
J
H
E
P
1
0
(
2
0
1
4
)
0
4
7

Published for SISSA by Springer

Received: July 24, 2014

Accepted: September 22, 2014

Published: October 8, 2014

Higgs couplings and Naturalness in the littlest Higgs

model with T-parity at the LHC and TLEP

Bingfang Yang,a,b Guofa Mia and Ning Liub

aSchool of Materials Science and Engineering, Henan Polytechnic University,

Jiaozuo 454000, China
bInstitute of Theoretical Physics, Henan Normal University,

Xinxiang 453007, China

E-mail: yangbingfang@gmail.com, peter@hpu.edu.cn,

wlln@mail.ustc.edu.cn

Abstract: Motivated by the recent LHC Higgs data and null results in searches for any

new physics, we investigate the Higgs couplings and naturalness in the littlest Higgs model

with T-parity. By performing the global fit of the latest Higgs data, electroweak precise

observables and Rb measurements, we find that the scale f can be excluded up to 600GeV

at 2σ confidence level. The expected Higgs coupling measurements at the future collider

TLEP will improve this lower limit to above 3TeV. Besides, the top parnter mass mT+
can

be excluded up to 880GeV at 2σ confidence level. The future HL-LHC can constrain this

mass in the region mT+
< 2.2TeV corresponding to the fine-tuning being lager than 1%.

Keywords: Hadronic Colliders, Phenomenological Models

ArXiv ePrint: 1407.6123

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP10(2014)047

mailto:yangbingfang@gmail.com
mailto:peter@hpu.edu.cn
mailto:wlln@mail.ustc.edu.cn
http://arxiv.org/abs/1407.6123
http://dx.doi.org/10.1007/JHEP10(2014)047


J
H
E
P
1
0
(
2
0
1
4
)
0
4
7

Contents

1 Introduction 1

2 A brief review of the LHT model 2

3 Calculations and numerical results 4

4 Conclusions 10

1 Introduction

The discovery of a Higgs boson [1–4] by the ATLAS [5] and CMS [6] collaborations at the

LHC marks a milestone of an effort that has been ongoing for almost half a century and

opens up a new era of particle physics. The existing measurements [7–10] and the global

fits to the ATLAS and CMS Higgs data within remarkable precision [11–20] agree with

the standard model (SM) predictions. This conclusion is consistent with the ATLAS and

CMS null results in searches for any new physics. However, the experiments of cold dark

matter [21] and neutrino oscillations [22] cannot be explained in the framework of the SM

so that they are supposed to provide obvious evidence for the new physics beyond the SM.

In particular, the facts that the SM can be an effective theory valid all the way up to the

Planck scale and there is no symmetry protecting the scalar masses lead to the naturalness

problem, i.e., why the Higgs boson mass is of the order of the electroweak scale and not

driven by the radiative corrections to the Planck scale, remains unanswered.

Since the discovery of the Higgs boson the fine-tuning problem has become even more

intriguing. Among many new physics models, Little Higgs models based on a collective

symmetry breaking can provide a natural explanation of the fine-tuning by constructing the

Higgs as a pseudo-goldstone boson. The littlest Higgs (LH) model [23–26] is an economical

approach to implement the idea of the little Higgs theory. However, due to the large

corrections to the electroweak precision observables (EWPO) from the mixing of the SM

gauge bosons and the heavy gauge bosons, the original LH model is severely constrained

by precision electroweak data. This constraint can be relaxed by introducing the discrete

symmetry T-parity, which is dubbed as littlest Higgs model with T-parity(LHT) [27–30].

With current data, all properties of the observed Higgs-like particle turn out to be in

rough agreement with expectations of the SM [31–35], but there are still some rooms for the

new physics [36, 37], which may be ultimately examined at the LHC-Run2 and the future

Higgs factories [38–49]. Since top partner is naturally related to the Higgs physics and plays

an important role in the naturalness problem, one can obtain constraints from the Higgs

data [50–55]. In this work, we will discuss the Higgs couplings and the naturalness problem

in the LHT model at the LHC and Triple-Large Electron-Positron Collider (TLEP) [56, 57]

by performing a global fit of the latest Higgs data, Rb and oblique parameters, and give

the current and future constraints to the LHT parameters.

– 1 –



J
H
E
P
1
0
(
2
0
1
4
)
0
4
7

Recently, some similar works have been carried out in refs. [58–61]. Different from

these papers, we perform a state-of-the-art global fit to obtain the indirect constraints

on the breaking scale and the top partner with a comprehensive way. This method was

widely used in the fit of the SM to the electroweak precision data. So, it will be also

meaningful to explore what might happen in the LHT model with a global fit at future

colliders. By building an overall likelihood function for the constraints from the EWPO,

Rb measurements and Higgs data, we can obtain a well-defined statistical results of the

exclusion limit on the breaking scale. More importantly, we obtain the exclusion limit on

the top partner mass, which is obvious absent in other papers.

This paper is organized as follows. In section 2, we give a brief description of the LHT

model. In section 3, we present the calculation methodology and the numerical results at

the LHC and the TLEP. Finally, we draw our conclusions in section 4.

2 A brief review of the LHT model

The LHT model is a non-linear σ model based on the coset space SU(5)/SO(5), where the

spontaneous symmetry breaking is realised at the scale f via the vacuum expectation value

(VEV) of an SU(5) symmetric tensor Σ, given by

Σ0 = 〈Σ〉







02×2 0 12×2

0 1 0

12×2 0 02×2






. (2.1)

The VEV of Σ0 breaks the gauged subgroup [SU(2)×U(1)]2 of SU(5) down to the SM

electroweak SU(2)L × U(1)Y , which leads to new heavy gauge bosons W±
H , ZH , AH . After

the EWSB, their masses up to O
(

v2/f2
)

are given by

MWH
= MZH

= gf

(

1− v2

8f2

)

, MAH
=

g′f√
5

(

1− 5v2

8f2

)

(2.2)

with g and g′ being the SM SU(2) and U(1) gauge couplings, respectively. In order to

match the SM prediction for the gauge boson masses, the VEV v needs to be redefined via

the functional form

v =
f√
2
arccos

(

1− v2SM
f2

)

≃ vSM

(

1 +
1

12

v2SM
f2

)

, (2.3)

where vSM = 246GeV is the SM Higgs VEV.

Under the unbroken SU(2)L ×U(1)Y the Goldstone boson matrix Π is given by

Π =









0 H√
2

Φ
H†
√
2

0 HT

√
2

Φ† H∗
√
2

0









, (2.4)

where H is the little Higgs doublet (h+, h)T and Φ is a complex triplet under SU(2)L which

forms a symmetric tensor

Φ =
−i√
2

(√
2φ++ φ+

φ+ φ0 + i φP

)

. (2.5)
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φ0 and φP are both real scalars, whereas the φ++ and φ+ are complex scalars. The other

Goldstone bosons are the longitudinal modes of the heavy gauge bosons and therefore will

not appear in unitary gauge. The mass of Φ can be given by

mΦ =
2mHf

v
, (2.6)

where all components of the triplet are degenerate at the order we are examining.

When T-parity is implemented in the quark sector of the model, we require the ex-

istence of mirror partners with T-odd quantum number for each SM quark. We denote

the up and down-type mirror quarks by uiH and diH , where i(i = 1, 2, 3) is the generation

index. After the EWSB, their masses up to O
(

v2/f2
)

are given by

mdi
H

=
√
2κif, mui

H

= mdi
H

(

1− υ2

8f2

)

(2.7)

where κi are the diagonalized Yukawa couplings of the mirror quarks. One can notice that

the down-type mirror quarks have no interactions with the Higgs.

In order to stabilize the Higgs mass, an additional T-even heavy quark T+ is introduced

to cancel the large one-loop quadratic divergences caused by the top quark. Meanwhile,

the implementation of T-parity requires a T-odd mirror partner T− with T+. The T-even

quark T+ mix with the SM top-quark and leads to a modification of the top quark couplings

relatively to the SM. The mixing can be parameterized by dimensionless ratio R = λ1/λ2,

where λ1 and λ2 are two dimensionless top quark Yukawa couplings. This mixing parameter

can also be used by xL with

xL =
R2

1 +R2
. (2.8)

Considering only the largest corrections induced by EWSB, their masses up to O
(

v2/f2
)

are then given by

mt = λ2
√
xLv

[

1 +
v2

f2

(

−1

3
+

1

2
xL (1− xL)

)]

(2.9)

mT+
=

f

v

mt
√

xL(1− xL)

[

1 +
v2

f2

(

1

3
− xL(1− xL)

)]

(2.10)

mT−
=

f

v

mt√
xL

[

1 +
v2

f2

(

1

3
− 1

2
xL(1− xL)

)]

. (2.11)

The corrections to the Higgs couplings of the other two generations of T-even (SM-like)

up-type quarks up to O
(

v4SM/f4
)

are given by

ghūu
gSMhūu

= 1− 3

4

v2SM
f2

− 5

32

v4SM
f4

u ≡ u, c . (2.12)

For the T-even (SM-like) down-type quarks and charged leptons, the Yukawa inter-

action have two possible constructions [62]. The corresponding corrections to the Higgs

couplings with respect to their SM values up to O
(

v4SM/f4
)

are given by (d ≡ d, s, b, l±i )

ghd̄d
gSM
hd̄d

= 1− 1

4

v2SM
f2

+
7

32

v4SM
f4

Case A

ghd̄d
gSM
hd̄d

= 1− 5

4

v2SM
f2

− 17

32

v4SM
f4

Case B. (2.13)
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One can notice that Case B predicts a stronger suppression for the down-type fermion

couplings to the Higgs boson.

The naturalness of the model can be quantified by how much the contributions from

the heavy states (δµ2) exceed the observed value of the Higgs mass squared parameter

(µ2
obs) [23]:

∆ =
|δµ2|
µ2
obs

, µ2
obs =

m2
h

2
. (2.14)

Here mh is the Higgs boson mass. In the LHT model, the dominant negative log-divergent

contribution to the Higgs mass squared parameter comes from the top quark and its heavy

partner T+ loops [23]

δµ2 = −
3λ2

tm
2
T+

8π2
log

Λ2

m2
T+

(2.15)

where Λ = 4πf is the cut-off of the nonlinear sigma model, λt is the SM top Yukawa

coupling and mT+
is the mass of the heavy top partner.

3 Calculations and numerical results

In our numerical calculations, we take the SM input parameters as follows [63]:

mt = 173.5 GeV, mW = 80.385 GeV, α(mZ) = 1/127.918, sin2 θW = 0.231.

Our global fit is based on the frequentist theory. For a set of observables Oi(i =

1 . . . N), the experimental measurements are assumed to be Gaussian distributed with the

mean value Oexp
i and error σexp

i . The χ2 can be defined as χ2 =
∑N

i

(Oth
i
−Oexp

i )
2

σi
2 , where σi

is the total error both experimental and theoretical. The likelihood L ≡ exp
[

−∑χ2
i

]

for a

point in the parameter space is calculated by using the χ2 statistics as a sum of individual

contributions from the latest experimental constraints. The confidence regions are evalu-

ated with the profile-likelihood method from tabulated values of δχ2 ≡ −2 ln(L/Lmax). In

three dimensions, 68.3% confidence regions (corresponding to 1σ range) are given by δχ2 =

3.53 and 95.0% confidence regions (corresponding to 2σ range) are given by δχ2 = 8.02.

Under few assumptions involving mainly flavour independence in the mirror fermion

sector, the LHT model can be parametrised by only three free parameters, i.e., the scale

f , the ratio R and the Yukawa couplings of the mirror quarks κj . Considering the recent

constraint from the searches for the monojet, we require the lower bound on the Yukawa

couplings of the mirror quarks are κj ≥ 0.6 [61]. We scan over these parameters within the

following ranges [58–61, 64]

500GeV ≤ f ≤ 2000GeV, 0.1 ≤ R ≤ 3.3, 0.6 ≤ κj ≤ 3 ,

where we assume the three generations κj are degenerate. The couplings of the UV oper-

ators are set as cs = ct = 1. The likelihood function L is constructed from the following

constraints:

1. EWPO: these oblique corrections can be described in terms of the Peskin-Takeuchi S,

T and U parameters [65]. Firstly, the top partner can contribute to the propagators

of the electroweak gauge bosons at one-loop level. In contrast to T+, the T-odd top

partner T− does not contribute to S, T, U parameters since it is an SU(2)L singlet

– 4 –
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which does not mix with the SM top quark. Secondly, the T-odd mirror fermions give

a contribution to the T parameter at one-loop, which can have a noticeable effect

on the EWPO due to a large number (twelve) of doublets in the SM; thirdly, an-

other important correction to both the S and T parameters follows from the modified

couplings of the Higgs boson to the SM gauge bosons. Finally, other possible contri-

butions arise from new operators which parametrize the effects of the UV physics on

weak scale observables. All these different contributions to the oblique parameters

should be summed up. We calculate χ2 by using the formulae in refs. [64, 66, 67] and

adopting the experimental values of S, T and U in the ref. [63].

2. Rb. The branching ratio Rb is very sensitive to the new physics beyond the SM, the

precision experimental value of Rb may give a severe constraint on the new physics.

In the LHT model, there are new fermions and new gauge bosons, which can con-

tribute to the Zbb̄ coupling and give corrections to the Rb at one-loop level [68]. The

final combined result from the LEP and SLD measurements show Rb = 0.21629 ±
0.00066 [63], which is consistent with the SM prediction RSM

b = 0.21578+0.0005
−0.0008.

3. Higgs data. The experimental results are given in terms of signal strengths µ(X;Y ),

which is defined as the ratio of the observed rate for Higgs process X → h →
Y relative to the prediction for the SM Higgs, µ(X;Y ) ≡ σ(X)BR(h→Y )

σ(XSM)BR(hSM→Y ) . We

confront the modified Higgs interactions and the one-loop contribution of the new

particles in the LHT model with the available Higgs data. We calculate the χ2 values

by using the public package HiggsSignals-1.2.0 [69, 70], which includes 81 channels

from the LHC and Tevatron and these experimental data are listed in ref. [71]. In our

calculations, the Higgs mass mh is fixed as 126GeV. Note that for the Higgs data, the

HiggsSignals has provided the calculation of χ2, where both experimental (systematic

and statistical) uncertainties as well as SM theory uncertainties are included.

In figure 1, we show the results of the global fit to the above three kinds of constraints

in the plane of R versus f for Case A and Case B, respectively. We can see that the lower

bound on the symmetry breaking scale at 95% C.L. is

f > 670GeV Case A, (3.1)

f > 600GeV Case B. (3.2)

The constraints are stronger than the electroweak precision constraints in ref. [64], which

is because the main constraint here comes from the Higgs data. For the top partner mass,

we can see that the combined indirect constraints can exclude mT+
at 95% C.L. up to

mT+
> 980GeV Case A, (3.3)

mT+
> 880GeV Case B. (3.4)

It’s worth noting that they are stronger than the lower bound set by the ATLAS direct

searches for the SU(2) singlet top partner, mT > 640GeV [72]. Our study may play a

complementary role to the direct searches in probing top partner.
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Figure 1. The global fit of the constraints on the LHT model in the R − f plane for Case A and

Case B. The yellow lines from right to left respectively correspond to 1σ, 2σ and 3σ exclusion limits.

Facility HL-LHC TLEP√
s 14TeV 240GeV

∫

Ldt 3000(fb−1) 10000(fb−1)

κγ 2–5% 1.7%

κg 3–5% 1.1%

κW 2–5% 0.85%

κZ 2–4% 0.16%

κu 7–10% −
κd 4–7% −
κc 7–10% 1.0%

κs 4–7% −
κt 7–10% −
κb 4–7% 0.88%

Table 1. Expected precision on the Higgs couplings to quarks and vector bosons at the HL-LHC

and the TLEP.

The expected precision for the Large Hadron Collider High-Luminosity Upgrade (HL-

LHC) and the TLEP are assumed in table 1, which comes from the table 14 and table 16

of the Higgs working group report [73].

In the LHT model, the loop-induced couplings hgg and hγγ can receive contributions

from both the modified couplings and the new particles. The decay h → gg can be corrected

by the modified htt̄ coupling and the loops of top partner T+ and T-odd mirror quarks. In

addition to these corrections involved in the decay h → gg, the decay h → γγ can be also

corrected by the modified hWW coupling and the loops of WH , φ+, φ++ . Besides, the

couplings hcc̄, hss̄, hbb̄, hZZ are also modified, they can exert an effect on our fit.

In figure 2 and figure 3, we show the shifts of the Higgs couplings hV V , htt̄, hgg, hγγ

for the above samples in the 2σ range. In order to investigate the observability, we compare
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Figure 2. The shifts of the Higgs couplings for the samples in the 2σ allowed range in figure 1 for

Case A. The red dash-dot lines represent the expected measurement uncertainties at HL-LHC.

them with the corresponding expected measurement uncertainties of the Higgs couplings

in table 1 at HL-LHC with a luminosity of 3000 fb−1. The value of the fine-tuning for each

point is also calculated by using the eq. (2.14). From figure 2 and figure 3, we can have

some observations as follows:

1. The values of the fine-tuning for the samples are cornered to be smaller than about

6% by the above global fit.

2. For the Higgs couplings hV V and htt̄, they are suppressed by the high order factor

O
(

v2/f2
)

. The deviation of the Higgs couplings ghV V from the SM predictions are

at percent level and the deviation of the Higgs coupling ghtt̄ from the SM prediction

can reach over 10%.

For the loop-induced couplings ghgg and ghγγ , on one hand they are corrected by the

high order factor, on the other hand they are corrected by the loop contributions

of the new particles. For the effects of these loop diagrams, there are cancelation
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Figure 3. The shifts of the Higgs couplings for the samples in the 2σ allowed range in figure 1 for

Case B. The red dash-dot lines represent the expected measurement uncertainties at HL-LHC.

between t(WL) and the corresponding partner T+(WH) so that the effective ghgg
and ghγγ couplings are reduced. The deviation of the Higgs coupling ghγγ from the

SM prediction is at percent level, that is because the dominant contribution to the

coupling ghγγ comes from the WL(WH) over the t(T+). The Higgs coupling ghgg from

the SM prediction can reach about 30%, that is because the dominant contribution to

the coupling ghgg comes from the htt̄ coupling and t(T+) loops, where the contribution

of htt̄ coupling accounts for about 10% and the contributions of t(T+) loops account

for about 20%. Furthermore, we can see that the deviations for Case A are less than

that for Case B, which originate from the stronger suppression for the down-type

fermion couplings to the Higgs boson in Case B.

Furthermore, we can see that all changes of the Higgs couplings are negative. In

the LHT model, in order to cancel the quadratic divergence of the Higgs mass, the

heavy gauge bosons and the additional heavy quark T+ are introduced. This leads
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Figure 4. The expected exclusion limits on the R−f plane for Case A and Case B from the global

fit of EWPO, Rb and TLEP.

to negative modification of the relevant couplings with respect to the SM. Besides,

the non-linear expansion of the model field suppresses these couplings at the order

O
(

v2/f2
)

.

3. In figure 2 and figure 3, we attempt to show the expected constraints from the future

individual Higgs coupling meaurements on the top partner and naturalness at the

HL-LHC. The couplings hV V and htt̄ are modified at the order O
(

v2/f2
)

, which

can determine the scale f and help us understand the nature of the Higgs boson in

the LHT model. Apart from this, the coupling hgg can provide the information for

the cancelation between t and the corresponding partner T+, while the coupling hγγ

can provide the information for the cancelation between WL and the corresponding

partner WH . So, we can see that the individual Higgs coupling meaurements can

help us understand the different parts of the LHT model.

4. The future measurements of the ghgg coupling at the HL-LHC will be able to exclude

the mT+
< 2.2TeV, which corresponds to the fine-tuning being lager than about 1%.

However, other expected measurements, such as ghV V , ghtt̄ and ghγγ couplings, can

only improve the limits for the top partner mass mildly.

In figure 4, we present the prospect of improving the constraints on the scale f at a

possible future Higgs factory TLEP with
√
s = 240GeV. In our fit, the χ2 can be

defined as

χ2 =
N
∑

i

(µi − 1)2

σi2
(3.5)

where µi represents the signal strength prediction from the LHT model and σi rep-

resents the 1σ uncertainty i.e. the expected measurement precision at the TLEP.

We use the Snowmass Higgs working group results to simply estimate the exclusion

– 9 –
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limits. Given that the super-high luminosity of 10000 fb−1 can be achieved at the

TLEP, we assume that all the measured Higgs couplings will be the same as the

SM predictions with the expected measurement uncertainties in table 1. From the

figure 4, we can see that the lower bound on the scale f will be pushed up to 3.1TeV

for Case A and 3.25TeV for Case B at 95% C.L..

4 Conclusions

In this paper, we investigated the Higgs couplings and naturalness in the LHT model under

the available constraints from the current Higgs data and the EWPO. By performing the

global fit, we find that the scale f can be excluded up to 670GeV for Case A and 600GeV

for Case B at 2σ level. The precise measurements of the Higgs couplings at the future

collider TLEP will constrain this limit to above 3TeV. Besides, the top partner mass mT+

can be excluded up to 980GeV for Case A and 880GeV for Case B at 2σ level. This

mass can be constrained in the region mT+
< 2.2TeV at the HL-LHC corresponding to the

fine-tuning being lager than 1%.
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