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1 Introduction

Dualities are the manifestation of the rich symmetry structure distinctive of string theory.

By virtue of relating seemingly different string theory solutions they proved to be a valuable

guide for finding new phenomena such as D-branes, mirror symmetry or exotic solutions.

In particular, string theory compactified on a d-dimensional torus admits the T-duality

group O(d, d;Z) (a review is found in [1]). In this vein, double field theory [2–7] (recent

reviews are found in [8–10]) aims for a manifest O(d, d)-invariant formulation of string

theory, although evidence for duality beyond abelian duality for toroidal backgrounds is

scarce.

The conventional approach to (non-abelian) T-duality relies on the existence of a con-

sistent gauged sigma model associated with isometries [11, 12] (a Hamiltonian approach is

found in [13]). In the case of abelian isometries, the gauged sigma model identifies seem-

ingly different theories as being equivalent in accordance with the Buscher rules [14, 15].

However, for non-abelian isometries, the theories connected by the gauged sigma model

are in general not equivalent [16, 17]. This problem arises with the introduction of a gauge

field which possibly admits non-trivial holonomies as well as the appearance of anoma-

lies [16, 18].

Circumventing some of these difficulties and extending duality to more general, non-

constant O(d, d)-transformations allows for a deeper understanding of the symmetry struc-

ture of string theory.1 To pursue in this direction, the following observation is made. The

1See for example [19, 20] for applications.
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background dependent description of string theory by a two-dimensional sigma model nat-

urally gives rise to the indefinite orthogonal group O(d, d) as it preserves one component

of the world-sheet energy momentum tensor. Induced mappings of the (pulled-back) co-

ordinate one-forms dXa and redefinitions of the background fields leave the Hamiltonian

density and the remaining component of the energy momentum tensor invariant as well.

Therefore, the mapping of coordinate one-forms together with the background redefini-

tion represents a classical duality. The basic properties of this duality, which includes

(non-abelian) T-duality and β-transformations, are explored in this paper.

In particular, the initial coordinate one-form dXa is mapped to a dual form dX̃a

whose integrability implies the existence of certain isometries of the background. The

isometry algebra is formulated in terms of Lie algebroids (see [21–23] for applications to

string theory) and a twisted Courant bracket [24].2 Closure of the algebra gives rise to the

conditions required for a consistent gauging of the isometries [18] and therefore connects

the present approach to the conventional method. The problem of anomalies is absent in

the suggested procedure, but the conditions for anomaly freedom can be retrieved from a

Dirac structure for the isometry algebra [25].

Having received little attention in the literature, β-transformations are of particular in-

terest here.3 They induce classical duality, if β is a Poisson structure. This Poisson-duality

is applied to the rectangular three-torus with constant H-flux. Moreover, for backgrounds

related by β-transformations to be conformal, an appropriate shift of the dilaton is deduced.

The paper is organised as follows. In section 2 classical features of the string sigma

model and T-duality are recapitulated. In particular, the appearance of O(d, d) is extracted

from the constraints in a Hamiltonian formulation. Section 3 is devoted to the detailed

discussion of O(d, d)-duality. It includes the study of the integrability conditions for the

mapping of coordinate one-forms manifest in the isometry algebra, the main elements of

O(d, d) and the special role of the dilaton for duality on the quantum level. The section

closes with an example providing a new approximate non-geometric background.

2 The bosonic string sigma model

String theory is described in a background dependent fashion by a two-dimensional non-

linear sigma model. For discussing closed bosonic strings, Σ is a two-dimensional manifold

with metric h = diag(−1, 1) and ∂Σ = ∅. The world-sheet Σ is embedded into a d-

dimensional Riemannian manifold M via X : Σ ↪→M . Having coordinates {xa}da=1 for M ,

their pull-back to Σ is denoted Xa = X∗xa. With ? the Hodge operator with respect to h,

2See [25, 26] for applications of the bracket to isometries.
3In the context of non-geometric backgrounds they are discussed in [27, 28], in the context of AdS/CFT

they appeared for example in [29] and a relation to Ehlers transformations in heterotic string theory can

be found in [30, 31].
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the action can be written as4

S(X;G,B) =
1

4πα′

∫
Σ

[
G(X)ab dX

a ∧ ?dXb +B(X)ab dX
a ∧ dXb

]
. (2.1)

G is a Riemannian metric on the target-space M and B a two-form; the pair (G,B) will be

called the background. Moreover, d denotes the exterior derivative on TΣ while d denotes

the exterior derivative on TM . The dilaton will be discussed separately in section 3.4. The

immediate classical features of (2.1) are the following.

• Varying the action with respect to Xa yields the equation of motion

d ? dXa + Γabc dX
b ∧ ?dXc = 1

2 G
amHmbc dX

b ∧ dXc (2.2)

with Habc the components of H = dB and Γabc = 1
2G

am(∂bGmc + ∂cGmb − ∂mGbc)
the coefficients of the Levi-Civita connection on TM . Possible boundary terms are

neglected. For H = 0 (2.2) is the generalization of the geodesic equation for a world-

sheet. In the presence of the H-term, (2.2) can be interpreted as geodesic motion of

a membrane in Einstein-Cartan theory with Bismut connection Γabc − 1
2G

amHmbc.

• The equation of motion for a general world-sheet metric h is vanishing of the energy-

momentum tensor, Tαβ = 0. In the conformal gauge chosen here, this has to be

considered as constraints which read

Gab(∂τX
a∂τX

b + ∂σX
a∂σX

b) = 0 & Gab ∂τX
a∂σX

b = 0 . (2.3)

Hence the dynamics of the theory is determined by the equation of motion (2.2)

accompanied with the constraints (2.3).

In the following the Hamiltonian description will be discussed briefly.

2.1 Hamiltonian description

The Hamiltonian density can be determined from the Lagrangian density in (2.1) by

performing a Legendre transformation with respect to the canonical momentum and τ -

derivative of the coordinate fields Xa. In principle there are two possibilities for canoni-

cally conjugate variables to the coordinate field Xa, which will become important for the

discussion of duality:

• the canonical momentum Pa = ∂L
∂∂τXa = 1

2πα′ (−Gab∂τX
b +Bab∂σX

b),

• the canonical winding Wa = ∂L
∂∂σXa = 1

2πα′ (Gab∂σX
b −Bab∂τXb).

4The conventions are as follows: the coordinates on Σ are {τ, σ} and the orientation is given by the

volume element dτ ∧ dσ. Then the Hodge operator is given by α ∧ ?β = h(α, β)dτ ∧ dσ for arbitrary

α, β ∈ Γ(ΛnT ∗Σ). For a decomposition α = α1 ∧ · · · ∧ αn and similarly for β the insertion into the metric

is defined as h(α, β) = deth(αi, βj).

– 3 –



J
H
E
P
1
0
(
2
0
1
4
)
0
6
9

However, by virtue of the first constraint in (2.3), the Hamiltonian density arising from a

Legrendre transformation with respect to P and ∂τX coincides with the one resulting from

a transformation with respect to W and ∂σX since

∂τX
a Pa = ∂σX

aWa. (2.4)

Performing the transformation, the Hamiltonian density can be written as

Ham(X;G,B) = − 1

4πα′

(
∂σX

2πα′P

)t
H(G,B)

(
∂σX

2πα′P

)

=
1

4πα′

(
∂τX

−2πα′W

)t
H(G,B)

(
∂τX

−2πα′W

)
,

(2.5)

where the generalised metric

H(G,B) =

(
G−BG−1B BG−1

−G−1B G−1

)
(2.6)

is introduced. Defining the generalised vectors

AP (X) = ∂σX
a ∂

∂xa
+ 2πα′ Pa dxa

AW (X) = ∂τX
a ∂

∂xa
− 2πα′Wa dxa

(2.7)

in TM ⊕ T ∗M , the Hamiltonian density (2.5) is proportional to the squared length of AP
and AW as measured by the generalised metric (2.6): Ham = − 1

4πα′ ||AP ||
2
H.

2.2 Appearance of O(d, d)

Already on the classical level the indefinite orthogonal group O(d, d) appears naturally. In

terms of the generalised vector AP (2.7), the constraints (2.3), i.e. the components of the

energy momentum tensor can be rewritten as

AtP H(G,B)AP = 0 & AtP η AP = 0 . (2.8)

As the first constraint sets the Hamiltonian density to zero, the constrained dynamics is

completely governed by (2.4). For the second constraint we have introduced the matrix

η =

(
0 1

1 0

)
, (2.9)

which defines the group O(d, d): a d× d-matrix T is an element of O(d, d) if and only if

T t η T = η , (2.10)

i.e. if it leaves the matrix η invariant. In particular, the generalised metric (2.6) is an

element of O(d, d) and the inverse is given generally by

T −1 = η T t η ∀T ∈ O(d, d). (2.11)

– 4 –
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Therefore all admissible generalised vectors solving the second constraint in (2.8) are related

by an O(d, d)-transformation via A′P = T AP . For A′P to solve the first constraint as

well, a compensating O(d, d)-conjugation with T −1 has to be applied to the generalised

metric (2.6). This transformation will be the subject of the duality discussed in the next

section.

2.3 Review of T-duality

The conventional procedure for obtaining T-dual sigma models by gauging isometries will

be reviewed briefly [11, 14]. For simplicity, a single isometry of (2.1) generated by a vector

field k is considered. In the case of multiple non-abelian isometries the gauging procedure

can be found in [18]. With respect to the infinitesimal coordinate transformation

Xa → Xa + ε ka (2.12)

the sigma model (2.1) transforms as S → S + δS with

δS(X;G,B) =
ε

4πα′

∫
Σ

[
(LkG)ab dX

a ∧ ?dXb + (LkB)ab dX
a ∧ dXb

]
. (2.13)

Lk denotes the Lie derivative along the vector field k. Thus k generates an isometry of the

sigma-model if it satisfies5

LkG = 0 & LkB = dν for ν ∈ Γ(T ∗M) . (2.14)

By using that a gauge transformation B → B+dω induces the transformation ν → ν+Lkω,

a gauge in which ν = 0 can be found. Assuming this gauge to be chosen in adapted

coordinates k = ∂
∂X1 allows to gauge the isometry generated by k via minimal coupling:

introducing the gauge field A ∈ Γ(T ∗Σ) which transforms under the local version of (2.12)

as δA = −dε , minimal coupling amounts to the substitution dX1 → DX1 = dX1 + A.

Choosing the gauge A → A − dX1, the gauged sigma model takes the form Sgauged =

S(Xm;G,B) + Sg with

Sg =
1

4πα′

∫
Σ

(
G11A ∧ ?A+ 2G1mA ∧ ?dXm + 2B1mA ∧ dXm − 2A ∧ dλ

)
(2.15)

for m 6= 1. Integrating out the Lagrange multiplier λ yields A = dX1 locally and gives

back the initial sigma model (2.1). Integrating out the gauge field gives

?A = − 1

G11

(
G1m ?dXm +B1m dX

m − dλ
)
. (2.16)

Plugging this back into the gauged action and considering dλ = dX̃1 as a new coordinate,

the resulting action can be written as (2.1) with the new background (g, b) given by the

Buscher rules [14]

g11 =
1

G11
, g1m = −B1m

G11
, gmn = Gmn −

Gm1G1n +Bm1B1n

G11
,

b1m = −G1m

G11
, bmn = Bmn −

Gm1B1n +Bm1G1n

G11
.

(2.17)

5Note that (LkB)ab dX
a ∧ dXb = X∗(LkB) and X∗(dν) = d(X∗ν) for ν ∈ Γ(T ∗M).
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Hence, T-duality can be performed along the direction of an isometry and the dual back-

grounds are related by (2.17). T-duality also introduces a new coordinate one-form dX̃

which can be related to dX1 on-shell by (2.16): identifying A = dX1 and dλ = dX̃1, (2.16)

can be written as

dX̃1 = G1a ?dX
a +B1adX

a . (2.18)

This is the conserved current associated to the isometry (2.12) generated by k = ∂
∂X1 . For

the gauging of (2.1) to be consistent, the global structure of the world-sheet Σ has to be

taken into account [11, 16]. In particular, the gauge field A can have non-trivial holonomies.

For gauging multiple isometries {ki}, further conditions apart from (2.14) arise [18]: with

κi = νi − ιkiB such that ιkiH = dκi and [ki, kj ] = Fmijkm, also

Lkiκj = Fmij κm and ιkiκj + ιkjκi = 0 (2.19)

have to be satisfied. The second condition ensures the gauged sigma model to be free of

anomalies. In the next section a different approach to duality is developed and the Buscher

rules (2.17) with (2.18) as well as the conditions (2.14), (2.19) are encountered as special

cases.

3 O(d, d)-duality

In this section a new way of performing duality is proposed by redefining the background

and identifying dual coordinates directly. This avoids the procedure of gauging and accord-

ingly circumvents the problem of anomalies. As observed in section 2.2 the admissible gen-

eralized vectors (2.7) satisfying the constraints (2.8) are related by O(d, d)-transformations,

which implies a simultaneous inverse transformation of the generalized metric (2.6). This,

in turn, leaves the Hamiltonian density (2.5) and the energy momentum tensor (2.8) in-

variant. This duality will be described in detail in the following.

3.1 Field redefinitions and duality

The admissible generalized vector AP will be transformed by6

T =

(
t11 t12

t21 t22

)
∈ O(d, d) with

t11 ≡ (t11)aā : TM → TM

t12 ≡ (t12)aā : T ∗M → TM

t21 ≡ (t21)aā : TM → T ∗M

t22 ≡ (t22)a
ā : T ∗M → T ∗M

(3.1)

as AP → T −1AP . In order for the first constraint in (2.8) to remain satisfied the generalized

metric has to be conjugated with T simultaneously:

H(G,B)→ T tH(G,B) T ≡ H(g, b) . (3.2)

6The bar over the index indicates the one associated to the domain. As to operations with linear

maps, inversion swaps indices (e.g. t−1
11 ≡ (t11)āa : TM → TM) and transposition commutes them (e.g.

tt11 ≡ (t11)ā
a : T ∗M → T ∗M). The combination f−t = (f−1)t is used as well.

– 6 –
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By (2.5), this simultaneous transformation leaves the Hamiltonian density invariant, which

may give an equivalent theory. This specific equivalence will be called T -duality and will be

explored in the rest of the paper. In (3.2), H(g, b) refers to a redefinition of the background

in order for the generalized metric to have the standard form (2.6) as follows.

Field redefinition ([23]). An O(d, d)-rotated generalized metric T tH(G,B)T takes the

standard form (2.6) with respect to the new background (g, b). In terms of the automor-

phism7

γ = t22 + (G−B)t12 : T ∗M → T ∗M (3.3)

the new background (g, b) is given by

g = γ−1Gγ−t & b = γ−1(γ δt −G)γ−t (3.4)

with δ = t21 + (G−B)t11.

In [23] the field redefinition (3.4) was used to study the geometric structure of the

target space low energy effective theory for (2.1). In particular, (3.3) induces an anchor for

a Lie algebroid describing the associated geometry and gauge theory.

The simultaneous rotation of the generalized vectors (2.7) gives rise to redefined phase

space coordinates. They can be read-off from the transformation

AP → T −1AP (X) ≡ A
P̃

(X̃) =

(
∂σX̃

2πα′P̃

)
(3.5)

and analogously for the winding vector. Using (2.11) the dual pair becomes

∂σX̃
ā = −(t12)āmGma ∂τX

a +
[
(t22)āa + (t12)āmBma

]
∂σX

a ,

P̃ā = 1
2πα′

{
−(t11)ā

mGma ∂τX
a +

[
(t21)āa + (t11)ā

mBma
]
∂σX

a
}
.

(3.6)

For determining the dual coordinates the τ -derivative of Xa is required as well. In principle,

∂τ X̃
ā can be computed from the general equation for the dual momentum P̃ . Since the

Hamiltonian densities with respect to momentum and winding coincide by (2.4), it is easier

to deduce it directly from the winding vector A
W̃

(X̃) as above:

∂τ X̃
ā = −(t12)āmGma ∂σX

a +
[
(t22)āa + (t12)āmBma

]
∂τX

a ,

W̃ā = −1
2πα′

{
−(t11)ā

mGma ∂σX
a +

[
(t21)āa + (t11)ā

mBma
]
∂τX

a
}
.

(3.7)

Having determined both world-sheet derivatives of the dual coordinates8 X̃ ā, the main

result of this paper can be formulated.

7Invertibility of γ was shown in the appendix of [23]. In particular, the target-space metric G being

positive definite is a sufficient condition.
8Using the relations between the elements of the O(d, d)-matrix T −1, (3.6) and (3.7) satisfy the constraint

∂τ X̃
āP̃ā = ∂σX̃

āW̃ā (2.4) as well.
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O(d, d)-duality. Let {ea}da=1 be a frame for TM and {ea}da=1 its dual. For T ∈
O(d, d; C∞(M)), the sigma model S(X;G,B) (2.1) is T -dual to S(X̃; g, b) on-shell with

the coordinates related via

dX̃ ā =
[
(t12)āmGma

]
?dXa +

[
(t22)āa + (t12)āmBma

]
dXa (3.8)

and the backgrounds related by the field redefinition (3.4), provided

L
t]12e

āG = 0 and L
t]12e

āB = −d
(
t]22e

ā
)
. (3.9)

Here t]12e
ā = (t12)āmem and t]22e

ā = (t22)āme
m. The requirement (3.9) is the integrability

condition for (3.8).

Equation (3.8) is the combination of (3.6) and (3.7). The integrability condition (3.9)

can be deduced by differentiating (3.8) and using the equations of motion (2.2) as well as

ιvH = LvB − dιvB for any vector field v. Thus, in particular, the duality is only valid

on-shell. Further restriction arise from the algebra spanned by the vectors t]12e
ā, which will

be discussed in section 3.2.

O(d, d)-duality can be described in terms of the duality map as follows. By defining

dX = dXaea ∈ Γ(TM ⊗ T ∗Σ), the duality automorphism

D : Γ(TM ⊗ T ∗Σ)→ Γ(TM ⊗ T ∗Σ) ; dX 7→ dX̃ = D(dX) (3.10)

follows from (3.8). In matrix notation it can be written globally as

D = tt12G⊗ ?+
(
tt22 + tt12B

)
⊗ idT ∗Σ . (3.11)

Indeed, the inverse of the duality map (3.11) can be easily determined by the inverse

procedure and reads

D−1 = t12 g ⊗ ?+
(
t11 + t12 b

)
⊗ idT ∗Σ (3.12)

in terms of the dual background (3.4). Hence O(d, d)-duality is invertible. The subsection

is closed with the following observations and remarks.

Duality and isometries. The dual coordinates (3.8) and the integrability condi-

tions (3.9) can be interpreted as follows. As can be seen by comparing (3.9) with (2.14),

the integrability condition ensures the infinitesimal target space diffeomorphism generated

by the vector field t]12e
ā to be an isometry of (2.1). The one-form ν in (2.14) is explicitly

determined to read ν = −t]22e
ā up to exact terms. These special isometries will be called

duality isometries in the following. It can be checked that the dual coordinates dX̃ ā co-

incide with the conserved current Ja associated to the isometry Xa → Xa + ε t]12e
a. In

particular, the duality map (3.11) interchanges the TM -valued coordinate one-forms dX

with the TM -valued conserved currents J = dX̃.

– 8 –
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Is (3.8) a coordinate transformation? By using the Poincaré lemma and the inte-

grability conditions (3.9), (3.8) is locally exact. Then the local primitive for dX̃ ā might

be interpreted as dual pulled-back coordinate X̃ ā. First, this raises the question whether

the coordinates on the target-space are changed, i.e. X̃ ā = X∗(x̃ā), or the embedding is

changed, i.e. X̃ ā = X̃∗(xā). Second, it is not clear if the resulting relation X̃ ā(X) is in-

vertible, i.e. if Xa(X̃) can be found. In particular, both questions are important for the

interpretation of the field redefinition (3.4) due to (3.2), since the new background still

depends on the initial coordinates.9 This also effects the interpretation of (3.12).

In the case of constant O(d, d)-transformations and constant backgrounds, (3.8) can be

integrated directly and the relation between the dual coordinates is invertible: the equations

of motion (2.2) reduces to the wave equation and is solved by Xa(τ, σ) = Xa
+(σ+)+Xa

−(σ−)

with the light-cone coordinates σ± = τ ±σ. Using that O(d, d)-duality with respect to the

unit matrix leaves everything invariant, (3.8) can be integrated to give

X̃ ā
+ =

[
(t22)āa + (t12)ām(Bma −Gma)

]
Xa

+

X̃ ā
− =

[
(t22)āa + (t12)ām(Bma +Gma)

]
Xa
− .

(3.13)

Invertibility of t22 + t12(B ± G) is equivalent to the invertibility of (3.3). Thus in this

case (3.8) gives rise to a proper change of coordinates. Keeping the necessity of a positive

definite metric for invertibility of (3.3) in mind, this shows that O(d, d)-duality includes

the well-known case of the T-duality group O(d, d;Z) for toroidal target-spaces; the trans-

formations have to be integer in order for the periodicities to be preserved (see e.g. [1]).10

The novelty is that O(d, d)-duality gives the precise relation between the dual coordinates.

For the more general case of non-constant backgrounds or non-constant O(d, d)-

transformation the question about invertibility remains open.

Comment on global issues. In the conventional approach to duality by gauging the

isometries, global issues might prevent the “dual” theories from being dual. They are

related to the possibility of having non-trivial holonomies for the newly introduced gauge

fields [11, 16, 17, 32]. This discussion takes place at the level of the gauged sigma model and

cannot be repeated here. In particular, O(d, d)-duality gives equivalent classical theories

by construction.11 However, the global structure of the dual space is determined by the

winding number of dX̃ ā

cwind

(
X̃ ā
)

=

∮
γ
dX̃ ā , (3.14)

with γ a closed curve in Σ. This is related to the winding number of the initial coordinate

one-forms by (3.8).

3.2 A Lie algebroid for duality isometries and consistency

O(d, d)-duality is feasible if t]12e
ā generates the isometries. Moreover, the isometry algebra

has to close and has to satisfy the Jacobi identity. For their part, Killing vector fields are

9I thank the referee for pointing out this problem of interpretation.
10See sections 3.2 and 3.3 for further relations to the known cases.
11Upon taking all the consistency requirements into account.
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closed: [t]12e
ā, t]12e

b̄] is a Killing vector field as well. However, closed duality isometries

require [t]12e
ā, t]12e

b̄] to be a linear combination of the generators t]12e
ā. In this section the

consistency of the isometry algebra is investigated, which can be described in terms of Lie

algebroids [33].

The vector fields t]12e
ā generate non-abelian isometries with algebra[

t]12e
ā, t]12e

b̄
]

=
(
Dā(t12)b̄p −Db̄(t12)āp + (t12)ām (t12)b̄n fpmn

)
ep

= Fm̄
āb̄ t]12e

m̄ +Rmāb̄ em
(3.15)

with the differential Dā = (t12)āmem. Hence the duality isometries do not span a closed

algebra in general. The defect is given by R ∈ Γ(
⊗3 TM), which can locally be written as

Rabc = (t12)bm∂m(t12)ca − (t12)cm∂m(t12)ba

− 1
2

[
(t12)ma∂m(t12)bc − (t12)ma∂m(t12)cb

]
+ (t12)bm (t12)cn famn − (t12)ma (t12)bn f cmn − (t12)cm (t12)na f bmn .

(3.16)

With respect to this defect the structure constants Fā
b̄c̄ can be determined in terms of the

structure constants [ea, eb] = fmabem:

Fa
bc = 1

2

[
∂a(t12)bc − ∂a(t12)cb

]
+ (t12)bm f cam − (t12)cm f bam . (3.17)

Thus the isometry algebra (3.15) closes if the defect (3.16) vanishes,12 which is assumed

in the following. This condition can conveniently be studied in terms of Lie algebroids.

t]12 maps T ∗M to TM and can therefore be applied to general one-forms ξ, η: t]12ξ =

ξā(t12)āmem. Then the Lie bracket gives[
t]12ξ, t

]
12η
]

=
(
ξm̄D

m̄ηā − ηm̄Dm̄ξā + ξm̄ ηn̄ Fā
m̄n̄
)
t]12e

ā . (3.18)

From this a Lie algebroid (T ∗M, J·, ·K, t]12) can be deduced. The bracket J·, ·K : Γ(T ∗M) ×
Γ(T ∗M)→ Γ(T ∗M) and the anchor t]12 have to satisfy

• the Jacobi identity and the Leibniz rule Jξ, fηK = fJξ, ηK +
(
t]12ξ(f)

)
η for all f ∈

C∞(M),

• the anchor property t]12

(
Jξ, ηK

)
=
[
t]12ξ, t

]
12η
]
.

As can readily be seen from (3.18) and the properties of the Lie bracket, the bracket J·, ·K
is given by

Jξ, ηK =
(
ξm̄D

m̄ηā − ηm̄Dm̄ξā + ξm̄ ηn̄ Fā
m̄n̄
)
eā ∀ξ, η ∈ Γ(T ∗M) , (3.19)

which fulfils the anchor property and Leibniz rule by construction. This construction of a

Lie algebroid is analogous to the one introduced in [23]. From the anchor property it follows

that if the Lie algebroid bracket satisfies the Jacobi identity, the isometry algebra (3.15)

satisfies it as well. It is more instructive to study the Jacobi identity for J·, ·K. To this end,

two cases are distinguished.

12This condition is a priori only sufficient: although other decompositions of F and R in (3.15) could

not have been found there might be other possibilities. However, for an antisymmetric t12 this is a natural

construction.
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• t12 antisymmetric: the bracket (3.19) can be written as

Jξ, ηK = L
t]12ξ

η − ι
t]12η

dξ = [ξ, η]K , (3.20)

i.e. it coincides with the Koszul bracket. It satisfies the Jacobi identity and an-

chor property (the anchor being t]12) if and only if t12 is a Poisson bi-vector; this is

equivalent to the vanishing of R (3.16). Hence for t12 antisymmetric the isometry

algebra (3.15) is a Lie algebra if and only if t12 is a Poisson bi-vector.

• t12 symmetric: the structure constant becomes very simple such that the Lie alge-

broid bracket (3.19) reduces to

Jξ, ηK = ι
t]12ξ

dη − ι
t]12η

dξ . (3.21)

The Jacobi identity can be checked by using vanishing of (3.16) and the Jacobi

identity for the Lie bracket.

The case of an antisymmetric t12 is of particular importance as it covers the case of β-

transformations discussed in section 3.3.

Now the second condition in (3.9) will be discussed. Assuming R = 0, consistency of

the integrability conditions (3.9) with the algebra (3.15) requires the two ways of evaluating

L
[t]12e

ā,t]12e
b̄]
B to coincide, namely to assure

L
Fm̄āb̄t

]
12e

m̄B = [L
t]12e

ā , Lt]12e
b̄ ]B . (3.22)

Using LfvB = fLvB + df ∧ ιvB for any vector field v and any function f , this leads to

dFm̄
āb̄ ∧ ι

t]12e
m̄B − Fm̄āb̄ d

(
t]22e

m̄
)

= −d
[
L
t]12e

ā

(
t]22e

b̄
)
− L

t]12e
b̄

(
t]22e

ā
)]
. (3.23)

This in turn is only consistent if the left-hand-side is closed, which — using (3.9) — is

equivalent to

dFm̄
āb̄ ∧ ι

t]12e
m̄H = 0 . (3.24)

The two immediate solutions are as follows:

• Fm̄āb̄ constant. This depends on the choice of frame {ea}da=1 for TM . Choosing a

holonomic frame such as the coordinate frame, F = 0 for t12 symmetric. For t12

antisymmetric, ∂d∂a(t12)bc has to vanish in a holonomic frame; the components are

restricted to be at most linear in the coordinates.

• ι
t]12e

m̄H = 0. This is equivalent to ι
t]12e

m̄B+t]22e
m̄ being closed. Since this requirement

is not met in the simplest examples of duality (see [34] or section 3.5), this option

will be discarded.
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Although other solutions to (3.24) are possible as well, in particular combinations of the

two presented above, only the first one is applied in the following. For a constant F , the

consistency condition (3.23) reduces up to exact terms to

L
t]12e

ā

(
t]22e

b̄
)
− L

t]12e
b̄

(
t]22e

ā
)

= Fm̄
āb̄ t]22e

m̄ . (3.25)

The results of this section bridge to the well-known approaches to T-duality via gauging

of (multiple) dualities [18]. This will be discussed in the following.

The Courant algebroid for duality isometries and consistent gauging. Above

the consistency conditions on t]12e
ā and t]22e

ā have been formulated. For the former this

was accomplished by the introduction of the Lie algebroid (T ∗M, J·, ·K, t]12). For the latter

the condition (3.25) has to be satisfied. Both conditions can be combined into a Courant

algebroid [35]. The purpose for this is to bridge to the well-known approaches to T-duality

via gauging of (multiple) dualities [18].

It is convenient to introduce κā ∈ Γ(T ∗M) given by κā = t]22e
ā + ι

t]12e
āB. Then the

dual coordinates (3.8) read

dX̃ ā =
[
(t12)āmGma

]
?dXa + κāa dX

a (3.26)

and with H = dB the integrability condition (3.9) becomes

L
t]12e

āG = 0 and ι
t]12e

āH = −dκā . (3.27)

Evaluating the second condition for the commutator gives

ι
[t]12e

ā,t]12e
b̄]
H = −d

(
L
t]12e

āκ
b̄
)

(3.28)

As one can see, the one-form L
t]12e

āκ
b̄ corresponds to the vector [t]12e

ā, t]12e
b̄]. This suggests

to combine t]12e
ā and κā to a generalized vector with Dorfman bracket

q
t]12e

ā + κā, t]12e
b̄ + κb̄

y
D

= [t]12e
ā, t]12e

b̄] + L
t]12e

āκ
b̄ − ι

t]12e
b̄dκ

ā + ι
t]12e

āιt]12e
b̄H , (3.29)

where the last two terms add-up to zero by the integrability conditions. The bracket (3.29)

is the H-twisted Dorfman bracket introduced in [24]. In [25] and more recently in [26], this

bracket was studied in the context of isometries. Since the last two terms of (3.29) vanish

by integrability (3.9) and for R = 0, closedness of the bracket requires

L
t]12e

āκ
b̄ = Fm̄

āb̄ κm̄ ; (3.30)

then
q
t]12e

ā + κā, t]12e
b̄ + κb̄

y
D

= Fm̄
āb̄(t]12e

m̄ + κm̄). Using the definition of κā, this can

be seen to agree with the consistency condition (3.25) up to exact terms. Hence the

closedness of the bracket (3.29) is equivalent to closedness of the isometry algebra (3.15)

and the consistency condition (3.25). Therefore consistency of the isometry algebra with the

integrability conditions is summarized by the Courant algebroid (TM⊕T ∗M, J·, ·KD, prTM ).
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The conventional approach to dualities is based on gauging the isometries of the sigma

model [11, 14]. For multiple (non-abelian) isometries this procedure suffers from the intro-

duction of anomalies [18]. Their absence is guaranteed if the generalized vectors t]12e
ā +κā

satisfy 〈
t]12e

ā + κā, t]12e
b̄ + κb̄

〉
= ι

t]12e
b̄κ
ā + ι

t]12e
āκ

b̄ = 0 (3.31)

with 〈·, ·〉 the canonical inner product on the generalized tangent bundle. In terms of the

Dorfman bracket (3.29), this condition forces the subbundle spanned by t]12e
ā + κā to be a

Dirac structure.13 By the duality map (3.11), (3.29) can be interpreted as the algebra of the

conserved currents (3.8). Then (3.31) ensures anomaly freedom of the current algebra [25].

As the present approach avoids gauging the isometries, anomaly free currents and

thereby the Dirac structure is not needed. In this sense, O(d, d)-duality requires less

conditions than the conventional procedure in principle.

3.3 Examples of O(d, d)-duality: the prototypes

This section is devoted to examples for the duality just introduced. Beside the expected

symmetries/dualities by diffeomorphisms, gauge transformations and T-duality, a novel

duality induced by β-transformations will be discussed. The coordinate frame { ∂
∂xa }

d
a=1 is

considered for simplicity.

Coordinate transformations. Given an invertible d× d-matrix A, the O(d, d)-matrix

Tdiffeo =

(
A 0

0 A−t

)
(3.32)

can be considered. Applied to the generalized metric it gives

T tdiffeoH(G,B) Tdiffeo = H(AtGA,AtBA) . (3.33)

Therefore Tdiffeo gives rise to a change of frame of the tangent bundle. In respect of O(d, d)-

duality, the integrability conditions (3.9) are satisfied trivially and the dual coordinates are

given by the change of frame dX̃ ā = Aāa dX
a. Since the background transforms with the

inverse, the dual action coincides with the initial one; S(X̃; g, b) = S(X;G,B).

B-transformations. Given an antisymmetric d × d-matrix B corresponding to a two-

form, a B-transformation is given by the matrix

TB =

(
1 0

−B 1

)
. (3.34)

Conjugating the generalized metric with it results in

T tBH(G,B) TB = H(G,B + B) . (3.35)

It corresponds to a gauge transformation for an exact B, i.e. a symmetry of (2.1). The

O(d, d)-duality is again trivial with dual coordinate one-form dX̃a = dXa. Therefore the

dual action becomes S(X̃; g, b) = S(X;G,B + B).

13A Dirac structure is a maximally (d-dimensional) isotropic (zero inner product) and involutive (closed

Dorfman bracket) subbundle of TM ⊕ T ∗M . Maximality is achieved for t]12 surjective.
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T-duality. Defining the d × d-matrix 1k by having 1 as (k, k)-entry and the rest zero,

the matrix

Tk =

(
1− 1k 1k

1k 1− 1k

)
(3.36)

can be considered [36]. From the field redefinition (3.4) the components of the new metric

and two-form can be determined. A tedious calculation leads to

gkk =
1

Gkk
, gka = −Bka

Gkk
, gab = Gab −

GakGkb +BakBkb
Gkk

bka = −Gka
Gkk

, bab = Bab −
GakBkb +BakGkb

Gkk

(3.37)

for a, b 6= k. These are the Buscher rules (2.17) in the kth direction. For the integrability

condition (3.9) to be satisfied, the vector field ek has to be Killing with LekB = 0. Moreover,

vanishing of (3.16) and the Jacobi identity for the Killing algebra (3.15) are trivial for a

single T-duality. Then the dual coordinate one-forms are

dX̃k = Gka ?dX
a +BkadX

a & dX̃a = dXa for a 6= k . (3.38)

HenceO(d, d)-duality yields T-duality as a special case (cf. section 2.3). In particular, (3.38)

coincides with (2.18).

β-transformations. For a antisymmetric bivector field β ∈ Γ(Λ2TM) corresponding to

an antisymmetric d× d-matrix,

Tβ =

(
1 −β
0 1

)
(3.39)

is defined. The transformed background (3.4) induced by this β-transformation is given in

terms of γβ = 1− (G−B)β (3.3) as

g = γ−1
β Gγ−tβ

b = γ−1
β

[
B − (G−B)β(G−B)t

]
γ−tβ .

(3.40)

Moreover, O(d, d)-duality is non-trivial: (3.9) requires β]ea to be a Killing vector with

Lβ]eaB = 0 and consistency of the Killing algebra demands β to be a Poisson bi-vector at

most linear in the coordinates. The dual coordinate one-forms (3.8) are

dX̃ ā = βāmGma ?dX
a + (βāmBma + δāa)dXa . (3.41)

Hence, O(d, d)-duality establishes the classical equivalence between the sigma models

S(X;G,B) (2.1) and S(X̃; g, b) with the coordinates and the backgrounds related by a

β-transformation, provided β is a Poisson structure and satisfies (3.9). This duality will

be called Poisson duality.

The four particular O(d, d)-transformations considered here span O(d, d) [23]. Thus,

by composition non-abelian dualities are in principle covered as well. The question of

conformality of O(d, d)-dual backgrounds will be addressed in the next section.
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3.4 Conformality of O(d, d)-dual backgrounds

As discussed so far, O(d, d)-duality is a classical equivalence of constrained sigma models.

For being a duality of string theory, it has to preserve conformality of the backgrounds.

Change of frames (3.32) and exact B-transformations (3.34) are symmetries and therefore

retain conformality. For T-duality (3.36), the Buscher rules (2.17) have to be supplemented

with a shift of the dilaton φ by − lnG2
kk [14, 15]. By using the techniques of [23], mere

β-transformations, i.e. without taking a dilaton into account, can be shown to destroy con-

formality of an initially conformal background. In the following, A-exact β-transformations

are argued to be a duality on the quantum-level upon an appropriate shift of the dilaton.

For simplicity, (G,B) is assumed to be conformal with φ = 0.

β-transformations can be related to B-transformations by T-duality:(
0 1∗

1∗ 0

)(
1 0

−B 1

)(
0 1∗

1∗ 0

)
=

(
1 −1∗B1∗

0 1

)
. (3.42)

For simplicity, T-duality in every direction is considered. The unit matrices 1∗ and 1∗
have to be understood in a formal manner; they act as unit on the component matrices but

interchange TM and T ∗M (cf. (3.1)). In particular, 1∗B1∗ is a bivector field
∑

a,b Babea∧eb.
For a complete T-duality the relation between the backgrounds (3.4) can be summarized as

(g+b) = 1∗(G+B)−11∗. With the Killing vectors being {ea}da=1, every direction has to be

isometric. This is only necessary if β has full rank. For a β of lower rank, T-duality in the

linearly independent directions is sufficient and accordingly fewer isometries are required.

The chain (3.42) of O(d, d)-transformations will be performed successively. For the full

T-duality to be a true duality, the dilaton has to be shifted by −1
2 ln det(G+B) [32]. The

next step in the chain (3.42) is the B-transformation. For this to be a duality, B has to be

exact — B = dω with ω a one-form. This gives the background 1∗(G+B)−11∗+ dω. The

final background arising from the last T-duality can be written as

g + b = (G+B)
[
1− (G−B)1∗dω1∗

]−t
= δtβ γ

−t
β . (3.43)

By comparing with the field redefinition (3.4) and (3.3), this reproduces the correct back-

ground arising from a β-transformation (3.39) with β = 1∗dω1∗. Moreover, the last T-

duality induces an additional dilaton shift by −1
2 ln det[1∗(G+B)−11∗ + dω]. Hence, the

procedure just presented shows that this particular β-transformation gives dual quantum

theories if the dilaton

φ = −1
2 ln det(G+B)− 1

2 ln det[1∗(G+B)−11∗ + dω] = −1
2 ln det(γ1∗dω1∗)

t (3.44)

is introduced.

The shift of the dilaton for the full T-duality is also given by the logarithm of the

determinant of γtT = (1∗)t(G+B). This leads to conjecture that for O(d, d)-duality to be

a duality on the quantum level, the dilaton has to be shifted as

φ→ φ− 1
2 ln det γt . (3.45)
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Changes of coordinates are an exception to (3.45) as they do not require a shift. The re-

definition (3.45) leaves the measure
√
|detG|e−2φ, which is related to the string coupling

constant, invariant. This follows from
√
|det g| =

√
|detG||det γ−1| by (3.4). A more

rigorous way to derive the dilaton shift is to study the change of the path integral mea-

sure [DX] → [DX̃] by (3.8). In particular, up to the world-sheet operations the duality

map (3.11) comprises γt, which enters the Jacobian determinant. A more detailed study

is beyond the scope of this work.

Exact β-transformations. The bivectors found above can be considered exact in the

Lie algebroid A = (T ∗M, [·, ·]A,1∗) with bracket

[ξ, η]A =
(
ξm δ

mn ∂nηa − ηm δmn ∂nξa + ξm ηn δ
mp δnq fkpq δka

)
ea . (3.46)

The components of 1∗ and its inverse 1∗ are written as δab and δab respectively. The Lie

algebroid induces a nilpotent exterior derivative on Γ(Λ•TM). For a vector field α it reads

dAα(ξ, η) = (1∗ξ)α(η)− (1∗η)α(ξ)− α([ξ, η]A) . (3.47)

It follows from the anchor property 1∗[ξ, η]A = [1∗ξ,1∗η] that 1∗dω1∗ = dA(1∗ω). There-

fore, an admissible bivector β is Poisson and of the form

β = dAα with α = 1∗ω , ω ∈ Γ(T ∗M) , (3.48)

and consequently exact with respect to A.

3.5 Poisson duality for T3 with H-flux

As an easy example for Poisson duality, the flat euclidean three-torus T3 with

G = (dx1)2 + (dx2)2 + (dx3)2 & B = hx3 dx1 ∧ dx2 (3.49)

is considered. This approximate string background is the standard toy example for dis-

cussing non-geometric backgrounds [34]. Crucial in this discussion is the global structure

of the background: it has to be periodic in every direction. Using Lfvξ = fLvξ + df ∧ ιvξ
for any vector field v and due to (3.9), it turns out that the only admissible β-

transformations (3.39) for duality are given by constant Poisson structures with vanishing

βa3 and β12 constant. Thus the only possibility is

β = −c ∂

∂x1
∧ ∂

∂x2
(3.50)

with c ∈ R. This is a trivial Poisson structure with the only non-trivial Poisson bracket

being {x1, x2} = c. Being constant, it is A-exact as well. The duality isometry is generated

by the vectors β]dx1 = ∂
∂x2 and β]dx2 = − ∂

∂x1 . These are Killing vectors for the metric

G and satisfy Lβ]eaB = 0. Performing the duality, the dual pulled-back coordinate one-

forms (3.8) read

dX̃1 = (1 + chX3)dX1 − c ?dX2 ,

dX̃2 = (1 + chX3)dX2 + c ?dX1 .
(3.51)
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The new background is determined by the field redefinition (3.4) and reads

g =
1

c2 + (1 + c h x3)2

[
(dx1)2 + (dx2)2

]
+ (dx3)2 ,

b =
1

2

c+ 2hx3 + c(hx3)2

c2 + (1 + c h x3)2
dx1 ∧ dx2 .

(3.52)

The procedure of section 3.4 can be applied to this case by using a T-duality along x1 and

x2. Hence for preserving (approximate) conformality the dilaton

φ = −1
2 ln

[
c2 + (1 + c h x3)2

]
(3.53)

has to be introduced by (3.45). The following observations are made.

• For c = 1, this is equivalent to the well-known Q-flux background obtained by apply-

ing T-duality in the x1- and x2-direction of the background (G,B) with a subsequent

translation14 x3 → x3 − 1
h [34]. Going once around the x3-cycle (x3 → x3 + 1) is

a periodicity only upon applying a β-transformation to (g, b). As this transforma-

tion is no symmetry of S(X̃; g, b) in general, this background is referred to as being

non-geometric with monodromy a β-transformation.

• In general, the monodromy upon x3 → x3 +1 for (3.52) is given by the O(3, 3)-matrix

Tmono =



1− ch 0 0 0 −c2h 0

0 1− ch 0 c2h 0 0

0 0 1 0 0 0

0 −h 0 1 + ch 0 0

h 0 0 0 1 + ch 0

0 0 0 0 0 1


, (3.54)

which is a combination of β- and B-transformations. This means that x3 → x3 + 1

gives the same background as T tmonoH(g, b)Tmono; thus Tmono is the transition function

for (3.52).

As being inequivalent to the Q-flux background, (3.52) with (3.53) is an example of a new

approximate non-geometric background.

4 Conclusions

In this paper an alternative approach to dualities based on equivalent classical backgrounds

has been explored. While covering the known symmetries and T-duality, duality through β-

transformations is included as well: for A-exact Poisson bivectors and an appropriate shift

of the dilaton they are shown to provide dual backgrounds. The key ingredient besides a

redefinition of the background is the relation between initial and dual coordinate one-forms.

14This is not a symmetry.
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Since the method is in principle not restricted to constant O(d, d)-transformations,

non-abelian dualities can be treated as well. The present findings allow for decomposing

them into the four generating classes — diffeomorphisms, B-transformations, T-dualities

and β-transformations. It would be interesting to study non-abelian duality more detailed

in this context. Related to this, the connection to Poisson-Lie T-duality [37, 38] deserves

further attention. There the condition for the existence of isometries present here is relaxed

by having currents which are not conserved but obey an extremal surface condition.

Although the classical duality has been discussed to a big extent, the quantum aspects

of O(d, d)-duality are barely studied. In particular, the conjecture for the general shift of

the dilaton needs to be verified more thoroughly. Moreover, the discussion lacks a clear

criterion for conformality of a dual background and in particular a criterion for the necessity

of exact B-transformations. The arguments presented here rely on the symmetries and T-

duality. A discussion of global aspects of the procedure from the quantum field theory

point of view might be helpful.

Due to the problem of invertibility of the primitive of (3.8) discussed in section 3.1,

it is not clear yet whether O(d, d)-duality goes beyond the well-known O(d, d;Z)-duality

for toroidal backgrounds. However, it avoids the procedure of gauging isometries with the

associated problem of possible non-trivial holonomies and provides a direct relation between

the dual coordinates via (3.8) (cf. (3.13)). Moreover, all the conditions known from the

conventional approach of gauging isometries are recovered and interpreted in a geometric

fashion in terms of Lie and Courant algebroids. Furthermore, the approach of O(d, d)-

duality has lead to the construction of a new (approximate) non-geometric background.

Thus it seems to provide a fertile (at least) alternative approach to target-space dualities.

The conclusion will be closed with a speculation about non-commutative geometry.

Having the relation between initial and dual coordinates, it is possible to study the occur-

rence of non-commutative coordinates for closed strings due to dualization (see [39–46]).

Given a Poisson structure β on T ∗M , the Poisson bracket of the coordinates is given by

{Xa, Xb} = (X∗β)(dXa, dXb). In principle this allows for computing the Poisson bracket

(X̃∗β̃)(dX̃ ā, dX̃ b̄) by using (3.8). However, as the Hamiltonian remains unchanged under

duality, the Poisson structure is expected to be preserved. As mentioned above, for the

derivation of the equations of motion (2.2) possible boundary terms due to winding are

neglected; they are of the form ∫ ∞
−∞

dτ [Wa δX
a]σ=2π
σ=0 . (4.1)

For non-vanishing canonical winding Wa at σ = 0, 2π, this gives rise to additional boundary

conditions which possibly change under duality. Then a proper treatment of these might

give rise to non-commutative structures analogous to the open string case (see e.g. [47–49]).
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