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1 Introduction

Quantum mechanics, as is well appreciated, is characterized by an important feature, en-

tanglement. While the colloquial usage of the word “entanglement” often simply refers to

presence of correlations which could simply be of classical nature, nature of quantum en-

tanglement transcends this interpretation. A natural question is to segregate and quantify

in a given quantum state the genuinely quantum parts of entanglement from those that

are inherited from underlying classical correlations.

One way to proceed would be to use the intuition garnered from Einstein-Podolsky-

Rosen (EPR) like entangled states, which are non-product (pure) states in the quantum

Hilbert space. One of the characteristic hallmarks of these states as elucidated by Bell [1]

is that they fail to satisfy the Bell inequality (and hence its generalization, the CHSH

inequalities). We now understand quite well that this means that the entanglement inherent

in the EPR state is a genuine quantum aspect and relatedly that one cannot invoke some

local hidden variable (LHV) to describe the quantum state. A-priori one might have

thought that the Bell/CHSH inequalities provide a complete characterization of the nature

of entanglement.

While for pure states this is true, the state of affairs is much less clear in case of mixed

states. Consider a bipartite system in a state ρ with two Hilbert spaces which we will

refer to as the left and right Hilbert space, HL and HR respectively. Such a state is called

separable if it can be written as

ρ =
∑

i

pi ρ
R
i ⊗ ρLi ,

∑

i

pi = 1 , pi ≥ 0 , (1.1)
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otherwise it is called entangled. Physically this definition attempts to encode the fact

that separable states are classically correlated as they can be produced using only local

operations and classical communication (LOCC).1 In particular, it introduces a distinction

between the correlations that are classical and those that ought to be considered quantum.

In analogy with pure states above, one would then be inclined to think that even in the

case of mixed states any entangled state violates some Bell inequality. Surprisingly this is

not true, as demonstrated by Werner in [2], where mixed entangled states that can never-

theless be described by a LHV model were constructed. In some sense, despite manifesting

some quantum correlation, these states ought to be viewed as local as they are not in ten-

sion with the notion of local realism.2 Furthermore, if we have access to several copies of

the state then it is sometimes possible using only LOCC to distill a new state that violates

some Bell inequality [4] (see [5] for details on distillation). One might then be led to the

intuition that this process should be achievable starting from any mixed state; therefore the

only states that always satisfy all Bell inequalities are the separable ones. Unfortunately,

even this intuition fails; to put it mildly the boundary between classicality and quantum-

ness is rather fuzzy with no clear demarcation. The main lesson we wish to emphasize is

one ought to distinguish different notions of entanglement in the quantum realm.

Because of the intricate nature of entanglement for mixed states, several measures of en-

tanglement have been proposed. The concept of distillation for example can be used to de-

fine the distillable entanglement as a measure of how much pure entanglement it is possible

to extract from some state using only LOCC. On the other hand the entanglement of forma-

tion quantifies the amount of pure entanglement required to create a given state.3 In case

of pure states these measures are equal and agree with entanglement entropy (for a com-

prehensive review on entanglement measures see [6]). Unfortunately the drawback is that

these measures cannot be computed because they are given by variational expressions over

possible LOCC protocols. A more pragmatic approach is to therefore consider a quantity

that is computable [7] — this leads us to the consideration of entanglement negativity which

will form the focus of the present investigation. Heuristically, the concept uses the spec-

tral data of the density matrix4 (sometimes called entanglement spectrum) to ascertain the

amount of entanglement inherent in the mixed state (cf., section 2 for a precise definition) .

While the above discussion has been firmly rooted in the realm of quantum mechanics,

one expects that many of these issues generalize to relativistic quantum field theories, see

e.g., [8]. Understanding the nature of entanglement in different quantum states in this

context is not only interesting in its own right, but also from the potential connections

with holographic dualities. Indeed, the geometrization of the notions of entanglement

entropy in the gauge/gravity context for holographic field theories as originally proposed

in [9, 10] (and made geometrically covariant in [11]) makes one wonder if there are further

1LOCC for two parties consists of steps in each of which any party is allowed to perform local measure-

ments and communicate the outcome to the other using classical channels.
2For a discussion on the properties of Werner states in the context of teleportation see e.g., [3].
3These measures must be interpreted in an asymptotic sense. They give extremal rates achievable when

one has many copies of the state ρ.
4We actually need the spectral data of an auxiliary matrix constructed from the density matrix; we will

be more precise below.
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lessons one can learn by understanding the distinct notions of entanglement in the context

holographic field theories.

Moreover, the connections between geometry and entanglement as we now are starting

to understand are perhaps much more intimate. The original arguments espoused in [12]

and [13, 14] suggest a close association between entanglement inherent in a quantum state

and the realization of the holographic dual in terms of classical geometry. The relation

between entanglement and the emergence of a macroscopic spacetime, is further bolstered

by the arguments of [15] who suggest an intimate connection between EPR like states

and Einstein-Rosen bridges, succinctly summarized by the catchphrases “ER =EPR” or

“entanglement builds bridges”.5

While these fascinating developments hint at an underlying structure wherein entangle-

ment of quantum states plays an important role in emergence of macroscopic geometry and

gravitational physics from the microscopic quantum dynamics, it is fair to ask whether the

different notions of entanglement as described above have any useful intuition to impart in

explicating the general structure. Does the spacetime geometry care if the entanglement is

EPR like, or if it undistillable, or if the quantum entanglement is contaminated by classical

correlations? These are, we believe, interesting questions whose answers may potentially

shed some light into the geometrization of quantum entanglement.

In this paper, we undertake a modest step in this direction by studying the properties

of entanglement negativity, which as previously mentioned is a computable measure of

entanglement, in relativistic field theories. We begin in section 2 by reviewing the necessary

definitions in quantum mechanics and use these to guide our intuition for negativity in

simple examples. We first show quite generally that the entanglement negativity of a

thermofield double state (the pure entangled state in a tensor product Hilbert space) has

a very simple expression in terms of the difference of free energies.

While this result is a corollary of a more general result known already in [7] relating

the entanglement negativity of pure states in a bipartite system to a particular Rényi en-

tropy (at index 1
2) of the reduced density matrix for one of the components, it casts the

general result in simple terms, which in turn allows us to extract some lessons. We argue

for instance in section 3 that it allows us to recover the negativity of the vacuum state of

a CFTs for a spherical partitioning of the spatial geometry. In particular, employing the

conformal mapping developed in [22], we give results for the entanglement negativity for

spherical regions for d-dimensional CFTs. In this context it bears mentioning that the re-

sults for entanglement negativity have been obtained in 2-dimensional CFTs by employing

the replica trick in [23, 24]. These results are of course more powerful and express the com-

putation of the entanglement negativity in terms of twist operator correlation functions for

cyclic orbifolds. In section 4 we make some general comments on extracting the negativity

in holographic field theories using the generalized gravitational entropy prescription of [25]

and comment on some general lessons one can learn from these analysis. We conclude with

a discussion of open questions in section 5.

5See also [16] for suggestions relating growth of entanglement with that of spacetime volume created

thus using analogies with tensor networks and [17–21] for attempts to recover gravitational dynamics from

quantum information.
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2 Entanglement negativity

While our ultimate aim is to explore quantum information theoretic ideas in the holo-

graphic realm, we first however need to explain the basic concepts. We therefore begin our

discussion with a review of the salient issues relevant for discussing entanglement negativity

in quantum mechanics, and postpone generalizations to relativistic quantum field theories

to a later stage.

As discussed in section 1, given a density matrix describing a mixed state of some bi-

partite system it is natural to ask whether there is any way we can reveal if it is separable or

entangled. More generally one could hope to find a criterion to distinguish different kinds of

entanglement in general, which could prove useful in various contexts as discussed hitherto.

A powerful tool in this direction is the so called positive partial transpose criterion

(PPT). Consider the set-up described in section 1 where we have a bipartite system6 in a

tensor product Hilbert space HL ⊗ HR. We pick a basis in the space of each subsystem

| ra〉 and | lα〉 with a ∈ {1, 2, · · · , dim(HR)} and α ∈ {1, 2, · · · , dim(HL)}, making clear

left-right distinction in our notation. A general density matrix ρ (or indeed any operator

O) in the tensor product HL ⊗HR has matrix elements in our chosen basis

ρaα,bβ = 〈 ra lα |ρ |rb lβ〉 . (2.1)

On occasion we will need to also talk about the reduced density matrix of one of the

components HR,L. We define then ρR = TrL(ρ) as the reduced density matrix inherited

for the right subsystem from ρ (similarly ρL). Given such a density matrix, one defines

the partial transpose with respect to the one of the systems, which w.l.o.g. we take to be

the left system.7 Denoting this partial transposed density matrix as ρΓ we have its matrix

elements in the aforementioned basis to be

ρΓaα,bβ = ρaβ,bα = 〈 ra lβ |ρ |rb lα〉 . (2.2)

If ρΓ has non-negative eigenvalues then ρ is said to have positive partial transpose (PPT).

With these definitions one has the following criterion due to Peres [28]

ρ is separable =⇒ ρ is PPT

The converse is true only for two-qubit (and qubit-trit) systems but not for higher dimen-

sional Hilbert spaces [29].

As discussed earlier all distillable states are in direct conflict with local realism, so

one could think that only separable states are undistillable. Here the PPT criterion comes

strongly into play showing that this intuition is wrong. In fact it was proved in [30] that

ρ is PPT =⇒ ρ is undistillable

6We focus exclusively on bipartite entanglement. Attempts to understand multipartite entanglement in

the holographic context can be found in [26] (see also [27]).
7With this understanding we denote the partial transpose of ρ by ρΓ, economizing notation by dispensing

with indicating that the left subsystem was transposed.
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For this reason these states are called bound entangled in contrast to free entanglement

that can be distilled. In other words if a state is bound entangled it is not possible to

extract pure entanglement from it using only LOCC. The authors of [30] proposed an in-

teresting analogy with thermodynamics. To prepare a bound entangled state some amount

of entanglement is necessary, but the process is irreversible, as after the state is produced

it is not possible to distill the initial entanglement back.

It is then reasonable to ask whether a PPT state, which is undistillable, is local in the

sense of Werner. Indeed Peres conjectured in [31] that this is the case, i.e., if a state is

PPT it cannot violate any Bell inequality. The question remained open for fifteen years

even if strong evidence has been found in its support (cf., results in [32, 33] and references

therein). Very recently the conjecture has finally been disproved in [34] where a small

violation of a Bell inequality has been found for a particular PPT state. This shows that

local Werner states cannot be exactly identified with undistillable states.

As we see above, while the PPT criterion per se is not conclusive in identifying local

entanglement, it can be used to define a measure of the amount of distillable entanglement

contained in a state. This measure, called negativity, was introduced first in [7] and will

form the focus of our investigation.

Given a density matrix ρ one defines the negativity as measure of entanglement based

on the amount of violation of the PPT criterion8 [7]

Negativity: N (ρ) =
||ρΓ||1 − 1

2
, (2.3)

Logarithmic Negativity: E (ρ) = log ||ρΓ||1 , (2.4)

where ||O||1 denotes the trace-norm of an operator

||O||1 = Tr
(√

O†O
)

. (2.5)

Recall that operationally the trace norm computes the sum of the absolute values of the

eignevalues of an operator ||O||1 =
∑

i |λO,i|, i.e., ||O||1 = Tr|O|. As a result one is effec-

tively computing a “signed trace” with non-trivial weighting for the negative eigenvalues

of the partial transposed matrix ρΓ.

For completeness we also recall the notions of entanglement entropy and entanglement

Rényi entropies:

S(ρ) = −Tr (ρ log ρ) = lim
q→1

S(q)(ρ) ,

S(q)(ρ) =
1

1− q
log Tr (ρq) , q ∈ Z+ (2.6)

From the definition of the trace norm it then follows that the negativity provides a

measure of the number of negative eigenvalues of the density matrix ρΓ. Indeed, passing to

8A comment about the notation: the negativities depend not only on the state ρ but also the biparti-

tioning. We refrain from explicitly indicating the latter to keep the notation clean.
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a Schmidt basis, with eigenvalues of ρΓ being {λ(+)
i , λ

(−)
j , 0k}, with the non-zero eigenvalues

separated by their parity, we see that

Tr(ρΓ) =
∑

i

λ
(+)
i +

∑

j

λ
(−)
j ≡ 1 = Tr(ρ) . (2.7)

Here and in the following we will assume that the density matrix to be normalized as

indicated. Note that while the eigenvalues of ρΓ are different from those of ρ generically,

the trace is invariant under partial transposition. On the other hand

N (ρ) =
1

2





∑

i

|λ(+)
i |+

∑

j

|λ(−)
j | − 1



 =
∑

j

|λ(−)
j | , (2.8)

is the sum of the absolute values of the negative eigenvalues of ρΓ, explaining the termi-

nology. At the risk of being pedantic, let us note that the negativity is a property of the

original density matrix ρ (the partial transpose ρΓ is just a computational aid).

Properties of negativities have been discussed in the literature on quantum information,

cf., [7, 35–38]. By construction both the negativity and the logarithmic negativity fail to

detect bound entangled states and for this reason they do not quantify the total amount

of entanglement inherent in a mixed state of the system. Furthermore it is important

to note that even in case of pure states these quantities do not in general agree with

entanglement entropy. Specifically, the logarithmic negativity gives in general a larger

measure of entanglement, as we will see explicitly below, while the negativity reduces to

one half of the entanglement robustness.9 Agreement with entanglement entropy on pure

states is a property commonly required in the construction of an axiomatic entanglement

measure,10 but the case of negativities is different. This fact distinguishes negativities

from most entanglement measures, such as entanglement of formation and distillation,

which instead reduce to entanglement entropy for pure states. Nevertheless negativities

can be used to quantify entanglement provided that they do not increase under any LOCC,

i.e., they are entanglement monotones. This is indeed the case, as proved in [36].11

The previous properties are shared by both negativities, but each of them has peculiar

properties of interest by itself. The logarithmic negativity for example has been shown

to give an upper bound to the distillable entanglement of ρ and to satisfy an additivity

relation. For a separable state of a bipartite system of two parties A and B one indeed has

E (ρA ⊗ ρB) = E (ρA) + E (ρB) . (2.9)

On the other hand the negativity can be related to the maximal fidelity that can be achieved

in a teleportation protocol that uses ρ as a resource.

9The robustness of entanglement can be understood as a measure of the amount of noise required to

disrupt the entanglement of the system. See [39] for more details.
10For more details on the axioms that have to be satisfied by entanglement measures see [6] .
11It was actually shown that negativities are entanglement monotones under a larger class of operations

called PPT-operations. This is the class of all operations that map the set of PPT states to itself. For

further properties of negativities relatively to PPT-operations see [35].
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It is interesting to note that the negativity satisfies an interesting disentangling theo-

rem. Consider a tripartite system ABC in a pure state |ΨABC〉 and denote the negativity

between A and BC as NA|BC and the negativity between A and B as NA|B. It was recently
proved in [37] that if and only if NA|BC = NA|B then there exists a partitioning of B into

B1 and B2 such that the state of the whole system factorizes

|ΨABC〉 =|ΨAB1〉⊗ |ΨB2C〉 (2.10)

It is an immediate consequence that under the hypothesis of the theorem the negativity

between A and C (denoted as NA|C) is zero, equivalently the reduced density matrix

obtained from |ΨABC〉 by tracing out B factorizes: ρAC = ρA ⊗ ρC . Furthermore, in this

particular case, one has the saturation of a monogamy inequality for the square of the

negativity previously proved by [38] for systems of three qubits

N
2
A|BC ≥ N

2
A|B + N

2
A|C (2.11)

The authors of [37] conjectured that this inequality should be true in general giving nu-

merical results in its support. Finally it interesting to mention that contrary to what one

could expect, the previous inequality does not hold for the negativity itself.

To build some intuition for the negativity, we would like to understand its properties

in simple situations. It should be no surprise to the reader that negativity can be non-

vanishing even in pure states. After all the simple Bell state for a 2-qubit system we can

have an EPR state 1√
2
(|↑↑〉+ |↓↓〉) which is pure, but entangled. It is easy to verify that

for this state the negativity is 1
2 . Perhaps more usefully, the logarithmic negativity is

log 2 which is also the von Neumann entropy for the reduced density matrix for one of the

qubits. It is easy to see that this result is not restricted to two-qubit systems. One has the

following general result:

Logarithmic entaglement negativity of a maximally entangled state ψmax in a bipartite

system equals the Entanglement entropy of the reduced density matrix ρL,Rmax for one of the

subsystems.

E (ψmax) = S(ρR,L
max) . (2.12)

While this statement illustrates the basic feature of this particular measure of entanglement

it is useful to look at a simple generalization that will allow us to build some intuition for

the negativity.12

2.1 Negativity in thermofield state

Let us consider the thermofield double state |Ψ〉β in with HL,R being two copies of the

same physical system. Working in an energy eigenbasis with spectrum {Ei} we have13

|Ψ〉β =
1

√

Z(β)

N
∑

a=1

e−
β

2
Ea |ra la〉 (2.13)

12We find it convenient to notationally distinguish pure and mixed states and therefore denote a pure

state density matrix as ψ =|Ψ〉〈Ψ |.
13We have for simplicity assumed that we are dealing with a finite system where dim(HL)=dim(HR)=N .
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The state in the tensor product is of course pure, but entangled. We want to take a measure

of this entanglement, using the logarithmic negativity E (ψβ) with

ψβ = |Ψ〉β 〈Ψ |β =
1

Z(β)

N
∑

a,b=1

e−
β

2
(Ea+Eb) |ra la〉 〈 rb lb | (2.14)

It is then trivial to see that

ψΓ
β =

1

Z(β)

N
∑

a,b=1

e−
β

2
(Ea+Eb) |ra lb〉 〈 rb la | (2.15)

and

ψΓ†
β ψ

Γ
β =

1

Z(β)2

N
∑

a,b=1

e−β(Ea+Eb) |ra la〉 〈 rb lb | (2.16)

whence it follows that

E (ψβ) = log
Z(β2 )

2

Z(β)
= β (F (β)− F (β/2)) (2.17)

with the final result written in terms of the free energy F (β) = − 1
β logZ(β).

The logarithmic negativity of the thermofield state ψβ is proportional to the difference

of free energies of the system at temperature T and 2T respectively.14 This is main

observation which we will exploit in the sequel to obtain some insight into the nature of

entanglement in quantum field theories. On the other hand the reduced density matrix

ρR,L
β for the right or left systems has a von Neumann entropy S(ρA) which is obtained

directly from Z(β) itself. In the limit β → 0 we recover the previous assertion (2.12) for

maximally entangled states.

2.2 Rényi negativities

For the thermofield state there is a simple relation between the negativity of the total

density matrix and the reduced matrix of one component. This in fact generalizes to pure

states of the bipartite system quite simply. To get further intuition for the negativity, it is

worthwhile to follow the line of thought that led to the replica analysis for entanglement

entropy. Just as we consider the moments of the density matrix in order to compute its

von Neumann entropy, we now examine the moments of the partial transpose ρΓ.

Consider following [23] the notion of Rényi negativity for a density matrix ρ:

exp
(

E
(q)(ρ)

)

= Tr (ρΓ) q =







∑

i

(

λ
(+)
i

)qe
+
∑

j

(

λ
(−)
j

)qe
, qe ∈ 2Z+

∑

i

(

λ
(+)
i

)qo −∑j

(

λ
(−)
j

)qo
, qo ∈ 2Z+ + 1

(2.18)

As is clear from the above definition the parity of the integer q plays a crucial role. Should

we wish to employ the replica construction and recover the logarithmic negativity from

14The simplicity of the final result in terms of the free energy difference is the reason for preferring

the logarithmic negativity over the negativity itself. We henceforth will focus on E and refer to it as the

negativity in the rest of our discussion for convenience.
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these Rényi entropies then we will need to exclusively use the even sequence. The logarith-

mic negativity is obtained by an analytic continuation of even Rényi negativities to qe → 1,

i.e.,

E (ρ) = lim
qe→1

E
(qe) , qe ∈ 2Z+ (2.19)

Using the definition (2.18) we can immediately generalize our considerations for the

thermal state to any pure state ψ =|Ψ〉〈Ψ | of a bipartite system. We have [24]

E
(qe)(ψ) = 2

(

1− qe
2

)

S(qe/2)(ρR,L) ,

E
(qo)(ψ) = (1− q0) S

(qo)(ρR,L) . (2.20)

In particular note that

E (ψ) = S(1/2)(ρR,L) , (2.21)

as the generalization of our previous assertions (2.12) and (2.17). We note that the Rényi

negativities have been used to extract the negativities in two dimensional conformal field

theories (CFTs) in [23, 24]. The technical tool involved is to appropriately map the compu-

tation as in the case of entanglement entropy to that of computing twist operator correlation

functions. We will have occasion to comment on some of their results in due course.

3 Negativity of a CFT vacuum

Having defined the basic quantity of interest let us now turn to its computation in relativis-

tic field theories. To our knowledge the only study of negativity in such as context are the

aforementioned works [23, 24] who examine its behaviour in 2d CFTs. Our interest is in

understanding properties of negativity more generally. In what follows we explain how one

can exploit (2.17) to find explicit results for a certain choice of bipartitioning of the vacuum

state of a CFT. Subsequently we describe how to tackle the problem more generally.

Consider a relativistic QFT in d-dimensions on some background geometry B. As

remarked earlier in section 1 we want to ask how to quantify the entanglement of the

vacuum state in this theory. For the present we are going to use the concept of logarithmic

negativity introduced in section 2 to serve as the measure of interest.

A natural way to proceed is to consider a spatial Cauchy slice Σ and consider some

region A ⊂ Σ. One can ask how degrees of freedom in A are entangled with those in

Ac = Σ\A. By now we have a good idea about the entanglement entropy associated with

the reduced density matrix ρA = TrAc(|0〉〈 0 |) either by direct field theory computation in

d = 2 using the replica trick or using holography in all d.

To be be specific let us examine two situations which are particularly simple, where

the field theory calculation boils down effectively to a spectral computation. Consider a

conformally invariant field theory which we will place on one of two background geometries

for the present:

(i). Bd = R
d−1,1 (Mink): | 0p 〉 is the Minkowski or Poincaré vacuum and A is a ball

shaped region centered w.l.o.g. at the origin

A ⊂ R
d−1 : r ≤ R , ds2B = −dt2 + dr2 + r2 dΩ2

d−2 . (3.1)

– 9 –
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(ii). Bd = Sd−1×R (ESU). |0g 〉 is the global or vacuum and A is a polar-cap region about

the north pole of Sd−1

A ⊂ Sd−1 : θ ≤ θA , ds2B = −dt2 +R2
(

dθ2 + sin2 θ dΩ2
d−2

)

. (3.2)

The reasons for using R to denote the size of the ball as well as the curvature radius of the

sphere in the two distinct cases will become clear momentarily. For these two cases we will

exploit a well known fact about the reduced density matrix ρA to make some inferences

about the negativity.

Let us begin by recalling some salient features elucidated in [22]. For our two regions

the domain of dependence ♦A ⊂ B is conformally equivalent to the hyperbolic cylinder

Hd = Hd−1×R, with the curvature radius of the hyperbolic space Hd−1 being R. Since the

entanglement structure is a property of an entire causal domain, not just a spatial region,

we can as well think of E (ρA) as a function defined on ♦A.15

With this understanding the conformal mapping of [22] implies that the reduced den-

sity matrix ρA is unitarily equivalent to the thermal density matrix for the CFT on the

hyperbolic cylinder16 Hd

ρA = U ρβ U† , β = 2π R . (3.3)

We note that the temperature is set by R and in particular it is independent of θA for

the theory on ESU. This is intuitive on dimensional grounds, though we should note that

the angular dependence is implicit in ρA. For e.g., in computing entanglement entropy a

θA dependence will arise by relating the UV cut-off on ESU with the IR cut-off for the

CFT on the hyperbolic cylinder. It is perhaps more instructive to note that the modular

Hamiltonian defined via ρA = e−HA has an explicit dependence on the angular extent of

the polar-cap (see e.g., [41]).

We interpret this result as follows. The vacuum state of the tensor product HA⊗HAc

for the aforementioned choice of regions is expressible in terms of the thermal state on the

hyperbolic cylinder. Schematically, we can write

ψ0

∣

∣

Mink, ESU
= ψβ

∣

∣

H
, (3.4)

From this observation using (2.17) we infer that (for either |0p〉 or |0g〉)

E (ψ0) = 2π R (FH(2πR)− FH(πR)) , (3.5)

where FH is the free energy of the CFT on the hyperbolic cylinder.

So the problem of computing negativity in the vacuum state of a CFT can thus be

mapped to computing the spectrum on the hyperbolic space. As long as we have this

spectral data we can then immediately infer the negativity of the vacuum. It will turn out

that the negativity has an inherent UV divergence and necessitates a UV regulator for its

computation.

15In the language of [40] we should think of the negativity also as a wedge observable. Thus it is also

subject to the constraints of causality as described therein for entanglement entropy.
16We refer the reader to [22] for explicit expressions of the unitary map.
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To ascertain the divergence structure we note that a UV regulator on Bd maps to an

IR regulator on Hd by virtue of the conformal mapping. We have from the analysis of [22]

the relations

LH = log

(

2R

ǫMink

)

, LH = log

(

2R

ǫESU
sin θA

)

, (3.6)

in the two cases of interest. Here LH is the IR regulator of the length scale in the hyperbolic

cylinder and ǫB is the UV cut-off in the background indicated. This mapping between the

cut-offs can be used to express the volume of the hyperbolic cylinder in terms of field

theory data on Bd. Denoting by Vol(Hd−1) the spatial volume of a unit radius of curvature

hyperbolic space,using the explicit expression mapping the cut-offs (3.6), one obtains the

desired expression for Bd = Minkd,

Vol(Hd−1) = ωd−2

∫ R
ǫ

1
dx (x2 − 1)

d−3
2 , ωd−2 =

2π
d−1
2

Γ
(

d−1
2

)

≃ ωd−2

d− 2

[

(

R

ǫ

)d−2

− (d− 2)(d− 3)

2 (d− 4)

(

R

ǫ

)d−4

+ · · ·+ Vuniv

]

(3.7)

where

Vuniv =

√
π

2

Γ(d−1
2 )

Γ(d2)











(−1)
d
2
−1 2

π
log

(

2R

ǫ

)

, d ∈ 2Z+

(−1)
d−1
2 , d ∈ 2Z+ + 1

(3.8)

Similar expressions can be derived for Bd = ESUd; all we would need to do is replace the

upper limit of the integral in (3.7) by the appropriate cut-off expression given in (3.6).

Armed with this information we now present some expressions for the negativity using

various results already present in the literature.

CFTs in 2 dimensions. In d = 2 we have a simplifying feature that H1 is flat. Indeed

using the result F (T ) = − π
12 (cL+ cR)T

2 L for a thermal CFT at temperature T in spatial

volume L we find

E (ψ0) =
c

2
logX , X =

{

2R
ǫ , B = Mink

2R
ǫ sin θA , B = ESU

(3.9)

One may alternatively have derived this answer by using (2.21) and the familiar result

S(q) = c
6

(

1 + 1
q

)

logX for CFT2.

Free CFTs in various dimensions. The second example where we can explicitly com-

pute the negativity is to use the results for the free energy FH of free fields in various dimen-

sions. Results for free scalars in all dimensions were derived initially in [42] and analogous

results for various theories in d = 3 were obtained in [43]. From here we can immediately

read off the answer for the Rényi entropy at q = 1
2 and thence the negativity using (2.21).

For a free field of mass m in R
2,1 one has the free energy on H at temperature β

explicitly in closed form [43] in terms of the function

Iη,q(m) =

∫ ∞

0
dλλ tanhη(π λ) log

(

1− η e−2π q
√
λ2+m2

)

. (3.10)
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Here η = ±1 encode the statistics (η = +1 for bosons and η = −1 for fermions respectively).

One then finds that the negativity for free massless fields are given as

E (ψη
p) =

Vol(H2)

π

(

Iη,1(0)− 2 Iη, 1
2
(0)
)

=
Vol(H2)

π

∫ ∞

0
dλλ tanhη(π λ) log

(

1− η e−2π λ

(1− η e−π λ)
2

)

. (3.11)

Note that the integral is convergent and all the divergences are encoded in the pre-factor

Vol(H2), which we have already expressed in terms of the relevant variables in eq. (3.7).

The expression for E (ψg) would be similar with an appropriate replacement of the volume

of the hyperbolic space.

Let us also record the expression for the entanglement entropy for the reduced density

matrix ρA for comparison. One has from [43]

S(ρηA) =
Vol(H2)

2π

[

Iη,1(0)−
(7− η) ζ(3)

8π2

]

. (3.12)

We see from (3.11) and (3.12) that the divergent terms in the negativity are (struc-

turally) the same as in the entanglement entropy; the numerical coefficient however is

rather different. Let us define the ratio

Xd =

∣

∣

∣

∣

Cuniv
[

E (ψp)
]

Cuniv [S(ρA)]

∣

∣

∣

∣

(3.13)

where Cuniv[x] denotes the coefficient of the universal term Vuniv occurring in the expression

x. We claim that this quantity gives a precise measure of the negativity for |0〉 in terms of

the entanglement entropy of the reduced density matrix ρA.
For a free massless scalar in d = 3 we find X free

3 ≈ 2.716, while for a massless fermion

X free
3 ≈ 1.888. We note that X3(m) defined formally for massive fields is a monotonically

increasing function of m. We will return to this ratio below once we also obtain analogous

results from holography for strongly coupled CFTs.

Results for Rényi entropies for spherical entangling regions are also known for free

SU(N) N = 4 Super-Yang Mills theory in d = 4 [44]. From these results we find

E (ψp) ≃ N2

[

R2

ǫ2
− 41

24
log

(

R

ǫ

)]

S(ρA) ≃ N2

[

1

2

R2

ǫ2
− log

(

R

ǫ

)]

(3.14)

This is a peculiar example where the structure of divergent terms in the negativity for

the ground state differs from that in the entanglement entropy of the reduced density

matrix induced in the spherical region A.17 From the expressions above we find that

X4 =
41
24 ≃ 1.708 for free N = 4 SYM.

17We find this rather peculiar in light of the conformal mapping described above. Given the free

scalar/fermion and holographic results one might have been tempted to consider the ratio of the negativity

to the entanglement entropy en masse, without isolating the universal part (assuming both computations

be regulated in a similar fashion). We thank Horacio Casini and Tadashi Takayanagi for useful discussions

on this point.
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Holographic CFTs in diverse dimensions. Our final example is the class of holo-

graphic field theories in various dimensions. While the computation of the spectrum of

an interacting CFT on H is in general unfeasible, holography provides us with a simple

answer when the CFTs in question have (a) large central charge and (b) a sufficient gap

in the spectrum. The reason is that the computation of the free energy at temperature

β amounts to finding an asymptotically locally AdSd+1 geometry whose boundary is Hd,

with the Euclidean time direction having a period β. The relevant geometry is well known,

it is the so called hyperbolic black hole in AdSd+1 [45]. The bulk metric is given as

ds2 = −ℓ
2
AdS

R2
f(r) dt2 +

dr2

f(r)
+ r2 dΣ2

Hd−1
, f(r) =

r2

ℓ2AdS

−
(r+
r

)d−2
(

r2+
ℓ2AdS

− 1

)

− 1

(3.15)

whose conformal boundary is indeed H with the desired spatial curvature R. r+ is the

location of the horizon and we have explicitly kept the AdS length scale ℓAdS. We note

that the combination of this length scale and the (d+ 1)−dimensional Newton’s constant

G
(d+1)
N gives the effective central charge ceff of the dual CFT: ceff =

ℓd−1
AdS

16πG
(d+1)
N

.

This geometry has in fact been used before to compute the Rényi entropies for holo-

graphic field theories in [46] and we can in fact use their results to infer the behaviour of

the negativity directly. We first note that the black hole thermodynamic data are given in

terms of the geometric parameters as

T =
d r2+ − (d− 2) ℓ2AdS

4π R ℓAdS r+
, S =

1

4Gd+1
N

rd−1
+ Vol(Hd−1) . (3.16)

Given that we know the free energy and the entropy, we can invoke standard thermody-

namic relation S(T ) = −∂F
∂T to obtain the final result [46]

E (ψp) = π ceffVol(Hd−1)X hol
d = S(ρA)X hol

d , (3.17)

where the dimension dependent coefficient X hol
d for holographic CFTs is a simple function

of the spacetime dimension

X hol
d =

(

1

2
xd−2
d (1 + x2d)− 1

)

, xd =
2

d

(

1 +

√

1− d

2
+
d2

4

)

. (3.18)

This function interpolates rather mildly between X hol
2 = 3

2 and limd→∞X hol
d = (e − 1) ≈

1.718, hinting that up to an overall multiplicative renormalization much of the information

is already contained in the entanglement entropy.

It is also curious to note that in d = 3 one can compare the free field answers to the

strong coupling results obtained above.18 For a free scalar field we find X hol
3 ≈ 0.601X free

3 ,

while for a free Dirac field the proportionality is larger X hol
3 ≈ 0.864X free

3 .

It would be interesting to understand this ratio which suggests a decrease in (distill-

able?) entanglement in the strong coupling regime from first principles. The ratio of our

18Since we are considering ratios of the negativity to the entanglement, the precise normalization of

central charge ceff is immaterial, unlike the case when we compare the entanglement entropy at weak and

strong coupling.
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measure at weak and strong couplings Xhol

X free can decrease either by the total entanglement

being reduced at strong coupling or more simply by just the negativity decreasing. In the

latter case one would only find a decrease in the amount of distillable entanglement at

strong coupling. Ascertaining which of these scenarios is realized might provide new clues

in the relation between geometry and entanglement.

A similar comparison for N = 4 SYM gives a much more intriguing result X hol
4 ≈

0.98X free
4 , where we switched to using the ratio of the coefficient of the universal logarithmic

terms (3.13) owing to the non-trivial behaviour of the free theory answer (3.14). In this

case it is rather curious that the free field result undergoes a very mild reduction as we

crank up the coupling. Similar comparisons for the Rényi entropies of N = 4 SYM at

different q are described in some detail in [47].

Note added in v2. Using the results of [46] one can compute X hol
d in quasi-topological

theories of gravity. These have been used in the literature to model field theories with

unequal central charges (e.g., a 6= c in d = 4).19 The ratio for Gauss-Bonet theory in d = 4

can be expressed in terms of the a and c central charges as

X hol
d=4(c̃)

∣

∣

∣

∣

GB

=
x24 − 1

8

(

(5 c̃− 1)x24 − (13 c̃− 5) + 16 c̃
2 c̃ x24 − c̃+ 1

(3 c̃− 1)x24 − c̃+ 1

)

(3.19)

where c̃ = c
a and x4 now solves a cubic equation:

x34 −
3 c̃− 1

5 c̃− 1
(2x24 + x4) + 2

c̃− 1

5 c̃− 1
= 0 (3.20)

From field theory unitarity considerations bound c̃ ∈ [23 , 2]. It is easy to numerically check

that X hol
d=4(c̃)

∣

∣

∣

∣

GB

monotonically increases and ranges between 1.397 and 2.53 at the ends of

the allowed interval.

4 Holographic negativity: general expectations

Having understood the basic features of entanglement negativity in the vacuum state of a

CFT for bipartitioning by spherical regions, we now turn to more general situations. Most

of the discussion below will be of a qualitative nature, devoted to explaining some of the

general features.

4.1 Arbitrary bipartitions of pure states

Let us start with pure states |Ψ〉. Once again we can focus on bipartitioning a Cauchy

slice of the background geometry for the field theory as Σ = A ∪ Ac. We can then relate

the negativity E (ψ) to the Rényi entropy S(1/2)(ρA) (for the bipartition HA∪HAc). Hence

19Caveat lector : while the quasi-topological theories provide a dial to decouple the central charges in large

ceff theories, we believe they are unphysical, and that there is no unitary field theory whose dual is given

precisely by such a gravitational Lagrangian. Rather they should be treated as in any effective field theory

as the leading terms in a pertubation expansion of higher derivative operators. We leave it to the reader to

decide on the import of the present text which is included to satisfy the curiousity of an anonymous referee.
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as long as we are in a position to compute the Rényi entropies for non-integral values, we

would be able to ascertain the negativity.

To obtain the Rényi entropy at index half, we follow the the holographic computation

of [25].20 For an arbitrary region A we therefore consider replicating the background

geometry B to Bq on which we place our field theory. Bq would as usual be characterized

by having branch points inside A (and its images under the replica construction). Having

obtained the answers for integral q which involves finding bulk saddle points with boundary

Bq we then analytically continue to q = 1
2 . A-priori it is not clear that this last step can

be carried out for all choices of A.

One can infer the following about the negativity in pure states of a CFT from the basic

definition even in the absence of an explicit computation:

• The negativity in a pure state is divergent with the leading divergent term scaling

like the area of the entangling surface ∂A.

• The structure of the sub-leading divergent terms is identical to that encountered

in the computation of the entanglement entropy for the reduced density matrix ρA
in holographic field theories. This follows from the fact that the divergent terms

encountered in the evaluation of the on-shell action in gravity during the computation

of the Rényi entropies is independent of q.

• Perhaps more importantly the value of the negativity E (ψ) is in general larger than

the entanglement entropy S(ρA). The difference we conjecture should be in a geo-

metric factor. To wit, the ratio XA defined analogously to (3.13) should depend just

on the geometry of the entangling surface ∂A.

4.2 Mixed state negativity

In principle in the holographic discussion we do not need to restrict attention to pure states.

In fact, given that the negativity is naturally intended to test mixed states, one ought to be

considering density matrices ρ and attempt to compute their negativity. This as far as we

know has been only achieved in d = 2 CFTs in [24]. While we have no concrete computation

to report in this context, it is worth recording various cases of interest for future exploration.

The general situation which one can consider can be motivated in the following manner.

Given a state in some quantum field theory, we focus on some region A lying on a particular

Cauchy slice. By integrating out the degrees of freedom in Ac = Σ\A we obtain the reduced

density matrix ρA as usual. Now we further bipartition A itself, i.e., divide A = AL ∪AR.

With this decomposition at hand we define the negativity E (ρA) as before by partial trans-

posing the part of the density matrix associated with AL. As concrete examples consider:

(a). Take A to be the spherical region of size R in R
d−1 considered in section 3 in our

previous construction and pick any two mutually adjoining regions for AL and AR

respectively.

20At this stage we have to restrict states | Ψ〉 to have a moment of time reflection symmetry and at

this preferred instant of time. A general prescription for computing holographic Rényi entropies (even for

integer q) in time-dependent states is not available at present.
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(b). A itself could be the composed of two disconnected regions which we can associate

with the bipartitioning of interest.

(c). A ⊂ ΣR in the thermofield double state | Ψ〉β ∈ HL ⊗ HR. One can attempt to

quantify the negativity of ρRβ for the bipartition defined by ΣR = A ∪Ac.

For these situations it no longer suffices to compute a particular Rényi entropy for

some reduced density matrix. Instead one computes the Rényi negativities for the density

matrix ρA, and analytically continues the even sequence of these down to qe → 1 as

explained earlier. The state of the art is the computations of [24] in d = 2 CFTs for certain

specific configurations. For instance, for A ⊂ R being a segment of length ℓ bipartitioned

into two segments of length ℓ α and ℓ (1 − α) respectively the negativity was found to be

E (ρA) =
c
4 log

[

α (1− α) ℓ
ǫ

]

. The computation was made possible by explicit computation

of twist operator correlation functions in d = 2. We refer the reader to [24] for a discussion

of other configurations and corresponding results for finite systems, disjoint regions, etc..

It should be possible to carry out in some specific holographic situations a direct

computation of the relevant quantities. We postpone this to the future, concentrating at

present on the general lessons to be learnt from holography.

Bipartitioning of A and phase transitions? Let us start with cases (a) and (b)

described above where A is partitioned into AL ∪ AR (case (c) is elaborated upon in

section 5). In such cases one commonly considers the mutual information I(AR,AL). This

is defined in terms of the entanglement entropy for the reduced density matrices induced

on the two components:

I(AL,AR) = S(ρAL
) + S(ρAR

)− S(ρA) . (4.1)

If ∂AL ∩ ∂AR 6= ∅ as in case (a), then both the mutual information and the negativity

diverge as the area of this common boundary owing to the UV degrees of freedom in its

vicinity.

There is an interesting phenomenon that occurs for holographic theories21 in case (b)

where A is composed of two disjoint regions. The mutual information vanishes to leading

order in ceff when the regions are widely separated [10]. In the holographic construction

this occurs because one has to pick the globally minimal area surface (subject to boundary

conditions and the topological homology constraint), which allows for phase transitions.

Moreover, this behaviour is well understood in d = 2 in large ceff = c CFTs in terms of

a phase transition in Rényi entropies for widely separated intervals [48, 49]. To understand

this let us describe the region by its end-points as A = [u1, v1] ∪ [u2, v2] ⊂ R. The compu-

tation of the Rényi entropy S(q) involves computing the four-point correlation function of

Zq twist operators Tq
S(q) : 〈 Tq(u1) T̄q(v1) Tq(u2) T̄q(v2) 〉 (4.2)

which depends only on the cross-ratio x = (v1−u1) (v2−u2)
(u2−u1) (v2−v1)

∈ [0, 1] (up to some universal

scale invariant factor). At large central charge c this correlation function undergoes a phase

21A necessary condition in field theory terms is that the field theories have large central charge c ≫ 1 (so

as to admit a planar limit) and a low density of states for energies below a gap set by c.
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transition at x = 1
2 . This is seen by decomposing the above using the OPE expansion and

evaluating the contributions of the conformal block in a saddle point approximation (valid

for large c). For small x the result is dominated by the s-channel factorization but for

x > 1
2 the t-channel factorization takes over. In the bulk the transition is between a single

connected surface and two disconnected surfaces computing S(A).

One might anticipate that a similar behaviour will pertain in the negativity as well

since to compute the negativity one instead evaluates [24]

E : 〈 Tqe(u1) T̄qe(v1) T̄qe(u2) Tqe(v2) 〉 (4.3)

Up to a switch of the insertions u2 ↔ v2 the computation is very similar to the one required

for Rényi (4.2). The correlator (4.3) has a non-trivial dependence on the cross-ratio x, in

addition to some universal contribution arising from scale invariance. This seems to suggest

that there ought be a similar phase transition in the negativity at x = 1
2 for large central

charge theories.

The argument however appears to be a bit more subtle than suggested above.22 To see

the issue first consider the four-point functions relevant for the Rényi computation (4.2).

By a suitable conformal transformation we map this to

〈 Tq(0) T̄q(x) Tq(1) T̄q(∞) 〉 ≡ Fq(x) (4.4)

and we recall that Tq is a twist or anti-twist operator with dimensions

hq = h̄q =
c

24

(

q − 1

q

)

. (4.5)

It is sufficient to understand the behaviour of this function, since one can by utilizing

the swap u2 ↔ v2 map the four-point function required for the negativity (4.3) to above.

Tracking through the conformal transformations one finds [24]

〈 Tq(u1) T̄q(v1) T̄q(u2) Tq(v2) 〉
〈 Tq(u1) T̄q(v1) Tq(u2) T̄q(v2) 〉

= (1− x)8hq

Fq

(

x
x−1

)

Fq(x)
(4.6)

We thus have a direct link between the two computations and all we need is the

behaviour of the function Fq(x). One has control on this function for x ∈ [0, 1] from the

analysis of [49] in the large c limit (cf., footnote 21), which can be used to argue that

the Rényi entropies undergo a phase transition. To make an argument for the negativity

however requires that we also control the function outside this domain. It is tempting to

conjecture that the phase transition does indeed happen and moreover one encounters a

similar behaviour in higher dimensions. We leave a more detailed analysis for the future.

5 Discussion

In this paper we have focussed on properties of entanglement negativity, defined as a

measure of distillable entanglement in a given state of a quantum system. The rationale

22We thank Tom Hartman and Alex Maloney for discussions on this issue.
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for its definition lies in understanding the entanglement structure of mixed states. To gain

some intuition for this quantity we explored its properties in simple states such as the

vacuum of a CFT in various dimensions. While we laid out some general expectations for

the behaviour of negativity in holographic field theories more generally, we did not offer

any concrete computations in supporting evidence. We hope to remedy this in the near

future. It is nevertheless useful to take stock and examine some of the questions posed by

the analysis we have undertaken.

First of all, it is interesting to ask if there is some intrinsic meaning to the geometric

pre-factor XA. Since E provides only an upper bound on the distillable entanglement, what

physical interpretation, if any, should be ascribed to its being greater than the entanglement

entropy? Can one think of XA ceff as a measure of the effective number of Bell pairs that

can be distilled out of a pure state in a CFT?

We have also seen earlier that this function renormalizes and for spherically symmetric

regions XA it was smaller (in magnitude) at strong coupling. Does this reduced amount

in distillable entanglement have a fundamental significance in how spacetime geometry is

related to the presence of entanglement? It would be instructive to know whether one can

formalize some statement along these lines in a quantitative fashion. At a more prosaic

level it would be interesting to understand this function both as a function of the state ψ

as well as the geometry of the region A.

Secondly, all of our discussion has been restricted to density matrices at a moment of

time symmetry (or in special cases static density matrices). This allowed us in the general

context to make use of the generalized gravitational entropy construction of [25] to compute

the Rényi entropies and negativities for integer values of the index q. These are clearly

special situations and one would like to be able to make statement for time-evolving states.

As in the case of entanglement entropy extending the construction to dynamical situations

could perhaps teach us some new lessons about spacetime and entanglement.

As a final comment, we turn to the situation where A is a single connected region, but

one has a mixed state on the entire Cauchy slice Σ (denoted ρΣ) (case (c) in section 4.2).

As remarked earlier one of the main reasons to focus on negativity is to understand the

precise nature of entanglement in mixed states. In the holographic context one encounters

an interesting feature for the entanglement entropy of reduced density matrices ρA induced

from a parent thermal state. When A is a sufficiently large region of the Cauchy slice one

finds an interesting phenomena dubbed entanglement plateaux [50]: S(ρA) = S(ρAc)+SρΣ ,

i.e., Araki-Lieb inequality [51] is saturated. This behaviour has been argued to be robust

in holographic field theories for finite systems at large ceff.

One can interpret this to mean that the entanglement inherent in ρA has two distinct

contributions: (i) the quantum entanglement between the region and its complement en-

capsulated in S(ρAc) and (ii) correlations built into the thermal density matrix SρΣ . This

distinction seems to suggest that in this regime there is a clear demarcation in the degrees

of freedom inside A in terms of their entanglement properties [52] (see also [53] for related

considerations). Indeed this interpretation is natural from the perspective of the disentan-

gling theorem for tripartite systems described in section 2. The thermofield double state

which purifies the density matrix ρΣ factorizes as in (2.10) with B = HA. It would be fas-

cinating to see this arise directly by computing the negativities in the holographic context.
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[44] D.V. Fursaev, Entanglement Rényi entropies in conformal field theories and holography,

JHEP 05 (2012) 080 [arXiv:1201.1702] [INSPIRE].

[45] R. Emparan, AdS/CFT duals of topological black holes and the entropy of zero energy states,

JHEP 06 (1999) 036 [hep-th/9906040] [INSPIRE].

[46] L.-Y. Hung, R.C. Myers, M. Smolkin and A. Yale, Holographic calculations of Rényi entropy,
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[48] M. Headrick, Entanglement Rényi entropies in holographic theories,

Phys. Rev. D 82 (2010) 126010 [arXiv:1006.0047] [INSPIRE].

[49] T. Hartman, Entanglement entropy at large central charge, arXiv:1303.6955 [INSPIRE].

[50] V.E. Hubeny, H. Maxfield, M. Rangamani and E. Tonni, Holographic entanglement plateaux,

JHEP 08 (2013) 092 [arXiv:1306.4004] [INSPIRE].

[51] H. Araki and E.H. Lieb, Entropy inequalities, Commun. Math. Phys. 18 (1970) 160

[INSPIRE].

[52] M. Headrick, General properties of holographic entanglement entropy, JHEP 03 (2014) 085

[arXiv:1312.6717] [INSPIRE].

[53] L. Zhang and J. Wu, On conjectures of classical and quantum correlations in bipartite states,

J. Phys. A 45 (2012) 025301 [arXiv:1105.2993].

– 21 –

http://dx.doi.org/10.1103/PhysRevLett.90.157903
http://arxiv.org/abs/1405.4502
http://dx.doi.org/10.1103/PhysRevLett.90.027901
http://arxiv.org/abs/quant-ph/0207146
http://dx.doi.org/10.1103/PhysRevLett.95.090503
http://arxiv.org/abs/quant-ph/0505071
http://arxiv.org/abs/1401.5843
http://dx.doi.org/10.1103/PhysRevA.75.062308
http://arxiv.org/abs/quant-ph/0702127
http://dx.doi.org/10.1103/PhysRevA.59.141
http://arxiv.org/abs/quant-ph/9806094
http://inspirehep.net/search?p=find+EPRINT+quant-ph/9806094
http://arxiv.org/abs/1408.6300
http://inspirehep.net/search?p=find+EPRINT+arXiv:1408.6300
http://dx.doi.org/10.1007/JHEP01(2014)120
http://arxiv.org/abs/1311.0015
http://inspirehep.net/search?p=find+EPRINT+arXiv:1311.0015
http://dx.doi.org/10.1016/j.physletb.2010.09.054
http://arxiv.org/abs/1007.1813
http://inspirehep.net/search?p=find+EPRINT+arXiv:1007.1813
http://dx.doi.org/10.1007/JHEP04(2012)074
http://arxiv.org/abs/1111.6290
http://inspirehep.net/search?p=find+EPRINT+arXiv:1111.6290
http://dx.doi.org/10.1007/JHEP05(2012)080
http://arxiv.org/abs/1201.1702
http://inspirehep.net/search?p=find+EPRINT+arXiv:1201.1702
http://dx.doi.org/10.1088/1126-6708/1999/06/036
http://arxiv.org/abs/hep-th/9906040
http://inspirehep.net/search?p=find+EPRINT+hep-th/9906040
http://dx.doi.org/10.1007/JHEP12(2011)047
http://arxiv.org/abs/1110.1084
http://inspirehep.net/search?p=find+EPRINT+arXiv:1110.1084
http://dx.doi.org/10.1007/JHEP08(2013)063
http://arxiv.org/abs/1305.7191
http://inspirehep.net/search?p=find+EPRINT+arXiv:1305.7191
http://dx.doi.org/10.1103/PhysRevD.82.126010
http://arxiv.org/abs/1006.0047
http://inspirehep.net/search?p=find+EPRINT+arXiv:1006.0047
http://arxiv.org/abs/1303.6955
http://inspirehep.net/search?p=find+EPRINT+arXiv:1303.6955
http://dx.doi.org/10.1007/JHEP08(2013)092
http://arxiv.org/abs/1306.4004
http://inspirehep.net/search?p=find+EPRINT+arXiv:1306.4004
http://dx.doi.org/10.1007/BF01646092
http://inspirehep.net/search?p=find+J+Comm.Math.Phys.,18,160
http://dx.doi.org/10.1007/JHEP03(2014)085
http://arxiv.org/abs/1312.6717
http://inspirehep.net/search?p=find+EPRINT+arXiv:1312.6717
http://dx.doi.org/10.1088/1751-8113/45/2/025301
http://arxiv.org/abs/1105.2993

	Introduction
	Entanglement negativity
	Negativity in thermofield state
	Rényi negativities

	Negativity of a CFT vacuum
	Holographic negativity: general expectations
	Arbitrary bipartitions of pure states
	Mixed state negativity

	Discussion

