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1 Introduction

To investigate the theory of everything which explains gravity and quantum theory in

a consistent way, several candidates have been proposed [1–6] with string theory being

one of the most competitive ideas [7, 8]. String theory can explain not only the finite

quantum interactions of gravitons but also the possible modifications of gravity and matter

sectors [9]. Such modified gravity models or additional matter contents are useful to study

various topics, for example inflationary and late time cosmology [10], black hole physics

and applications to AdS/CFT [12] or astrophysical applications [13] etc. Moreover, if string

theory is the correct model of quantum gravity then such modifications should explain

various traditional problems of gravity, e.g., the singularity problem of black holes [15] or

cosmology [16].

A typical modification via string theory is the existence of a dilaton field [17]. This

is in fact the same as the Brans-Dicke field [18] which controls the interaction coupling

strengths. The kinetic term and the potential term of the Brans-Dicke field can be changed

by a conformal transformation from the string frame (or the Jordan frame) to the Einstein
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frame and is equivalent to a canonical scalar field model in the Einstein frame [19, 20].

However, if the model couples to other interactions, then the matter sector is no longer

canonical after the conformal transformation, an interesting example of which is the gauge

field. In section 2, we summarize various types of string effective actions and the different

types of interactions they generate between the dilaton field and the gauge field.

In this paper, we want to investigate responses of the Brans-Dicke field that depend

on couplings between the Brans-Dicke field and the gauge field. Naively speaking, they

will form charged black holes and there are already a lot of papers which investigate

stationary solutions [21]. However, in general the dynamics will be complicated for realistic

gravitational collapses. For such cases we expect complicated phenomena such as:

– Causal structure: in the general string frame (Jordan frame), the null energy con-

dition can be violated and hence the dynamics of locally defined horizons [23–25]

can be complicated. In addition, the existence of the central singularity and the

Cauchy horizon curvature singularity [26–28] should be affected by the dynamics of

the Brans-Dicke field.

– Response of the Brans-Dicke field: already some solutions are known which violate

the assumptions of the no-hair theorem [21, 30]. However, is it be possible to form

scalar hairs from gravitational collapses? For neutral black holes it was investigated

by [29], but the responses due to the charge can cause quite different phenomena.

This may be related to the destabilization of the moduli/dilaton field that should be

controlled by a proper potential and may have observational implications [13].

We will mainly focus these two topics by using numerical techniques applied to the double-

null formalism. To the best knowledge of the authors, the double-null formalism is one of

the most efficient techniques to investigate the interior of the black holes [32] and we have

priviously used this approach with good success [47–49, 57, 66]. There are some previous

works regarding string-inspired models using the double-null formalism [33–44] and other

methods [45, 46] as well as the authors’ previous works [47–55]. In this paper we will

investigate a wide parameter space, for example, we will cover not only directly string-

inspired models, but also indirectly string-inspired models (f(R) inspired model [56]) as

well as natural generalizations of the parameters, e.g., the ghost limit.

In fact, our potential parameter space is huge and can give rise to a wide range of

setups, for example:

– Model dependence: Type I, Type II, Heterotic, or braneworld inspired models, etc.

– Potential dependence: whether there is a potential that stabilizes the moduli or

dilaton field or not [13].

– Asymptotic conditions: de Sitter, Minkowski, or anti de Sitter [57, 58].

– Symmetries: spherical, planar, hyperbolic, or other symmetries [57, 59].

– Dimensions: 3, 4, or D dimensions [58].
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Although some of these topics were already investigated by the authors and others, still

there are many interesting and various topics to be studied. In this paper, we will limit

our focus to the basic model dependence with no dilaton potential, asymptotic flat, spher-

ical symmetry and four dimensions, hence the paper’s subtitle: “I. Causal structures and

responses of the Brans-Dicke field.”. To investigate more general features of mass inflation

(for a basic review of mass inflation, see appendix A and references therein), we need to

investigate the cases with different potentials as well as various parameters. Furthermore,

it is interesting to change the asymptotic cosmological constant and different symmetries.

The variation of dimensions and their semi-classical responses will be also interesting to

study. These issues are beyond the scope of this paper, but will be investigated in future

works.

Apart from the physics involved, this paper is by itself important by it’s technical

merit, since this is a quite generalized and complicated implementation of the double-

null formalism. We are sure that there are many more variations to be made from this

numerical technique and that this paper is an important step towards further useful or

realistic string-inspired models. We hope that this paper can be a leading paper that will

introduce upcoming papers.

This paper is organized as follows; in section 2, we summarize various models inspired

from string theory. In section 3, we present our model in the double-null formalism. In

section 4, we present and summarize two of our main results, specifically the issue of

causal structures (e.g., dynamics of local horizons and existence of Cauchy horizons) and

responses of the Brans-Dicke field (e.g., check the no-hair theorem and the direction of

coupling bias). In section 5, we summarize and discuss future issues. Finally, in the

appendices, we comment on basics of mass inflation (appendix A), the consistency and

convergence of our numerical scheme (appendix B) and present a catalog of simulations for

various initial conditions (appendix C).

2 General review of motivations

In this paper, we consider the following action (c = G = ~ = 1):

S =
1

16π

∫ √
−gd4x

[
ΦR− ω

Φ
(∇Φ)2 − ΦβF 2

µν

]
, (2.1)

where Φ is the Brans-Dicke field, R is the Ricci scalar, ω is the Brans-Dicke coupling, Fµν
is the kinetic term of the gauge field and β is the coupling between the Brans-Dicke field

and the gauge field. As we will see below, ω and β in particular are model depent.

Of course, this model is limited up to order R and hence does not correspond to real

string theory, since the real theory should contain all possible interactions, including higher

order curvature corrections. On the other hand, this model is sufficiently general to cover

a lot of string inspired models and thus provide important intuitions concerning dynamical

black hole physics.

Next, we illustrate some of the models and motivations which is covered by our action

(Equation (2.1)).
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Dilaton gravity. Every low energy effective action of string theory contains the following

sector that includes the dilaton field [17]:

S =
1

2λd−1
s

∫
dd+1x

√
−ge−φ

(
R+ (∇φ)2

)
, (2.2)

where d is the space dimensions, λs is the length scale of string units, and φ is the dilaton

field. This can be transformed by redefining φ, such as

e−φ

λd−1
s

=
Φ

8πGd+1
, (2.3)

where Gd+1 is the d+1 dimensional gravitation constant. Then, we recover the Brans-Dicke

theory in the ω = −1 limit.

In general, there will be higher order loop corrections to the low energy effective action.

For example, in a model from Heterotic string theory compactified on a ZN orbifold [60],

this can be well approximated by the correction to the Brans-Dicke coupling ω:

S =
1

2λ2
s

∫
d4x
√
−ge−φ

[
R+

(
1 + eφ

(
3κ

2

)
6 + κeφ

(3 + κeφ)2

)
(∇φ)2

]
, (2.4)

where κ is a positive constant of order one which is related to anomaly coefficients. There-

fore, the coupling should be field dependent and hence, quite large ranges of ω can be

covered by string-inspired models.

Couplings to the gauge field. When we further consider the coupling to the gauge

field, the parameter β may depend on the models [9]. We illustrate some detailed examples;

Type IIA The effective action (bosonic sector) of the Type IIA is expanded by

SIIA =
1

2λ8
s

∫
d10x

[√
−ge−φ

(
R+ (∇φ)2 − 1

12
H2

3

)
−
(

1

4
F 2

2 +
1

48
F̃ 2

4

)]
+ . . . , (2.5)

where H3 is the field strength tensor of the NS-NS two-form field B2, F2 is the field

strength tensor of the R-R one form field A1 and F̃4 = dA3 + A1 ∧H3, where A3 is

the R-R three-form field. Therefore, after the dimensional reduction, it is reasonable

to obtain the following effective action:

S
(4)
IIA =

1

16π

∫
d4x
√
−g
[
e−φ

(
R+ (∇φ)2

)
− F 2

2

]
+ . . . , (2.6)

and after the redefinition of dilaton, we obtain the gravitational sector by

∝ Φ

(
R+

(∇Φ)2

Φ2

)
(2.7)

and the two-form field term becomes

∝ F 2
2 . (2.8)

Therefore, Type IIA corresponds to the ω = −1 and β = 0 case.
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Type I The effective action of Type I is expanded by

SI =
1

2λ8
s

∫
d10x
√
−g
[
e−φ

(
R+ (∇φ)2

)
− 1

12
H̄2

3 −
1

4
e−φ/2TrF 2

2

]
+ . . . , (2.9)

where H̄3 is the mixed contribution of the R-R two-form A2 and of the matrix valued

one-form A1, F2 is the field strength tensor of A1 with the gauge symmetry by the

SO(32) group. Therefore, after the dimensional reduction and the symmetry breaking

to U(1), we can reduce the action by

S
(4)
I =

1

16π

∫
d4x
√
−g
[
e−φ

(
R+ (∇φ)2

)
− e−φ/2F 2

2

]
+ . . . ; (2.10)

and after the field redefinition, we obtain the same gravitational sector plus the two-

form field term

∝ Φ1/2F 2
2 . (2.11)

Therefore, Type I corresponds to the ω = −1 and β = 0.5 case.

Heterotic The effective action of the Heterotic theory is expanded by

Shet =
1

2λ8
s

∫
d10x
√
−ge−φ

[
R+ (∇φ)2 − 1

2
H̄2

3 −
1

4
TrF 2

2

]
+ . . . , (2.12)

where H̄3 is the mixed contribution of the NS-NS two-form field B2 and of the matrix

valued one-form A1, F2 is the field strength tensor of A1 with the gauge symmetry

by the SO(32) or E8 × E8 group. Therefore, after the dimensional reduction and

symmetry breaking to U(1), we can reduce the action by

S
(4)
het =

1

16π

∫
d4x
√
−ge−φ

[
R+ (∇φ)2 − F 2

2

]
+ . . . ; (2.13)

and after the field redefinition, we obtain the same gravitational sector plus the two-

form field term

∝ ΦF 2
2 . (2.14)

Therefore, Heterotic theory corresponds to the ω = −1 and β = 1 case.

Braneworld models. In the Randall-Sundrum model [61], they introduced two branes,

where two branes are connected by a warp factor. In the end, one side has a positive tension

and the other side has a negative tension. According to Garriga and Tanaka [62], one can

calculate the effective action on branes in the weak field limit as a Brans-Dicke-type theory

and we obtain the ω parameter

ω =
3

2

(
e±s/l − 1

)
, (2.15)

where s is the distance between branes, l =
√
−6/Λ is the length scale of the anti de Sitter

space and the sign ± denotes the sign of the tension. These braneworld inspired models

can allow various range of ω near −3/2.
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f(R) gravity. In general, string theory can introduce various higher curvature terms. If

we mainly focus on the Ricci scalar sectors, then we obtain so-called f(R) gravity. The

action of f(R) gravity is

S =
1

16π

∫
d4x
√
−gf(R). (2.16)

We can modify this action to the scalar-tensor type model by introducing an auxiliary field

ψ. Then, the gravity sector changes the form [63] as follows

S =
1

16π

∫
d4x
√
−g
[
f(ψ) + f ′(ψ)(R− ψ)

]
, (2.17)

where we have a constraint ψ = R. From this, by defining a new field Φ ≡ f ′(ψ), we can

rewrite the action

S =
1

16π

∫
d4x
√
−g [ΦR− V (Φ)] , (2.18)

where

V (Φ) = −f(ψ) + ψf ′(ψ). (2.19)

Now we obtain the Brans-Dicke theory in the ω = 0 limit with a potential of the Brans-

Dicke field, though we ignore the potential term in this paper.

3 Model for charged black holes

3.1 Brans-Dicke theory with U(1) gauge field

The prototype action of the Brans-Dicke theory with a U(1) gauge field becomes

S =

∫ √
−gd4x

[
1

16π

(
ΦR− ω

Φ
Φ;µΦ;νg

µν
)

+Φβ

(
−1

2
(φ;µ + ieAµφ) gµν

(
φ;ν − ieAνφ

)
− 1

16π
FµνF

µν

)]
, (3.1)

where φ is a complex scalar field1 with a gauge coupling e, Aµ is a gauge field, and

Fµν = Aν;µ −Aµ;ν .

The Einstein equation becomes as follows:

Gµν = 8π
(
TBD
µν + Φβ−1TM

µν

)
≡ 8πTµν , (3.2)

where the Brans-Dicke part of the energy-momentum tensors are

TBD
µν =

1

8πΦ
(−gµνΦ;ρσg

ρσ + Φ;µν) +
ω

8πΦ2

(
Φ;µΦ;ν −

1

2
gµνΦ;ρΦ;σg

ρσ

)
(3.3)

and the matter part of the energy-momentum tensors are

TM
µν = TC

µν + 〈T̂H
µν〉, (3.4)

1We abuse φ again; from now this is not the dilaton field but the complex scalar field.
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where

TC
µν =

1

2

(
φ;µφ;ν + φ;µφ;ν

)
+

1

2

(
−φ;µieAνφ+ φ;νieAµφ+ φ;µieAνφ− φ;νieAµφ

)
+

1

4π
FµρFν

ρ + e2AµAνφφ+ LEMgµν . (3.5)

Here, we define

LEM ≡ −1

2
(φ;µ + ieAµφ) gµν

(
φ;ν − ieAνφ

)
− 1

16π
FµνF

µν (3.6)

and 〈T̂H
µν〉 is the renormalized energy-momentum tensor to include Hawking radiation, while

in this paper, we will not consider this semi-classical term.

The field equations are as follows:

0 = Φ;µνg
µν − 8πΦβ

3 + 2ω

(
TM − 2βLEM

)
, (3.7)

0 = φ;µνg
µν + ieAµ (2φ;µ + ieAµφ) + ieAµ;νg

µνφ+
β

Φ
Φ;µ (φ;ν + ieAνφ) gµν , (3.8)

0 =
1

2π

(
F νµ;ν +

β

Φ
F νµΦ;ν

)
− ieφ

(
φ;µ − ieAµφ

)
+ ieφ (φ;µ + ieAµφ) , (3.9)

where

TM ≡ TMµ
µ. (3.10)

3.2 Implementation to double-null formalism

We use the double-null coordinates

ds2 = −α2(u, v)dudv + r2(u, v)dΩ2, (3.11)

assuming spherical symmetry, where u is the retarded time, v is the advanced time, dΩ2 =

dθ2 + sin2 θdϕ2, where θ and ϕ are angular coordinates.

We introduce auxiliary variables, following the notation of [54, 55]: the metric function

α, the radial function r, the Brans-Dicke field Φ and a complex scalar field s ≡
√

4πφ and

define

h ≡ α,u
α
, d ≡ α,v

α
, f ≡ r,u, g ≡ r,v, W ≡ Φ,u, Z ≡ Φ,v, w ≡ s,u, z ≡ s,v. (3.12)

The Einstein tensor is then given as follows:

Guu = −2

r
(f,u − 2fh) , (3.13)

Guv =
1

2r2

(
4rf,v + α2 + 4fg

)
, (3.14)

Gvv = −2

r
(g,v − 2gd) , (3.15)

Gθθ = −4
r2

α2

(
d,u +

f,v
r

)
. (3.16)
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Also, we can obtain the energy-momentum tensors for the Brans-Dicke field part and the

scalar field part:

TBD
uu =

1

8πΦ
(W,u − 2hW ) +

ω

8πΦ2
W 2, (3.17)

TBD
uv = − Z,u

8πΦ
− gW + fZ

4πrΦ
, (3.18)

TBD
vv =

1

8πΦ
(Z,v − 2dZ) +

ω

8πΦ2
Z2, (3.19)

TBD
θθ =

r2

2πα2Φ
Z,u +

r

4πα2Φ
(gW + fZ) +

ω

4πΦ2

r2

α2
WZ, (3.20)

TC
uu =

1

4π

[
ww + iea(ws− ws) + e2a2ss

]
, (3.21)

TC
uv =

(a,v)
2

4πα2
, (3.22)

TC
vv =

1

4π
zz, (3.23)

TC
θθ =

r2

4πα2

[
(wz + zw) + iea(zs− zs) +

2(a,v)
2

α2

]
, (3.24)

where we will define q(u, v) ≡ 2r2a,v/α
2 as the charge function.

To implement the double-null formalism into our numerical scheme, it is convenient to

represent all equations as first-order, mixed-derivative differential equations. Note that

TM = − 4

α2
TM
uv +

2

r2
TM
θθ , (3.25)

LEM =
1

4πα2
(wz̄ + zw̄) +

iea

4πα2
(z̄s− zs̄) +

a,v
2

2πα4
. (3.26)

The Einstein equations for α,uv, r,uv, and the field equation for Φ are then coupled as

follows (we define X̃ ≡ ΦβX for any quantity X): 1 1
r

1
Φ

0 1 r
2Φ

0 0 r


 d,u
f,v
Z,u

 =

 A

B

C

 , (3.27)

where

A ≡ −2πα2

r2Φ
T̃C
θθ −

1

2r

1

Φ
(gW + fZ)− ω

2Φ2
WZ, (3.28)

B ≡ −α
2

4r
− fg

r
+

4πr

Φ
T̃C
uv −

1

Φ
(gW + fZ), (3.29)

C ≡ −fZ − gW − 2πrα2

3 + 2ω

(
T̃C − 2βL̃EM

)
. (3.30)

After solving these coupled equations, we can write all equations: d,u
r,uv
Φ,uv

 =
1

r2

 r2 −r − r
2Φ

0 r2 − r2

2Φ

0 0 r


 A

B

C

 , (3.31)
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r,uu = 2fh− r

2Φ
(W,u − 2hW )− rω

2Φ2
W 2 − 4πr

Φ
T̃M
uu, (3.32)

r,vv = 2gd− r

2Φ
(Z,v − 2dZ)− rω

2Φ2
Z2 − 4πr

Φ
T̃M
vv , (3.33)

including the field equations

a,v =
α2q

2r2
, (3.34)

q,v = − ier
2

2
(sz − sz)− βqZ

Φ
, (3.35)

a,vv =
α2

r2

(
d− g

r

)
q − ieα2

4
(zs− sz)− βq α

2Z

2r2Φ
, (3.36)

q,u =
ier2

2
(sw − sw)− r2e2ass− βqW

Φ
, (3.37)

a,uv =
α2

r2

(
h− f

r

)
q +

ieα2

4
(ws− sw)− α2

2
e2ass− βqα

2W

2r2Φ
, (3.38)

s,uv = −fz
r
− gw

r
− iearz

r
− ieags

r
− ie

4r2
α2qs− β

2Φ
(Wz + Zw + iesaZ) , (3.39)

where Equations (3.31) and (3.39) are evolution equations for α,uv, r,uv, Φ,uv and s,uv, which

can be solved with the same integration scheme used in the authors’ previous papers [47–49,

57]. The gauge field a can be evolved using the same numerical scheme via Equation (3.38)

or we can evolve a and q via Equations (3.34) and (3.35). We have found the latter method

to be more robust for this study and have used it for our integration via a standard 4th order

Runge-Kutta scheme. Consistency and convergence tests for our numerical implementation

of the present set of equations are presented in appendix B.

3.3 Initial conditions and free parameters

For our simulations, we need to specify initial conditions for the dynamic variables

(α, r,Φ, s, a) on the initial u = ui and v = vi null surfaces. For all simulations in this

paper, we choose ui = vi = 0 and computational domain to have size v = [0; 60] and

u = [0; 40].

First off, we have the gauge freedom to choose r along the initial null surfaces. Here,

we choose r(u, 0),u = ru0 < 0 and r(0, v),v = rv0 > 0 such that the radial function for an

in-going observer decreases and that for an out-going observer increases. In addition, we

assume that the effective gravitational constant G = 1/Φ is asymptotically unity, hence we

can set Φ(u, 0) = Φ(0, v) = 1.

In-going null direction. We use an in-going shell-shaped scalar field such that its in-

terior is not affected by the shell. Thus, we can simply choose s(u, 0) = 0, α(u, 0) = 1,

q(u, 0) = 0 and a(u, 0) = 0. Then, the Misner-Sharpe mass function

m(u, v) ≡ r

2

(
1 +

q2

r2
+ 4

r,ur,v
α2

)
(3.40)

should vanish at u = v = 0. To satisfy this, it is convenient to choose r,u(u, 0) = −1/2,

r,v(0, v) = 1/2. We also choose the radial function at the initial point u = v = 0 to

– 9 –



J
H
E
P
1
0
(
2
0
1
4
)
0
4
0

be r(0, 0) = r0 = 20, thereby fully determining the radial function along the initial null

segments. These initial conditions are in agreement with the constraint equations (Equa-

tion (3.32)) and thus completes the assignment of initial conditions along the in-going null

segment.

Out-going null direction. We can choose an arbitrary function for s(0, v) to induce a

collapsing, in-going pulse. In this paper, we use

s(0, v) = A sin4

(
π
v − vi

vf − vi

)[
cos

(
2π

v − vi

vf − vi

)
+ i cos

(
2π

v − vi

vf − vi
− πδ

)]
(3.41)

for vi ≤ v ≤ vf and otherwise s(0, v) = 0. Next, we can integrate constraint equation

Equation (3.33) to determine α(0, v) on the u = 0 surface, simultaneously with integrating

Equations (3.34) and (3.35) for determining q(0, v) and a(0, v).

We have now fully specified the five dynamic variables (α, r,Φ, s, a) along the both in-

and out-going null segments in a manner consistent with the constraint equations (Equa-

tions (3.32) and (3.33)). This finishes the basic assignment of initial conditions (but cf.

with paragraph below).

Free parameters. For the scalar field pulse, we choose vf = 20, A = 0.15 and δ = 0.5

(to include maximum charge), leaving just three free parameters (ω, β, e), where ω is the

Brans-Dicke coupling parameter, β is the coupling between the matter sector and the

Brans-Dicke field and e is the gauge coupling. To summarize, we vary as follows:

– ω : 0 (f(R) limit), −1 (dilaton limit), −1.4 (braneworld limit), −1.6 (ghost limit),

– β : 0 (Type IIA), 0.5 (Type I), 1 (Heterotic),

– e : 0 (neutral black hole), 0.3 (charged black hole).

4 Causal structures and dynamics of Brans-Dicke field

In this section, we report the possible causal structures and responses of the Brans-Dicke

field for neutral and charged black holes of various string-inspired models obtained from

numerical calculations by using the double-null formalism.

4.1 Causal structures

4.1.1 Neutral black holes

In this paper, we wish to study charged black holes. But first, let us briefly summarize

the case of neutral black holes; figure 1 shows the causal structures, plotted are lines of

constant r, apparent horizons and r = 0 singularities2 of neutral black holes for β = 0,

figure 2 shows neutral black holes for β = 0.5 and figure 3 shows neutral black holes for

β = 1, all figures are obtained by our numerical code.

2We remind the reader of the ability of double-null codes to numerically integrate spacetimes with space-

like singularities (without crashing the code) all the way up to the singularity, see references in appendinx B.
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Figure 1. Causal structure of neutral black holes with β = 0. Thin black curves are contours of a

constant r; the difference between contours are 1. Red curve is the apparent horizon r,v = 0, blue

curve is the horizon r,u = 0, and thick black curve is the singularity r = 0. All subsequent causal

structure plots has similar legend.

Figure 2. Causal structure of neutral black holes with β = 0.5.
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Figure 3. Causal structure of neutral black holes with β = 1.

Let us briefly look at the Brans-Dicke field equation in the neutral limit:

0 = Φ;µνg
µν − 8πΦβ

3 + 2ω

(
TM − 2βLEM

)
,

where

TM − 2βLEM =
1− β
2πα2

(wz̄ + zw̄) . (4.1)

Therefore, if ω > −3/2, then since the term TM − 2βLEM is positive, it pushes the Brans-

Dicke field to the strong coupling limit (Φ < 1) and vice versa. If ω < −3/2 then it behaves

oppositely. The β = 1 case is unique and in this case, there is no back-reactions to the

Brans-Dicke field and hence there is no dependence on ω (the four figures in figure 3 are

the same, bar numerical errors).

As we observed in a previous paper [29], if ω > −3/2, then during the gravitational

collapse, the Brans-Dicke field is pushed to Φ < 1 limit and after the collapse, the pushed

field is repulsed and approaches the stationary limit. On the other hand, if ω < −3/2, then

Brans-Dicke is pushed to Φ > 1 limit during gravitational collapses and approaches the

stationary limit. Because of this behaviour, there appears not only the apparent horizon

r,v = 0, but also r,u = 0 for ω > −3/2. In addition, the apparent horizon can show strong

oscillations for ω < −3/2 and perhaps it can create a Cauchy horizon as a naked singularity.

As 1 − β decreases, the back-reaction decreases. This is clear, if we observe the location

of r,u = 0 horizons or the oscillations of the apparent horizon r,v = 0 and compare with

the β = 0 case and the β = 0.5; they tend to disappear, where these phenomena are the

typical behaviors which are due to the Brans-Dicke field.
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Figure 4. Classification of causal structures for neutral black holes.
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Figure 5. Causal structure for charged black holes with β = 0.

We summarize the possible charge-less causal structures, inferred from our simulations,

in figure 4. For ω > −3/2, the typical shape is (A). The oscillations of the apparent horizon

r,v = 0 depends on the number of peaks of the initial collapsing field (see (B) and figure 20

in appendix C, and compare with figure 5 of [29]). This is one difference between [29] and

the current paper. The location of r,u = 0 horizon appears and increases as the dynamics of

the Brans-Dicke field increases, e.g., as ω approaches −3/2 or 1−β increases, as denoted in

(C). For ω < −3/2, the typical shape is (E), while the apparent horizon and the singularity

can meet as was observed in [29] and the causal structure can be (F). For all cases, when

the dynamics of the Brans-Dicke field is suppressed, the causal structure approaches (D)

and follows that of Einstein gravity.

4.1.2 Charged black holes

Now we turn on the gauge coupling parameter e = 0.3. Note that the case of δ = 0.5 is the

case with maximal asymptotic charge (for Einstein gravity, this is demonstrated in [54, 55]),

since the phase between the real part and the imaginary part become maximal. However,

in general it does not mean that extreme (or naked) black holes can be formed (this was

also demonstrated by [54, 55]). The excessive charge will be repelled outside the horizon

and the excessive charge is either repelled to future infinity or forms a stable charge cloud

outside the horizon [57]. Hence in terms of gravitational collapses, δ = 0.5 allows the

largest possible amount of charge.

Case β = 0: figure 5 shows causal structures of charged black holes with β = 0. The

obvious feature is the existence of a Cauchy horizon inside the outer apparent horizon. The

singularity is always spacelike. However, in the limit v →∞, there will be nonzero distance
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Figure 6. Causal structure for charged black holes with β = 0.5.

(in terms of u-coordinate) between the outer apparent horizon and the singularity. This

indicates the existence of the Cauchy horizon. These global behaviors are the same as for

the case of charged black holes in Einstein gravity. In the left of figure 7 (as well as in

figure 14 in appendix C), the metric function α is plotted and there it can clearly be seen

that inside the horizon, α→ 0 and which hence indicates mass inflation inside the charged

black hole (see appendix A).

One important difference between this and the previous case, is the complicated hori-

zon behaviors inside the apparent horizon. Such non-trival behaviours are to be expected

since we have both the dynamics of the matter field as well as the Brans-Dicke field inside

the horizon and these cause the observed complicated dynamical behaviour of horizons.

In Einstein gravity, if we do not turn on the semi-classical effects, then there is no com-

plicated horizon dynamics inside the horizon; but, if we turn on the semi-classical effects,

then the null energy condition is violated and hence the inside horizon structure becomes

complicated [54, 55]. Also, for modified gravity models such as f(R) gravity (in the Jordan

frame), similar behaviors has been observed [56].

Case β = 0.5: figure 6 shows causal structure for the case of β = 0.5. Comparing this

with the β = 0 case, we see to two main differences.

First, for ω > −3/2, the Cauchy horizon disappears. In other words, there is a spacelike

singularity and it approaches the apparent horizon in the v →∞ limit. This was observed

by [42–44] (for dilaton limit in the Einstein frame) and our results (various ω in the Jordan

frame) are consistent with it. This issue will be clarified when we study the response of

Brans-Dicke field in the next section. Looking at the α function, there is the signature of

mass inflation, see for example right of figure 7 for e = 0.3 and ω > −3/2 (as well as in
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Figure 7. Comparison of α for β = 0 (left) and β = 0.5 (right), with the same ω = 0 and e = 0.3.

The cases for this and other initial conditions are illustrated in appendix C.

Figure 8. Causal structure for charged black holes with β = 1.

figure 15 in appendix C), since there is a region where α approaches zero. However, this is

not enough to generate a Cauchy horizon as in the β = 0 cases.

Secondly, for ω < −3/2, there can be an r,u = 0 horizon which will eventually form a

cosmological horizon. This was not observed in gravitational collapses of neutral matters.

Therefore, we can state that if ω < −3/2, then a charged gravitational collapse can induce

inflation and a baby universe. If we interpret the r,u = 0 horizon as a throat of a (one-way

traversable) wormhole, then we can make a one-way traversable wormhole using a charged

gravitational collapse. Of course, we know that if we consider the limit ω < −3/2, then the

Brans-Dicke field becomes a ghost and hence it can allow a wormhole or a baby universe [65].

However, what we show is that such objects can be obtained just by gravitational collapse

of a charged matter field, i.e., in an extremely simple way while previously, complicated

initial conditions were needed to obtain such a state [66].
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Figure 9. Causal structures for charged black holes.

Case β = 1: the causal structure of this case, shown in figure 8, shares many qualitative

properties with the β = 0.5 case. In the neutral limit, there was no similar behaviors for

ω < −3/2 limit, therefore, it is more clear that the existence of the inflating region really

is comes from the effects of charge.

Importantly, it is noted that for the case of ω = −1 (dilaton gravity with Heterotic

theory), there exists a spacelike singularity. There were some discussions that extreme

black holes can be regular [21]. However, if the black hole is formed from a gravitational

collapse, then we have to conclude that such a regular black hole state is impossible to

obtain.

Summary of causal structures. The intuitive nature of local r,v = 0 horizons or

r,u = 0 horizons are the same as figure 4. However, when we turn on the charge, the global

structures can take on three different types. (1) For β = 0, there is the Cauchy horizon

((G) of figure 9). (2) For ω > −3/2 and β = 0.5 or 1, there is no Cauchy horizon ((H) of

figure 9). (3) For ω < −3/2 and β = 0.5 or 1 cases, the gravitational collapse can induce

inflation ((I) of figure 9). If the final point of r,u = 0 in the v → ∞ limit (green dot in

(I)) does not meet the spacelike future infinity, then there will be a Cauchy horizon in the

v →∞ limit.

4.2 Response of the Brans-Dicke field

The Brans-Dicke field equation is

0 = Φ;µνg
µν − 8πΦβ

3 + 2ω

(
TM − 2βLEM

)
,

where

TM − 2βLEM = −β q2

4πr4
+

1− β
2πα2

((wz̄ + zw̄) + iea (z̄s− zs̄)) . (4.2)
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Figure 10. Plots of Φ for β = 0.

Note that we can approximately write this as follows:

0 = Φ;µνg
µν − 8πΦβ

3 + 2ω
(−β × (charge terms) + (1− β)× (kinetic terms)) .

The kinetic terms mainly contribute during the gravitational collapse (i.e. in our simu-

lations for v < vf = 20), while the charge terms will contribute after the gravitational

collapse (i.e. in our simulations for v > vf = 20) and outside the apparent horizon. Outside
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the black hole, the charge term will remain since the charge is a conserved quantity, while

the kinetic term will disappear as the gravitational collapse ends.

If we keep this in mind, then for the β = 0 case, there will be essentially no effects

after the gravitational collapse and the outside the horizon. In other words, the Brans-

Dicke hair will decay as time goes on and approach a stationary limit, figure 10 shows such

behaviors. On the other hand, in the β = 1 limit, there will be almost no back-reaction to

the Brans-Dicke field during the gravitational collapse; only after the gravitational collapse

has finished will the Brans-Dicke field be affected. Figure 12 shows such behaviors very

clearly.

If 0 < β < 1, then one can see both effects simultaneously, such behaviour is shown

in figure 11; one can see the contrast between during (0 < v < 20) and after (v > 20) the

gravitational collapse, which is different from the cases of β = 0 and β = 1.

Now let us think about the directions of the Brans-Dicke fields, whether it becomes

greater or less than one. For ω > −3/2, if the term TM − 2βLEM is positive, it will push

the Brans-Dicke field to the strong coupling limit (Φ < 1); if it is negative, then it will

push to the weak coupling limit (Φ > 1). To summarize:

– Effects of kinetic terms: if β < 1 and ω > −3/2, then the kinetic terms always push the

Brans-Dicke field to the strong coupling limit.

– Effects of charge terms: if β > 0 and ω > −3/2, then the charge terms always push the

Brans-Dicke field to the weak coupling limit.

For the other cases (e.g., ω < −3/2), opposite behaviors will be observed. This is consistent

with the numerical results shown in figures 10, 11 and 12. For 0 ≤ β ≤ 1 and ω > −3/2,

during the gravitational collapse, Φ < 1 appears (shifts to blue color) except β = 1. After

the gravitational collapse, always we have Φ > 1 (shifts to red color) except for β = 0.

In particular we can see both phenomena at the same time for the case of β = 0.5. If

ω < −3/2, then all behaviors are opposite.

We can summarize our results (for ω > −3/2) as follows:

– β < 0: All effects push the Brans-Dicke field to the strong coupling limit. As time goes

on, the Brans-Dicke hair will be formed in the strong coupling direction.

– β = 0: The Brans-Dicke field is pushed to the strong coupling limit, but only dynami-

cally. As time goes on, the Brans-Dicke hair will disappear in the stationary limit.

– 0 < β < 1: The Brans-Dicke field is pushed to the strong coupling limit dynamically. On

the other hand, as time goes on, the Brans-Dicke hair will be formed in the weak

coupling direction.

– β = 1: The Brans-Dicke field does not affected by gravitational collapse. However, as

time goes on, the Brans-Dicke hair will be formed in the weak coupling direction.

– 1 < β: All effects push the Brans-Dicke field to the weak coupling limit.
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Figure 11. Plots showing the Brans-Dicke field Φ for β = 0.5.

One final comment should be made regarding the no-hair theorem in the Einstein

frame. We know that for a quite general class of models, the no-hair theorem should be

satisfied in the Einstein frame, hence, there should be no scalar hair in the stationary limit.

If this is the case in the Einstein frame, then there should be no hair in the Jordan frame,

too [67]. However, our model is consistent with these general discussions. After we change

the Einstein frame, the matter sector Lagrangian has a non-trivial coupling between the

matter field and the Brans-Dicke field: so to speak, LE(φ,Aµ,Φ), unless β = 0. This
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Figure 12. Plots showing the Brans-Dicke field Φ for β = 1.

violates the assumptions of [67] and it explains why a non-trivial scalar hair appears after

the gravitational collapse has finished. Furthermore, we can consistently observe that there

is no scalar hair after the gravitational collapses for the β = 0 case.

5 Discussion

In this paper, we have investigated charged black holes of string-inspired gravity models.

Two parameters are important: the Brans-Dicke parameter ω and the coupling between the
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Brans-Dicke field and the gauge field β. This model covers lots of string-inspired models:

the dilaton gravity ω = −1 with Type IIA (β = 0), Type I (β = 0.5), Heterotic (β = 1),

some braneworld inspired models ω > −3/2 and f(R) inspired models ω = 0. In addition,

we investigated the ghost limit ω < −3/2. We used numerical techniques with double-null

formalism to numerically solve the dynamic equations.

We have focused on the causal structures and responses of the Brans-Dicke field, es-

pecially reactions via charges. For usual non-ghost limit ω > −3/2, the direction of the

response of the Brans-Dicke field, whether biased to strong coupling limit or weak coupling

limit, is determined by β. If β = 1, then there is no response of the Brans-Dicke field during

the gravitational collapse; if β = 0, then there is no response of the Brans-Dicke field via

charges after a black hole is formed. This means that after the gravitational collapse, as

long as β > 0, the Brans-Dicke field will be biased to the weak coupling limit.

This is very crucial in order to understand the nature of charged black holes for β > 0.

An important point is that in general such a black hole will have Brans-Dicke hair. Another

important point is that the Brans-Dicke field is biased to the weak coupling limit and this

will screen the charge inside the horizon. Therefore, this explains the absence of the

Cauchy horizon, while it exists for the β = 0 case. However, we did not try to control

the Brans-Dicke field using a potential and hence further points to be clarified, this issue

will be studied in a future paper II, which will focus on mass inflation and dependence on

parameters and potentials. However, the current paper suggests that there are are many

other parameters and issues which will be interesting to study.

Although not a string-inspired model per se, the ω < −3/2 and β > 0 cases are

also interesting in the sense that a charged matter collapse can induce inflation, while the

outside still does not inflate. So, as long as the theory allows for the existence of ghosts, the

formation of a (at least one-way traversable) wormhole does not require complicated initial

conditions. Of course, the existence of the ghost may be accompanied by complicated

instabilities and this calls for further investigations. A detailed study of this issue is also

postponed to a future paper.

To see, not only outside, but also inside the black hole and to study the detailed

relations between gravity and various field contents, probably the best way is to use the

double-null formalism. The authors hope that this paper will be an important step to

prepare for upcoming investigations of diverse and various interesting topics, including the

interests of theoretical gravity, string theory, holography, astrophysical applications, as well

as cosmology, by varying matter, dimensions, gravity model, and symmetry, etc.
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A Mass inflation in Einstein gravity

In this appendix, we briefly review mass inflation in Einstein gravity. Mass inflation is a

typical phenomenon of a deep inside of a charged black hole. Let us begin from a static

charged black hole solution, so-called the Reissner-Nordstrom solution [68, 69]:

ds2 = −N2dt2 +N−2dr2 + r2dΩ2, (A.1)

where N2 = 1−2M/r+Q2/r2. This solution has two horizons: r± = M±
√
M2 −Q2 with

asymptotic mass M and charge Q (if M > Q). We show that the inner horizon is unstable

up to a small perturbation, in the sense that a local observer near the inner horizon who

sees a small perturbation can experience an exponential growth of the energy density.

For an in-going matter pulse, the energy-momentum tensor can be approximated

by [26–28, 70]

Tµν ∝ ∂µv∂νv
F (v)

r2
, (A.2)

where F (v) is so-called the luminosity function that should be proportional to v−p with a

certain constant p for a realistic matter [71, 72]. Now, when there is an out-going observer

who sees the in-going matter pulse, the observer measures the energy density ρ = Tµν l
µlν ,

where lµ is the null geodesic of the out-going observer. Note that lµ∂µv = dv/dη ∝ expκ−v,

where κ− is the surface gravity of the inner horizon and η is the affine parameter of the

observer [26–28, 70]. Therefore, the energy density becomes

ρ ∝ e2κ−v. (A.3)

This is so-called mass inflation.

First, this implies that the inner horizon of the Reissner-Nordstrom solution is un-

stable via a small perturbation [26–28]. Therefore, if we consider gravitational collapses,

we cannot trust the Reissner-Nordstrom solution for the internal causal structure and the

internal structure is dramatically changed [73]. This necessarily requires numerical sim-

ulations. Secondly, as the local energy function exponentially increases, other curvature

quantities also exponentially increases [26–28]. In the end, the inner horizon becomes a

physical curvature singularity with a non-zero area, where the singularity is null for classical

cases, while space-like with semi-classical back-reactions [54, 55]. In terms of double-null

coordinates, mass inflation is usually identified by the behavior of the metric function α

(when we use the double-null metric ds2 = −α2dudv + r2dΩ2); α exponentially decreases,

i.e., α2 ∝ e−cv with a constant c. This was repeatedly observed by numerical simula-

tions [33–41, 54, 55]. In the extremely small α limit, all curvature quantities (Ricci scalar,

Kretchmann scalar, etc.) behave like α−n (n > 1) and hence curvatures exponentially

diverge.

All of these descriptions are on mass inflation in Einstein gravity. On the other hand,

if there is a complicated coupling with charge, matter, and gravity, then these expectations

can be modified and this is one important motivation of this paper.

– 23 –



J
H
E
P
1
0
(
2
0
1
4
)
0
4
0

B Numerical convergence and consistency tests

In this appendix, we demonstrate that 1) our numerical solutions are converging when

including the effects of nontrivial parameters and scalar fields and 2) that the converged

numerical solution is indeed a solution which satisfies the constraint equations.

The results presented here are very similar to those presented in [57] which is not

surprising, since the code in that paper and this one are essentially identical. For this

reason we refer to that paper and references therein (especially, [47–49]), for further details

of the numerical schemes and other details related to the design of the code.

The initial conditions and computational domain for the tests in this appendix are

similar to those used for making figures 5 and 10 for the ω = −1.4, e = 0.3, β = 0

case. This setup is clearly non-trivial and is thus a good test for the general convergence

properties of our code. Our computational domain for this convergence tests is, as for

figure 9, in the range v = [0; 60] and u = [0; 40].

Next we demonstrate the convergence of the code by comparing a series of simulations

with varying numerical resolution. For the tests in this appendix, we do a total of six

simulations, with each simulation changing the base resolution.

To limit the number of plots, we concentrate on displaying convergence results along

the line u = 30, which is well inside the apparent horizon and passes through a region

with very complex behaviors (cf. figures 5 and 10). Thus, if we see convergence here, it is

a fair indication that convergence requirements are satisfied throughout the whole of the

computational domain.

Along this line (u = 30), we calculate the relative convergence between two simulations

(one with a numerical resolution twice that of the other) relative to a simulation with very

high resolution:

ξ
(
xiN
)
≡
|xiN − xi2N |
|xiHighRes|

, (B.1)

where xiN denotes the dynamic variable x at the i-th grid point of simulation with resolution

N and where xiHighRes denotes the dynamic variable of the same i-th point for a simulation

with the highest numerical resolution done by us. Obviously, this expression only makes

sense for those i points that coincide in all simulations.

The first six plots in figure 13 show the relative convergence, ξ, for the dynamic vari-

ables α, r, Φ, Re s, Im s and a, respectively. The lines in the figures are marked by their

numerical resolution measured in terms of the most coarse resolution N0, the high resolu-

tion simulation used to calculate expression Equation (B.1), has a numerical resolution of

32 times the base resolution, i.e., NHighRes = 32N0.

From these figures, it is clear that the dynamic variables are converging for simulations

of increasing resolution. Furthermore, since we plot the relative convergence of the dynamic

variables, we see that the relative change between the two highest resolution simulations

show that the variables change on the order of 1 % or less, which we considered a quite

acceptable.

It is, however, not enough to demonstrate that the simulations are converging, they

must also converge to a ‘physical ’ solution, i.e., the residuals of the constraint equations
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(Equations (3.32) and (3.33)) must converge to zero. To demonstrate this, we calculate the

relative convergence of the constraint equation residuals, (relative to the Einstein-tensor)

in a similar way to Equation (B.1):

χ
(
CiN
)
≡

|CiN |
|GiHighRes|

, (B.2)

where CiN denotes the residual of the constraint equation (Cuu or Cvv), at the i-th point for

simulation with resolution N and where GiHighRes denotes the corresponding Einstein-tensor

component (Guu or Gvv respectively) at the same point.

The relative convergence of the residuals of the constraint equations are demonstrated

in the bottom two plots of figure 13, where it is seen that they converge towards zero

for higher resolution simulations. This indicates that not only are the numerical solutions

converging for simulations of higher resolution, but that they are indeed converging towards

a physical solution.

Finally, it is emphasized that the results presented in this appendix are not the only

convergence tests that we have performed, they are merely representative of typical conver-

gence behavior. For all results presented in this paper, we have performed a large number

of simulations with varying resolutions to ensure that the results had converged to their

physical solution.

C Catalog of metric function and energy-momentum tensors

In this appendix, we summarize the metric function α and energy-momentum tensor com-

ponents Tuu and Tvv. Figures 14, 15, and 16 are plots of α for β = 0, 0.5, and 1, respectively.

For typical situations of mass inflation, α → 0 exponentially, and hence almost all curva-

ture quantities (Ricci scalar, Kretchmann scalar, etc.) behave α−n (n > 1) and hence

curvatures exponentially diverge.

Figures 17, 18, and 19 are plots of Tuu for β = 0, 0.5, and 1, respectively. Figures 20, 21,

and 22 are plots of Tvv for β = 0, 0.5, and 1, respectively. Note that around the apparent

horizon r,v = 0,

r,vv|r,v=0 = −4πrTvv, (C.1)

and hence, for an out-going observer, if Tvv > 0, then the r,v = 0 horizon changes the sign

of r,v from + to −, while Tvv < 0, changes the sign of r,v from − to +. Also, around the

apparent horizon r,u = 0,

r,uu|r,u=0 = −4πrTuu, (C.2)

and hence, for an in-going observer, if Tuu > 0, then the r,u = 0 horizon changes the sign of

r,u from + to −, while Tuu < 0, changes the sign of r,u from − to +. For all figures, these

rules are always satisfied even with complicated horizon dynamics. This is also a simple

check of the consistency of our simulations.
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Figure 13. Relative convergence of the dynamic variables and constraint equations along line of

u = 30 for simulation with parameters: ω = −1.4, e = 0.3 and β = 0. See text for details.
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Figure 14. The plots of α for β = 0.
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Figure 15. The plots of α for β = 0.5.
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Figure 16. The plots of α for β = 1.
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Figure 17. The plots of Tuu for β = 0.
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Figure 18. The plots of Tuu for β = 0.5.
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Figure 19. The plots of Tuu for β = 1.
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Figure 20. The plots of Tvv for β = 0.

– 33 –



J
H
E
P
1
0
(
2
0
1
4
)
0
4
0

Figure 21. The plots of Tvv for β = 0.5.
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Figure 22. The plots of Tvv for β = 1.
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