Nf , there are no such

functions, and indeed in these cases there are not enough poles to soak up the contour

integrals, and the index vanishes, reflecting supersymmetry breaking in these theories.

Thus let us assume Nc ≤ Nf . Then we should take the residues at these poles and sum

over all choices of the function a(i). For example, suppose a(i) = i. Then, after some

cancellations between the numerator and the denominator, the residue is computed to be:

Res
zj→x

1
2 µ−1

j

IH
U(Nc)Nf

(n, µa;x) =
1

Nc!

xnNc/2
∏

i µi
−n

∏Nc

i=1

∏Nf

a=Nc+1 (1− µiµa−1) (1− xµaµi−1)
. (3.68)

It remains to sum over the choices of a(i). We can break this up into two parts: the

choices of image a({1, . . . , Nc}), of which there are
(Nf

Nc

)
, and a choice of permutations

π ∈ SNc , which takes a(i) → a(π(i)) while preserving the image. Note the expression

above is invariant under such a permutation, so the sum over these simply eliminates the

factor of 1
Nc!

. Thus we find:

IH
U(Nc)Nf

(n, µa;x) =
∑

A⊂{1,...,Nf},|A|=Nc

xnNc/2
∏

a∈A µa
−n

∏
a∈A,b∈Ac (1− µaµb−1) (1− xµbµa−1)

. (3.69)

Now consider the expression we get after taking Nc → Nf − Nc. The sum is over an

isomorphic set, after exchanging the roles of A and Ac, and we find:

IH
U(Nf−Nc)Nf

(n, µa;x) =
∑

|Ac|=Nc

xn(Nf−Nc)/2
∏Nf

a=1 µa
n
∏

a∈Ac µa
−n

∏
a∈Ac,b∈A(1− µaµb−1)(1− xµbµa−1)

=




Nf∏

a=1

µa
n


xn(Nf−2Nc)/2IH

U(Nc)Nf

(
n, µa

−1;x
)
. (3.70)

15Note that we cannot see all the symmetries here, as there is an additional symmetry on the r.h.s. theory

which acts only on the free hyper which is realized as a hidden symmetry on the l.h.s. theory. What we

observe here is just a particular codimension one slice in parameter space of the most general partition

function with mass and FI deformations.
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The prefactor can be thought of as a contact term, and becomes 1 if we impose that the

fugacities are valued in SU(Nf ), as we will do from now on. Also, recall we had assumed

n ≥ 0; for n < 0, we can simply start by performing a change of variables zi → zi
−1, and

will obtain an expression of the above form, but with n→ −n. Thus the general relation is:

IH
U(Nf−Nc)Nf

(n, µa;x) = x|n|(Nf−2Nc)/2IH
U(Nc)Nf

(
n, µa

−1;x
)
. (3.71)

In particular, in the case Nf = 2Nc − 1, we find:

IH
U(N)2N−1

(n, µa;x) = x|n|/2IH
U(N−1)2N−1

(
n, µa

−1;x
)

(3.72)

which is precisely the duality between the good and ugly theory, where we recognize the

x|n|/2 factor as the contribution of a free twisted hyper in the Higgs limit (equivalently,

of an ordinary hyper in the Coulomb limit). The equality of the indices of these theories

in the Coulomb limit was checked in [40]. The result (3.71) is also suggestive of a more

general 3d N = 4 Seiberg-like duality between good and bad theories proposed in [21, 45]

One can similarly check that the S
3
b partition functions of these theories are equal.

In certain subsets of parameter space these identities reduce to similar ones which have

been proven for N = 2 Aharony duality [46] in [44, 47], but for generic parameters they

are distinct.

4 Down the rabbit hole

In this section we will study a class of 3d N = 4 theories which come from dimensional

reduction of the N = 2 class S theories in four dimensions. We will refer to these three

dimensional theories as theories of class s. Specifically, we will focus for simplicity on the

A1 class of theories, in which case these are SU(2) quiver gauge theories, although much

of what we say will generalize to the case of higher rank. In addition to these theories, an

important role will be played by the so-called T [SU(2)] theory, or N = 4 SQED with two

hypermultiplets. This theory appears in several interesting contexts. For example it is a

building block in the construction of the mirror duals of the class s theories, the so-called

star-shaped quiver theories. It is also the theory living on the S-duality domain wall relating

two copies of N = 4 theory in 4d [33]. In the latter context the S
3 partition function of

this theory plays a role of the duality kernel in S
4 partition function computations [48].

4.1 Partition functions of T (SU(2))

Let us start with the T [SU(2)] model. It is a U(1) gauge theory with two charged N = 4

hypermultiplets. The index of this theory, which we write in a suggestive notation whose

purpose will become clear below, is given by (see e.g. [49])

ψq,t(a,m|b, n) =

(
tq

1
2 ; q
)

(
t−1q

1
2 ; q
) × (4.1)

∑

m̃∈Z+ǫ(m)

b2m̃

(
q

1
2

t

) 1
2
(|m̃+m|+|m̃−m|) ∮

dz

2πiz
z2n

(
t−

1
2 q

3
4
+ 1

2
|±m̃±m|z±1a±1; q

)

(
t
1
2 q

1
4
+ 1

2
|±m̃±m|z±1a±1; q

) ,
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where

ǫ(m) =
1− (−1)2m

4
. (4.2)

Here, the fugacity a labels the su(2)V symmetry acting on the Higgs branch; more precisely

it corresponds to the u(1) Cartan, which is normalized such that the quarks, which live in

the fundamental representation, have charges±1. In addition, b labels the u(1)J topological

symmetry acting on the Coulomb branch, which is the Cartan of an enhanced su(2)J sym-

metry which appears in the IR. Finally, the integers n and m are GNO monopole charges

for these two su(2)s. For monopole configurations which are well-defined for SU(2), these

must be integers, while for SO(3) monopoles one may also allow half-integers. Naively one

must allow only integer fluxes for the su(2)V fugacity, since the quarks sit in the fundamen-

tal representation. However, one may also allow half-integer fluxes if one simultaneously

takes the flux of the gauged U(1) to be in Z + 1
2 . This choice is implemented above in

the definition of ǫ(m). In other words, while the flavor symmetry is naively SU(2), since

the Z2 center corresponds to a gauge symmetry, one can in fact consider it to be SO(3),

and correspondingly couple it to background SO(3) gauge field configurations. One can

similarly take SO(3) fluxes for the su(2)J symmetry.

The theory T [SU(2)] has a mirror dual which is the same theory except with twisted,

rather than ordinary, vector and hypermultiplets. For the index this implies,

ψq,t(a,m|b, n) = ψq,t−1(b, n|a,m) . (4.3)

Let us check this equality in the Higgs/Coulomb limit. In the Higgs limit of the left-hand

side we get

ψH
x (a,m|b, n) = (1− x) δm,0

∮
dz

2πiz
z2n

1

1− x
1
2a±1z±1

= (4.4)

= δm,0
x|n|

(
a−2n−1 − a2n+1 + xa2n−1 − xa1−2n

)

(a−1 − a) (1− xa−2) (1− xa2)
.

For the right-hand side we compute the Coulomb index

ψC
x̃ (b, n|a,m) =

1

1− x̃

∑

m̃∈Z+ǫ(n)

a2m̃ x̃
1
2
|(|n+m̃|+|n−m̃|)

∮
dz

2πiz
z2m = (4.5)

= δm,0
x̃|n|

(
a−2n−1 − a2n+1 + x̃a2n−1 − x̃a1−2n

)

(a−1 − a) (1− x̃a−2) (1− x̃a2)
.

We see explicitly that (4.3) is satisfied. We also note that

ψH
x (a,m|b, n) = δm,0 x

|n| 1

1− x a±2
χ
(HL)
|2n| (a;x) , (4.6)

χ
(HL)
2n (a;x) = χ2n(a)− xχ2n−2(a) .

Here χn(a) are A1 Schur, and χ
(HL)
2 (a;x) A1 Hall-Littlewood, polynomials. This is equiv-

alent to the observation in [41] that the Coulomb branch Hilbert series of the T [SU(2)]

theories, and other T [G] theories, are given by Hall-Littlewood polynomials.
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The theory T [SU(2)] can be obtained as a theory living on the domain wall between

two su(2) N = 4 SYM theories in 4d related by S-duality [33]. The su(2)J × su(2)V flavor

symmetry couples to the bulk gauge symmetries on either side of the wall. Taking the

global structure of the gauge group into account, we recall [50] that, for N = 4 SYM,

the SU(2) theory is mapped under S-duality to the SO(3)+ theory (i.e., the SO(3) theory

where we include the basic ’t Hooft loop operator), and the SO(3)− theory (i.e., the SO(3)

theory where we include the basic dyonic ’t Hooft-Wilson loop operator), is mapped to

itself. We can see this structure at the level of the index of the T [SU(2)] theory. Namely,

we can view the states of T [SU(2)] as operators living at the ends of 4d line operators [30]

by performing a Fourier transform of the index with respect to the two flavor fugacities a

and b to an electric charge basis (ea and eb respectively):

ψ̃q,t(ea,m|eb, n) =

∮
db

2πib
b−2eb

∮
da

2πia
a−2eaψq,t(a,m|b, n) . (4.7)

The Fourier transform with respect to b kills the sum over m̃ in (4.1) and is non zero only if

ǫ(m) = ǫ(eb). Going to the mirror frame we analogously deduce that the Fourier transform

with respect to a is non zero only when ǫ(ea) = ǫ(n). Thus we can write that,

ψ̃q,t(ea,m|eb, n) ∝ δǫ(m),ǫ(eb) δǫ(ea),ǫ(n) . (4.8)

In other words, states with odd electric charge ea and integer magnetic charge m have

even electric charge eb and half-integer magnetic charge n, i.e., Wilson line operators map

to ’t Hooft line operators in 4d. States with ea odd and m half-integer have also eb odd

and n half-integer, i.e., ’t Hooft-Wilson line operators map to themselves. This correlation

between the charges of the two flavor groups was also discussed in [51].

We can also consider the S
3
b partition function of T [SU(2)], which is given by:

φγ,b(m|ζ) = Γh(ω − γ)

∫
dσe−4πiζσΓh

(ω
2
+
γ

2
± σ ±m

)
. (4.9)

This simplifies in the Schur limit, γ = i
2

(
b− b−1

)
, to

φγ,b(m|ζ) →

∫
dσ

e−4πiζσ

2 coshπb(σ ±m)
(4.10)

=
sin 4πζm

2 sinh 2πb−1ζ sinh 2πbm
.

In this form we explicitly see the mirror symmetry m↔ ζ and γ → −γ (which in this limit

become b→ b−1).

Let us note an important property of the T [SU(2)] theories related to gluing two such

theories together by gauging the diagonal sum of one of the SU(2) flavor symmetries of

each. We claim that such an operation produces a “delta functional”, which sets the two

remaining SU(2) flavor symmetries to be equal. This can be seen explicitly at the level

of the partition function, for example, in the Schur limit, gauging two T [SU(2)] theories

– 20 –



J
H
E
P
1
0
(
2
0
1
4
)
0
9
9

together is accomplished by:

1

2

∫
dm

sin 4πζ1m

2 sinh 2πb−1ζ1 sinh 2πbm
(2 sinh 2πbm)2

sin 4πζ2m

2 sinh 2πb−1ζ2 sinh 2πbm

=
1

2

∫
dm

∑
ǫ1,ǫ2∈{±1} ǫ1ǫ2e

4πim(ǫ1ζ1+ǫ2ζ2)

sinh 2πb−1ζ1 sinh 2πb−1ζ1
=

1

2

∑

±

δ(ζ1 ± ζ2)

(2 sinhπb−1ζ1)2
. (4.11)

We recognize the factor multiplying the delta function as the inverse of the contribution

of the vector multiplet in the other Schur limit, and we claim that in general, for both the

index and partition function, we find a delta function times the inverse of the contribution

of a twisted SU(2) vector multiplet. We can think of this as an orthogonality property for

the T [SU(2)] partition functions. This property was noticed in [52, 53], where they also

found analogous expressions for the higher T [SU(N)] theories. A physical interpretation

is that, although, a priori, the theory one obtains by gluing two T [SU(2)] theories has an

su(2)×su(2) symmetry, only the diagonal combination of the two su(2)s is a good symmetry

in the IR.16 We will see why this property is important for the 3d class s theories and their

mirrors below.

Blocks of T[SU(2)]. Both the S
2 × S

1 index and S
3
b partition function of the T [SU(2)]

can be expressed in terms of the same holomorphic blocks, although in a non-unique way.

To see how this works, let us first define

C
T [SU(2)]
± (a, b, t, q) =

∞∑

j=0

(
b2q

1
2 t−1

)j
(
tq

1
2 ; q
) (

q1+j ; q
) (

q1+ja±2; q
)

(
tq

1
2
+j ; q

)(
tq

1
2
+ja±2; q

) . (4.12)

Then we recover the index of T [SU(2)] by (using the notation of (3.34)):

ψq,t(a,m|b, n)=
∑

±

(
q

1
2 t−1b2

)m/2(
q

1
2 ta2

)n/2
C

T [SU(2)]
± (a, b, t, q)C

T [SU(2)]
±

(
ā, b̄, t̄, q̄

)
. (4.13)

This expression can be directly obtained by evaluating the contour integral in (4.1) by

computing residues of the integrand. We similarly recover the S
3
b partition function via

φγ,b(m|ζ) =
∑

±

e−πi(2ζ−γ+ω)(±2m+γ+ω)C
T [SU(2)]
± (a, b, t, q)C

T [SU(2)]
±

(
ã, b̃, t̃, q̃

)
. (4.14)

This is not a complete factorization of these partition functions, because of the extra factors

which appear multiplying the C
T [SU(2)]
± . These factors look heuristically as contributions

of Chern-Simons terms in the flavor symmetries, and can also be factorized using the theta

function

θ̂(z; q) =
(
−q

1
2 z; q

)(
−q

1
2 z−1; q

)
, (4.15)

and the basic fusion relation:

S
3
b : θ̂(z; q)θ̂(z̃; q̃) = eπiσ

2
, S

2 × S
1 : θ̂(z; q)θ̂(z̄; q̄) = z−m . (4.16)

16See [54] for a similar effect at the level of the index in 4d.
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Thus we can recover both factors by defining blocks:

B
T [SU(2)]
± (a, b, t, q) =

θ̂
(
−q

1
4 bt−

1
2 ; q
)
θ̂
(
q

1
2 a2t; q

)

θ̂
(
−q

3
4 a2bt

1
2 ; q
) C

T [SU(2)]
± (a, b, t, q) . (4.17)

However, this choice of theta functions is not unique, e.g., one can consider a similar choice

with a ↔ b and t ↔ t−1. We should also emphasize that, since the fusion relation (4.16)

only holds for the index for integer m, with the choice of theta functions in (4.17) we only

recover the index of T [SU(2)] for integer n (but any half-integer m), and similarly only for

integer m with the choice with a ↔ b and t ↔ t−1.

We can consider different limits at the level of the blocks. However, some of the limits

are incompatible with different gluings. Another way to put this is that the limits correlate

between the different block variables. For example, taking Higgs/Coulomb limit we take

q → 0, and thus also a, ā → 0 but keep a/ā fixed. Moreover, aāq−m = 1.

4.2 Class s theories and their star-shaped quiver mirrors

Let us now consider the dimensional reduction of theories of class S and their mirror duals,

the star-shaped quiver theories, which were described in [12]. We start with building

block of the A1 theories of class s, the T2 theory. The T2 model is a free bi-fundamental

SU(2)× SU(2) hypermultiplet. The index of the T2 theory is given by

IT2
(
{[bi, ni]}

3
i=1; t, q

)
=

(
q

1
2

t

) 1
4

∑
si=±1 |

∑3
ℓ=1 sℓnℓ| ∏

si=±1

(
t−

1
2 q

3
4
+ 1

2
|
∑3

i=1 sini|
∏3

i=1 b
si
i ; q

)

(
t
1
2 q

1
4
+ 1

2
|
∑3

i=1 sini|
∏3

i=1 b
si
i ; q

) .

(4.18)

The mirror dual of this theory is the star-shaped quiver built from three copies of T [SU(2)]

theory with the diagonal su(2)v flavor symmetry acting on the Higgs branches gauged.

The gauge group can be either SU(2) or SO(3). The index of the star-shaped quiver with

SU(2) gauged in the central node is given by

ISSQ({[bi, ni]}
3
i=1; t, q) = (4.19)

1

2

∑

m̃∈Z

(
q

1
2

t

)−2|m̃|∮
dz

2πiz

(
1−q|m̃|z±2

) 3∏

ℓ=1

ψq,t(bℓ, nℓ|z, m̃)

(
tq

1
2
+|m̃|z±2; q

)

(
t−1q

1
2
+|m̃|z±2; q

)

(
tq

1
2 ; q
)

(
t−1q

1
2 ; q
) .

One can also consider the index of the star-shaped quiver with SO(3) gauged in the central

node is given by

ĨSSQ({[bi, ni]}
3
i=1; t, q) = (4.20)

1

2

∑

m̃∈ 1
2
Z

(
q

1
2

t

)−2|m̃|∮
dz

2πiz

(
1−q|m̃|z±2

) 3∏

ℓ=1

ψq,t(bℓ, nℓ|z, m̃)

(
tq

1
2
+|m̃|z±2; q

)

(
t−1q

1
2
+|m̃|z±2; q

)

(
tq

1
2 ; q
)

(
t−1q

1
2 ; q
) .

Note the only difference is in which monopole configurations we allow: only integer fluxes

for SU(2), and also half-integers for SO(3).
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We claim in fact the correct dual of this theory is the star-shaped quiver with the

central node gauged as an SO(3) symmetry. Namely, one can verify that the following

equality holds

IT2
(
{[bi, ni]}

3
i=1; t, q

)
= ĨSSQ

(
{[bi, ni]}

3
i=1; t

−1, q
)
. (4.21)

Note that, in the T2 theory, since the matter is in the trifundamental representation, one

can consider the flavor symmetry to be SU(2)3/H, where H is the Z2
2 subgroup which acts

as the center on an even number of the SU(2) factors. This means we can take the any

fluxes ni such that the sum
∑3

i=1 ni is even.

For the star-shaped quiver with the central node gauged as an SU(2) symmetry, one

finds the following equality:

1

2

(
IT2

(
{[bi, ni]}

3
i=1; t, q

)
+ IT2

(
{[−bi, ni]}

3
i=1; t, q

))
= ISSQ

(
{[bi, ni]}

3
i=1; t

−1, q
)
. (4.22)

This corresponds to a duality between this star-shaped quiver theory and the T2 theory

with the Z2 center gauged.17

When computing the S
3 partition function one can see that the partition function of

the of the T2 theory differs from the partition function of the star-shaped quiver with SU(2)

gauged by a factor of two [52], owing to this Z2 gauging, but agrees with the star-shaped

quiver with SO(3) gauged.

This mirror duality generalizes to all theories of class S. The mirror dual of class S

theory corresponding to genus g surface with s punctures is a star-shaped quiver with s

copies of the T [SU(2)] theory glued together by gauging an su(2) global symmetry with g

hypermultiplets in the adjoint representation of the gauge group added in. The index of

the star-shaped quiver has the following form

Ig,s
(
q, t−1

)
= (4.23)

∞∑

m=−∞

∮
dz

4πiz

(
1− q|m|z±2

)
IV,adj(z,m) (IH,adj(z,m))g

s∏

i=1

ψq,t(bi, ni|z,m) .

The striking structural resemblance of (4.23) to the 4d partition function (1.1) is not

a coincidence, as we will now discuss.

4.3 Line operators, difference operators, and eigenfunctions

In 4d the building blocks of the partition function computation are eigenfunctions, ψ̂λ(a),

of certain difference operators as we reviewed in section 2. The structural similarity

of (1.1) and (4.23) suggests that we should identify after the dimensional reduction [53]

(see also [5, 56]),

ψ̂λ(a) → ψ(a,m|b, n) (or φ(a|b)) . (4.24)

The labels of the eigenfunctions λ become parameters {b, n} or b depending on whether we

are computing the S
2 × S

1 or the S
3 partition function in 3d. We might expect that the

17In other words, we are passing from an SU(2) gauge theory to a SU(2)/Z2 gauge theory by gauging a

discrete Z2 global symmetry, as in [32, 55].
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partition functions of the T [SU(2)] theory are eigenfunctions of the dimensional reductions

of the 4d difference operators. Such operators introduce surface defects in 4d and their

dimensional reduction introduces line defects in 3d. We now proceed to discuss how this

comes about.

The S
3

b
partition function. The difference operators introducing the surface defects in

4d reduce in 3d to operators introducing line defects. Let us first consider the reduction

to the S
3
b partition function. The basic difference operator on S

3 × S
1 introduces a surface

defect on one of the equators of S
3, z1 = 0 or z2 = 0, and wrapping the temporal S1

direction. We reduce by shrinking the temporal circle. Thus in 3d we obtain a difference

operator which introduces a single line defect wrapping one of the equators of S3b . A general

difference operator discussed in [5] introduces defects labeled by symmetric representations

on both equators.18

After dimensional reduction the two basic difference operators (2.3) act act on a real

mass parameter m in the S
3
b partition function, and are given by [5]

Om
(0,1)=

sinhπb

(
i(b−b−1)

2 −γ+2m

)

sinh 2πbm
∆m→m+ ib

2
−

sinhπb

(
i(b−b−1)

2 −γ−2m

)

sinh 2πbm
∆m→m− ib

2
(4.25)

as well as Om
(1,0), which one obtains by taking b ↔ b−1 in this expression. Note that this

operator is known as the Macdonald operator in mathematics literature. When the three

dimensional theory in question arises as a boundary of a four dimensional theory, such

operators appear when one collides an ’t Hooft loop with the boundary [30].

The S
2×S

1 index. Next we reduce to the S2×S
1 index by considering the r → ∞ limit

of the lens index (i.e., the S
3/Zr × S

1 partition function). Difference operators introducing

surface defects in the lens index were studied in [7]. Here one does not have the basic

operators O(1,0) and O(0,1), but instead only their product survives the orbifold projection.

Thus the basic difference operator we obtain by dimensional reduction actually introduces

a pair of line defects in 3d. The surface defects become line defects spanning S
1 and sitting

at the two poles of S2. The explicit difference operator (2.4) can be computed to be [7],

Da,m(q, t) · f(a,m) = (4.26)

1−qm− 1
2 ta−2

1−qma−2

1−qm+ 1
2 t−1a2

1−qma2
f
(
q

1
2 a,m

)
+

1−qm+ 1
2 t−1a−2

1−qma−2

1−qm− 1
2 ta2

1−qma2
f
(
q−

1
2 a,m

)
+

(
t

q
1
2

)
1− qm+ 1

2 t−1a−2

1− qma−2

1− qm+ 1
2 t−1a2

1− qma2
f(a,m+ 1)+

(
q

1
2

t

)
1− qm− 1

2 ta−2

1− qma−2

1− qm− 1
2 ta2

1− qma2
f(a,m− 1) .

This operator acts by shifting the fugacity and the magnetic flux of a flavor symmetry.

18See [56] for a generalization to other representations for the higher rank cases.
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In fact, in the 3d limit, this difference operator can be factorized into two commuting

operators:

Da,m(q, t) · f(a,m) = O(0,1)O(1,0) · f(z, z̄) , (4.27)

where

O(0,1)f(a,m) = t
1

2 q−
1

4

(
1−t−1qm+ 1

2 a2

1−qma2
f

(
q

1

4 a,m+
1

2

)
+
1−t−1q

1

2
−ma−2

1−q−ma−2
f

(
q−

1

4 a,m−
1

2

))
,

O(1,0)f(a,m) = t−
1

2 q
1

4

(
1−tqm− 1

2 a−2

1−qma−2
f

(
q

1

4 a,m−
1

2

)
+
1−tq−

1

2
−ma2

1−q−ma2
f

(
q−

1

4 a,m+
1

2

))
. (4.28)

Note that acting with only one of the two difference operators is physically ill defined if

the flavor group is SU(2): it involves shifting m by half an integer which is only allowed if

the group is SO(3).

Holomorphic blocks. Let us now see how the S3b and S
2×S

1 difference operators, (4.25)

and (4.28), both descend from a single difference operator acting on the holomorphic blocks.

Let us consider the S
3
b case first. Then, with one caveat to be discussed below, we can

rewrite (4.25) as (in the notations of (3.32))

O(0,1) = t
1
2 q−

1
4

(
1− t−1q

1
2 a2

1− a2
pa

1
2 +

1− t−1q
1
2 a−2

1− a−2
pa

− 1
2

)
. (4.29)

Here pa the operator which shifts a → qa while fixing ã, or equivalently, shifts m→ m+ ib.

Since this expression also only depends on the untilded variables of (3.32), we see that

O(0,1) acting on a factorized expression for ZS3
b
as in (3.36) only acts on the left blocks,

Bα(za; q), without modifying the right blocks Bα(z̃a; q̃). One can similarly check that the

operator O(1,0) acts only on the right blocks.

The caveat mentioned above is that p
1
2
a , which appears above, shifts m→ m+ ib

2 , and

this also acts on the tilded variable ã = e2πb
−1m by taking ã → −ã. However, we have seen

in (4.17) that we can choose blocks which are even under a → −a, and then the difference

operator indeed acts only on one set of blocks.

The basic difference operator O(0,1) acting on the S
2 × S

1 partition function, (4.28),

can also be rewritten in terms of the variables (3.34). For example, shifting (a,m) →

(q
1
4a,m+ 1

2) corresponds to taking a → q
1
2 a while not modifying ā, i.e., it is the operation

pa. One recovers exactly the same expression (4.29). In particular, it also only acts on

the left blocks in the decomposition (3.36). Thus we see that the difference operator acts

naturally at the level of holomorphic blocks, and the same operator acting on the blocks

gives rise, after fusion, to the S3b and S
2×S

1 difference operators we have constructed above.

T [SU(2)] as an eigenfunction. As we mentioned in the beginning of the section one

can expect that the partition functions of the T [SU(2)] theory are eigenfunctions of the

operators we reviewed above. This was verified for the S3b partition function in [56]. In the

previous section we saw that these operators act at the level of the holomorphic blocks, so

it is natural to ask how they act on the blocks of the T [SU(2)] theory. In fact, we claim that

these blocks are eigenfunctions of the operators, with an eigenvalue which is independent
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of the block index α. In particular, this implies both the S3b and S
2×S

1 partition functions

of this theory are eigenfunctions of both difference operators.

The argument will be an adaptation of the one appearing in [56] for the case of S3b .

First it will be convenient to consider the theory we obtain before gauging the U(1)g gauge

symmetry, which is just a theory of free hypers in the bifundamental representation of

U(1)g × SU(2)V . This theory has a single block, which from (3.29) can be written as:

Bbif(t, z, a; q) =

(
q

3
4 t−

1
2 z−1a±1; q

)

(
q

1
4 t

1
2 z−1a±1; q

) . (4.30)

Now let us consider the action of O(0,1) on this expression. First note that, for a single

hypermultiplet, one has:

pzBhyp(t, z; q) =
1− q−

1
4 t−

1
2 z−1

1− q−
3
4 t

1
2 z−1

Bhyp(t, z; q) . (4.31)

Thus, acting on the bifundamental hyper, one finds:

pz
1
2 pa

± 1
2Bfun(t, z, a; q) = S±Bbif(t, z, a; q) , (4.32)

pzBbif(t, z, a; q) = S+S−Bfun(t, z, a; q) ,

where (here it is convenient to define x̃ = q
1
2 t−1, analogous to the Coulomb limit variable

x̃ in the index):

S± =
1− q−

1
2 x̃

1
2 z−1a∓1

1− q−
1
2 x̃−

1
2 z−1a∓1

. (4.33)

Meanwhile, from (4.29), the difference operator is given by:

O(0,1) = T+pa
1
2 + T−pa

− 1
2 , (4.34)

where

T± = x̃−
1
2
1− x̃a±2

1− a±2
. (4.35)

Thus we can write

O(0,1)B(t, z, a; q) = pz
− 1

2 (T+S+ + T−S−)B(t, z, a; q) . (4.36)

One checks that

T+S+ + T−S− = x̃−
1
2S+S− + x̃

1
2 , (4.37)

so that

O(0,1)B(t, z, a; q)=pz
− 1

2

(
x̃−

1
2S+S−+x̃

1
2

)
B(t, z, a; q)=

(
x̃−

1
2 pz

1
2 +x̃

1
2 pz

− 1
2

)
B(t, z, a; q). (4.38)

Thus the following relation holds in the algebra of line operators on the ungauged theory:

O(0,1) = x̃−
1
2 pz

1
2 + x̃

1
2 pz

− 1
2 . (4.39)
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Next we will go to the theory where the U(1) symmetry corresponding to z is gauged,

i.e., the T [SU(2)] theory. Here one expects to find that the decomposition is no longer

into a single left- and right- block, but rather into a sum of blocks, Bα, as in (3.36). As

argued in [38], this gauging is accomplished at the level of the algebra of line operators

by introducing operators b, pb for the new U(1)J symmetry, and making the following

replacement in (4.39):19

z → p
1
2
b′ , pz → b′

−2
, (4.40)

so that:

O(0,1)B
T [SU(2)]
α (t, a, b; q) =

(
x̃−

1
2 b′ + x̃

1
2 b′

−1
)
BT [SU(2)]

α (t, a, b; q) . (4.41)

Finally, we recall that the partition function of the hypermultiplet built from the blocks

contained a background FI term, so that b′, which corresponds to the bare FI term, must

be shifted to obtain the full FI term, which corresponds to the variable b above. One can

check that this shift is by precisely x̃
1
2 , and cancels the factors on the terms above. Thus

we arrive at the final result:

O(0,1)B
T [SU(2)]
α (t, a, b; q) =

(
b+ b−1

)
BT [SU(2)]

α (t, a, b; q) , (4.42)

which is precisely the contribution of a Wilson loop in the fundamental representation of

the SU(2) flavor symmetry corresponding to b.

Since we have an explicit expression for the blocks of T [SU(2)], given in (4.17), by

expanding this series to high order we can explicitly verify that this is indeed an eigenfunc-

tion of the difference operator (4.29). Here it is important that we use the blocks which

are symmetric under a → −a so that the difference operator acts only on one set of blocks.

When we think of T [SU(2)] as an S-duality wall for N = 4 SYM, the relation (4.39)

can be interpreted as the equivalence of the basic ’t Hooft loop in one su(2) factor with the

basic Wilson loop of the other [51, 56]. The choice of blocks with the a → −a symmetry has

a natural interpretation in this context - it amounts to choosing the Higgs flavor symmetry

of T [SU(2)] to be SO(3) rather than SU(2), so that it becomes well-defined to act with an

’t Hooft loop operator. Then the Coulomb flavor symmetry, parameterized by b, is SU(2),

and one cannot consistently act with such an operator. These roles are exchanged under

mirror symmetry.

When one thinks of the partition functions, ψq,t(a,m|b, n) and φγ(a|b), as eigenfunc-

tions of the difference operators one set of variables, say (a,m) for the index and a for

the S
3 partition function, label the spectrum. One can think then of this set of variables

as the “momenta” and the other as the “position” of the particles on the circle with the

Hamiltonians being the difference operators. Then mirror symmetry is the duality exchang-

ing momenta and positions in this language. In fact this kind of a duality of integrable

model and its relations to different gauge theories has been discussed already a while ago,

see e.g. [57, 58].

We should stress that although the 3d difference operators one obtains are Macdonald

operators, the eigenfunctions relevant for the 3d partition functions are not Macdonald

19Here there are extra factors of 2 in these assignments because we have normalized the fugacity b to

couple to the U(1)J symmetry with charge 2.

– 27 –



J
H
E
P
1
0
(
2
0
1
4
)
0
9
9

polynomials. This is because the measure under which we expect the eigenfunctions to be

orthogonal, the vector multiplet measure, is not the Macdonald measure. The orthogonal-

ity property for the S3b partition functions in the Schur limit appears for example in (4.11).

The difference operators in 4d are of elliptic type (elliptic in “positions” and trigonomet-

ric in “momenta”) and their spectrum is hard to obtain in closed form (see e.g. [59]).

However, in 3d since we have a physical meaning of the eigenfunctions as partition func-

tions of theories with known Lagrangian description the computation of the eigenfunctions

is straightforward.

4.4 Poles

The partition functions of T [SU(2)] has yet another interesting property which it inherits

from 4d. The difference operators above are derived by computing certain residues of the

index as reviewed in section 2. Correspondingly the residues of the partition functions of

T [SU(2)] give the eigenvalues of the difference operators, see (2.2). Let us compute several

residues of the S
2 × S

1 partition function of T [SU(2)].

Residue at
(
a = t

1

2 q
1

4 , m = 0
)
. This is the basic residue: the pole is obtained from

the m̃ = 0 sector when two poles pinch the integration contour and we readily get,

IV Res
a→t

1
2 q

1
4
ψq,t(b, n|a, 0) = 1 . (4.43)

Here IV is the index of the vector multiplet.

Residue at
(
a = t

1

2 q
3

4 , m = 0
)
. This is the first non-trivial residue when the flavor

group is taken to be SU(2): the pole is obtained from the m̃ = 0,±1 sector when two poles

pinch the integration contour (for m̃ = 0 the poles pinch at z = q±
1
2 and for m̃ = ±1 they

pinch at z = 1) and we readily get,

IV
t

q
1
2

(
1−q

1−tq
1
2

)2

Res
a→t

1
2 q

3
4
ψq,t(b, n|a, 0) =

(
bq

n
2 + b−1q−

n
2

)(
bq−

n
2 + b−1q

n
2

)
. (4.44)

Note that this corresponds to the action of the difference operator introducing a pair of

line defects and the residue is given just by a product of partition functions of two Wilson

lines.

Residue at
(
a = t

1

2 q
1

2 , m = ±1

2

)
. This is the first non-trivial residue when the flavor

group is taken to be SO(3): the pole is obtained from the m̃ = ±1
2 sector when two poles

pinch the integration contour (at z = q±
1
4 ) and we readily get,

IV
t
1
2

q
1
2

(
1− q

1− tq
1
2

)
Res

a→t
1
2 q

1
2
ψq,t

(
b, n|a,±

1

2

)
= bq±

n
2 + b−1q∓

n
2 . (4.45)

Here the residues are just single Wilson lines.

In general the residues of indices are expected to describe indices of IR fixed points

reached by turning on vacuum expectation values for certain operators [5]. The residues ob-

tained above thus correspond to empty (free) theories with line operators for non-dynamical

gauge fields.
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5 . . . and back again: 4d shards of 3d mirrors

In this final section we will make some speculative remarks about what the structure one

finds for the 3d reductions of theories of class S implies about the 4d theories. Let us start

from the trivial case of a partition function capturing physics which is invariant under the

dimensional reduction.

Hall-Littlewood/Higgs limit. An example of such a partition function is the Hall-

Littlewood (HL) index in 4d [4]. For theories of class S corresponding to genus zero

Riemann surfaces this index is equivalent to the Hilbert series of the Higgs branch. Note

from (3.15) that, in the Hall-Littlewood limit, p = q = 0, the lens index is independent of r,

provided the dimensionally reduced 3d theory is “good/ugly”.20 In the three dimensional

limit this index reduces to the Higgs index defined in section 3, and so for such theories the

Hall-Littlewood index of the four dimensional parent theory matches with the Higgs index

of its three dimensional reduction. The latter in turn is equal to the Coulomb index of the

mirror dual. Let us discuss the HL index of the T2 theory in the mirror, star-shaped, frame.

This index is given in (4.1) and the indices of the legs are evaluated in (4.6). Putting these

ingredients together we obtain in the HL limit that,

IH
T2

(
{[bi, 0]}

3
i=1

)
free

=
∑

m̃∈Z/2

x−2|m̃|

1− x

∮
dz

4πiz

(
1− z±2

1− xz±2

)δm̃,0 3∏

ℓ=1

ψx(bℓ, 0|z, m̃)

=
∑

m̃∈N/2

(x)|m̃| (1 + x)−δm̃,0

1− x

3∏

i=1

1

1− x b±2
i

χ
(HL)
|2m̃| (bi;x) . (5.1)

This is precisely the HL index of the T2 theories written in the form of (1.1). Thus, for the

HL index the eigenfunctions appearing in 4d have a concrete 3d physical meaning: they

are the Coulomb indices of the T [SU(2)] theories. A similar observation was made in [42]

from the point of view of the Coulomb branch Hilbert series, which we have claimed is

equivalent to the Coulomb limit. The fugacity of the SU(2) flavor symmetry acting on

the Coulomb branch in 3d is the flavor fugacity in 4d, and the label of the eigenfunction

is the background monopole charge for the symmetry acting on the Higgs branch. This

observation has a straightforward generalization to higher rank cases: HL eigenfunctions

are the Coulomb indices of T [SU(N)] theories. The discrete labels of the eigenfunctions are

the GNO charges of the monopole background for the Coulomb branch flavor symmetry.

We can write the Coulomb index of the T [SU(N)] theory as

ψλ1,λ2,...

(
z(N); 0, 0, t

)
=

N−1∏

i=1


(1−t)

i

i!

∮ i∏

j=1

(
z
(i)
j

)ni

dz
(i)
j

2πiz
(i)
j

i∏

j1 6=j2

(
1−tz

(i)
j1
/z

(i)
j2

)(
1−z

(i)
j1
/z

(i)
j2

)

×

N−1∏

i=1

i∏

j1=1

i+1∏

j2=1

IH

((
z
(i)
j1

)−1
z
(i+1)
j2

; 0, 0, t

)
. (5.2)

20This condition is required so that the zero point energy contains only positive powers of p and q, and

so is well-defined in this limit.

– 29 –



J
H
E
P
1
0
(
2
0
1
4
)
0
9
9

Here we have

λi =
N−i∑

j=1

nN−j . (5.3)

The functions IH(z; 0, 0, t) is the HL index of a 4d hypermultiplet,

I4d
hyp(z; p, q, t) =

∞∏

i,j=0

∏

s=±1

1− p q

t
1
2
piqjzs

1− t
1
2 piqjzs

≡ Γ
(
t
1
2 z−1 ; p, q

)
Γ
(
t
1
2 z ; p, q

)
. (5.4)

We can now construct the HL index of any theory of class S from the star-shaped

quivers. To build an index of a general linear quiver we can glue together the star shaped

mirrors of the free bi-fundamental hypermultiplets by gauging SU(2) global symmetries

acting on the Coulomb branch. One does so by using the usual vector multiplet. Increasing

the genus can be done in two ways. First we can gauge a diagonal combination of two SU(2)s

acting on Coulomb branches of two different legs. This procedure is manifestly equivalent

to the 4d procedure and the result is

IH({[bi, 0]}
s
i=1)

A
g,s =

∑

m̃∈N/2

x|m̃|(2g−2+s)(1 + x)(g−1)δm̃,0

(1− x)1−g

s∏

i=1

1

1− x b±2
i

χ
(HL)
|2m̃| (bi;x) . (5.5)

A second procedure one can try is as follows. Since the mirror of a genus g theory of class

S is the same as the one for genus zero with an addition of g adjoint (under the SO(3)

of the central node) hypermultiplets [12], we can just add the contribution of these fields

to the index computation. The adjoint hypermultiplets contribute a factor of
(
tq

1
2

)2|m̃| g
.

The resulting index is

IH({[bi, 0]}
s
i=1)

B
g,s =

∑

m̃∈N/2

x|m̃|(2g−2+s)(1 + x)−δm̃,0

1− x

s∏

i=1

1

1− x b±2
i

χ
(HL)
|2m̃| (bi;x) , (5.6)

and is manifestly different from (5.5) for g 6= 0. There are two reasons why the two

procedures disagree: one is that the Hall-Littlewood/Higgs index of a higher genus quiver

is not the same as the Hilbert series of the Higgs branch; and the second one is that

the higher genus quivers are “bad” theories in 3d. This implies that for higher genus

theories the first procedure does not make physical sense in 3d: the index of a bad theory

is divergent21 and by taking the Higgs limit we obtained certain regularization which is not

physically motivated. On the other hand, the mirror with extra adjoints is a good theory

with finite index and well defined Coulomb limit. To summarize: procedure A gives the

4d index but has no obvious meaning in 3d, while procedure B gives the Coulomb index

of the 3d. Procedure B seems however to be equivalent to the Hilbert series of the Higgs

branch of the 4d “parent” theory as defined in [60], see [42]. The 3d Coulomb indices of the

mirror duals of class s theories are equivalent to the Hilbert series of the Higgs branches

21A dimensional reduction of 4d theories with perfectly finite partition functions might produce 3d theories

with divergent partition functions. For example this might happen if the 3d monopole operators have zero

charges, see e.g. [32].
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of the 4d theories of class S. This statement is not in tension with the fact that for higher

genus theories the 4d HL index is not equivalent to the Hilbert series since the dimensional

reduction of such models produces “bad” theories in 3d. If a theory is “good” or “ugly”

then the Higgs index is equal to the Hilbert series of the Higgs branch and the Coulomb

index is equal to the Hilbert series of the Coulomb branch.

Going beyond Higgs branch. If we are interested in quantities capturing properties of

a theory beyond its Higgs branch the relation between special structures found in 3d and the

4d origin becomes less clear. However, we will discuss now an encouraging mathematical

fact: the 4d eigenfunctions of the S
3 × S

1 partition function, at least in the Macdonald

limit, can be written using integral expressions with the same structure as the 3d partition

functions of the T [SU(N)] theories.

We discuss the Macdonald index in 4d, p = 0 and r = 1. The relevant eigenfunctions

can be found to be closely related to Macdonald polynomials [4]. There is a very useful

representation of Macdonald polynomials using q-integrals [61–63]. In the A1 case this

takes the following form [61]

Pn(b; q, t) =

(
b− b−1

) (
tb±2; q

)

(1− q) (b±1; q)

(t; q)2

(t2; q) (q; q)

(
t2; q

)
n

(q; q)n

∫ b−1

b

(
qub±1; q

)

(tub±1; q)
un dqu . (5.7)

The q-integrals are defined as

∫ b

0
f(u)dqu = b(1− q)

∞∑

k=0

f
(
bqk
)
qk , (5.8)

∫ b

a
f(u)dqu =

∫ b

0
f(u)dqu−

∫ a

0
f(u)dqu .

One can view the q-integral expression for the eigenfunction as a 4d quantity associated

to 3d T [SU(2)] theory: the un term is the contribution of the FI term and the rest of the

integral is a q-deformed contribution of the hypermultiplet.

We can actually write the q-integral above as a usual contour integral. We look for an

expression of the form,

ψn(a; 0; q, t) =

(
t2; q

)

(t; q) (t a±2; q)

Pn(a; q, t)

Pn

(
t
1
2 ; q, t

) = (5.9)

Φ(a; 0, q, t)(q; q)(t; q)

∮
dz

2πiz
zn Ψ(z; 0, q, t)IH,4d(a, z; 0, q, t) .

Assuming Ψ(z) does not have poles inside the unit circle, the sum of the poles of this integral

is the same as the sum in the definition of the q-integral for the Macdonald polynomial

above given that,

Φ(z) = Ψ−1
(
t1/2z

)
, Ψ(q z) =

t

q
z−2Ψ(z) . (5.10)
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This has the following solution

Ψ(z) =
∞∏

ℓ=1

(
1 + q2ℓ−1 z

2

t

)(
1 + q2ℓ−1 t

z2

)
= θ

(
−
q

t
z2; q2

)
(5.11)

= θ

(
i

√
q

t
z; q

)
θ

(
−i

√
q

t
z; q

)
.

Note that in HL limit, q = 0, Ψ(z) = 1 and we reproduce the result in the beginning of

this section.

One can generalize the q-integral construction for A1 to higher rank group and the

result has a structure of q-deformation of the result for the HL case (5.2), see [62, 63]. It

is thus interesting to understand whether there is any physical meaning of the q-integral

expression for the eigenfunctions and/or of the contour integral one with Ψ(z).
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